Root/mm/slub.c

1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12#include <linux/mm.h>
13#include <linux/swap.h> /* struct reclaim_state */
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31#include <linux/stacktrace.h>
32#include <linux/prefetch.h>
33
34#include <trace/events/kmem.h>
35
36/*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113        SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
117#ifdef CONFIG_SLUB_DEBUG
118    return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119#else
120    return 0;
121#endif
122}
123
124/*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142#define MIN_PARTIAL 5
143
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152                SLAB_POISON | SLAB_STORE_USER)
153
154/*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165        SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166        SLAB_FAILSLAB)
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169        SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175/* Internal SLUB flags */
176#define __OBJECT_POISON 0x80000000UL /* Poison object */
177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186    DOWN, /* No slab functionality available */
187    PARTIAL, /* Kmem_cache_node works */
188    UP, /* Everything works but does not show up in sysfs */
189    SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
194static LIST_HEAD(slab_caches);
195
196/*
197 * Tracking user of a slab.
198 */
199#define TRACK_ADDRS_COUNT 16
200struct track {
201    unsigned long addr; /* Called from address */
202#ifdef CONFIG_STACKTRACE
203    unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
205    int cpu; /* Was running on cpu */
206    int pid; /* Pid context */
207    unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212#ifdef CONFIG_SYSFS
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
216
217#else
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220                            { return 0; }
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
223    kfree(s->name);
224    kfree(s);
225}
226
227#endif
228
229static inline void stat(const struct kmem_cache *s, enum stat_item si)
230{
231#ifdef CONFIG_SLUB_STATS
232    __this_cpu_inc(s->cpu_slab->stat[si]);
233#endif
234}
235
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242    return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
247    return s->node[node];
248}
249
250/* Verify that a pointer has an address that is valid within a slab page */
251static inline int check_valid_pointer(struct kmem_cache *s,
252                struct page *page, const void *object)
253{
254    void *base;
255
256    if (!object)
257        return 1;
258
259    base = page_address(page);
260    if (object < base || object >= base + page->objects * s->size ||
261        (object - base) % s->size) {
262        return 0;
263    }
264
265    return 1;
266}
267
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270    return *(void **)(object + s->offset);
271}
272
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275    prefetch(object + s->offset);
276}
277
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280    void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283    probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285    p = get_freepointer(s, object);
286#endif
287    return p;
288}
289
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292    *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
296#define for_each_object(__p, __s, __addr, __objects) \
297    for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298            __p += (__s)->size)
299
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303    return (p - addr) / s->size;
304}
305
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309    /*
310     * Debugging requires use of the padding between object
311     * and whatever may come after it.
312     */
313    if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314        return s->objsize;
315
316#endif
317    /*
318     * If we have the need to store the freelist pointer
319     * back there or track user information then we can
320     * only use the space before that information.
321     */
322    if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323        return s->inuse;
324    /*
325     * Else we can use all the padding etc for the allocation
326     */
327    return s->size;
328}
329
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332    return ((PAGE_SIZE << order) - reserved) / size;
333}
334
335static inline struct kmem_cache_order_objects oo_make(int order,
336        unsigned long size, int reserved)
337{
338    struct kmem_cache_order_objects x = {
339        (order << OO_SHIFT) + order_objects(order, size, reserved)
340    };
341
342    return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
347    return x.x >> OO_SHIFT;
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
352    return x.x & OO_MASK;
353}
354
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360    bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365    __bit_spin_unlock(PG_locked, &page->flags);
366}
367
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370        void *freelist_old, unsigned long counters_old,
371        void *freelist_new, unsigned long counters_new,
372        const char *n)
373{
374    VM_BUG_ON(!irqs_disabled());
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377    if (s->flags & __CMPXCHG_DOUBLE) {
378        if (cmpxchg_double(&page->freelist, &page->counters,
379            freelist_old, counters_old,
380            freelist_new, counters_new))
381        return 1;
382    } else
383#endif
384    {
385        slab_lock(page);
386        if (page->freelist == freelist_old && page->counters == counters_old) {
387            page->freelist = freelist_new;
388            page->counters = counters_new;
389            slab_unlock(page);
390            return 1;
391        }
392        slab_unlock(page);
393    }
394
395    cpu_relax();
396    stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399    printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402    return 0;
403}
404
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406        void *freelist_old, unsigned long counters_old,
407        void *freelist_new, unsigned long counters_new,
408        const char *n)
409{
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412    if (s->flags & __CMPXCHG_DOUBLE) {
413        if (cmpxchg_double(&page->freelist, &page->counters,
414            freelist_old, counters_old,
415            freelist_new, counters_new))
416        return 1;
417    } else
418#endif
419    {
420        unsigned long flags;
421
422        local_irq_save(flags);
423        slab_lock(page);
424        if (page->freelist == freelist_old && page->counters == counters_old) {
425            page->freelist = freelist_new;
426            page->counters = counters_new;
427            slab_unlock(page);
428            local_irq_restore(flags);
429            return 1;
430        }
431        slab_unlock(page);
432        local_irq_restore(flags);
433    }
434
435    cpu_relax();
436    stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439    printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442    return 0;
443}
444
445#ifdef CONFIG_SLUB_DEBUG
446/*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454    void *p;
455    void *addr = page_address(page);
456
457    for (p = page->freelist; p; p = get_freepointer(s, p))
458        set_bit(slab_index(p, s, addr), map);
459}
460
461/*
462 * Debug settings:
463 */
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
467static int slub_debug;
468#endif
469
470static char *slub_debug_slabs;
471static int disable_higher_order_debug;
472
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
478    print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479            length, 1);
480}
481
482static struct track *get_track(struct kmem_cache *s, void *object,
483    enum track_item alloc)
484{
485    struct track *p;
486
487    if (s->offset)
488        p = object + s->offset + sizeof(void *);
489    else
490        p = object + s->inuse;
491
492    return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
496            enum track_item alloc, unsigned long addr)
497{
498    struct track *p = get_track(s, object, alloc);
499
500    if (addr) {
501#ifdef CONFIG_STACKTRACE
502        struct stack_trace trace;
503        int i;
504
505        trace.nr_entries = 0;
506        trace.max_entries = TRACK_ADDRS_COUNT;
507        trace.entries = p->addrs;
508        trace.skip = 3;
509        save_stack_trace(&trace);
510
511        /* See rant in lockdep.c */
512        if (trace.nr_entries != 0 &&
513            trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514            trace.nr_entries--;
515
516        for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517            p->addrs[i] = 0;
518#endif
519        p->addr = addr;
520        p->cpu = smp_processor_id();
521        p->pid = current->pid;
522        p->when = jiffies;
523    } else
524        memset(p, 0, sizeof(struct track));
525}
526
527static void init_tracking(struct kmem_cache *s, void *object)
528{
529    if (!(s->flags & SLAB_STORE_USER))
530        return;
531
532    set_track(s, object, TRACK_FREE, 0UL);
533    set_track(s, object, TRACK_ALLOC, 0UL);
534}
535
536static void print_track(const char *s, struct track *t)
537{
538    if (!t->addr)
539        return;
540
541    printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542        s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543#ifdef CONFIG_STACKTRACE
544    {
545        int i;
546        for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547            if (t->addrs[i])
548                printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549            else
550                break;
551    }
552#endif
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557    if (!(s->flags & SLAB_STORE_USER))
558        return;
559
560    print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561    print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
566    printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567        page, page->objects, page->inuse, page->freelist, page->flags);
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573    va_list args;
574    char buf[100];
575
576    va_start(args, fmt);
577    vsnprintf(buf, sizeof(buf), fmt, args);
578    va_end(args);
579    printk(KERN_ERR "========================================"
580            "=====================================\n");
581    printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582    printk(KERN_ERR "----------------------------------------"
583            "-------------------------------------\n\n");
584}
585
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588    va_list args;
589    char buf[100];
590
591    va_start(args, fmt);
592    vsnprintf(buf, sizeof(buf), fmt, args);
593    va_end(args);
594    printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598{
599    unsigned int off; /* Offset of last byte */
600    u8 *addr = page_address(page);
601
602    print_tracking(s, p);
603
604    print_page_info(page);
605
606    printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607            p, p - addr, get_freepointer(s, p));
608
609    if (p > addr + 16)
610        print_section("Bytes b4 ", p - 16, 16);
611
612    print_section("Object ", p, min_t(unsigned long, s->objsize,
613                PAGE_SIZE));
614    if (s->flags & SLAB_RED_ZONE)
615        print_section("Redzone ", p + s->objsize,
616            s->inuse - s->objsize);
617
618    if (s->offset)
619        off = s->offset + sizeof(void *);
620    else
621        off = s->inuse;
622
623    if (s->flags & SLAB_STORE_USER)
624        off += 2 * sizeof(struct track);
625
626    if (off != s->size)
627        /* Beginning of the filler is the free pointer */
628        print_section("Padding ", p + off, s->size - off);
629
630    dump_stack();
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634            u8 *object, char *reason)
635{
636    slab_bug(s, "%s", reason);
637    print_trailer(s, page, object);
638}
639
640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641{
642    va_list args;
643    char buf[100];
644
645    va_start(args, fmt);
646    vsnprintf(buf, sizeof(buf), fmt, args);
647    va_end(args);
648    slab_bug(s, "%s", buf);
649    print_page_info(page);
650    dump_stack();
651}
652
653static void init_object(struct kmem_cache *s, void *object, u8 val)
654{
655    u8 *p = object;
656
657    if (s->flags & __OBJECT_POISON) {
658        memset(p, POISON_FREE, s->objsize - 1);
659        p[s->objsize - 1] = POISON_END;
660    }
661
662    if (s->flags & SLAB_RED_ZONE)
663        memset(p + s->objsize, val, s->inuse - s->objsize);
664}
665
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667                        void *from, void *to)
668{
669    slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670    memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674            u8 *object, char *what,
675            u8 *start, unsigned int value, unsigned int bytes)
676{
677    u8 *fault;
678    u8 *end;
679
680    fault = memchr_inv(start, value, bytes);
681    if (!fault)
682        return 1;
683
684    end = start + bytes;
685    while (end > fault && end[-1] == value)
686        end--;
687
688    slab_bug(s, "%s overwritten", what);
689    printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690                    fault, end - 1, fault[0], value);
691    print_trailer(s, page, object);
692
693    restore_bytes(s, what, value, fault, end);
694    return 0;
695}
696
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737    unsigned long off = s->inuse; /* The end of info */
738
739    if (s->offset)
740        /* Freepointer is placed after the object. */
741        off += sizeof(void *);
742
743    if (s->flags & SLAB_STORE_USER)
744        /* We also have user information there */
745        off += 2 * sizeof(struct track);
746
747    if (s->size == off)
748        return 1;
749
750    return check_bytes_and_report(s, page, p, "Object padding",
751                p + off, POISON_INUSE, s->size - off);
752}
753
754/* Check the pad bytes at the end of a slab page */
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
757    u8 *start;
758    u8 *fault;
759    u8 *end;
760    int length;
761    int remainder;
762
763    if (!(s->flags & SLAB_POISON))
764        return 1;
765
766    start = page_address(page);
767    length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768    end = start + length;
769    remainder = length % s->size;
770    if (!remainder)
771        return 1;
772
773    fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774    if (!fault)
775        return 1;
776    while (end > fault && end[-1] == POISON_INUSE)
777        end--;
778
779    slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780    print_section("Padding ", end - remainder, remainder);
781
782    restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783    return 0;
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
787                    void *object, u8 val)
788{
789    u8 *p = object;
790    u8 *endobject = object + s->objsize;
791
792    if (s->flags & SLAB_RED_ZONE) {
793        if (!check_bytes_and_report(s, page, object, "Redzone",
794            endobject, val, s->inuse - s->objsize))
795            return 0;
796    } else {
797        if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798            check_bytes_and_report(s, page, p, "Alignment padding",
799                endobject, POISON_INUSE, s->inuse - s->objsize);
800        }
801    }
802
803    if (s->flags & SLAB_POISON) {
804        if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805            (!check_bytes_and_report(s, page, p, "Poison", p,
806                    POISON_FREE, s->objsize - 1) ||
807             !check_bytes_and_report(s, page, p, "Poison",
808                p + s->objsize - 1, POISON_END, 1)))
809            return 0;
810        /*
811         * check_pad_bytes cleans up on its own.
812         */
813        check_pad_bytes(s, page, p);
814    }
815
816    if (!s->offset && val == SLUB_RED_ACTIVE)
817        /*
818         * Object and freepointer overlap. Cannot check
819         * freepointer while object is allocated.
820         */
821        return 1;
822
823    /* Check free pointer validity */
824    if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825        object_err(s, page, p, "Freepointer corrupt");
826        /*
827         * No choice but to zap it and thus lose the remainder
828         * of the free objects in this slab. May cause
829         * another error because the object count is now wrong.
830         */
831        set_freepointer(s, p, NULL);
832        return 0;
833    }
834    return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
839    int maxobj;
840
841    VM_BUG_ON(!irqs_disabled());
842
843    if (!PageSlab(page)) {
844        slab_err(s, page, "Not a valid slab page");
845        return 0;
846    }
847
848    maxobj = order_objects(compound_order(page), s->size, s->reserved);
849    if (page->objects > maxobj) {
850        slab_err(s, page, "objects %u > max %u",
851            s->name, page->objects, maxobj);
852        return 0;
853    }
854    if (page->inuse > page->objects) {
855        slab_err(s, page, "inuse %u > max %u",
856            s->name, page->inuse, page->objects);
857        return 0;
858    }
859    /* Slab_pad_check fixes things up after itself */
860    slab_pad_check(s, page);
861    return 1;
862}
863
864/*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870    int nr = 0;
871    void *fp;
872    void *object = NULL;
873    unsigned long max_objects;
874
875    fp = page->freelist;
876    while (fp && nr <= page->objects) {
877        if (fp == search)
878            return 1;
879        if (!check_valid_pointer(s, page, fp)) {
880            if (object) {
881                object_err(s, page, object,
882                    "Freechain corrupt");
883                set_freepointer(s, object, NULL);
884                break;
885            } else {
886                slab_err(s, page, "Freepointer corrupt");
887                page->freelist = NULL;
888                page->inuse = page->objects;
889                slab_fix(s, "Freelist cleared");
890                return 0;
891            }
892            break;
893        }
894        object = fp;
895        fp = get_freepointer(s, object);
896        nr++;
897    }
898
899    max_objects = order_objects(compound_order(page), s->size, s->reserved);
900    if (max_objects > MAX_OBJS_PER_PAGE)
901        max_objects = MAX_OBJS_PER_PAGE;
902
903    if (page->objects != max_objects) {
904        slab_err(s, page, "Wrong number of objects. Found %d but "
905            "should be %d", page->objects, max_objects);
906        page->objects = max_objects;
907        slab_fix(s, "Number of objects adjusted.");
908    }
909    if (page->inuse != page->objects - nr) {
910        slab_err(s, page, "Wrong object count. Counter is %d but "
911            "counted were %d", page->inuse, page->objects - nr);
912        page->inuse = page->objects - nr;
913        slab_fix(s, "Object count adjusted.");
914    }
915    return search == NULL;
916}
917
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919                                int alloc)
920{
921    if (s->flags & SLAB_TRACE) {
922        printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923            s->name,
924            alloc ? "alloc" : "free",
925            object, page->inuse,
926            page->freelist);
927
928        if (!alloc)
929            print_section("Object ", (void *)object, s->objsize);
930
931        dump_stack();
932    }
933}
934
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
941    flags &= gfp_allowed_mask;
942    lockdep_trace_alloc(flags);
943    might_sleep_if(flags & __GFP_WAIT);
944
945    return should_failslab(s->objsize, flags, s->flags);
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
950    flags &= gfp_allowed_mask;
951    kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952    kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957    kmemleak_free_recursive(x, s->flags);
958
959    /*
960     * Trouble is that we may no longer disable interupts in the fast path
961     * So in order to make the debug calls that expect irqs to be
962     * disabled we need to disable interrupts temporarily.
963     */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965    {
966        unsigned long flags;
967
968        local_irq_save(flags);
969        kmemcheck_slab_free(s, x, s->objsize);
970        debug_check_no_locks_freed(x, s->objsize);
971        local_irq_restore(flags);
972    }
973#endif
974    if (!(s->flags & SLAB_DEBUG_OBJECTS))
975        debug_check_no_obj_freed(x, s->objsize);
976}
977
978/*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983static void add_full(struct kmem_cache *s,
984    struct kmem_cache_node *n, struct page *page)
985{
986    if (!(s->flags & SLAB_STORE_USER))
987        return;
988
989    list_add(&page->lru, &n->full);
990}
991
992/*
993 * list_lock must be held.
994 */
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
997    if (!(s->flags & SLAB_STORE_USER))
998        return;
999
1000    list_del(&page->lru);
1001}
1002
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006    struct kmem_cache_node *n = get_node(s, node);
1007
1008    return atomic_long_read(&n->nr_slabs);
1009}
1010
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013    return atomic_long_read(&n->nr_slabs);
1014}
1015
1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017{
1018    struct kmem_cache_node *n = get_node(s, node);
1019
1020    /*
1021     * May be called early in order to allocate a slab for the
1022     * kmem_cache_node structure. Solve the chicken-egg
1023     * dilemma by deferring the increment of the count during
1024     * bootstrap (see early_kmem_cache_node_alloc).
1025     */
1026    if (n) {
1027        atomic_long_inc(&n->nr_slabs);
1028        atomic_long_add(objects, &n->total_objects);
1029    }
1030}
1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032{
1033    struct kmem_cache_node *n = get_node(s, node);
1034
1035    atomic_long_dec(&n->nr_slabs);
1036    atomic_long_sub(objects, &n->total_objects);
1037}
1038
1039/* Object debug checks for alloc/free paths */
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041                                void *object)
1042{
1043    if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044        return;
1045
1046    init_object(s, object, SLUB_RED_INACTIVE);
1047    init_tracking(s, object);
1048}
1049
1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051                    void *object, unsigned long addr)
1052{
1053    if (!check_slab(s, page))
1054        goto bad;
1055
1056    if (!check_valid_pointer(s, page, object)) {
1057        object_err(s, page, object, "Freelist Pointer check fails");
1058        goto bad;
1059    }
1060
1061    if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062        goto bad;
1063
1064    /* Success perform special debug activities for allocs */
1065    if (s->flags & SLAB_STORE_USER)
1066        set_track(s, object, TRACK_ALLOC, addr);
1067    trace(s, page, object, 1);
1068    init_object(s, object, SLUB_RED_ACTIVE);
1069    return 1;
1070
1071bad:
1072    if (PageSlab(page)) {
1073        /*
1074         * If this is a slab page then lets do the best we can
1075         * to avoid issues in the future. Marking all objects
1076         * as used avoids touching the remaining objects.
