Root/
1 | /* |
2 | * DECnet An implementation of the DECnet protocol suite for the LINUX |
3 | * operating system. DECnet is implemented using the BSD Socket |
4 | * interface as the means of communication with the user level. |
5 | * |
6 | * DECnet Neighbour Functions (Adjacency Database and |
7 | * On-Ethernet Cache) |
8 | * |
9 | * Author: Steve Whitehouse <SteveW@ACM.org> |
10 | * |
11 | * |
12 | * Changes: |
13 | * Steve Whitehouse : Fixed router listing routine |
14 | * Steve Whitehouse : Added error_report functions |
15 | * Steve Whitehouse : Added default router detection |
16 | * Steve Whitehouse : Hop counts in outgoing messages |
17 | * Steve Whitehouse : Fixed src/dst in outgoing messages so |
18 | * forwarding now stands a good chance of |
19 | * working. |
20 | * Steve Whitehouse : Fixed neighbour states (for now anyway). |
21 | * Steve Whitehouse : Made error_report functions dummies. This |
22 | * is not the right place to return skbs. |
23 | * Steve Whitehouse : Convert to seq_file |
24 | * |
25 | */ |
26 | |
27 | #include <linux/net.h> |
28 | #include <linux/module.h> |
29 | #include <linux/socket.h> |
30 | #include <linux/if_arp.h> |
31 | #include <linux/slab.h> |
32 | #include <linux/if_ether.h> |
33 | #include <linux/init.h> |
34 | #include <linux/proc_fs.h> |
35 | #include <linux/string.h> |
36 | #include <linux/netfilter_decnet.h> |
37 | #include <linux/spinlock.h> |
38 | #include <linux/seq_file.h> |
39 | #include <linux/rcupdate.h> |
40 | #include <linux/jhash.h> |
41 | #include <linux/atomic.h> |
42 | #include <net/net_namespace.h> |
43 | #include <net/neighbour.h> |
44 | #include <net/dst.h> |
45 | #include <net/flow.h> |
46 | #include <net/dn.h> |
47 | #include <net/dn_dev.h> |
48 | #include <net/dn_neigh.h> |
49 | #include <net/dn_route.h> |
50 | |
51 | static int dn_neigh_construct(struct neighbour *); |
52 | static void dn_long_error_report(struct neighbour *, struct sk_buff *); |
53 | static void dn_short_error_report(struct neighbour *, struct sk_buff *); |
54 | static int dn_long_output(struct neighbour *, struct sk_buff *); |
55 | static int dn_short_output(struct neighbour *, struct sk_buff *); |
56 | static int dn_phase3_output(struct neighbour *, struct sk_buff *); |
57 | |
58 | |
59 | /* |
60 | * For talking to broadcast devices: Ethernet & PPP |
61 | */ |
62 | static const struct neigh_ops dn_long_ops = { |
63 | .family = AF_DECnet, |
64 | .error_report = dn_long_error_report, |
65 | .output = dn_long_output, |
66 | .connected_output = dn_long_output, |
67 | }; |
68 | |
69 | /* |
70 | * For talking to pointopoint and multidrop devices: DDCMP and X.25 |
71 | */ |
72 | static const struct neigh_ops dn_short_ops = { |
73 | .family = AF_DECnet, |
74 | .error_report = dn_short_error_report, |
75 | .output = dn_short_output, |
76 | .connected_output = dn_short_output, |
77 | }; |
78 | |
79 | /* |
80 | * For talking to DECnet phase III nodes |
81 | */ |
82 | static const struct neigh_ops dn_phase3_ops = { |
83 | .family = AF_DECnet, |
84 | .error_report = dn_short_error_report, /* Can use short version here */ |
85 | .output = dn_phase3_output, |
86 | .connected_output = dn_phase3_output, |
87 | }; |
88 | |
89 | static u32 dn_neigh_hash(const void *pkey, |
90 | const struct net_device *dev, |
91 | __u32 *hash_rnd) |
92 | { |
93 | return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]); |
94 | } |
95 | |
96 | struct neigh_table dn_neigh_table = { |
97 | .family = PF_DECnet, |
98 | .entry_size = sizeof(struct dn_neigh), |
99 | .key_len = sizeof(__le16), |
100 | .hash = dn_neigh_hash, |
101 | .constructor = dn_neigh_construct, |
102 | .id = "dn_neigh_cache", |
103 | .parms ={ |
104 | .tbl = &dn_neigh_table, |
105 | .base_reachable_time = 30 * HZ, |
106 | .retrans_time = 1 * HZ, |
107 | .gc_staletime = 60 * HZ, |
108 | .reachable_time = 30 * HZ, |