1077         */
1078        slab_fix(s, "Marking all objects used");
1079        page->inuse = page->objects;
1080        page->freelist = NULL;
1081    }
1082    return 0;
1083}
1084
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086         struct page *page, void *object, unsigned long addr)
1087{
1088    unsigned long flags;
1089    int rc = 0;
1090
1091    local_irq_save(flags);
1092    slab_lock(page);
1093
1094    if (!check_slab(s, page))
1095        goto fail;
1096
1097    if (!check_valid_pointer(s, page, object)) {
1098        slab_err(s, page, "Invalid object pointer 0x%p", object);
1099        goto fail;
1100    }
1101
1102    if (on_freelist(s, page, object)) {
1103        object_err(s, page, object, "Object already free");
1104        goto fail;
1105    }
1106
1107    if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108        goto out;
1109
1110    if (unlikely(s != page->slab)) {
1111        if (!PageSlab(page)) {
1112            slab_err(s, page, "Attempt to free object(0x%p) "
1113                "outside of slab", object);
1114        } else if (!page->slab) {
1115            printk(KERN_ERR
1116                "SLUB <none>: no slab for object 0x%p.\n",
1117                        object);
1118            dump_stack();
1119        } else
1120            object_err(s, page, object,
1121                    "page slab pointer corrupt.");
1122        goto fail;
1123    }
1124
1125    if (s->flags & SLAB_STORE_USER)
1126        set_track(s, object, TRACK_FREE, addr);
1127    trace(s, page, object, 0);
1128    init_object(s, object, SLUB_RED_INACTIVE);
1129    rc = 1;
1130out:
1131    slab_unlock(page);
1132    local_irq_restore(flags);
1133    return rc;
1134
1135fail:
1136    slab_fix(s, "Object at 0x%p not freed", object);
1137    goto out;
1138}
1139
1140static int __init setup_slub_debug(char *str)
1141{
1142    slub_debug = DEBUG_DEFAULT_FLAGS;
1143    if (*str++ != '=' || !*str)
1144        /*
1145         * No options specified. Switch on full debugging.
1146         */
1147        goto out;
1148
1149    if (*str == ',')
1150        /*
1151         * No options but restriction on slabs. This means full
1152         * debugging for slabs matching a pattern.
1153         */
1154        goto check_slabs;
1155
1156    if (tolower(*str) == 'o') {
1157        /*
1158         * Avoid enabling debugging on caches if its minimum order
1159         * would increase as a result.
1160         */
1161        disable_higher_order_debug = 1;
1162        goto out;
1163    }
1164
1165    slub_debug = 0;
1166    if (*str == '-')
1167        /*
1168         * Switch off all debugging measures.
1169         */
1170        goto out;
1171
1172    /*
1173     * Determine which debug features should be switched on
1174     */
1175    for (; *str && *str != ','; str++) {
1176        switch (tolower(*str)) {
1177        case 'f':
1178            slub_debug |= SLAB_DEBUG_FREE;
1179            break;
1180        case 'z':
1181            slub_debug |= SLAB_RED_ZONE;
1182            break;
1183        case 'p':
1184            slub_debug |= SLAB_POISON;
1185            break;
1186        case 'u':
1187            slub_debug |= SLAB_STORE_USER;
1188            break;
1189        case 't':
1190            slub_debug |= SLAB_TRACE;
1191            break;
1192        case 'a':
1193            slub_debug |= SLAB_FAILSLAB;
1194            break;
1195        default:
1196            printk(KERN_ERR "slub_debug option '%c' "
1197                "unknown. skipped\n", *str);
1198        }
1199    }
1200
1201check_slabs:
1202    if (*str == ',')
1203        slub_debug_slabs = str + 1;
1204out:
1205    return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211    unsigned long flags, const char *name,
1212    void (*ctor)(void *))
1213{
1214    /*
1215     * Enable debugging if selected on the kernel commandline.
1216     */
1217    if (slub_debug && (!slub_debug_slabs ||
1218        !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219        flags |= slub_debug;
1220
1221    return flags;
1222}
1223#else
1224static inline void setup_object_debug(struct kmem_cache *s,
1225            struct page *page, void *object) {}
1226
1227static inline int alloc_debug_processing(struct kmem_cache *s,
1228    struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230static inline int free_debug_processing(struct kmem_cache *s,
1231    struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234            { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
1236            void *object, u8 val) { return 1; }
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238                    struct page *page) {}
1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241    unsigned long flags, const char *name,
1242    void (*ctor)(void *))
1243{
1244    return flags;
1245}
1246#define slub_debug 0
1247
1248#define disable_higher_order_debug 0
1249
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251                            { return 0; }
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253                            { return 0; }
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255                            int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257                            int objects) {}
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260                            { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263        void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267#endif /* CONFIG_SLUB_DEBUG */
1268
1269/*
1270 * Slab allocation and freeing
1271 */
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273                    struct kmem_cache_order_objects oo)
1274{
1275    int order = oo_order(oo);
1276
1277    flags |= __GFP_NOTRACK;
1278
1279    if (node == NUMA_NO_NODE)
1280        return alloc_pages(flags, order);
1281    else
1282        return alloc_pages_exact_node(node, flags, order);
1283}
1284
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
1287    struct page *page;
1288    struct kmem_cache_order_objects oo = s->oo;
1289    gfp_t alloc_gfp;
1290
1291    flags &= gfp_allowed_mask;
1292
1293    if (flags & __GFP_WAIT)
1294        local_irq_enable();
1295
1296    flags |= s->allocflags;
1297
1298    /*
1299     * Let the initial higher-order allocation fail under memory pressure
1300     * so we fall-back to the minimum order allocation.
1301     */
1302    alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304    page = alloc_slab_page(alloc_gfp, node, oo);
1305    if (unlikely(!page)) {
1306        oo = s->min;
1307        /*
1308         * Allocation may have failed due to fragmentation.
1309         * Try a lower order alloc if possible
1310         */
1311        page = alloc_slab_page(flags, node, oo);
1312
1313        if (page)
1314            stat(s, ORDER_FALLBACK);
1315    }
1316
1317    if (flags & __GFP_WAIT)
1318        local_irq_disable();
1319
1320    if (!page)
1321        return NULL;
1322
1323    if (kmemcheck_enabled
1324        && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325        int pages = 1 << oo_order(oo);
1326
1327        kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329        /*
1330         * Objects from caches that have a constructor don't get
1331         * cleared when they're allocated, so we need to do it here.
1332         */
1333        if (s->ctor)
1334            kmemcheck_mark_uninitialized_pages(page, pages);
1335        else
1336            kmemcheck_mark_unallocated_pages(page, pages);
1337    }
1338
1339    page->objects = oo_objects(oo);
1340    mod_zone_page_state(page_zone(page),
1341        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342        NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343        1 << oo_order(oo));
1344
1345    return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349                void *object)
1350{
1351    setup_object_debug(s, page, object);
1352    if (unlikely(s->ctor))
1353        s->ctor(object);
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358    struct page *page;
1359    void *start;
1360    void *last;
1361    void *p;
1362
1363    BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365    page = allocate_slab(s,
1366        flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367    if (!page)
1368        goto out;
1369
1370    inc_slabs_node(s, page_to_nid(page), page->objects);
1371    page->slab = s;
1372    page->flags |= 1 << PG_slab;
1373
1374    start = page_address(page);
1375
1376    if (unlikely(s->flags & SLAB_POISON))
1377        memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379    last = start;
1380    for_each_object(p, s, start, page->objects) {
1381        setup_object(s, page, last);
1382        set_freepointer(s, last, p);
1383        last = p;
1384    }
1385    setup_object(s, page, last);
1386    set_freepointer(s, last, NULL);
1387
1388    page->freelist = start;
1389    page->inuse = page->objects;
1390    page->frozen = 1;
1391out:
1392    return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
1397    int order = compound_order(page);
1398    int pages = 1 << order;
1399
1400    if (kmem_cache_debug(s)) {
1401        void *p;
1402
1403        slab_pad_check(s, page);
1404        for_each_object(p, s, page_address(page),
1405                        page->objects)
1406            check_object(s, page, p, SLUB_RED_INACTIVE);
1407    }
1408
1409    kmemcheck_free_shadow(page, compound_order(page));
1410
1411    mod_zone_page_state(page_zone(page),
1412        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413        NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414        -pages);
1415
1416    __ClearPageSlab(page);
1417    reset_page_mapcount(page);
1418    if (current->reclaim_state)
1419        current->reclaim_state->reclaimed_slab += pages;
1420    __free_pages(page, order);
1421}
1422
1423#define need_reserve_slab_rcu \
1424    (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428    struct page *page;
1429
1430    if (need_reserve_slab_rcu)
1431        page = virt_to_head_page(h);
1432    else
1433        page = container_of((struct list_head *)h, struct page, lru);
1434
1435    __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440    if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441        struct rcu_head *head;
1442
1443        if (need_reserve_slab_rcu) {
1444            int order = compound_order(page);
1445            int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447            VM_BUG_ON(s->reserved != sizeof(*head));
1448            head = page_address(page) + offset;
1449        } else {
1450            /*
1451             * RCU free overloads the RCU head over the LRU
1452             */
1453            head = (void *)&page->lru;
1454        }
1455
1456        call_rcu(head, rcu_free_slab);
1457    } else
1458        __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
1463    dec_slabs_node(s, page_to_nid(page), page->objects);
1464    free_slab(s, page);
1465}
1466
1467/*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472static inline void add_partial(struct kmem_cache_node *n,
1473                struct page *page, int tail)
1474{
1475    n->nr_partial++;
1476    if (tail == DEACTIVATE_TO_TAIL)
1477        list_add_tail(&page->lru, &n->partial);
1478    else
1479        list_add(&page->lru, &n->partial);
1480}
1481
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
1486                    struct page *page)
1487{
1488    list_del(&page->lru);
1489    n->nr_partial--;
1490}
1491
1492/*
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock.
1499 */
1500static inline void *acquire_slab(struct kmem_cache *s,
1501        struct kmem_cache_node *n, struct page *page,
1502        int mode)
1503{
1504    void *freelist;
1505    unsigned long counters;
1506    struct page new;
1507
1508    /*
1509     * Zap the freelist and set the frozen bit.
1510     * The old freelist is the list of objects for the
1511     * per cpu allocation list.
1512     */
1513    do {
1514        freelist = page->freelist;
1515        counters = page->counters;
1516        new.counters = counters;
1517        if (mode)
1518            new.inuse = page->objects;
1519
1520        VM_BUG_ON(new.frozen);
1521        new.frozen = 1;
1522
1523    } while (!__cmpxchg_double_slab(s, page,
1524            freelist, counters,
1525            NULL, new.counters,
1526            "lock and freeze"));
1527
1528    remove_partial(n, page);
1529    return freelist;
1530}
1531
1532static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533
1534/*
1535 * Try to allocate a partial slab from a specific node.
1536 */
1537static void *get_partial_node(struct kmem_cache *s,
1538        struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1539{
1540    struct page *page, *page2;
1541    void *object = NULL;
1542
1543    /*
1544     * Racy check. If we mistakenly see no partial slabs then we
1545     * just allocate an empty slab. If we mistakenly try to get a
1546     * partial slab and there is none available then get_partials()
1547     * will return NULL.
1548     */
1549    if (!n || !n->nr_partial)
1550        return NULL;
1551
1552    spin_lock(&n->list_lock);
1553    list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554        void *t = acquire_slab(s, n, page, object == NULL);
1555        int available;
1556
1557        if (!t)
1558            break;
1559
1560        if (!object) {
1561            c->page = page;
1562            c->node = page_to_nid(page);
1563            stat(s, ALLOC_FROM_PARTIAL);
1564            object = t;
1565            available = page->objects - page->inuse;
1566        } else {
1567            page->freelist = t;
1568            available = put_cpu_partial(s, page, 0);
1569            stat(s, CPU_PARTIAL_NODE);
1570        }
1571        if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572            break;
1573
1574    }
1575    spin_unlock(&n->list_lock);
1576    return object;
1577}
1578
1579/*
1580 * Get a page from somewhere. Search in increasing NUMA distances.
1581 */
1582static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583        struct kmem_cache_cpu *c)
1584{
1585#ifdef CONFIG_NUMA
1586    struct zonelist *zonelist;
1587    struct zoneref *z;
1588    struct zone *zone;
1589    enum zone_type high_zoneidx = gfp_zone(flags);
1590    void *object;
1591    unsigned int cpuset_mems_cookie;
1592
1593    /*
1594     * The defrag ratio allows a configuration of the tradeoffs between
1595     * inter node defragmentation and node local allocations. A lower
1596     * defrag_ratio increases the tendency to do local allocations
1597     * instead of attempting to obtain partial slabs from other nodes.
1598     *
1599     * If the defrag_ratio is set to 0 then kmalloc() always
1600     * returns node local objects. If the ratio is higher then kmalloc()
1601     * may return off node objects because partial slabs are obtained
1602     * from other nodes and filled up.
1603     *
1604     * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605     * defrag_ratio = 1000) then every (well almost) allocation will
1606     * first attempt to defrag slab caches on other nodes. This means
1607     * scanning over all nodes to look for partial slabs which may be
1608     * expensive if we do it every time we are trying to find a slab
1609     * with available objects.
1610     */
1611    if (!s->remote_node_defrag_ratio ||
1612            get_cycles() % 1024 > s->remote_node_defrag_ratio)
1613        return NULL;
1614
1615    do {
1616        cpuset_mems_cookie = get_mems_allowed();
1617        zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1618        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619            struct kmem_cache_node *n;
1620
1621            n = get_node(s, zone_to_nid(zone));
1622
1623            if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624                    n->nr_partial > s->min_partial) {
1625                object = get_partial_node(s, n, c);
1626                if (object) {
1627                    /*
1628                     * Return the object even if
1629                     * put_mems_allowed indicated that
1630                     * the cpuset mems_allowed was
1631                     * updated in parallel. It's a
1632                     * harmless race between the alloc
1633                     * and the cpuset update.
1634                     */
1635                    put_mems_allowed(cpuset_mems_cookie);
1636                    return object;
1637                }
1638            }
1639        }
1640    } while (!put_mems_allowed(cpuset_mems_cookie));
1641#endif
1642    return NULL;
1643}
1644
1645/*
1646 * Get a partial page, lock it and return it.
1647 */
1648static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1649        struct kmem_cache_cpu *c)
1650{
1651    void *object;
1652    int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1653
1654    object = get_partial_node(s, get_node(s, searchnode), c);
1655    if (object || node != NUMA_NO_NODE)
1656        return object;
1657
1658    return get_any_partial(s, flags, c);
1659}
1660
1661#ifdef CONFIG_PREEMPT
1662/*
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1666 */
1667#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1668#else
1669/*
1670 * No preemption supported therefore also no need to check for
1671 * different cpus.
1672 */
1673#define TID_STEP 1
1674#endif
1675
1676static inline unsigned long next_tid(unsigned long tid)
1677{
1678    return tid + TID_STEP;
1679}
1680
1681static inline unsigned int tid_to_cpu(unsigned long tid)
1682{
1683    return tid % TID_STEP;
1684}
1685
1686static inline unsigned long tid_to_event(unsigned long tid)
1687{
1688    return tid / TID_STEP;
1689}
1690
1691static inline unsigned int init_tid(int cpu)
1692{
1693    return cpu;
1694}
1695
1696static inline void note_cmpxchg_failure(const char *n,
1697        const struct kmem_cache *s, unsigned long tid)
1698{
1699#ifdef SLUB_DEBUG_CMPXCHG
1700    unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1701
1702    printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1703
1704#ifdef CONFIG_PREEMPT
1705    if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706        printk("due to cpu change %d -> %d\n",
1707            tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708    else
1709#endif
1710    if (tid_to_event(tid) != tid_to_event(actual_tid))
1711        printk("due to cpu running other code. Event %ld->%ld\n",
1712            tid_to_event(tid), tid_to_event(actual_tid));
1713    else
1714        printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715            actual_tid, tid, next_tid(tid));
1716#endif
1717    stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1718}
1719
1720void init_kmem_cache_cpus(struct kmem_cache *s)
1721{
1722    int cpu;
1723
1724    for_each_possible_cpu(cpu)
1725        per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1726}
1727
1728/*
1729 * Remove the cpu slab
1730 */
1731static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1732{
1733    enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1734    struct page *page = c->page;
1735    struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736    int lock = 0;
1737    enum slab_modes l = M_NONE, m = M_NONE;
1738    void *freelist;
1739    void *nextfree;
1740    int tail = DEACTIVATE_TO_HEAD;
1741    struct page new;
1742    struct page old;
1743
1744    if (page->freelist) {
1745        stat(s, DEACTIVATE_REMOTE_FREES);
1746        tail = DEACTIVATE_TO_TAIL;
1747    }
1748
1749    c->tid = next_tid(c->tid);
1750    c->page = NULL;
1751    freelist = c->freelist;
1752    c->freelist = NULL;
1753
1754    /*
1755     * Stage one: Free all available per cpu objects back
1756     * to the page freelist while it is still frozen. Leave the
1757     * last one.
1758     *
1759     * There is no need to take the list->lock because the page
1760     * is still frozen.
1761     */
1762    while (freelist && (nextfree = get_freepointer(s, freelist))) {
1763        void *prior;
1764        unsigned long counters;
1765
1766        do {
1767            prior = page->freelist;
1768            counters = page->counters;
1769            set_freepointer(s, freelist, prior);
1770            new.counters = counters;
1771            new.inuse--;
1772            VM_BUG_ON(!new.frozen);
1773
1774        } while (!__cmpxchg_double_slab(s, page,
1775            prior, counters,
1776            freelist, new.counters,
1777            "drain percpu freelist"));
1778
1779        freelist = nextfree;
1780    }
1781
1782    /*
1783     * Stage two: Ensure that the page is unfrozen while the
1784     * list presence reflects the actual number of objects
1785     * during unfreeze.
1786     *
1787     * We setup the list membership and then perform a cmpxchg
1788     * with the count. If there is a mismatch then the page
1789     * is not unfrozen but the page is on the wrong list.
1790     *
1791     * Then we restart the process which may have to remove
1792     * the page from the list that we just put it on again
1793     * because the number of objects in the slab may have
1794     * changed.
1795     */
1796redo:
1797
1798    old.freelist = page->freelist;
1799    old.counters = page->counters;
1800    VM_BUG_ON(!old.frozen);
1801
1802    /* Determine target state of the slab */
1803    new.counters = old.counters;
1804    if (freelist) {
1805        new.inuse--;
1806        set_freepointer(s, freelist, old.freelist);
1807        new.freelist = freelist;
1808    } else
1809        new.freelist = old.freelist;
1810
1811    new.frozen = 0;
1812
1813    if (!new.inuse && n->nr_partial > s->min_partial)
1814        m = M_FREE;
1815    else if (new.freelist) {
1816        m = M_PARTIAL;
1817        if (!lock) {
1818            lock = 1;
1819            /*
1820             * Taking the spinlock removes the possiblity
1821             * that acquire_slab() will see a slab page that
1822             * is frozen
1823             */
1824            spin_lock(&n->list_lock);
1825        }
1826    } else {
1827        m = M_FULL;
1828        if (kmem_cache_debug(s) && !lock) {
1829            lock = 1;
1830            /*
1831             * This also ensures that the scanning of full
1832             * slabs from diagnostic functions will not see
1833             * any frozen slabs.
1834             */
1835            spin_lock(&n->list_lock);
1836        }
1837    }
1838
1839    if (l != m) {
1840
1841        if (l == M_PARTIAL)
1842
1843            remove_partial(n, page);
1844
1845        else if (l == M_FULL)
1846
1847            remove_full(s, page);
1848
1849        if (m == M_PARTIAL) {
1850
1851            add_partial(n, page, tail);
1852            stat(s, tail);
1853
1854        } else if (m == M_FULL) {
1855
1856            stat(s, DEACTIVATE_FULL);
1857            add_full(s, n, page);
1858
1859        }
1860    }
1861
1862    l = m;
1863    if (!__cmpxchg_double_slab(s, page,
1864                old.freelist, old.counters,
1865                new.freelist, new.counters,
1866                "unfreezing slab"))
1867        goto redo;
1868
1869    if (lock)
1870        spin_unlock(&n->list_lock);
1871
1872    if (m == M_FREE) {
1873        stat(s, DEACTIVATE_EMPTY);
1874        discard_slab(s, page);
1875        stat(s, FREE_SLAB);
1876    }
1877}
1878
1879/* Unfreeze all the cpu partial slabs */
1880static void unfreeze_partials(struct kmem_cache *s)
1881{
1882    struct kmem_cache_node *n = NULL;
1883    struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1884    struct page *page, *discard_page = NULL;
1885
1886    while ((page = c->partial)) {
1887        enum slab_modes { M_PARTIAL, M_FREE };
1888        enum slab_modes l, m;
1889        struct page new;
1890        struct page old;
1891
1892        c->partial = page->next;
1893        l = M_FREE;
1894
1895        do {
1896
1897            old.freelist = page->freelist;
1898            old.counters = page->counters;
1899            VM_BUG_ON(!old.frozen);
1900
1901            new.counters = old.counters;
1902            new.freelist = old.freelist;
1903
1904            new.frozen = 0;
1905
1906            if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1907                m = M_FREE;
1908            else {
1909                struct kmem_cache_node *n2 = get_node(s,
1910                            page_to_nid(page));
1911
1912                m = M_PARTIAL;
1913                if (n != n2) {
1914                    if (n)
1915                        spin_unlock(&n->list_lock);
1916
1917                    n = n2;
1918                    spin_lock(&n->list_lock);
1919                }
1920            }
1921
1922            if (l != m) {
1923                if (l == M_PARTIAL) {
1924                    remove_partial(n, page);
1925                    stat(s, FREE_REMOVE_PARTIAL);
1926                } else {
1927                    add_partial(n, page,
1928                        DEACTIVATE_TO_TAIL);
1929                    stat(s, FREE_ADD_PARTIAL);
1930                }
1931
1932                l = m;
1933            }
1934
1935        } while (!cmpxchg_double_slab(s, page,
1936                old.freelist, old.counters,
1937                new.freelist, new.counters,
1938                "unfreezing slab"));
1939
1940        if (m == M_FREE) {
1941            page->next = discard_page;
1942            discard_page = page;
1943        }
1944    }
1945
1946    if (n)
1947        spin_unlock(&n->list_lock);
1948
1949    while (discard_page) {
1950        page = discard_page;
1951        discard_page = discard_page->next;
1952
1953        stat(s, DEACTIVATE_EMPTY);
1954        discard_slab(s, page);
1955        stat(s, FREE_SLAB);
1956    }
1957}
1958
1959/*
1960 * Put a page that was just frozen (in __slab_free) into a partial page
1961 * slot if available. This is done without interrupts disabled and without
1962 * preemption disabled. The cmpxchg is racy and may put the partial page
1963 * onto a random cpus partial slot.
1964 *
1965 * If we did not find a slot then simply move all the partials to the
1966 * per node partial list.
1967 */
1968int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1969{
1970    struct page *oldpage;
1971    int pages;
1972    int pobjects;
1973
1974    do {
1975        pages = 0;
1976        pobjects = 0;
1977        oldpage = this_cpu_read(s->cpu_slab->partial);
1978
1979        if (oldpage) {
1980            pobjects = oldpage->pobjects;
1981            pages = oldpage->pages;
1982            if (drain && pobjects > s->cpu_partial) {
1983                unsigned long flags;
1984                /*
1985                 * partial array is full. Move the existing
1986                 * set to the per node partial list.
1987                 */
1988                local_irq_save(flags);
1989                unfreeze_partials(s);
1990                local_irq_restore(flags);
1991                pobjects = 0;
1992                pages = 0;
1993                stat(s, CPU_PARTIAL_DRAIN);
1994            }
1995        }
1996
1997        pages++;
1998        pobjects += page->objects - page->inuse;
1999
2000        page->pages = pages;
2001        page->pobjects = pobjects;
2002        page->next = oldpage;
2003
2004    } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2005    return pobjects;
2006}
2007
2008static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2009{
2010    stat(s, CPUSLAB_FLUSH);
2011    deactivate_slab(s, c);
2012}
2013
2014/*
2015 * Flush cpu slab.
2016 *
2017 * Called from IPI handler with interrupts disabled.
2018 */
2019static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2020{
2021    struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2022
2023    if (likely(c)) {
2024        if (c->page)
2025            flush_slab(s, c);
2026
2027        unfreeze_partials(s);
2028    }
2029}
2030
2031static void flush_cpu_slab(void *d)
2032{
2033    struct kmem_cache *s = d;
2034
2035    __flush_cpu_slab(s, smp_processor_id());
2036}
2037
2038static bool has_cpu_slab(int cpu, void *info)
2039{
2040    struct kmem_cache *s = info;
2041    struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2042
2043    return c->page || c->partial;
2044}
2045
2046static void flush_all(struct kmem_cache *s)
2047{
2048    on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2049}
2050
2051/*
2052 * Check if the objects in a per cpu structure fit numa
2053 * locality expectations.
2054 */
2055static inline int node_match(struct kmem_cache_cpu *c, int node)
2056{
2057#ifdef CONFIG_NUMA
2058    if (node != NUMA_NO_NODE && c->node != node)
2059        return 0;
2060#endif
2061    return 1;
2062}
2063
2064static int count_free(struct page *page)
2065{
2066    return page->objects - page->inuse;
2067}
2068
2069static unsigned long count_partial(struct kmem_cache_node *n,
2070                    int (*get_count)(struct page *))
2071{
2072    unsigned long flags;
2073    unsigned long x = 0;
2074    struct page *page;
2075
2076    spin_lock_irqsave(&n->list_lock, flags);
2077    list_for_each_entry(page, &n->partial, lru)
2078        x += get_count(page);
2079    spin_unlock_irqrestore(&n->list_lock, flags);
2080    return x;
2081}
2082
2083static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2084{
2085#ifdef CONFIG_SLUB_DEBUG
2086    return atomic_long_read(&n->total_objects);
2087#else
2088    return 0;
2089#endif
2090}
2091
2092static noinline void
2093slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2094{
2095    int node;
2096
2097    printk(KERN_WARNING
2098        "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2099        nid, gfpflags);
2100    printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2101        "default order: %d, min order: %d\n", s->name, s->objsize,
2102        s->size, oo_order(s->oo), oo_order(s->min));
2103
2104    if (oo_order(s->min) > get_order(s->objsize))
2105        printk(KERN_WARNING " %s debugging increased min order, use "
2106               "slub_debug=O to disable.\n", s->name);
2107
2108    for_each_online_node(node) {
2109        struct kmem_cache_node *n = get_node(s, node);
2110        unsigned long nr_slabs;
2111        unsigned long nr_objs;
2112        unsigned long nr_free;
2113
2114        if (!n)
2115            continue;
2116
2117        nr_free = count_partial(n, count_free);
2118        nr_slabs = node_nr_slabs(n);
2119        nr_objs = node_nr_objs(n);
2120
2121        printk(KERN_WARNING
2122            " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2123            node, nr_slabs, nr_objs, nr_free);
2124    }
2125}
2126
2127static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2128            int node, struct kmem_cache_cpu **pc)
2129{
2130    void *object;
2131    struct kmem_cache_cpu *c;
2132    struct page *page = new_slab(s, flags, node);
2133
2134    if (page) {
2135        c = __this_cpu_ptr(s->cpu_slab);
2136        if (c->page)
2137            flush_slab(s, c);
2138
2139        /*
2140         * No other reference to the page yet so we can
2141         * muck around with it freely without cmpxchg
2142         */
2143        object = page->freelist;
2144        page->freelist = NULL;
2145
2146        stat(s, ALLOC_SLAB);
2147        c->node = page_to_nid(page);
2148        c->page = page;
2149        *pc = c;
2150    } else
2151        object = NULL;
2152
2153    return object;
2154}
2155
2156/*
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2159 *
2160 * The page is still frozen if the return value is not NULL.
2161 *
2162 * If this function returns NULL then the page has been unfrozen.
2163 */
2164static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2165{
2166    struct page new;
2167    unsigned long counters;
2168    void *freelist;
2169
2170    do {
2171        freelist = page->freelist;
2172        counters = page->counters;
2173        new.counters = counters;
2174        VM_BUG_ON(!new.frozen);
2175
2176        new.inuse = page->objects;
2177        new.frozen = freelist != NULL;
2178
2179    } while (!cmpxchg_double_slab(s, page,
2180        freelist, counters,
2181        NULL, new.counters,
2182        "get_freelist"));
2183
2184    return freelist;
2185}
2186
2187/*
2188 * Slow path. The lockless freelist is empty or we need to perform
2189 * debugging duties.
2190 *
2191 * Processing is still very fast if new objects have been freed to the
2192 * regular freelist. In that case we simply take over the regular freelist
2193 * as the lockless freelist and zap the regular freelist.
2194 *
2195 * If that is not working then we fall back to the partial lists. We take the
2196 * first element of the freelist as the object to allocate now and move the
2197 * rest of the freelist to the lockless freelist.
2198 *
2199 * And if we were unable to get a new slab from the partial slab lists then
2200 * we need to allocate a new slab. This is the slowest path since it involves
2201 * a call to the page allocator and the setup of a new slab.
2202 */
2203static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2204              unsigned long addr, struct kmem_cache_cpu *c)
2205{
2206    void **object;
2207    unsigned long flags;
2208
2209    local_irq_save(flags);
2210#ifdef CONFIG_PREEMPT
2211    /*
2212     * We may have been preempted and rescheduled on a different
2213     * cpu before disabling interrupts. Need to reload cpu area
2214     * pointer.
2215     */
2216    c = this_cpu_ptr(s->cpu_slab);
2217#endif
2218
2219    if (!c->page)
2220        goto new_slab;
2221redo:
2222    if (unlikely(!node_match(c, node))) {
2223        stat(s, ALLOC_NODE_MISMATCH);
2224        deactivate_slab(s, c);
2225        goto new_slab;
2226    }
2227
2228    /* must check again c->freelist in case of cpu migration or IRQ */
2229    object = c->freelist;
2230    if (object)
2231        goto load_freelist;
2232
2233    stat(s, ALLOC_SLOWPATH);
2234
2235    object = get_freelist(s, c->page);
2236
2237    if (!object) {
2238        c->page = NULL;
2239        stat(s, DEACTIVATE_BYPASS);
2240        goto new_slab;
2241    }
2242
2243    stat(s, ALLOC_REFILL);
2244
2245load_freelist:
2246    c->freelist = get_freepointer(s, object);
2247    c->tid = next_tid(c->tid);
2248    local_irq_restore(flags);
2249    return object;
2250
2251new_slab:
2252
2253    if (c->partial) {
2254        c->page = c->partial;
2255        c->partial = c->page->next;
2256        c->node = page_to_nid(c->page);
2257        stat(s, CPU_PARTIAL_ALLOC);
2258        c->freelist = NULL;
2259        goto redo;
2260    }
2261
2262    /* Then do expensive stuff like retrieving pages from the partial lists */
2263    object = get_partial(s, gfpflags, node, c);
2264
2265    if (unlikely(!object)) {
2266
2267        object = new_slab_objects(s, gfpflags, node, &c);
2268
2269        if (unlikely(!object)) {
2270            if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2271                slab_out_of_memory(s, gfpflags, node);
2272
2273            local_irq_restore(flags);
2274            return NULL;
2275        }
2276    }
2277
2278    if (likely(!kmem_cache_debug(s)))
2279        goto load_freelist;
2280
2281    /* Only entered in the debug case */
2282    if (!alloc_debug_processing(s, c->page, object, addr))
2283        goto new_slab; /* Slab failed checks. Next slab needed */
2284
2285    c->freelist = get_freepointer(s, object);
2286    deactivate_slab(s, c);
2287    c->node = NUMA_NO_NODE;
2288    local_irq_restore(flags);
2289    return object;
2290}
2291
2292/*
2293 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2294 * have the fastpath folded into their functions. So no function call
2295 * overhead for requests that can be satisfied on the fastpath.
2296 *
2297 * The fastpath works by first checking if the lockless freelist can be used.
2298 * If not then __slab_alloc is called for slow processing.
2299 *
2300 * Otherwise we can simply pick the next object from the lockless free list.
2301 */
2302static __always_inline void *slab_alloc(struct kmem_cache *s,
2303        gfp_t gfpflags, int node, unsigned long addr)
2304{
2305    void **object;
2306    struct kmem_cache_cpu *c;
2307    unsigned long tid;
2308
2309    if (slab_pre_alloc_hook(s, gfpflags))
2310        return NULL;
2311
2312redo:
2313
2314    /*
2315     * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2316     * enabled. We may switch back and forth between cpus while
2317     * reading from one cpu area. That does not matter as long
2318     * as we end up on the original cpu again when doing the cmpxchg.
2319     */
2320    c = __this_cpu_ptr(s->cpu_slab);
2321
2322    /*
2323     * The transaction ids are globally unique per cpu and per operation on
2324     * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2325     * occurs on the right processor and that there was no operation on the
2326     * linked list in between.
2327     */
2328    tid = c->tid;
2329    barrier();
2330
2331    object = c->freelist;
2332    if (unlikely(!object || !node_match(c, node)))
2333
2334        object = __slab_alloc(s, gfpflags, node, addr, c);
2335
2336    else {
2337        void *next_object = get_freepointer_safe(s, object);
2338
2339        /*
2340         * The cmpxchg will only match if there was no additional
2341         * operation and if we are on the right processor.
2342         *
2343         * The cmpxchg does the following atomically (without lock semantics!)
2344         * 1. Relocate first pointer to the current per cpu area.
2345         * 2. Verify that tid and freelist have not been changed
2346         * 3. If they were not changed replace tid and freelist
2347         *
2348         * Since this is without lock semantics the protection is only against
2349         * code executing on this cpu *not* from access by other cpus.
2350         */
2351        if (unlikely(!this_cpu_cmpxchg_double(
2352                s->cpu_slab->freelist, s->cpu_slab->tid,
2353                object, tid,
2354                next_object, next_tid(tid)))) {
2355
2356            note_cmpxchg_failure("slab_alloc", s, tid);
2357            goto redo;
2358        }
2359        prefetch_freepointer(s, next_object);
2360        stat(s, ALLOC_FASTPATH);
2361    }
2362
2363    if (unlikely(gfpflags & __GFP_ZERO) && object)
2364        memset(object, 0, s->objsize);
2365
2366    slab_post_alloc_hook(s, gfpflags, object);
2367
2368    return object;
2369}
2370
2371void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2372{
2373    void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2374
2375    trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2376
2377    return ret;
2378}
2379EXPORT_SYMBOL(kmem_cache_alloc);
2380
2381#ifdef CONFIG_TRACING
2382void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2383{
2384    void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2385    trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2386    return ret;
2387}
2388EXPORT_SYMBOL(kmem_cache_alloc_trace);
2389
2390void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2391{
2392    void *ret = kmalloc_order(size, flags, order);
2393    trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2394    return ret;
2395}
2396EXPORT_SYMBOL(kmalloc_order_trace);
2397#endif
2398
2399#ifdef CONFIG_NUMA
2400void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2401{
2402    void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2403
2404    trace_kmem_cache_alloc_node(_RET_IP_, ret,
2405                    s->objsize, s->size, gfpflags, node);
2406
2407    return ret;
2408}
2409EXPORT_SYMBOL(kmem_cache_alloc_node);
2410
2411#ifdef CONFIG_TRACING
2412void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2413                    gfp_t gfpflags,
2414                    int node, size_t size)
2415{
2416    void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2417
2418    trace_kmalloc_node(_RET_IP_, ret,
2419               size, s->size, gfpflags, node);
2420    return ret;
2421}
2422EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2423#endif
2424#endif
2425
2426/*
2427 * Slow patch handling. This may still be called frequently since objects
2428 * have a longer lifetime than the cpu slabs in most processing loads.