109 | .delay_probe_time = 5 * HZ, |
110 | .queue_len_bytes = 64*1024, |
111 | .ucast_probes = 0, |
112 | .app_probes = 0, |
113 | .mcast_probes = 0, |
114 | .anycast_delay = 0, |
115 | .proxy_delay = 0, |
116 | .proxy_qlen = 0, |
117 | .locktime = 1 * HZ, |
118 | }, |
119 | .gc_interval = 30 * HZ, |
120 | .gc_thresh1 = 128, |
121 | .gc_thresh2 = 512, |
122 | .gc_thresh3 = 1024, |
123 | }; |
124 | |
125 | static int dn_neigh_construct(struct neighbour *neigh) |
126 | { |
127 | struct net_device *dev = neigh->dev; |
128 | struct dn_neigh *dn = (struct dn_neigh *)neigh; |
129 | struct dn_dev *dn_db; |
130 | struct neigh_parms *parms; |
131 | |
132 | rcu_read_lock(); |
133 | dn_db = rcu_dereference(dev->dn_ptr); |
134 | if (dn_db == NULL) { |
135 | rcu_read_unlock(); |
136 | return -EINVAL; |
137 | } |
138 | |
139 | parms = dn_db->neigh_parms; |
140 | if (!parms) { |
141 | rcu_read_unlock(); |
142 | return -EINVAL; |
143 | } |
144 | |
145 | __neigh_parms_put(neigh->parms); |
146 | neigh->parms = neigh_parms_clone(parms); |
147 | |
148 | if (dn_db->use_long) |
149 | neigh->ops = &dn_long_ops; |
150 | else |
151 | neigh->ops = &dn_short_ops; |
152 | rcu_read_unlock(); |
153 | |
154 | if (dn->flags & DN_NDFLAG_P3) |
155 | neigh->ops = &dn_phase3_ops; |
156 | |
157 | neigh->nud_state = NUD_NOARP; |
158 | neigh->output = neigh->ops->connected_output; |
159 | |
160 | if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT)) |
161 | memcpy(neigh->ha, dev->broadcast, dev->addr_len); |
162 | else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK)) |
163 | dn_dn2eth(neigh->ha, dn->addr); |
164 | else { |
165 | if (net_ratelimit()) |
166 | printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type); |
167 | return -EINVAL; |
168 | } |
169 | |
170 | /* |
171 | * Make an estimate of the remote block size by assuming that its |
172 | * two less then the device mtu, which it true for ethernet (and |
173 | * other things which support long format headers) since there is |
174 | * an extra length field (of 16 bits) which isn't part of the |
175 | * ethernet headers and which the DECnet specs won't admit is part |
176 | * of the DECnet routing headers either. |
177 | * |
178 | * If we over estimate here its no big deal, the NSP negotiations |
179 | * will prevent us from sending packets which are too large for the |
180 | * remote node to handle. In any case this figure is normally updated |
181 | * by a hello message in most cases. |
182 | */ |
183 | dn->blksize = dev->mtu - 2; |
184 | |
185 | return 0; |
186 | } |
187 | |
188 | static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb) |
189 | { |
190 | printk(KERN_DEBUG "dn_long_error_report: called\n"); |
191 | kfree_skb(skb); |
192 | } |
193 | |
194 | |
195 | static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb) |
196 | { |
197 | printk(KERN_DEBUG "dn_short_error_report: called\n"); |
198 | kfree_skb(skb); |
199 | } |
200 | |
201 | static int dn_neigh_output_packet(struct sk_buff *skb) |
202 | { |
203 | struct dst_entry *dst = skb_dst(skb); |
204 | struct dn_route *rt = (struct dn_route *)dst; |
205 | struct neighbour *neigh = dst_get_neighbour_noref(dst); |
206 | struct net_device *dev = neigh->dev; |
207 | char mac_addr[ETH_ALEN]; |
208 | unsigned int seq; |
209 | int err; |
210 | |
211 | dn_dn2eth(mac_addr, rt->rt_local_src); |
212 | do { |
213 | seq = read_seqbegin(&neigh->ha_lock); |
214 | err = dev_hard_header(skb, dev, ntohs(skb->protocol), |
215 | neigh->ha, mac_addr, skb->len); |
216 | } while (read_seqretry(&neigh->ha_lock, seq)); |
217 | |
218 | if (err >= 0) |
219 | err = dev_queue_xmit(skb); |
220 | else { |
221 | kfree_skb(skb); |
222 | err = -EINVAL; |
223 | } |
224 | return err; |
225 | } |
226 | |
227 | static int dn_long_output(struct neighbour *neigh, struct sk_buff *skb) |
228 | { |