2429 *
2430 * So we still attempt to reduce cache line usage. Just take the slab
2431 * lock and free the item. If there is no additional partial page
2432 * handling required then we can return immediately.
2433 */
2434static void __slab_free(struct kmem_cache *s, struct page *page,
2435            void *x, unsigned long addr)
2436{
2437    void *prior;
2438    void **object = (void *)x;
2439    int was_frozen;
2440    int inuse;
2441    struct page new;
2442    unsigned long counters;
2443    struct kmem_cache_node *n = NULL;
2444    unsigned long uninitialized_var(flags);
2445
2446    stat(s, FREE_SLOWPATH);
2447
2448    if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2449        return;
2450
2451    do {
2452        prior = page->freelist;
2453        counters = page->counters;
2454        set_freepointer(s, object, prior);
2455        new.counters = counters;
2456        was_frozen = new.frozen;
2457        new.inuse--;
2458        if ((!new.inuse || !prior) && !was_frozen && !n) {
2459
2460            if (!kmem_cache_debug(s) && !prior)
2461
2462                /*
2463                 * Slab was on no list before and will be partially empty
2464                 * We can defer the list move and instead freeze it.
2465                 */
2466                new.frozen = 1;
2467
2468            else { /* Needs to be taken off a list */
2469
2470                            n = get_node(s, page_to_nid(page));
2471                /*
2472                 * Speculatively acquire the list_lock.
2473                 * If the cmpxchg does not succeed then we may
2474                 * drop the list_lock without any processing.
2475                 *
2476                 * Otherwise the list_lock will synchronize with
2477                 * other processors updating the list of slabs.
2478                 */
2479                spin_lock_irqsave(&n->list_lock, flags);
2480
2481            }
2482        }
2483        inuse = new.inuse;
2484
2485    } while (!cmpxchg_double_slab(s, page,
2486        prior, counters,
2487        object, new.counters,
2488        "__slab_free"));
2489
2490    if (likely(!n)) {
2491
2492        /*
2493         * If we just froze the page then put it onto the
2494         * per cpu partial list.
2495         */
2496        if (new.frozen && !was_frozen) {
2497            put_cpu_partial(s, page, 1);
2498            stat(s, CPU_PARTIAL_FREE);
2499        }
2500        /*
2501         * The list lock was not taken therefore no list
2502         * activity can be necessary.
2503         */
2504                if (was_frozen)
2505                        stat(s, FREE_FROZEN);
2506                return;
2507        }
2508
2509    /*
2510     * was_frozen may have been set after we acquired the list_lock in
2511     * an earlier loop. So we need to check it here again.
2512     */
2513    if (was_frozen)
2514        stat(s, FREE_FROZEN);
2515    else {
2516        if (unlikely(!inuse && n->nr_partial > s->min_partial))
2517                        goto slab_empty;
2518
2519        /*
2520         * Objects left in the slab. If it was not on the partial list before
2521         * then add it.
2522         */
2523        if (unlikely(!prior)) {
2524            remove_full(s, page);
2525            add_partial(n, page, DEACTIVATE_TO_TAIL);
2526            stat(s, FREE_ADD_PARTIAL);
2527        }
2528    }
2529    spin_unlock_irqrestore(&n->list_lock, flags);
2530    return;
2531
2532slab_empty:
2533    if (prior) {
2534        /*
2535         * Slab on the partial list.
2536         */
2537        remove_partial(n, page);
2538        stat(s, FREE_REMOVE_PARTIAL);
2539    } else
2540        /* Slab must be on the full list */
2541        remove_full(s, page);
2542
2543    spin_unlock_irqrestore(&n->list_lock, flags);
2544    stat(s, FREE_SLAB);
2545    discard_slab(s, page);
2546}
2547
2548/*
2549 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2550 * can perform fastpath freeing without additional function calls.
2551 *
2552 * The fastpath is only possible if we are freeing to the current cpu slab
2553 * of this processor. This typically the case if we have just allocated
2554 * the item before.
2555 *
2556 * If fastpath is not possible then fall back to __slab_free where we deal
2557 * with all sorts of special processing.
2558 */
2559static __always_inline void slab_free(struct kmem_cache *s,
2560            struct page *page, void *x, unsigned long addr)
2561{
2562    void **object = (void *)x;
2563    struct kmem_cache_cpu *c;
2564    unsigned long tid;
2565
2566    slab_free_hook(s, x);
2567
2568redo:
2569    /*
2570     * Determine the currently cpus per cpu slab.
2571     * The cpu may change afterward. However that does not matter since
2572     * data is retrieved via this pointer. If we are on the same cpu
2573     * during the cmpxchg then the free will succedd.
2574     */
2575    c = __this_cpu_ptr(s->cpu_slab);
2576
2577    tid = c->tid;
2578    barrier();
2579
2580    if (likely(page == c->page)) {
2581        set_freepointer(s, object, c->freelist);
2582
2583        if (unlikely(!this_cpu_cmpxchg_double(
2584                s->cpu_slab->freelist, s->cpu_slab->tid,
2585                c->freelist, tid,
2586                object, next_tid(tid)))) {
2587
2588            note_cmpxchg_failure("slab_free", s, tid);
2589            goto redo;
2590        }
2591        stat(s, FREE_FASTPATH);
2592    } else
2593        __slab_free(s, page, x, addr);
2594
2595}
2596
2597void kmem_cache_free(struct kmem_cache *s, void *x)
2598{
2599    struct page *page;
2600
2601    page = virt_to_head_page(x);
2602
2603    slab_free(s, page, x, _RET_IP_);
2604
2605    trace_kmem_cache_free(_RET_IP_, x);
2606}
2607EXPORT_SYMBOL(kmem_cache_free);
2608
2609/*
2610 * Object placement in a slab is made very easy because we always start at
2611 * offset 0. If we tune the size of the object to the alignment then we can
2612 * get the required alignment by putting one properly sized object after
2613 * another.
2614 *
2615 * Notice that the allocation order determines the sizes of the per cpu
2616 * caches. Each processor has always one slab available for allocations.
2617 * Increasing the allocation order reduces the number of times that slabs
2618 * must be moved on and off the partial lists and is therefore a factor in
2619 * locking overhead.
2620 */
2621
2622/*
2623 * Mininum / Maximum order of slab pages. This influences locking overhead
2624 * and slab fragmentation. A higher order reduces the number of partial slabs
2625 * and increases the number of allocations possible without having to
2626 * take the list_lock.
2627 */
2628static int slub_min_order;
2629static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2630static int slub_min_objects;
2631
2632/*
2633 * Merge control. If this is set then no merging of slab caches will occur.
2634 * (Could be removed. This was introduced to pacify the merge skeptics.)
2635 */
2636static int slub_nomerge;
2637
2638/*
2639 * Calculate the order of allocation given an slab object size.
2640 *
2641 * The order of allocation has significant impact on performance and other
2642 * system components. Generally order 0 allocations should be preferred since
2643 * order 0 does not cause fragmentation in the page allocator. Larger objects
2644 * be problematic to put into order 0 slabs because there may be too much
2645 * unused space left. We go to a higher order if more than 1/16th of the slab
2646 * would be wasted.
2647 *
2648 * In order to reach satisfactory performance we must ensure that a minimum
2649 * number of objects is in one slab. Otherwise we may generate too much
2650 * activity on the partial lists which requires taking the list_lock. This is
2651 * less a concern for large slabs though which are rarely used.
2652 *
2653 * slub_max_order specifies the order where we begin to stop considering the
2654 * number of objects in a slab as critical. If we reach slub_max_order then
2655 * we try to keep the page order as low as possible. So we accept more waste
2656 * of space in favor of a small page order.
2657 *
2658 * Higher order allocations also allow the placement of more objects in a
2659 * slab and thereby reduce object handling overhead. If the user has
2660 * requested a higher mininum order then we start with that one instead of
2661 * the smallest order which will fit the object.
2662 */
2663static inline int slab_order(int size, int min_objects,
2664                int max_order, int fract_leftover, int reserved)
2665{
2666    int order;
2667    int rem;
2668    int min_order = slub_min_order;
2669
2670    if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2671        return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2672
2673    for (order = max(min_order,
2674                fls(min_objects * size - 1) - PAGE_SHIFT);
2675            order <= max_order; order++) {
2676
2677        unsigned long slab_size = PAGE_SIZE << order;
2678
2679        if (slab_size < min_objects * size + reserved)
2680            continue;
2681
2682        rem = (slab_size - reserved) % size;
2683
2684        if (rem <= slab_size / fract_leftover)
2685            break;
2686
2687    }
2688
2689    return order;
2690}
2691
2692static inline int calculate_order(int size, int reserved)
2693{
2694    int order;
2695    int min_objects;
2696    int fraction;
2697    int max_objects;
2698
2699    /*
2700     * Attempt to find best configuration for a slab. This
2701     * works by first attempting to generate a layout with
2702     * the best configuration and backing off gradually.
2703     *
2704     * First we reduce the acceptable waste in a slab. Then
2705     * we reduce the minimum objects required in a slab.
2706     */
2707    min_objects = slub_min_objects;
2708    if (!min_objects)
2709        min_objects = 4 * (fls(nr_cpu_ids) + 1);
2710    max_objects = order_objects(slub_max_order, size, reserved);
2711    min_objects = min(min_objects, max_objects);
2712
2713    while (min_objects > 1) {
2714        fraction = 16;
2715        while (fraction >= 4) {
2716            order = slab_order(size, min_objects,
2717                    slub_max_order, fraction, reserved);
2718            if (order <= slub_max_order)
2719                return order;
2720            fraction /= 2;
2721        }
2722        min_objects--;
2723    }
2724
2725    /*
2726     * We were unable to place multiple objects in a slab. Now
2727     * lets see if we can place a single object there.
2728     */
2729    order = slab_order(size, 1, slub_max_order, 1, reserved);
2730    if (order <= slub_max_order)
2731        return order;
2732
2733    /*
2734     * Doh this slab cannot be placed using slub_max_order.
2735     */
2736    order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2737    if (order < MAX_ORDER)
2738        return order;
2739    return -ENOSYS;
2740}
2741
2742/*
2743 * Figure out what the alignment of the objects will be.
2744 */
2745static unsigned long calculate_alignment(unsigned long flags,
2746        unsigned long align, unsigned long size)
2747{
2748    /*
2749     * If the user wants hardware cache aligned objects then follow that
2750     * suggestion if the object is sufficiently large.
2751     *
2752     * The hardware cache alignment cannot override the specified
2753     * alignment though. If that is greater then use it.
2754     */
2755    if (flags & SLAB_HWCACHE_ALIGN) {
2756        unsigned long ralign = cache_line_size();
2757        while (size <= ralign / 2)
2758            ralign /= 2;
2759        align = max(align, ralign);
2760    }
2761
2762    if (align < ARCH_SLAB_MINALIGN)
2763        align = ARCH_SLAB_MINALIGN;
2764
2765    return ALIGN(align, sizeof(void *));
2766}
2767
2768static void
2769init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2770{
2771    n->nr_partial = 0;
2772    spin_lock_init(&n->list_lock);
2773    INIT_LIST_HEAD(&n->partial);
2774#ifdef CONFIG_SLUB_DEBUG
2775    atomic_long_set(&n->nr_slabs, 0);
2776    atomic_long_set(&n->total_objects, 0);
2777    INIT_LIST_HEAD(&n->full);
2778#endif
2779}
2780
2781static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2782{
2783    BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2784            SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2785
2786    /*
2787     * Must align to double word boundary for the double cmpxchg
2788     * instructions to work; see __pcpu_double_call_return_bool().
2789     */
2790    s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2791                     2 * sizeof(void *));
2792
2793    if (!s->cpu_slab)
2794        return 0;
2795
2796    init_kmem_cache_cpus(s);
2797
2798    return 1;
2799}
2800
2801static struct kmem_cache *kmem_cache_node;
2802
2803/*
2804 * No kmalloc_node yet so do it by hand. We know that this is the first
2805 * slab on the node for this slabcache. There are no concurrent accesses
2806 * possible.
2807 *
2808 * Note that this function only works on the kmalloc_node_cache
2809 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2810 * memory on a fresh node that has no slab structures yet.
2811 */
2812static void early_kmem_cache_node_alloc(int node)
2813{
2814    struct page *page;
2815    struct kmem_cache_node *n;
2816
2817    BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2818
2819    page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2820
2821    BUG_ON(!page);
2822    if (page_to_nid(page) != node) {
2823        printk(KERN_ERR "SLUB: Unable to allocate memory from "
2824                "node %d\n", node);
2825        printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2826                "in order to be able to continue\n");
2827    }
2828
2829    n = page->freelist;
2830    BUG_ON(!n);
2831    page->freelist = get_freepointer(kmem_cache_node, n);
2832    page->inuse = 1;
2833    page->frozen = 0;
2834    kmem_cache_node->node[node] = n;
2835#ifdef CONFIG_SLUB_DEBUG
2836    init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2837    init_tracking(kmem_cache_node, n);
2838#endif
2839    init_kmem_cache_node(n, kmem_cache_node);
2840    inc_slabs_node(kmem_cache_node, node, page->objects);
2841
2842    add_partial(n, page, DEACTIVATE_TO_HEAD);
2843}
2844
2845static void free_kmem_cache_nodes(struct kmem_cache *s)
2846{
2847    int node;
2848
2849    for_each_node_state(node, N_NORMAL_MEMORY) {
2850        struct kmem_cache_node *n = s->node[node];
2851
2852        if (n)
2853            kmem_cache_free(kmem_cache_node, n);
2854
2855        s->node[node] = NULL;
2856    }
2857}
2858
2859static int init_kmem_cache_nodes(struct kmem_cache *s)
2860{
2861    int node;
2862
2863    for_each_node_state(node, N_NORMAL_MEMORY) {
2864        struct kmem_cache_node *n;
2865
2866        if (slab_state == DOWN) {
2867            early_kmem_cache_node_alloc(node);
2868            continue;
2869        }
2870        n = kmem_cache_alloc_node(kmem_cache_node,
2871                        GFP_KERNEL, node);
2872
2873        if (!n) {
2874            free_kmem_cache_nodes(s);
2875            return 0;
2876        }
2877
2878        s->node[node] = n;
2879        init_kmem_cache_node(n, s);
2880    }
2881    return 1;
2882}
2883
2884static void set_min_partial(struct kmem_cache *s, unsigned long min)
2885{
2886    if (min < MIN_PARTIAL)
2887        min = MIN_PARTIAL;
2888    else if (min > MAX_PARTIAL)
2889        min = MAX_PARTIAL;
2890    s->min_partial = min;
2891}
2892
2893/*
2894 * calculate_sizes() determines the order and the distribution of data within
2895 * a slab object.
2896 */
2897static int calculate_sizes(struct kmem_cache *s, int forced_order)
2898{
2899    unsigned long flags = s->flags;
2900    unsigned long size = s->objsize;
2901    unsigned long align = s->align;
2902    int order;
2903
2904    /*
2905     * Round up object size to the next word boundary. We can only
2906     * place the free pointer at word boundaries and this determines
2907     * the possible location of the free pointer.
2908     */
2909    size = ALIGN(size, sizeof(void *));
2910
2911#ifdef CONFIG_SLUB_DEBUG
2912    /*
2913     * Determine if we can poison the object itself. If the user of
2914     * the slab may touch the object after free or before allocation
2915     * then we should never poison the object itself.
2916     */
2917    if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2918            !s->ctor)
2919        s->flags |= __OBJECT_POISON;
2920    else
2921        s->flags &= ~__OBJECT_POISON;
2922
2923
2924    /*
2925     * If we are Redzoning then check if there is some space between the
2926     * end of the object and the free pointer. If not then add an
2927     * additional word to have some bytes to store Redzone information.
2928     */
2929    if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2930        size += sizeof(void *);
2931#endif
2932
2933    /*
2934     * With that we have determined the number of bytes in actual use
2935     * by the object. This is the potential offset to the free pointer.
2936     */
2937    s->inuse = size;
2938
2939    if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2940        s->ctor)) {
2941        /*
2942         * Relocate free pointer after the object if it is not
2943         * permitted to overwrite the first word of the object on
2944         * kmem_cache_free.
2945         *
2946         * This is the case if we do RCU, have a constructor or
2947         * destructor or are poisoning the objects.
2948         */
2949        s->offset = size;
2950        size += sizeof(void *);
2951    }
2952
2953#ifdef CONFIG_SLUB_DEBUG
2954    if (flags & SLAB_STORE_USER)
2955        /*
2956         * Need to store information about allocs and frees after
2957         * the object.
2958         */
2959        size += 2 * sizeof(struct track);
2960
2961    if (flags & SLAB_RED_ZONE)
2962        /*
2963         * Add some empty padding so that we can catch
2964         * overwrites from earlier objects rather than let
2965         * tracking information or the free pointer be
2966         * corrupted if a user writes before the start
2967         * of the object.
2968         */
2969        size += sizeof(void *);
2970#endif
2971
2972    /*
2973     * Determine the alignment based on various parameters that the
2974     * user specified and the dynamic determination of cache line size
2975     * on bootup.
2976     */
2977    align = calculate_alignment(flags, align, s->objsize);
2978    s->align = align;
2979
2980    /*
2981     * SLUB stores one object immediately after another beginning from
2982     * offset 0. In order to align the objects we have to simply size
2983     * each object to conform to the alignment.
2984     */
2985    size = ALIGN(size, align);
2986    s->size = size;
2987    if (forced_order >= 0)
2988        order = forced_order;
2989    else
2990        order = calculate_order(size, s->reserved);
2991
2992    if (order < 0)
2993        return 0;
2994
2995    s->allocflags = 0;
2996    if (order)
2997        s->allocflags |= __GFP_COMP;
2998
2999    if (s->flags & SLAB_CACHE_DMA)
3000        s->allocflags |= SLUB_DMA;
3001
3002    if (s->flags & SLAB_RECLAIM_ACCOUNT)
3003        s->allocflags |= __GFP_RECLAIMABLE;
3004
3005    /*
3006     * Determine the number of objects per slab
3007     */
3008    s->oo = oo_make(order, size, s->reserved);
3009    s->min = oo_make(get_order(size), size, s->reserved);
3010    if (oo_objects(s->oo) > oo_objects(s->max))
3011        s->max = s->oo;
3012
3013    return !!oo_objects(s->oo);
3014
3015}
3016
3017static int kmem_cache_open(struct kmem_cache *s,
3018        const char *name, size_t size,
3019        size_t align, unsigned long flags,
3020        void (*ctor)(void *))
3021{
3022    memset(s, 0, kmem_size);
3023    s->name = name;
3024    s->ctor = ctor;
3025    s->objsize = size;
3026    s->align = align;
3027    s->flags = kmem_cache_flags(size, flags, name, ctor);
3028    s->reserved = 0;
3029
3030    if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3031        s->reserved = sizeof(struct rcu_head);
3032
3033    if (!calculate_sizes(s, -1))
3034        goto error;
3035    if (disable_higher_order_debug) {
3036        /*
3037         * Disable debugging flags that store metadata if the min slab
3038         * order increased.
3039         */
3040        if (get_order(s->size) > get_order(s->objsize)) {
3041            s->flags &= ~DEBUG_METADATA_FLAGS;
3042            s->offset = 0;
3043            if (!calculate_sizes(s, -1))
3044                goto error;
3045        }
3046    }
3047
3048#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3049    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3050    if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3051        /* Enable fast mode */
3052        s->flags |= __CMPXCHG_DOUBLE;
3053#endif
3054
3055    /*
3056     * The larger the object size is, the more pages we want on the partial
3057     * list to avoid pounding the page allocator excessively.
3058     */
3059    set_min_partial(s, ilog2(s->size) / 2);
3060
3061    /*
3062     * cpu_partial determined the maximum number of objects kept in the
3063     * per cpu partial lists of a processor.
3064     *
3065     * Per cpu partial lists mainly contain slabs that just have one
3066     * object freed. If they are used for allocation then they can be
3067     * filled up again with minimal effort. The slab will never hit the
3068     * per node partial lists and therefore no locking will be required.
3069     *
3070     * This setting also determines
3071     *
3072     * A) The number of objects from per cpu partial slabs dumped to the
3073     * per node list when we reach the limit.
3074     * B) The number of objects in cpu partial slabs to extract from the
3075     * per node list when we run out of per cpu objects. We only fetch 50%
3076     * to keep some capacity around for frees.
3077     */
3078    if (kmem_cache_debug(s))
3079        s->cpu_partial = 0;
3080    else if (s->size >= PAGE_SIZE)
3081        s->cpu_partial = 2;
3082    else if (s->size >= 1024)
3083        s->cpu_partial = 6;
3084    else if (s->size >= 256)
3085        s->cpu_partial = 13;
3086    else
3087        s->cpu_partial = 30;
3088
3089    s->refcount = 1;
3090#ifdef CONFIG_NUMA
3091    s->remote_node_defrag_ratio = 1000;
3092#endif
3093    if (!init_kmem_cache_nodes(s))
3094        goto error;
3095
3096    if (alloc_kmem_cache_cpus(s))
3097        return 1;
3098
3099    free_kmem_cache_nodes(s);
3100error:
3101    if (flags & SLAB_PANIC)
3102        panic("Cannot create slab %s size=%lu realsize=%u "
3103            "order=%u offset=%u flags=%lx\n",
3104            s->name, (unsigned long)size, s->size, oo_order(s->oo),
3105            s->offset, flags);
3106    return 0;
3107}
3108
3109/*
3110 * Determine the size of a slab object
3111 */
3112unsigned int kmem_cache_size(struct kmem_cache *s)
3113{
3114    return s->objsize;
3115}
3116EXPORT_SYMBOL(kmem_cache_size);
3117
3118static void list_slab_objects(struct kmem_cache *s, struct page *page,
3119                            const char *text)
3120{
3121#ifdef CONFIG_SLUB_DEBUG
3122    void *addr = page_address(page);
3123    void *p;
3124    unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3125                     sizeof(long), GFP_ATOMIC);
3126    if (!map)
3127        return;
3128    slab_err(s, page, "%s", text);
3129    slab_lock(page);
3130
3131    get_map(s, page, map);
3132    for_each_object(p, s, addr, page->objects) {
3133
3134        if (!test_bit(slab_index(p, s, addr), map)) {
3135            printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3136                            p, p - addr);
3137            print_tracking(s, p);
3138        }
3139    }
3140    slab_unlock(page);
3141    kfree(map);
3142#endif
3143}
3144
3145/*
3146 * Attempt to free all partial slabs on a node.
3147 * This is called from kmem_cache_close(). We must be the last thread
3148 * using the cache and therefore we do not need to lock anymore.
3149 */
3150static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3151{
3152    struct page *page, *h;
3153
3154    list_for_each_entry_safe(page, h, &n->partial, lru) {
3155        if (!page->inuse) {
3156            remove_partial(n, page);
3157            discard_slab(s, page);
3158        } else {
3159            list_slab_objects(s, page,
3160                "Objects remaining on kmem_cache_close()");
3161        }
3162    }
3163}
3164
3165/*
3166 * Release all resources used by a slab cache.
3167 */
3168static inline int kmem_cache_close(struct kmem_cache *s)
3169{
3170    int node;
3171
3172    flush_all(s);
3173    free_percpu(s->cpu_slab);
3174    /* Attempt to free all objects */
3175    for_each_node_state(node, N_NORMAL_MEMORY) {
3176        struct kmem_cache_node *n = get_node(s, node);
3177
3178        free_partial(s, n);
3179        if (n->nr_partial || slabs_node(s, node))
3180            return 1;
3181    }
3182    free_kmem_cache_nodes(s);
3183    return 0;
3184}
3185
3186/*
3187 * Close a cache and release the kmem_cache structure
3188 * (must be used for caches created using kmem_cache_create)
3189 */
3190void kmem_cache_destroy(struct kmem_cache *s)
3191{
3192    down_write(&slub_lock);
3193    s->refcount--;
3194    if (!s->refcount) {
3195        list_del(&s->list);
3196        up_write(&slub_lock);
3197        if (kmem_cache_close(s)) {
3198            printk(KERN_ERR "SLUB %s: %s called for cache that "
3199                "still has objects.\n", s->name, __func__);
3200            dump_stack();
3201        }
3202        if (s->flags & SLAB_DESTROY_BY_RCU)
3203            rcu_barrier();
3204        sysfs_slab_remove(s);
3205    } else
3206        up_write(&slub_lock);
3207}
3208EXPORT_SYMBOL(kmem_cache_destroy);
3209
3210/********************************************************************
3211 * Kmalloc subsystem
3212 *******************************************************************/
3213
3214struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3215EXPORT_SYMBOL(kmalloc_caches);
3216
3217static struct kmem_cache *kmem_cache;
3218
3219#ifdef CONFIG_ZONE_DMA
3220static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3221#endif
3222
3223static int __init setup_slub_min_order(char *str)
3224{
3225    get_option(&str, &slub_min_order);
3226
3227    return 1;
3228}
3229
3230__setup("slub_min_order=", setup_slub_min_order);
3231
3232static int __init setup_slub_max_order(char *str)
3233{
3234    get_option(&str, &slub_max_order);
3235    slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3236
3237    return 1;
3238}
3239
3240__setup("slub_max_order=", setup_slub_max_order);
3241
3242static int __init setup_slub_min_objects(char *str)
3243{
3244    get_option(&str, &slub_min_objects);
3245
3246    return 1;
3247}
3248
3249__setup("slub_min_objects=", setup_slub_min_objects);
3250
3251static int __init setup_slub_nomerge(char *str)
3252{
3253    slub_nomerge = 1;
3254    return 1;
3255}
3256
3257__setup("slub_nomerge", setup_slub_nomerge);
3258
3259static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3260                        int size, unsigned int flags)
3261{
3262    struct kmem_cache *s;
3263
3264    s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3265
3266    /*
3267     * This function is called with IRQs disabled during early-boot on
3268     * single CPU so there's no need to take slub_lock here.
3269     */
3270    if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3271                                flags, NULL))
3272        goto panic;
3273
3274    list_add(&s->list, &slab_caches);
3275    return s;
3276
3277panic:
3278    panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3279    return NULL;
3280}
3281
3282/*
3283 * Conversion table for small slabs sizes / 8 to the index in the
3284 * kmalloc array. This is necessary for slabs < 192 since we have non power
3285 * of two cache sizes there. The size of larger slabs can be determined using
3286 * fls.
3287 */
3288static s8 size_index[24] = {
3289    3, /* 8 */
3290    4, /* 16 */
3291    5, /* 24 */
3292    5, /* 32 */
3293    6, /* 40 */
3294    6, /* 48 */
3295    6, /* 56 */
3296    6, /* 64 */
3297    1, /* 72 */
3298    1, /* 80 */
3299    1, /* 88 */
3300    1, /* 96 */
3301    7, /* 104 */
3302    7, /* 112 */
3303    7, /* 120 */
3304    7, /* 128 */
3305    2, /* 136 */
3306    2, /* 144 */
3307    2, /* 152 */
3308    2, /* 160 */
3309    2, /* 168 */
3310    2, /* 176 */
3311    2, /* 184 */
3312    2 /* 192 */
3313};
3314
3315static inline int size_index_elem(size_t bytes)
3316{
3317    return (bytes - 1) / 8;
3318}
3319
3320static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3321{
3322    int index;
3323
3324    if (size <= 192) {
3325        if (!size)
3326            return ZERO_SIZE_PTR;
3327
3328        index = size_index[size_index_elem(size)];
3329    } else
3330        index = fls(size - 1);
3331
3332#ifdef CONFIG_ZONE_DMA
3333    if (unlikely((flags & SLUB_DMA)))
3334        return kmalloc_dma_caches[index];
3335
3336#endif
3337    return kmalloc_caches[index];
3338}
3339
3340void *__kmalloc(size_t size, gfp_t flags)
3341{
3342    struct kmem_cache *s;
3343    void *ret;
3344
3345    if (unlikely(size > SLUB_MAX_SIZE))
3346        return kmalloc_large(size, flags);
3347
3348    s = get_slab(size, flags);
3349
3350    if (unlikely(ZERO_OR_NULL_PTR(s)))
3351        return s;
3352
3353    ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3354
3355    trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3356
3357    return ret;
3358}
3359EXPORT_SYMBOL(__kmalloc);
3360
3361#ifdef CONFIG_NUMA
3362static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3363{
3364    struct page *page;
3365    void *ptr = NULL;
3366
3367    flags |= __GFP_COMP | __GFP_NOTRACK;
3368    page = alloc_pages_node(node, flags, get_order(size));
3369    if (page)
3370        ptr = page_address(page);
3371
3372    kmemleak_alloc(ptr, size, 1, flags);
3373    return ptr;
3374}
3375
3376void *__kmalloc_node(size_t size, gfp_t flags, int node)
3377{
3378    struct kmem_cache *s;
3379    void *ret;
3380
3381    if (unlikely(size > SLUB_MAX_SIZE)) {
3382        ret = kmalloc_large_node(size, flags, node);
3383
3384        trace_kmalloc_node(_RET_IP_, ret,
3385                   size, PAGE_SIZE << get_order(size),
3386                   flags, node);
3387
3388        return ret;
3389    }
3390
3391    s = get_slab(size, flags);
3392
3393    if (unlikely(ZERO_OR_NULL_PTR(s)))
3394        return s;
3395
3396    ret = slab_alloc(s, flags, node, _RET_IP_);
3397
3398    trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3399
3400    return ret;
3401}
3402EXPORT_SYMBOL(__kmalloc_node);
3403#endif
3404
3405size_t ksize(const void *object)
3406{
3407    struct page *page;
3408
3409    if (unlikely(object == ZERO_SIZE_PTR))
3410        return 0;
3411
3412    page = virt_to_head_page(object);
3413
3414    if (unlikely(!PageSlab(page))) {
3415        WARN_ON(!PageCompound(page));
3416        return PAGE_SIZE << compound_order(page);
3417    }
3418
3419    return slab_ksize(page->slab);
3420}
3421EXPORT_SYMBOL(ksize);
3422
3423#ifdef CONFIG_SLUB_DEBUG
3424bool verify_mem_not_deleted(const void *x)
3425{
3426    struct page *page;
3427    void *object = (void *)x;
3428    unsigned long flags;
3429    bool rv;
3430
3431    if (unlikely(ZERO_OR_NULL_PTR(x)))
3432        return false;
3433
3434    local_irq_save(flags);
3435
3436    page = virt_to_head_page(x);
3437    if (unlikely(!PageSlab(page))) {
3438        /* maybe it was from stack? */
3439        rv = true;
3440        goto out_unlock;
3441    }
3442
3443    slab_lock(page);
3444    if (on_freelist(page->slab, page, object)) {
3445        object_err(page->slab, page, object, "Object is on free-list");
3446        rv = false;
3447    } else {
3448        rv = true;
3449    }
3450    slab_unlock(page);
3451
3452out_unlock:
3453    local_irq_restore(flags);
3454    return rv;
3455}
3456EXPORT_SYMBOL(verify_mem_not_deleted);
3457#endif
3458
3459void kfree(const void *x)
3460{
3461    struct page *page;
3462    void *object = (void *)x;
3463
3464    trace_kfree(_RET_IP_, x);
3465
3466    if (unlikely(ZERO_OR_NULL_PTR(x)))
3467        return;
3468
3469    page = virt_to_head_page(x);
3470    if (unlikely(!PageSlab(page))) {
3471        BUG_ON(!PageCompound(page));
3472        kmemleak_free(x);
3473        put_page(page);
3474        return;
3475    }
3476    slab_free(page->slab, page, object, _RET_IP_);
3477}
3478EXPORT_SYMBOL(kfree);
3479
3480/*
3481 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3482 * the remaining slabs by the number of items in use. The slabs with the
3483 * most items in use come first. New allocations will then fill those up
3484 * and thus they can be removed from the partial lists.
3485 *
3486 * The slabs with the least items are placed last. This results in them
3487 * being allocated from last increasing the chance that the last objects
3488 * are freed in them.
3489 */
3490int kmem_cache_shrink(struct kmem_cache *s)
3491{
3492    int node;
3493    int i;
3494    struct kmem_cache_node *n;
3495    struct page *page;
3496    struct page *t;
3497    int objects = oo_objects(s->max);
3498    struct list_head *slabs_by_inuse =
3499        kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3500    unsigned long flags;
3501
3502    if (!slabs_by_inuse)
3503        return -ENOMEM;
3504
3505    flush_all(s);
3506    for_each_node_state(node, N_NORMAL_MEMORY) {
3507        n = get_node(s, node);
3508
3509        if (!n->nr_partial)
3510            continue;
3511
3512        for (i = 0; i < objects; i++)
3513            INIT_LIST_HEAD(slabs_by_inuse + i);
3514
3515        spin_lock_irqsave(&n->list_lock, flags);
3516
3517        /*
3518         * Build lists indexed by the items in use in each slab.
3519         *
3520         * Note that concurrent frees may occur while we hold the
3521         * list_lock. page->inuse here is the upper limit.
3522         */
3523        list_for_each_entry_safe(page, t, &n->partial, lru) {
3524            list_move(&page->lru, slabs_by_inuse + page->inuse);
3525            if (!page->inuse)
3526                n->nr_partial--;
3527        }
3528
3529        /*
3530         * Rebuild the partial list with the slabs filled up most
3531         * first and the least used slabs at the end.
3532         */
3533        for (i = objects - 1; i > 0; i--)
3534            list_splice(slabs_by_inuse + i, n->partial.prev);
3535
3536        spin_unlock_irqrestore(&n->list_lock, flags);
3537
3538        /* Release empty slabs */
3539        list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3540            discard_slab(s, page);
3541    }
3542
3543    kfree(slabs_by_inuse);
3544    return 0;
3545}
3546EXPORT_SYMBOL(kmem_cache_shrink);
3547
3548#if defined(CONFIG_MEMORY_HOTPLUG)
3549static int slab_mem_going_offline_callback(void *arg)
3550{
3551    struct kmem_cache *s;
3552
3553    down_read(&slub_lock);
3554    list_for_each_entry(s, &slab_caches, list)
3555        kmem_cache_shrink(s);
3556    up_read(&slub_lock);
3557
3558    return 0;
3559}
3560
3561static void slab_mem_offline_callback(void *arg)
3562{
3563    struct kmem_cache_node *n;
3564    struct kmem_cache *s;
3565    struct memory_notify *marg = arg;
3566    int offline_node;
3567
3568    offline_node = marg->status_change_nid;
3569
3570    /*
3571     * If the node still has available memory. we need kmem_cache_node
3572     * for it yet.
3573     */
3574    if (offline_node < 0)
3575        return;
3576
3577    down_read(&slub_lock);
3578    list_for_each_entry(s, &slab_caches, list) {
3579        n = get_node(s, offline_node);
3580        if (n) {
3581            /*
3582             * if n->nr_slabs > 0, slabs still exist on the node
3583             * that is going down. We were unable to free them,
3584             * and offline_pages() function shouldn't call this
3585             * callback. So, we must fail.
3586             */
3587            BUG_ON(slabs_node(s, offline_node));
3588
3589            s->node[offline_node] = NULL;
3590            kmem_cache_free(kmem_cache_node, n);
3591        }
3592    }
3593    up_read(&slub_lock);
3594}
3595
3596static int slab_mem_going_online_callback(void *arg)
3597{
3598    struct kmem_cache_node *n;
3599    struct kmem_cache *s;
3600    struct memory_notify *marg = arg;
3601    int nid = marg->status_change_nid;
3602    int ret = 0;
3603
3604    /*
3605     * If the node's memory is already available, then kmem_cache_node is
3606     * already created. Nothing to do.
3607     */
3608    if (nid < 0)
3609        return 0;
3610
3611    /*
3612     * We are bringing a node online. No memory is available yet. We must
3613     * allocate a kmem_cache_node structure in order to bring the node
3614     * online.