229 | struct net_device *dev = neigh->dev; |
230 | int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3; |
231 | unsigned char *data; |
232 | struct dn_long_packet *lp; |
233 | struct dn_skb_cb *cb = DN_SKB_CB(skb); |
234 | |
235 | |
236 | if (skb_headroom(skb) < headroom) { |
237 | struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); |
238 | if (skb2 == NULL) { |
239 | if (net_ratelimit()) |
240 | printk(KERN_CRIT "dn_long_output: no memory\n"); |
241 | kfree_skb(skb); |
242 | return -ENOBUFS; |
243 | } |
244 | kfree_skb(skb); |
245 | skb = skb2; |
246 | if (net_ratelimit()) |
247 | printk(KERN_INFO "dn_long_output: Increasing headroom\n"); |
248 | } |
249 | |
250 | data = skb_push(skb, sizeof(struct dn_long_packet) + 3); |
251 | lp = (struct dn_long_packet *)(data+3); |
252 | |
253 | *((__le16 *)data) = cpu_to_le16(skb->len - 2); |
254 | *(data + 2) = 1 | DN_RT_F_PF; /* Padding */ |
255 | |
256 | lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS)); |
257 | lp->d_area = lp->d_subarea = 0; |
258 | dn_dn2eth(lp->d_id, cb->dst); |
259 | lp->s_area = lp->s_subarea = 0; |
260 | dn_dn2eth(lp->s_id, cb->src); |
261 | lp->nl2 = 0; |
262 | lp->visit_ct = cb->hops & 0x3f; |
263 | lp->s_class = 0; |
264 | lp->pt = 0; |
265 | |
266 | skb_reset_network_header(skb); |
267 | |
268 | return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL, |
269 | neigh->dev, dn_neigh_output_packet); |
270 | } |
271 | |
272 | static int dn_short_output(struct neighbour *neigh, struct sk_buff *skb) |
273 | { |
274 | struct net_device *dev = neigh->dev; |
275 | int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2; |
276 | struct dn_short_packet *sp; |
277 | unsigned char *data; |
278 | struct dn_skb_cb *cb = DN_SKB_CB(skb); |
279 | |
280 | |
281 | if (skb_headroom(skb) < headroom) { |
282 | struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); |
283 | if (skb2 == NULL) { |
284 | if (net_ratelimit()) |
285 | printk(KERN_CRIT "dn_short_output: no memory\n"); |
286 | kfree_skb(skb); |
287 | return -ENOBUFS; |
288 | } |
289 | kfree_skb(skb); |
290 | skb = skb2; |
291 | if (net_ratelimit()) |
292 | printk(KERN_INFO "dn_short_output: Increasing headroom\n"); |
293 | } |
294 | |
295 | data = skb_push(skb, sizeof(struct dn_short_packet) + 2); |
296 | *((__le16 *)data) = cpu_to_le16(skb->len - 2); |
297 | sp = (struct dn_short_packet *)(data+2); |
298 | |
299 | sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS)); |
300 | sp->dstnode = cb->dst; |
301 | sp->srcnode = cb->src; |
302 | sp->forward = cb->hops & 0x3f; |
303 | |
304 | skb_reset_network_header(skb); |
305 | |
306 | return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL, |
307 | neigh->dev, dn_neigh_output_packet); |
308 | } |
309 | |
310 | /* |
311 | * Phase 3 output is the same is short output, execpt that |
312 | * it clears the area bits before transmission. |
313 | */ |
314 | static int dn_phase3_output(struct neighbour *neigh, struct sk_buff *skb) |
315 | { |
316 | struct net_device *dev = neigh->dev; |
317 | int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2; |
318 | struct dn_short_packet *sp; |
319 | unsigned char *data; |
320 | struct dn_skb_cb *cb = DN_SKB_CB(skb); |
321 | |
322 | if (skb_headroom(skb) < headroom) { |
323 | struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); |
324 | if (skb2 == NULL) { |
325 | if (net_ratelimit()) |
326 | printk(KERN_CRIT "dn_phase3_output: no memory\n"); |
327 | kfree_skb(skb); |
328 | return -ENOBUFS; |
329 | } |
330 | kfree_skb(skb); |
331 | skb = skb2; |
332 | if (net_ratelimit()) |
333 | printk(KERN_INFO "dn_phase3_output: Increasing headroom\n"); |
334 | } |
335 | |
336 | data = skb_push(skb, sizeof(struct dn_short_packet) + 2); |
337 | *((__le16 *)data) = cpu_to_le16(skb->len - 2); |
338 | sp = (struct dn_short_packet *)(data + 2); |
339 | |