3615     */
3616    down_read(&slub_lock);
3617    list_for_each_entry(s, &slab_caches, list) {
3618        /*
3619         * XXX: kmem_cache_alloc_node will fallback to other nodes
3620         * since memory is not yet available from the node that
3621         * is brought up.
3622         */
3623        n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3624        if (!n) {
3625            ret = -ENOMEM;
3626            goto out;
3627        }
3628        init_kmem_cache_node(n, s);
3629        s->node[nid] = n;
3630    }
3631out:
3632    up_read(&slub_lock);
3633    return ret;
3634}
3635
3636static int slab_memory_callback(struct notifier_block *self,
3637                unsigned long action, void *arg)
3638{
3639    int ret = 0;
3640
3641    switch (action) {
3642    case MEM_GOING_ONLINE:
3643        ret = slab_mem_going_online_callback(arg);
3644        break;
3645    case MEM_GOING_OFFLINE:
3646        ret = slab_mem_going_offline_callback(arg);
3647        break;
3648    case MEM_OFFLINE:
3649    case MEM_CANCEL_ONLINE:
3650        slab_mem_offline_callback(arg);
3651        break;
3652    case MEM_ONLINE:
3653    case MEM_CANCEL_OFFLINE:
3654        break;
3655    }
3656    if (ret)
3657        ret = notifier_from_errno(ret);
3658    else
3659        ret = NOTIFY_OK;
3660    return ret;
3661}
3662
3663#endif /* CONFIG_MEMORY_HOTPLUG */
3664
3665/********************************************************************
3666 * Basic setup of slabs
3667 *******************************************************************/
3668
3669/*
3670 * Used for early kmem_cache structures that were allocated using
3671 * the page allocator
3672 */
3673
3674static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3675{
3676    int node;
3677
3678    list_add(&s->list, &slab_caches);
3679    s->refcount = -1;
3680
3681    for_each_node_state(node, N_NORMAL_MEMORY) {
3682        struct kmem_cache_node *n = get_node(s, node);
3683        struct page *p;
3684
3685        if (n) {
3686            list_for_each_entry(p, &n->partial, lru)
3687                p->slab = s;
3688
3689#ifdef CONFIG_SLUB_DEBUG
3690            list_for_each_entry(p, &n->full, lru)
3691                p->slab = s;
3692#endif
3693        }
3694    }
3695}
3696
3697void __init kmem_cache_init(void)
3698{
3699    int i;
3700    int caches = 0;
3701    struct kmem_cache *temp_kmem_cache;
3702    int order;
3703    struct kmem_cache *temp_kmem_cache_node;
3704    unsigned long kmalloc_size;
3705
3706    if (debug_guardpage_minorder())
3707        slub_max_order = 0;
3708
3709    kmem_size = offsetof(struct kmem_cache, node) +
3710                nr_node_ids * sizeof(struct kmem_cache_node *);
3711
3712    /* Allocate two kmem_caches from the page allocator */
3713    kmalloc_size = ALIGN(kmem_size, cache_line_size());
3714    order = get_order(2 * kmalloc_size);
3715    kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3716
3717    /*
3718     * Must first have the slab cache available for the allocations of the
3719     * struct kmem_cache_node's. There is special bootstrap code in
3720     * kmem_cache_open for slab_state == DOWN.
3721     */
3722    kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3723
3724    kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3725        sizeof(struct kmem_cache_node),
3726        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3727
3728    hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3729
3730    /* Able to allocate the per node structures */
3731    slab_state = PARTIAL;
3732
3733    temp_kmem_cache = kmem_cache;
3734    kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3735        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3736    kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3737    memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3738
3739    /*
3740     * Allocate kmem_cache_node properly from the kmem_cache slab.
3741     * kmem_cache_node is separately allocated so no need to
3742     * update any list pointers.
3743     */
3744    temp_kmem_cache_node = kmem_cache_node;
3745
3746    kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3747    memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3748
3749    kmem_cache_bootstrap_fixup(kmem_cache_node);
3750
3751    caches++;
3752    kmem_cache_bootstrap_fixup(kmem_cache);
3753    caches++;
3754    /* Free temporary boot structure */
3755    free_pages((unsigned long)temp_kmem_cache, order);
3756
3757    /* Now we can use the kmem_cache to allocate kmalloc slabs */
3758
3759    /*
3760     * Patch up the size_index table if we have strange large alignment
3761     * requirements for the kmalloc array. This is only the case for
3762     * MIPS it seems. The standard arches will not generate any code here.
3763     *
3764     * Largest permitted alignment is 256 bytes due to the way we
3765     * handle the index determination for the smaller caches.
3766     *
3767     * Make sure that nothing crazy happens if someone starts tinkering
3768     * around with ARCH_KMALLOC_MINALIGN
3769     */
3770    BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3771        (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3772
3773    for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3774        int elem = size_index_elem(i);
3775        if (elem >= ARRAY_SIZE(size_index))
3776            break;
3777        size_index[elem] = KMALLOC_SHIFT_LOW;
3778    }
3779
3780    if (KMALLOC_MIN_SIZE == 64) {
3781        /*
3782         * The 96 byte size cache is not used if the alignment
3783         * is 64 byte.
3784         */
3785        for (i = 64 + 8; i <= 96; i += 8)
3786            size_index[size_index_elem(i)] = 7;
3787    } else if (KMALLOC_MIN_SIZE == 128) {
3788        /*
3789         * The 192 byte sized cache is not used if the alignment
3790         * is 128 byte. Redirect kmalloc to use the 256 byte cache
3791         * instead.
3792         */
3793        for (i = 128 + 8; i <= 192; i += 8)
3794            size_index[size_index_elem(i)] = 8;
3795    }
3796
3797    /* Caches that are not of the two-to-the-power-of size */
3798    if (KMALLOC_MIN_SIZE <= 32) {
3799        kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3800        caches++;
3801    }
3802
3803    if (KMALLOC_MIN_SIZE <= 64) {
3804        kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3805        caches++;
3806    }
3807
3808    for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3809        kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3810        caches++;
3811    }
3812
3813    slab_state = UP;
3814
3815    /* Provide the correct kmalloc names now that the caches are up */
3816    if (KMALLOC_MIN_SIZE <= 32) {
3817        kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3818        BUG_ON(!kmalloc_caches[1]->name);
3819    }
3820
3821    if (KMALLOC_MIN_SIZE <= 64) {
3822        kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3823        BUG_ON(!kmalloc_caches[2]->name);
3824    }
3825
3826    for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3827        char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3828
3829        BUG_ON(!s);
3830        kmalloc_caches[i]->name = s;
3831    }
3832
3833#ifdef CONFIG_SMP
3834    register_cpu_notifier(&slab_notifier);
3835#endif
3836
3837#ifdef CONFIG_ZONE_DMA
3838    for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3839        struct kmem_cache *s = kmalloc_caches[i];
3840
3841        if (s && s->size) {
3842            char *name = kasprintf(GFP_NOWAIT,
3843                 "dma-kmalloc-%d", s->objsize);
3844
3845            BUG_ON(!name);
3846            kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3847                s->objsize, SLAB_CACHE_DMA);
3848        }
3849    }
3850#endif
3851    printk(KERN_INFO
3852        "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3853        " CPUs=%d, Nodes=%d\n",
3854        caches, cache_line_size(),
3855        slub_min_order, slub_max_order, slub_min_objects,
3856        nr_cpu_ids, nr_node_ids);
3857}
3858
3859void __init kmem_cache_init_late(void)
3860{
3861}
3862
3863/*
3864 * Find a mergeable slab cache
3865 */
3866static int slab_unmergeable(struct kmem_cache *s)
3867{
3868    if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3869        return 1;
3870
3871    if (s->ctor)
3872        return 1;
3873
3874    /*
3875     * We may have set a slab to be unmergeable during bootstrap.
3876     */
3877    if (s->refcount < 0)
3878        return 1;
3879
3880    return 0;
3881}
3882
3883static struct kmem_cache *find_mergeable(size_t size,
3884        size_t align, unsigned long flags, const char *name,
3885        void (*ctor)(void *))
3886{
3887    struct kmem_cache *s;
3888
3889    if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3890        return NULL;
3891
3892    if (ctor)
3893        return NULL;
3894
3895    size = ALIGN(size, sizeof(void *));
3896    align = calculate_alignment(flags, align, size);
3897    size = ALIGN(size, align);
3898    flags = kmem_cache_flags(size, flags, name, NULL);
3899
3900    list_for_each_entry(s, &slab_caches, list) {
3901        if (slab_unmergeable(s))
3902            continue;
3903
3904        if (size > s->size)
3905            continue;
3906
3907        if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3908                continue;
3909        /*
3910         * Check if alignment is compatible.
3911         * Courtesy of Adrian Drzewiecki
3912         */
3913        if ((s->size & ~(align - 1)) != s->size)
3914            continue;
3915
3916        if (s->size - size >= sizeof(void *))
3917            continue;
3918
3919        return s;
3920    }
3921    return NULL;
3922}
3923
3924struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3925        size_t align, unsigned long flags, void (*ctor)(void *))
3926{
3927    struct kmem_cache *s;
3928    char *n;
3929
3930    if (WARN_ON(!name))
3931        return NULL;
3932
3933    down_write(&slub_lock);
3934    s = find_mergeable(size, align, flags, name, ctor);
3935    if (s) {
3936        s->refcount++;
3937        /*
3938         * Adjust the object sizes so that we clear
3939         * the complete object on kzalloc.
3940         */
3941        s->objsize = max(s->objsize, (int)size);
3942        s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3943
3944        if (sysfs_slab_alias(s, name)) {
3945            s->refcount--;
3946            goto err;
3947        }
3948        up_write(&slub_lock);
3949        return s;
3950    }
3951
3952    n = kstrdup(name, GFP_KERNEL);
3953    if (!n)
3954        goto err;
3955
3956    s = kmalloc(kmem_size, GFP_KERNEL);
3957    if (s) {
3958        if (kmem_cache_open(s, n,
3959                size, align, flags, ctor)) {
3960            list_add(&s->list, &slab_caches);
3961            up_write(&slub_lock);
3962            if (sysfs_slab_add(s)) {
3963                down_write(&slub_lock);
3964                list_del(&s->list);
3965                kfree(n);
3966                kfree(s);
3967                goto err;
3968            }
3969            return s;
3970        }
3971        kfree(n);
3972        kfree(s);
3973    }
3974err:
3975    up_write(&slub_lock);
3976
3977    if (flags & SLAB_PANIC)
3978        panic("Cannot create slabcache %s\n", name);
3979    else
3980        s = NULL;
3981    return s;
3982}
3983EXPORT_SYMBOL(kmem_cache_create);
3984
3985#ifdef CONFIG_SMP
3986/*
3987 * Use the cpu notifier to insure that the cpu slabs are flushed when
3988 * necessary.
3989 */
3990static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3991        unsigned long action, void *hcpu)
3992{
3993    long cpu = (long)hcpu;
3994    struct kmem_cache *s;
3995    unsigned long flags;
3996
3997    switch (action) {
3998    case CPU_UP_CANCELED:
3999    case CPU_UP_CANCELED_FROZEN:
4000    case CPU_DEAD:
4001    case CPU_DEAD_FROZEN:
4002        down_read(&slub_lock);
4003        list_for_each_entry(s, &slab_caches, list) {
4004            local_irq_save(flags);
4005            __flush_cpu_slab(s, cpu);
4006            local_irq_restore(flags);
4007        }
4008        up_read(&slub_lock);
4009        break;
4010    default:
4011        break;
4012    }
4013    return NOTIFY_OK;
4014}
4015
4016static struct notifier_block __cpuinitdata slab_notifier = {
4017    .notifier_call = slab_cpuup_callback
4018};
4019
4020#endif
4021
4022void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4023{
4024    struct kmem_cache *s;
4025    void *ret;
4026
4027    if (unlikely(size > SLUB_MAX_SIZE))
4028        return kmalloc_large(size, gfpflags);
4029
4030    s = get_slab(size, gfpflags);
4031
4032    if (unlikely(ZERO_OR_NULL_PTR(s)))
4033        return s;
4034
4035    ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4036
4037    /* Honor the call site pointer we received. */
4038    trace_kmalloc(caller, ret, size, s->size, gfpflags);
4039
4040    return ret;
4041}
4042
4043#ifdef CONFIG_NUMA
4044void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4045                    int node, unsigned long caller)
4046{
4047    struct kmem_cache *s;
4048    void *ret;
4049
4050    if (unlikely(size > SLUB_MAX_SIZE)) {
4051        ret = kmalloc_large_node(size, gfpflags, node);
4052
4053        trace_kmalloc_node(caller, ret,
4054                   size, PAGE_SIZE << get_order(size),
4055                   gfpflags, node);
4056
4057        return ret;
4058    }
4059
4060    s = get_slab(size, gfpflags);
4061
4062    if (unlikely(ZERO_OR_NULL_PTR(s)))
4063        return s;
4064
4065    ret = slab_alloc(s, gfpflags, node, caller);
4066
4067    /* Honor the call site pointer we received. */
4068    trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4069
4070    return ret;
4071}
4072#endif
4073
4074#ifdef CONFIG_SYSFS
4075static int count_inuse(struct page *page)
4076{
4077    return page->inuse;
4078}
4079
4080static int count_total(struct page *page)
4081{
4082    return page->objects;
4083}
4084#endif
4085
4086#ifdef CONFIG_SLUB_DEBUG
4087static int validate_slab(struct kmem_cache *s, struct page *page,
4088                        unsigned long *map)
4089{
4090    void *p;
4091    void *addr = page_address(page);
4092
4093    if (!check_slab(s, page) ||
4094            !on_freelist(s, page, NULL))
4095        return 0;
4096
4097    /* Now we know that a valid freelist exists */
4098    bitmap_zero(map, page->objects);
4099
4100    get_map(s, page, map);
4101    for_each_object(p, s, addr, page->objects) {
4102        if (test_bit(slab_index(p, s, addr), map))
4103            if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4104                return 0;
4105    }
4106
4107    for_each_object(p, s, addr, page->objects)
4108        if (!test_bit(slab_index(p, s, addr), map))
4109            if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4110                return 0;
4111    return 1;
4112}
4113
4114static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4115                        unsigned long *map)
4116{
4117    slab_lock(page);
4118    validate_slab(s, page, map);
4119    slab_unlock(page);
4120}
4121
4122static int validate_slab_node(struct kmem_cache *s,
4123        struct kmem_cache_node *n, unsigned long *map)
4124{
4125    unsigned long count = 0;
4126    struct page *page;
4127    unsigned long flags;
4128
4129    spin_lock_irqsave(&n->list_lock, flags);
4130
4131    list_for_each_entry(page, &n->partial, lru) {
4132        validate_slab_slab(s, page, map);
4133        count++;
4134    }
4135    if (count != n->nr_partial)
4136        printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4137            "counter=%ld\n", s->name, count, n->nr_partial);
4138
4139    if (!(s->flags & SLAB_STORE_USER))
4140        goto out;
4141
4142    list_for_each_entry(page, &n->full, lru) {
4143        validate_slab_slab(s, page, map);
4144        count++;
4145    }
4146    if (count != atomic_long_read(&n->nr_slabs))
4147        printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4148            "counter=%ld\n", s->name, count,
4149            atomic_long_read(&n->nr_slabs));
4150
4151out:
4152    spin_unlock_irqrestore(&n->list_lock, flags);
4153    return count;
4154}
4155
4156static long validate_slab_cache(struct kmem_cache *s)
4157{
4158    int node;
4159    unsigned long count = 0;
4160    unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4161                sizeof(unsigned long), GFP_KERNEL);
4162
4163    if (!map)
4164        return -ENOMEM;
4165
4166    flush_all(s);
4167    for_each_node_state(node, N_NORMAL_MEMORY) {
4168        struct kmem_cache_node *n = get_node(s, node);
4169
4170        count += validate_slab_node(s, n, map);
4171    }
4172    kfree(map);
4173    return count;
4174}
4175/*
4176 * Generate lists of code addresses where slabcache objects are allocated
4177 * and freed.
4178 */
4179
4180struct location {
4181    unsigned long count;
4182    unsigned long addr;
4183    long long sum_time;
4184    long min_time;
4185    long max_time;
4186    long min_pid;
4187    long max_pid;
4188    DECLARE_BITMAP(cpus, NR_CPUS);
4189    nodemask_t nodes;
4190};
4191
4192struct loc_track {
4193    unsigned long max;
4194    unsigned long count;
4195    struct location *loc;
4196};
4197
4198static void free_loc_track(struct loc_track *t)
4199{
4200    if (t->max)
4201        free_pages((unsigned long)t->loc,
4202            get_order(sizeof(struct location) * t->max));
4203}
4204
4205static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4206{
4207    struct location *l;
4208    int order;
4209
4210    order = get_order(sizeof(struct location) * max);
4211
4212    l = (void *)__get_free_pages(flags, order);
4213    if (!l)
4214        return 0;
4215
4216    if (t->count) {
4217        memcpy(l, t->loc, sizeof(struct location) * t->count);
4218        free_loc_track(t);
4219    }
4220    t->max = max;
4221    t->loc = l;
4222    return 1;
4223}
4224
4225static int add_location(struct loc_track *t, struct kmem_cache *s,
4226                const struct track *track)
4227{
4228    long start, end, pos;
4229    struct location *l;
4230    unsigned long caddr;
4231    unsigned long age = jiffies - track->when;
4232
4233    start = -1;
4234    end = t->count;
4235
4236    for ( ; ; ) {
4237        pos = start + (end - start + 1) / 2;
4238
4239        /*
4240         * There is nothing at "end". If we end up there
4241         * we need to add something to before end.
4242         */
4243        if (pos == end)
4244            break;
4245
4246        caddr = t->loc[pos].addr;
4247        if (track->addr == caddr) {
4248
4249            l = &t->loc[pos];
4250            l->count++;
4251            if (track->when) {
4252                l->sum_time += age;
4253                if (age < l->min_time)
4254                    l->min_time = age;
4255                if (age > l->max_time)
4256                    l->max_time = age;
4257
4258                if (track->pid < l->min_pid)
4259                    l->min_pid = track->pid;
4260                if (track->pid > l->max_pid)
4261                    l->max_pid = track->pid;
4262
4263                cpumask_set_cpu(track->cpu,
4264                        to_cpumask(l->cpus));
4265            }
4266            node_set(page_to_nid(virt_to_page(track)), l->nodes);
4267            return 1;
4268        }
4269
4270        if (track->addr < caddr)
4271            end = pos;
4272        else
4273            start = pos;
4274    }
4275
4276    /*
4277     * Not found. Insert new tracking element.
4278     */
4279    if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4280        return 0;
4281
4282    l = t->loc + pos;
4283    if (pos < t->count)
4284        memmove(l + 1, l,
4285            (t->count - pos) * sizeof(struct location));
4286    t->count++;
4287    l->count = 1;
4288    l->addr = track->addr;
4289    l->sum_time = age;
4290    l->min_time = age;
4291    l->max_time = age;
4292    l->min_pid = track->pid;
4293    l->max_pid = track->pid;
4294    cpumask_clear(to_cpumask(l->cpus));
4295    cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4296    nodes_clear(l->nodes);
4297    node_set(page_to_nid(virt_to_page(track)), l->nodes);
4298    return 1;
4299}
4300
4301static void process_slab(struct loc_track *t, struct kmem_cache *s,
4302        struct page *page, enum track_item alloc,
4303        unsigned long *map)
4304{
4305    void *addr = page_address(page);
4306    void *p;
4307
4308    bitmap_zero(map, page->objects);
4309    get_map(s, page, map);
4310
4311    for_each_object(p, s, addr, page->objects)
4312        if (!test_bit(slab_index(p, s, addr), map))
4313            add_location(t, s, get_track(s, p, alloc));
4314}
4315
4316static int list_locations(struct kmem_cache *s, char *buf,
4317                    enum track_item alloc)
4318{
4319    int len = 0;
4320    unsigned long i;
4321    struct loc_track t = { 0, 0, NULL };
4322    int node;
4323    unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4324                     sizeof(unsigned long), GFP_KERNEL);
4325
4326    if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4327                     GFP_TEMPORARY)) {
4328        kfree(map);
4329        return sprintf(buf, "Out of memory\n");
4330    }
4331    /* Push back cpu slabs */
4332    flush_all(s);
4333
4334    for_each_node_state(node, N_NORMAL_MEMORY) {
4335        struct kmem_cache_node *n = get_node(s, node);
4336        unsigned long flags;
4337        struct page *page;
4338
4339        if (!atomic_long_read(&n->nr_slabs))
4340            continue;
4341
4342        spin_lock_irqsave(&n->list_lock, flags);
4343        list_for_each_entry(page, &n->partial, lru)
4344            process_slab(&t, s, page, alloc, map);
4345        list_for_each_entry(page, &n->full, lru)
4346            process_slab(&t, s, page, alloc, map);
4347        spin_unlock_irqrestore(&n->list_lock, flags);
4348    }
4349
4350    for (i = 0; i < t.count; i++) {
4351        struct location *l = &t.loc[i];
4352
4353        if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4354            break;
4355        len += sprintf(buf + len, "%7ld ", l->count);
4356
4357        if (l->addr)
4358            len += sprintf(buf + len, "%pS", (void *)l->addr);
4359        else
4360            len += sprintf(buf + len, "<not-available>");
4361
4362        if (l->sum_time != l->min_time) {
4363            len += sprintf(buf + len, " age=%ld/%ld/%ld",
4364                l->min_time,
4365                (long)div_u64(l->sum_time, l->count),
4366                l->max_time);
4367        } else
4368            len += sprintf(buf + len, " age=%ld",
4369                l->min_time);
4370
4371        if (l->min_pid != l->max_pid)
4372            len += sprintf(buf + len, " pid=%ld-%ld",
4373                l->min_pid, l->max_pid);
4374        else
4375            len += sprintf(buf + len, " pid=%ld",
4376                l->min_pid);
4377
4378        if (num_online_cpus() > 1 &&
4379                !cpumask_empty(to_cpumask(l->cpus)) &&
4380                len < PAGE_SIZE - 60) {
4381            len += sprintf(buf + len, " cpus=");
4382            len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4383                         to_cpumask(l->cpus));
4384        }
4385
4386        if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4387                len < PAGE_SIZE - 60) {
4388            len += sprintf(buf + len, " nodes=");
4389            len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4390                    l->nodes);
4391        }
4392
4393        len += sprintf(buf + len, "\n");
4394    }
4395
4396    free_loc_track(&t);
4397    kfree(map);
4398    if (!t.count)
4399        len += sprintf(buf, "No data\n");
4400    return len;
4401}
4402#endif
4403
4404#ifdef SLUB_RESILIENCY_TEST
4405static void resiliency_test(void)
4406{
4407    u8 *p;
4408
4409    BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4410
4411    printk(KERN_ERR "SLUB resiliency testing\n");
4412    printk(KERN_ERR "-----------------------\n");
4413    printk(KERN_ERR "A. Corruption after allocation\n");
4414
4415    p = kzalloc(16, GFP_KERNEL);
4416    p[16] = 0x12;
4417    printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4418            " 0x12->0x%p\n\n", p + 16);
4419
4420    validate_slab_cache(kmalloc_caches[4]);
4421
4422    /* Hmmm... The next two are dangerous */
4423    p = kzalloc(32, GFP_KERNEL);
4424    p[32 + sizeof(void *)] = 0x34;
4425    printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4426            " 0x34 -> -0x%p\n", p);
4427    printk(KERN_ERR
4428        "If allocated object is overwritten then not detectable\n\n");
4429
4430    validate_slab_cache(kmalloc_caches[5]);
4431    p = kzalloc(64, GFP_KERNEL);
4432    p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4433    *p = 0x56;
4434    printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4435                                    p);
4436    printk(KERN_ERR
4437        "If allocated object is overwritten then not detectable\n\n");
4438    validate_slab_cache(kmalloc_caches[6]);
4439
4440    printk(KERN_ERR "\nB. Corruption after free\n");
4441    p = kzalloc(128, GFP_KERNEL);
4442    kfree(p);
4443    *p = 0x78;
4444    printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4445    validate_slab_cache(kmalloc_caches[7]);
4446
4447    p = kzalloc(256, GFP_KERNEL);
4448    kfree(p);
4449    p[50] = 0x9a;
4450    printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4451            p);
4452    validate_slab_cache(kmalloc_caches[8]);
4453
4454    p = kzalloc(512, GFP_KERNEL);
4455    kfree(p);
4456    p[512] = 0xab;
4457    printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4458    validate_slab_cache(kmalloc_caches[9]);
4459}
4460#else
4461#ifdef CONFIG_SYSFS
4462static void resiliency_test(void) {};
4463#endif
4464#endif
4465
4466#ifdef CONFIG_SYSFS
4467enum slab_stat_type {
4468    SL_ALL, /* All slabs */
4469    SL_PARTIAL, /* Only partially allocated slabs */
4470    SL_CPU, /* Only slabs used for cpu caches */
4471    SL_OBJECTS, /* Determine allocated objects not slabs */
4472    SL_TOTAL /* Determine object capacity not slabs */
4473};
4474
4475#define SO_ALL (1 << SL_ALL)
4476#define SO_PARTIAL (1 << SL_PARTIAL)
4477#define SO_CPU (1 << SL_CPU)
4478#define SO_OBJECTS (1 << SL_OBJECTS)
4479#define SO_TOTAL (1 << SL_TOTAL)
4480
4481static ssize_t show_slab_objects(struct kmem_cache *s,
4482                char *buf, unsigned long flags)
4483{
4484    unsigned long total = 0;
4485    int node;
4486    int x;
4487    unsigned long *nodes;
4488    unsigned long *per_cpu;
4489
4490    nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4491    if (!nodes)
4492        return -ENOMEM;
4493    per_cpu = nodes + nr_node_ids;
4494
4495    if (flags & SO_CPU) {
4496        int cpu;
4497
4498        for_each_possible_cpu(cpu) {
4499            struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4500            int node = ACCESS_ONCE(c->node);
4501            struct page *page;
4502
4503            if (node < 0)
4504                continue;
4505            page = ACCESS_ONCE(c->page);
4506            if (page) {
4507                if (flags & SO_TOTAL)
4508                    x = page->objects;
4509                else if (flags & SO_OBJECTS)
4510                    x = page->inuse;
4511                else
4512                    x = 1;
4513
4514                total += x;
4515                nodes[node] += x;
4516            }
4517            page = c->partial;
4518
4519            if (page) {
4520                x = page->pobjects;
4521                total += x;
4522                nodes[node] += x;
4523            }
4524            per_cpu[node]++;
4525        }
4526    }
4527
4528    lock_memory_hotplug();
4529#ifdef CONFIG_SLUB_DEBUG
4530    if (flags & SO_ALL) {
4531        for_each_node_state(node, N_NORMAL_MEMORY) {
4532            struct kmem_cache_node *n = get_node(s, node);
4533
4534        if (flags & SO_TOTAL)
4535            x = atomic_long_read(&n->total_objects);
4536        else if (flags & SO_OBJECTS)
4537            x = atomic_long_read(&n->total_objects) -
4538                count_partial(n, count_free);
4539
4540            else
4541                x = atomic_long_read(&n->nr_slabs);
4542            total += x;
4543            nodes[node] += x;
4544        }
4545
4546    } else
4547#endif
4548    if (flags & SO_PARTIAL) {
4549        for_each_node_state(node, N_NORMAL_MEMORY) {
4550            struct kmem_cache_node *n = get_node(s, node);
4551
4552            if (flags & SO_TOTAL)
4553                x = count_partial(n, count_total);
4554            else if (flags & SO_OBJECTS)
4555                x = count_partial(n, count_inuse);
4556            else
4557                x = n->nr_partial;
4558            total += x;
4559            nodes[node] += x;
4560        }
4561    }
4562    x = sprintf(buf, "%lu", total);
4563#ifdef CONFIG_NUMA
4564    for_each_node_state(node, N_NORMAL_MEMORY)
4565        if (nodes[node])
4566            x += sprintf(buf + x, " N%d=%lu",
4567                    node, nodes[node]);
4568#endif
4569    unlock_memory_hotplug();
4570    kfree(nodes);
4571    return x + sprintf(buf + x, "\n");
4572}
4573
4574#ifdef CONFIG_SLUB_DEBUG
4575static int any_slab_objects(struct kmem_cache *s)
4576{
4577    int node;
4578
4579    for_each_online_node(node) {
4580        struct kmem_cache_node *n = get_node(s, node);
4581
4582        if (!n)
4583            continue;
4584
4585        if (atomic_long_read(&n->total_objects))
4586            return 1;
4587    }
4588    return 0;
4589}
4590#endif
4591
4592#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4593#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4594
4595struct slab_attribute {
4596    struct attribute attr;
4597    ssize_t (*show)(struct kmem_cache *s, char *buf);
4598    ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4599};
4600
4601#define SLAB_ATTR_RO(_name) \
4602    static struct slab_attribute _name##_attr = \
4603    __ATTR(_name, 0400, _name##_show, NULL)
4604
4605#define SLAB_ATTR(_name) \
4606    static struct slab_attribute _name##_attr = \
4607    __ATTR(_name, 0600, _name##_show, _name##_store)
4608
4609static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4610{
4611    return sprintf(buf, "%d\n", s->size);
4612}
4613SLAB_ATTR_RO(slab_size);
4614
4615static ssize_t align_show(struct kmem_cache *s, char *buf)
4616{
4617    return sprintf(buf, "%d\n", s->align);
4618}
4619SLAB_ATTR_RO(align);
4620
4621static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4622{
4623    return sprintf(buf, "%d\n", s->objsize);
4624}
4625SLAB_ATTR_RO(object_size);
4626
4627static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4628{
4629    return sprintf(buf, "%d\n", oo_objects(s->oo));
4630}
4631SLAB_ATTR_RO(objs_per_slab);
4632
4633static ssize_t order_store(struct kmem_cache *s,
4634                const char *buf, size_t length)
4635{
4636    unsigned long order;
4637    int err;
4638
4639    err = strict_strtoul(buf, 10, &order);
4640    if (err)
4641        return err;
4642
4643    if (order > slub_max_order || order < slub_min_order)
4644        return -EINVAL;
4645
4646    calculate_sizes(s, order);
4647    return length;
4648}
4649
4650static ssize_t order_show(struct kmem_cache *s, char *buf)
4651{
4652    return sprintf(buf, "%d\n", oo_order(s->oo));
4653}
4654SLAB_ATTR(order);
4655
4656static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4657{
4658    return sprintf(buf, "%lu\n", s->min_partial);
4659}
4660
4661static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4662                 size_t length)
4663{
4664    unsigned long min;
4665    int err;
4666
4667    err = strict_strtoul(buf, 10, &min);
4668    if (err)
4669        return err;
4670
4671    set_min_partial(s, min);
4672    return length;
4673}
4674SLAB_ATTR(min_partial);
4675
4676static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4677{
4678    return sprintf(buf, "%u\n", s->cpu_partial);
4679}
4680
4681static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4682                 size_t length)
4683{
4684    unsigned long objects;
4685    int err;
4686
4687    err = strict_strtoul(buf, 10, &objects);
4688    if (err)
4689        return err;
4690    if (objects && kmem_cache_debug(s))
4691        return -EINVAL;
4692
4693    s->cpu_partial = objects;
4694    flush_all(s);
4695    return length;
4696}
4697SLAB_ATTR(cpu_partial);
4698
4699static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4700{
4701    if (!s->ctor)
4702        return 0;
4703    return sprintf(buf, "%pS\n", s->ctor);
4704}
4705SLAB_ATTR_RO(ctor);
4706
4707static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4708{
4709    return sprintf(buf, "%d\n", s->refcount - 1);
4710}
4711SLAB_ATTR_RO(aliases);
4712
4713static ssize_t partial_show(struct kmem_cache *s, char *buf)
4714{
4715    return show_slab_objects(s, buf, SO_PARTIAL);
4716}
4717SLAB_ATTR_RO(partial);
4718
4719static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4720{
4721    return show_slab_objects(s, buf, SO_CPU);
4722}
4723SLAB_ATTR_RO(cpu_slabs);
4724
4725static ssize_t objects_show(struct kmem_cache *s, char *buf)
4726{
4727    return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4728}
4729SLAB_ATTR_RO(objects);
4730
4731static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4732{
4733    return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4734}
4735SLAB_ATTR_RO(objects_partial);
4736
4737static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4738{
4739    int objects = 0;
4740    int pages = 0;
4741    int cpu;
4742    int len;
4743
4744    for_each_online_cpu(cpu) {
4745        struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4746
4747        if (page) {
4748            pages += page->pages;
4749            objects += page->pobjects;
4750        }
4751    }
4752
4753    len = sprintf(buf, "%d(%d)", objects, pages);
4754
4755#ifdef CONFIG_SMP
4756    for_each_online_cpu(cpu) {
4757        struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4758
4759        if (page && len < PAGE_SIZE - 20)
4760            len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4761                page->pobjects, page->pages);
4762    }
4763#endif
4764    return len + sprintf(buf + len, "\n");
4765}
4766SLAB_ATTR_RO(slabs_cpu_partial);
4767
4768static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4769{
4770    return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4771}
4772
4773static ssize_t reclaim_account_store(struct kmem_cache *s,
4774                const char *buf, size_t length)
4775{
4776    s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4777    if (buf[0] == '1')
4778        s->flags |= SLAB_RECLAIM_ACCOUNT;
4779    return length;
4780}
4781SLAB_ATTR(reclaim_account);
4782
4783static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4784{
4785    return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4786}
4787SLAB_ATTR_RO(hwcache_align);
4788
4789#ifdef CONFIG_ZONE_DMA
4790static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4791{
4792    return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4793}
4794SLAB_ATTR_RO(cache_dma);
4795#endif
4796
4797static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4798{
4799    return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4800}
4801SLAB_ATTR_RO(destroy_by_rcu);
4802
4803static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4804{
4805    return sprintf(buf, "%d\n", s->reserved);
4806}
4807SLAB_ATTR_RO(reserved);
4808
4809#ifdef CONFIG_SLUB_DEBUG
4810static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4811{
4812    return show_slab_objects(s, buf, SO_ALL);
4813}
4814SLAB_ATTR_RO(slabs);
4815
4816static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4817{
4818    return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4819}
4820SLAB_ATTR_RO(total_objects);
4821
4822static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4823{
4824    return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4825}
4826
4827static ssize_t sanity_checks_store(struct kmem_cache *s,
4828                const char *buf, size_t length)
4829{
4830    s->flags &= ~SLAB_DEBUG_FREE;
4831    if (buf[0] == '1') {
4832        s->flags &= ~__CMPXCHG_DOUBLE;
4833        s->flags |= SLAB_DEBUG_FREE;
4834    }
4835    return length;
4836}
4837SLAB_ATTR(sanity_checks);
4838
4839static ssize_t trace_show(struct kmem_cache *s, char *buf)
4840{
4841    return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4842}
4843
4844static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4845                            size_t length)
4846{
4847    s->flags &= ~SLAB_TRACE;
4848    if (buf[0] == '1') {
4849        s->flags &= ~__CMPXCHG_DOUBLE;
4850        s->flags |= SLAB_TRACE;
4851    }
4852    return length;
4853}
4854SLAB_ATTR(trace);
4855
4856static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4857{
4858    return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4859}