340 | sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS)); |
341 | sp->dstnode = cb->dst & cpu_to_le16(0x03ff); |
342 | sp->srcnode = cb->src & cpu_to_le16(0x03ff); |
343 | sp->forward = cb->hops & 0x3f; |
344 | |
345 | skb_reset_network_header(skb); |
346 | |
347 | return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL, |
348 | neigh->dev, dn_neigh_output_packet); |
349 | } |
350 | |
351 | /* |
352 | * Unfortunately, the neighbour code uses the device in its hash |
353 | * function, so we don't get any advantage from it. This function |
354 | * basically does a neigh_lookup(), but without comparing the device |
355 | * field. This is required for the On-Ethernet cache |
356 | */ |
357 | |
358 | /* |
359 | * Pointopoint link receives a hello message |
360 | */ |
361 | void dn_neigh_pointopoint_hello(struct sk_buff *skb) |
362 | { |
363 | kfree_skb(skb); |
364 | } |
365 | |
366 | /* |
367 | * Ethernet router hello message received |
368 | */ |
369 | int dn_neigh_router_hello(struct sk_buff *skb) |
370 | { |
371 | struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data; |
372 | |
373 | struct neighbour *neigh; |
374 | struct dn_neigh *dn; |
375 | struct dn_dev *dn_db; |
376 | __le16 src; |
377 | |
378 | src = dn_eth2dn(msg->id); |
379 | |
380 | neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1); |
381 | |
382 | dn = (struct dn_neigh *)neigh; |
383 | |
384 | if (neigh) { |
385 | write_lock(&neigh->lock); |
386 | |
387 | neigh->used = jiffies; |
388 | dn_db = rcu_dereference(neigh->dev->dn_ptr); |
389 | |
390 | if (!(neigh->nud_state & NUD_PERMANENT)) { |
391 | neigh->updated = jiffies; |
392 | |
393 | if (neigh->dev->type == ARPHRD_ETHER) |
394 | memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN); |
395 | |
396 | dn->blksize = le16_to_cpu(msg->blksize); |
397 | dn->priority = msg->priority; |
398 | |
399 | dn->flags &= ~DN_NDFLAG_P3; |
400 | |
401 | switch (msg->iinfo & DN_RT_INFO_TYPE) { |
402 | case DN_RT_INFO_L1RT: |
403 | dn->flags &=~DN_NDFLAG_R2; |
404 | dn->flags |= DN_NDFLAG_R1; |
405 | break; |
406 | case DN_RT_INFO_L2RT: |
407 | dn->flags |= DN_NDFLAG_R2; |
408 | } |
409 | } |
410 | |
411 | /* Only use routers in our area */ |
412 | if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) { |
413 | if (!dn_db->router) { |
414 | dn_db->router = neigh_clone(neigh); |
415 | } else { |
416 | if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority) |
417 | neigh_release(xchg(&dn_db->router, neigh_clone(neigh))); |
418 | } |
419 | } |
420 | write_unlock(&neigh->lock); |
421 | neigh_release(neigh); |
422 | } |
423 | |
424 | kfree_skb(skb); |
425 | return 0; |
426 | } |
427 | |
428 | /* |
429 | * Endnode hello message received |
430 | */ |
431 | int dn_neigh_endnode_hello(struct sk_buff *skb) |
432 | { |
433 | struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data; |
434 | struct neighbour *neigh; |
435 | struct dn_neigh *dn; |
436 | __le16 src; |
437 | |
438 | src = dn_eth2dn(msg->id); |
439 | |
440 | neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1); |
441 | |
442 | dn = (struct dn_neigh *)neigh; |
443 | |
444 | if (neigh) { |
445 | write_lock(&neigh->lock); |
446 | |
447 | neigh->used = jiffies; |
448 | |
449 | if (!(neigh->nud_state & NUD_PERMANENT)) { |
450 | neigh->updated = jiffies; |
451 | |
452 | if (neigh->dev->type == ARPHRD_ETHER) |
453 | memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN); |
454 | dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2); |
455 | dn->blksize = le16_to_cpu(msg->blksize); |
456 | dn->priority = 0; |
457 | } |
458 | |
459 | write_unlock(&neigh->lock); |
460 | neigh_release(neigh); |
461 | } |
462 | |
463 | kfree_skb(skb); |
464 | return 0; |
465 | } |
466 | |
467 | static char *dn_find_slot(char *base, int max, int priority) |
468 | { |
469 | int i; |
470 | unsigned char *min = NULL; |