4860
4861static ssize_t red_zone_store(struct kmem_cache *s,
4862                const char *buf, size_t length)
4863{
4864    if (any_slab_objects(s))
4865        return -EBUSY;
4866
4867    s->flags &= ~SLAB_RED_ZONE;
4868    if (buf[0] == '1') {
4869        s->flags &= ~__CMPXCHG_DOUBLE;
4870        s->flags |= SLAB_RED_ZONE;
4871    }
4872    calculate_sizes(s, -1);
4873    return length;
4874}
4875SLAB_ATTR(red_zone);
4876
4877static ssize_t poison_show(struct kmem_cache *s, char *buf)
4878{
4879    return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4880}
4881
4882static ssize_t poison_store(struct kmem_cache *s,
4883                const char *buf, size_t length)
4884{
4885    if (any_slab_objects(s))
4886        return -EBUSY;
4887
4888    s->flags &= ~SLAB_POISON;
4889    if (buf[0] == '1') {
4890        s->flags &= ~__CMPXCHG_DOUBLE;
4891        s->flags |= SLAB_POISON;
4892    }
4893    calculate_sizes(s, -1);
4894    return length;
4895}
4896SLAB_ATTR(poison);
4897
4898static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4899{
4900    return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4901}
4902
4903static ssize_t store_user_store(struct kmem_cache *s,
4904                const char *buf, size_t length)
4905{
4906    if (any_slab_objects(s))
4907        return -EBUSY;
4908
4909    s->flags &= ~SLAB_STORE_USER;
4910    if (buf[0] == '1') {
4911        s->flags &= ~__CMPXCHG_DOUBLE;
4912        s->flags |= SLAB_STORE_USER;
4913    }
4914    calculate_sizes(s, -1);
4915    return length;
4916}
4917SLAB_ATTR(store_user);
4918
4919static ssize_t validate_show(struct kmem_cache *s, char *buf)
4920{
4921    return 0;
4922}
4923
4924static ssize_t validate_store(struct kmem_cache *s,
4925            const char *buf, size_t length)
4926{
4927    int ret = -EINVAL;
4928
4929    if (buf[0] == '1') {
4930        ret = validate_slab_cache(s);
4931        if (ret >= 0)
4932            ret = length;
4933    }
4934    return ret;
4935}
4936SLAB_ATTR(validate);
4937
4938static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4939{
4940    if (!(s->flags & SLAB_STORE_USER))
4941        return -ENOSYS;
4942    return list_locations(s, buf, TRACK_ALLOC);
4943}
4944SLAB_ATTR_RO(alloc_calls);
4945
4946static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4947{
4948    if (!(s->flags & SLAB_STORE_USER))
4949        return -ENOSYS;
4950    return list_locations(s, buf, TRACK_FREE);
4951}
4952SLAB_ATTR_RO(free_calls);
4953#endif /* CONFIG_SLUB_DEBUG */
4954
4955#ifdef CONFIG_FAILSLAB
4956static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4957{
4958    return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4959}
4960
4961static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4962                            size_t length)
4963{
4964    s->flags &= ~SLAB_FAILSLAB;
4965    if (buf[0] == '1')
4966        s->flags |= SLAB_FAILSLAB;
4967    return length;
4968}
4969SLAB_ATTR(failslab);
4970#endif
4971
4972static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4973{
4974    return 0;
4975}
4976
4977static ssize_t shrink_store(struct kmem_cache *s,
4978            const char *buf, size_t length)
4979{
4980    if (buf[0] == '1') {
4981        int rc = kmem_cache_shrink(s);
4982
4983        if (rc)
4984            return rc;
4985    } else
4986        return -EINVAL;
4987    return length;
4988}
4989SLAB_ATTR(shrink);
4990
4991#ifdef CONFIG_NUMA
4992static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4993{
4994    return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4995}
4996
4997static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4998                const char *buf, size_t length)
4999{
5000    unsigned long ratio;
5001    int err;
5002
5003    err = strict_strtoul(buf, 10, &ratio);
5004    if (err)
5005        return err;
5006
5007    if (ratio <= 100)
5008        s->remote_node_defrag_ratio = ratio * 10;
5009
5010    return length;
5011}
5012SLAB_ATTR(remote_node_defrag_ratio);
5013#endif
5014
5015#ifdef CONFIG_SLUB_STATS
5016static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5017{
5018    unsigned long sum = 0;
5019    int cpu;
5020    int len;
5021    int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5022
5023    if (!data)
5024        return -ENOMEM;
5025
5026    for_each_online_cpu(cpu) {
5027        unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5028
5029        data[cpu] = x;
5030        sum += x;
5031    }
5032
5033    len = sprintf(buf, "%lu", sum);
5034
5035#ifdef CONFIG_SMP
5036    for_each_online_cpu(cpu) {
5037        if (data[cpu] && len < PAGE_SIZE - 20)
5038            len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5039    }
5040#endif
5041    kfree(data);
5042    return len + sprintf(buf + len, "\n");
5043}
5044
5045static void clear_stat(struct kmem_cache *s, enum stat_item si)
5046{
5047    int cpu;
5048
5049    for_each_online_cpu(cpu)
5050        per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5051}
5052
5053#define STAT_ATTR(si, text) \
5054static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5055{ \
5056    return show_stat(s, buf, si); \
5057} \
5058static ssize_t text##_store(struct kmem_cache *s, \
5059                const char *buf, size_t length) \
5060{ \
5061    if (buf[0] != '0') \
5062        return -EINVAL; \
5063    clear_stat(s, si); \
5064    return length; \
5065} \
5066SLAB_ATTR(text); \
5067
5068STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5069STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5070STAT_ATTR(FREE_FASTPATH, free_fastpath);
5071STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5072STAT_ATTR(FREE_FROZEN, free_frozen);
5073STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5074STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5075STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5076STAT_ATTR(ALLOC_SLAB, alloc_slab);
5077STAT_ATTR(ALLOC_REFILL, alloc_refill);
5078STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5079STAT_ATTR(FREE_SLAB, free_slab);
5080STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5081STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5082STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5083STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5084STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5085STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5086STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5087STAT_ATTR(ORDER_FALLBACK, order_fallback);
5088STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5089STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5090STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5091STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5092STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5093STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5094#endif
5095
5096static struct attribute *slab_attrs[] = {
5097    &slab_size_attr.attr,
5098    &object_size_attr.attr,
5099    &objs_per_slab_attr.attr,
5100    &order_attr.attr,
5101    &min_partial_attr.attr,
5102    &cpu_partial_attr.attr,
5103    &objects_attr.attr,
5104    &objects_partial_attr.attr,
5105    &partial_attr.attr,
5106    &cpu_slabs_attr.attr,
5107    &ctor_attr.attr,
5108    &aliases_attr.attr,
5109    &align_attr.attr,
5110    &hwcache_align_attr.attr,
5111    &reclaim_account_attr.attr,
5112    &destroy_by_rcu_attr.attr,
5113    &shrink_attr.attr,
5114    &reserved_attr.attr,
5115    &slabs_cpu_partial_attr.attr,
5116#ifdef CONFIG_SLUB_DEBUG
5117    &total_objects_attr.attr,
5118    &slabs_attr.attr,
5119    &sanity_checks_attr.attr,
5120    &trace_attr.attr,
5121    &red_zone_attr.attr,
5122    &poison_attr.attr,
5123    &store_user_attr.attr,
5124    &validate_attr.attr,
5125    &alloc_calls_attr.attr,
5126    &free_calls_attr.attr,
5127#endif
5128#ifdef CONFIG_ZONE_DMA
5129    &cache_dma_attr.attr,
5130#endif
5131#ifdef CONFIG_NUMA
5132    &remote_node_defrag_ratio_attr.attr,
5133#endif
5134#ifdef CONFIG_SLUB_STATS
5135    &alloc_fastpath_attr.attr,
5136    &alloc_slowpath_attr.attr,
5137    &free_fastpath_attr.attr,
5138    &free_slowpath_attr.attr,
5139    &free_frozen_attr.attr,
5140    &free_add_partial_attr.attr,
5141    &free_remove_partial_attr.attr,
5142    &alloc_from_partial_attr.attr,
5143    &alloc_slab_attr.attr,
5144    &alloc_refill_attr.attr,
5145    &alloc_node_mismatch_attr.attr,
5146    &free_slab_attr.attr,
5147    &cpuslab_flush_attr.attr,
5148    &deactivate_full_attr.attr,
5149    &deactivate_empty_attr.attr,
5150    &deactivate_to_head_attr.attr,
5151    &deactivate_to_tail_attr.attr,
5152    &deactivate_remote_frees_attr.attr,
5153    &deactivate_bypass_attr.attr,
5154    &order_fallback_attr.attr,
5155    &cmpxchg_double_fail_attr.attr,
5156    &cmpxchg_double_cpu_fail_attr.attr,
5157    &cpu_partial_alloc_attr.attr,
5158    &cpu_partial_free_attr.attr,
5159    &cpu_partial_node_attr.attr,
5160    &cpu_partial_drain_attr.attr,
5161#endif
5162#ifdef CONFIG_FAILSLAB
5163    &failslab_attr.attr,
5164#endif
5165
5166    NULL
5167};
5168
5169static struct attribute_group slab_attr_group = {
5170    .attrs = slab_attrs,
5171};
5172
5173static ssize_t slab_attr_show(struct kobject *kobj,
5174                struct attribute *attr,
5175                char *buf)
5176{
5177    struct slab_attribute *attribute;
5178    struct kmem_cache *s;
5179    int err;
5180
5181    attribute = to_slab_attr(attr);
5182    s = to_slab(kobj);
5183
5184    if (!attribute->show)
5185        return -EIO;
5186
5187    err = attribute->show(s, buf);
5188
5189    return err;
5190}
5191
5192static ssize_t slab_attr_store(struct kobject *kobj,
5193                struct attribute *attr,
5194                const char *buf, size_t len)
5195{
5196    struct slab_attribute *attribute;
5197    struct kmem_cache *s;
5198    int err;
5199
5200    attribute = to_slab_attr(attr);
5201    s = to_slab(kobj);
5202
5203    if (!attribute->store)
5204        return -EIO;
5205
5206    err = attribute->store(s, buf, len);
5207
5208    return err;
5209}
5210
5211static void kmem_cache_release(struct kobject *kobj)
5212{
5213    struct kmem_cache *s = to_slab(kobj);
5214
5215    kfree(s->name);
5216    kfree(s);
5217}
5218
5219static const struct sysfs_ops slab_sysfs_ops = {
5220    .show = slab_attr_show,
5221    .store = slab_attr_store,
5222};
5223
5224static struct kobj_type slab_ktype = {
5225    .sysfs_ops = &slab_sysfs_ops,
5226    .release = kmem_cache_release
5227};
5228
5229static int uevent_filter(struct kset *kset, struct kobject *kobj)
5230{
5231    struct kobj_type *ktype = get_ktype(kobj);
5232
5233    if (ktype == &slab_ktype)
5234        return 1;
5235    return 0;
5236}
5237
5238static const struct kset_uevent_ops slab_uevent_ops = {
5239    .filter = uevent_filter,
5240};
5241
5242static struct kset *slab_kset;
5243
5244#define ID_STR_LENGTH 64
5245
5246/* Create a unique string id for a slab cache:
5247 *
5248 * Format :[flags-]size
5249 */
5250static char *create_unique_id(struct kmem_cache *s)
5251{
5252    char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5253    char *p = name;
5254
5255    BUG_ON(!name);
5256
5257    *p++ = ':';
5258    /*
5259     * First flags affecting slabcache operations. We will only
5260     * get here for aliasable slabs so we do not need to support
5261     * too many flags. The flags here must cover all flags that
5262     * are matched during merging to guarantee that the id is
5263     * unique.
5264     */
5265    if (s->flags & SLAB_CACHE_DMA)
5266        *p++ = 'd';
5267    if (s->flags & SLAB_RECLAIM_ACCOUNT)
5268        *p++ = 'a';
5269    if (s->flags & SLAB_DEBUG_FREE)
5270        *p++ = 'F';
5271    if (!(s->flags & SLAB_NOTRACK))
5272        *p++ = 't';
5273    if (p != name + 1)
5274        *p++ = '-';
5275    p += sprintf(p, "%07d", s->size);
5276    BUG_ON(p > name + ID_STR_LENGTH - 1);
5277    return name;
5278}
5279
5280static int sysfs_slab_add(struct kmem_cache *s)
5281{
5282    int err;
5283    const char *name;
5284    int unmergeable;
5285
5286    if (slab_state < SYSFS)
5287        /* Defer until later */
5288        return 0;
5289
5290    unmergeable = slab_unmergeable(s);
5291    if (unmergeable) {
5292        /*
5293         * Slabcache can never be merged so we can use the name proper.
5294         * This is typically the case for debug situations. In that
5295         * case we can catch duplicate names easily.
5296         */
5297        sysfs_remove_link(&slab_kset->kobj, s->name);
5298        name = s->name;
5299    } else {
5300        /*
5301         * Create a unique name for the slab as a target
5302         * for the symlinks.
5303         */
5304        name = create_unique_id(s);
5305    }
5306
5307    s->kobj.kset = slab_kset;
5308    err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5309    if (err) {
5310        kobject_put(&s->kobj);
5311        return err;
5312    }
5313
5314    err = sysfs_create_group(&s->kobj, &slab_attr_group);
5315    if (err) {
5316        kobject_del(&s->kobj);
5317        kobject_put(&s->kobj);
5318        return err;
5319    }
5320    kobject_uevent(&s->kobj, KOBJ_ADD);
5321    if (!unmergeable) {
5322        /* Setup first alias */
5323        sysfs_slab_alias(s, s->name);
5324        kfree(name);
5325    }
5326    return 0;
5327}
5328
5329static void sysfs_slab_remove(struct kmem_cache *s)
5330{
5331    if (slab_state < SYSFS)
5332        /*
5333         * Sysfs has not been setup yet so no need to remove the
5334         * cache from sysfs.
5335         */
5336        return;
5337
5338    kobject_uevent(&s->kobj, KOBJ_REMOVE);
5339    kobject_del(&s->kobj);
5340    kobject_put(&s->kobj);
5341}
5342
5343/*
5344 * Need to buffer aliases during bootup until sysfs becomes
5345 * available lest we lose that information.
5346 */
5347struct saved_alias {
5348    struct kmem_cache *s;
5349    const char *name;
5350    struct saved_alias *next;
5351};
5352
5353static struct saved_alias *alias_list;
5354
5355static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5356{
5357    struct saved_alias *al;
5358
5359    if (slab_state == SYSFS) {
5360        /*
5361         * If we have a leftover link then remove it.
5362         */
5363        sysfs_remove_link(&slab_kset->kobj, name);
5364        return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5365    }
5366
5367    al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5368    if (!al)
5369        return -ENOMEM;
5370
5371    al->s = s;
5372    al->name = name;
5373    al->next = alias_list;
5374    alias_list = al;
5375    return 0;
5376}
5377
5378static int __init slab_sysfs_init(void)
5379{
5380    struct kmem_cache *s;
5381    int err;
5382
5383    down_write(&slub_lock);
5384
5385    slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5386    if (!slab_kset) {
5387        up_write(&slub_lock);
5388        printk(KERN_ERR "Cannot register slab subsystem.\n");
5389        return -ENOSYS;
5390    }
5391
5392    slab_state = SYSFS;
5393
5394    list_for_each_entry(s, &slab_caches, list) {
5395        err = sysfs_slab_add(s);
5396        if (err)
5397            printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5398                        " to sysfs\n", s->name);
5399    }
5400
5401    while (alias_list) {
5402        struct saved_alias *al = alias_list;
5403
5404        alias_list = alias_list->next;
5405        err = sysfs_slab_alias(al->s, al->name);
5406        if (err)
5407            printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5408                    " %s to sysfs\n", s->name);
5409        kfree(al);
5410    }
5411
5412    up_write(&slub_lock);
5413    resiliency_test();
5414    return 0;
5415}
5416
5417__initcall(slab_sysfs_init);
5418#endif /* CONFIG_SYSFS */
5419
5420/*
5421 * The /proc/slabinfo ABI
5422 */
5423#ifdef CONFIG_SLABINFO
5424static void print_slabinfo_header(struct seq_file *m)
5425{
5426    seq_puts(m, "slabinfo - version: 2.1\n");
5427    seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5428         "<objperslab> <pagesperslab>");
5429    seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5430    seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5431    seq_putc(m, '\n');
5432}
5433
5434static void *s_start(struct seq_file *m, loff_t *pos)
5435{
5436    loff_t n = *pos;
5437
5438    down_read(&slub_lock);
5439    if (!n)
5440        print_slabinfo_header(m);
5441
5442    return seq_list_start(&slab_caches, *pos);
5443}
5444
5445static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5446{
5447    return seq_list_next(p, &slab_caches, pos);
5448}
5449
5450static void s_stop(struct seq_file *m, void *p)
5451{
5452    up_read(&slub_lock);
5453}
5454
5455static int s_show(struct seq_file *m, void *p)
5456{
5457    unsigned long nr_partials = 0;
5458    unsigned long nr_slabs = 0;
5459    unsigned long nr_inuse = 0;
5460    unsigned long nr_objs = 0;
5461    unsigned long nr_free = 0;
5462    struct kmem_cache *s;
5463    int node;
5464
5465    s = list_entry(p, struct kmem_cache, list);
5466
5467    for_each_online_node(node) {
5468        struct kmem_cache_node *n = get_node(s, node);
5469
5470        if (!n)
5471            continue;
5472
5473        nr_partials += n->nr_partial;
5474        nr_slabs += atomic_long_read(&n->nr_slabs);
5475        nr_objs += atomic_long_read(&n->total_objects);
5476        nr_free += count_partial(n, count_free);
5477    }
5478
5479    nr_inuse = nr_objs - nr_free;
5480
5481    seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5482           nr_objs, s->size, oo_objects(s->oo),
5483           (1 << oo_order(s->oo)));
5484    seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5485    seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5486           0UL);
5487    seq_putc(m, '\n');
5488    return 0;
5489}
5490
5491static const struct seq_operations slabinfo_op = {
5492    .start = s_start,
5493    .next = s_next,
5494    .stop = s_stop,
5495    .show = s_show,
5496};
5497
5498static int slabinfo_open(struct inode *inode, struct file *file)
5499{
5500    return seq_open(file, &slabinfo_op);
5501}
5502
5503static const struct file_operations proc_slabinfo_operations = {
5504    .open = slabinfo_open,
5505    .read = seq_read,
5506    .llseek = seq_lseek,
5507    .release = seq_release,
5508};
5509
5510static int __init slab_proc_init(void)
5511{
5512    proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5513    return 0;
5514}
5515module_init(slab_proc_init);
5516#endif /* CONFIG_SLABINFO */
5517

Archive Download this file



interactive