471 | |
472 | base += 6; /* skip first id */ |
473 | |
474 | for(i = 0; i < max; i++) { |
475 | if (!min || (*base < *min)) |
476 | min = base; |
477 | base += 7; /* find next priority */ |
478 | } |
479 | |
480 | if (!min) |
481 | return NULL; |
482 | |
483 | return (*min < priority) ? (min - 6) : NULL; |
484 | } |
485 | |
486 | struct elist_cb_state { |
487 | struct net_device *dev; |
488 | unsigned char *ptr; |
489 | unsigned char *rs; |
490 | int t, n; |
491 | }; |
492 | |
493 | static void neigh_elist_cb(struct neighbour *neigh, void *_info) |
494 | { |
495 | struct elist_cb_state *s = _info; |
496 | struct dn_neigh *dn; |
497 | |
498 | if (neigh->dev != s->dev) |
499 | return; |
500 | |
501 | dn = (struct dn_neigh *) neigh; |
502 | if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2))) |
503 | return; |
504 | |
505 | if (s->t == s->n) |
506 | s->rs = dn_find_slot(s->ptr, s->n, dn->priority); |
507 | else |
508 | s->t++; |
509 | if (s->rs == NULL) |
510 | return; |
511 | |
512 | dn_dn2eth(s->rs, dn->addr); |
513 | s->rs += 6; |
514 | *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0; |
515 | *(s->rs) |= dn->priority; |
516 | s->rs++; |
517 | } |
518 | |
519 | int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n) |
520 | { |
521 | struct elist_cb_state state; |
522 | |
523 | state.dev = dev; |
524 | state.t = 0; |
525 | state.n = n; |
526 | state.ptr = ptr; |
527 | state.rs = ptr; |
528 | |
529 | neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state); |
530 | |
531 | return state.t; |
532 | } |
533 | |
534 | |
535 | #ifdef CONFIG_PROC_FS |
536 | |
537 | static inline void dn_neigh_format_entry(struct seq_file *seq, |
538 | struct neighbour *n) |
539 | { |
540 | struct dn_neigh *dn = (struct dn_neigh *) n; |
541 | char buf[DN_ASCBUF_LEN]; |
542 | |
543 | read_lock(&n->lock); |
544 | seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n", |
545 | dn_addr2asc(le16_to_cpu(dn->addr), buf), |
546 | (dn->flags&DN_NDFLAG_R1) ? "1" : "-", |
547 | (dn->flags&DN_NDFLAG_R2) ? "2" : "-", |
548 | (dn->flags&DN_NDFLAG_P3) ? "3" : "-", |
549 | dn->n.nud_state, |
550 | atomic_read(&dn->n.refcnt), |
551 | dn->blksize, |
552 | (dn->n.dev) ? dn->n.dev->name : "?"); |
553 | read_unlock(&n->lock); |
554 | } |
555 | |
556 | static int dn_neigh_seq_show(struct seq_file *seq, void *v) |
557 | { |
558 | if (v == SEQ_START_TOKEN) { |
559 | seq_puts(seq, "Addr Flags State Use Blksize Dev\n"); |
560 | } else { |
561 | dn_neigh_format_entry(seq, v); |
562 | } |
563 | |
564 | return 0; |
565 | } |
566 | |
567 | static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos) |
568 | { |
569 | return neigh_seq_start(seq, pos, &dn_neigh_table, |
570 | NEIGH_SEQ_NEIGH_ONLY); |
571 | } |
572 | |
573 | static const struct seq_operations dn_neigh_seq_ops = { |
574 | .start = dn_neigh_seq_start, |
575 | .next = neigh_seq_next, |
576 | .stop = neigh_seq_stop, |
577 | .show = dn_neigh_seq_show, |
578 | }; |
579 | |
580 | static int dn_neigh_seq_open(struct inode *inode, struct file *file) |
581 | { |
582 | return seq_open_net(inode, file, &dn_neigh_seq_ops, |
583 | sizeof(struct neigh_seq_state)); |
584 | } |
585 | |
586 | static const struct file_operations dn_neigh_seq_fops = { |
587 | .owner = THIS_MODULE, |
588 | .open = dn_neigh_seq_open, |
589 | .read = seq_read, |
590 | .llseek = seq_lseek, |
591 | .release = seq_release_net, |
592 | }; |
593 | |
594 | #endif |
595 | |
596 | void __init dn_neigh_init(void) |
597 | { |
598 | neigh_table_init(&dn_neigh_table); |
599 | proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops); |
600 | } |
601 | |
602 | void __exit dn_neigh_cleanup(void) |
603 | { |
604 | proc_net_remove(&init_net, "decnet_neigh"); |
605 | neigh_table_clear(&dn_neigh_table); |
606 | } |
607 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9