Root/
1 | /* |
2 | * builtin-timechart.c - make an svg timechart of system activity |
3 | * |
4 | * (C) Copyright 2009 Intel Corporation |
5 | * |
6 | * Authors: |
7 | * Arjan van de Ven <arjan@linux.intel.com> |
8 | * |
9 | * This program is free software; you can redistribute it and/or |
10 | * modify it under the terms of the GNU General Public License |
11 | * as published by the Free Software Foundation; version 2 |
12 | * of the License. |
13 | */ |
14 | |
15 | #include "builtin.h" |
16 | |
17 | #include "util/util.h" |
18 | |
19 | #include "util/color.h" |
20 | #include <linux/list.h> |
21 | #include "util/cache.h" |
22 | #include "util/evsel.h" |
23 | #include <linux/rbtree.h> |
24 | #include "util/symbol.h" |
25 | #include "util/callchain.h" |
26 | #include "util/strlist.h" |
27 | |
28 | #include "perf.h" |
29 | #include "util/header.h" |
30 | #include "util/parse-options.h" |
31 | #include "util/parse-events.h" |
32 | #include "util/event.h" |
33 | #include "util/session.h" |
34 | #include "util/svghelper.h" |
35 | #include "util/tool.h" |
36 | |
37 | #define SUPPORT_OLD_POWER_EVENTS 1 |
38 | #define PWR_EVENT_EXIT -1 |
39 | |
40 | |
41 | static const char *input_name; |
42 | static const char *output_name = "output.svg"; |
43 | |
44 | static unsigned int numcpus; |
45 | static u64 min_freq; /* Lowest CPU frequency seen */ |
46 | static u64 max_freq; /* Highest CPU frequency seen */ |
47 | static u64 turbo_frequency; |
48 | |
49 | static u64 first_time, last_time; |
50 | |
51 | static bool power_only; |
52 | |
53 | |
54 | struct per_pid; |
55 | struct per_pidcomm; |
56 | |
57 | struct cpu_sample; |
58 | struct power_event; |
59 | struct wake_event; |
60 | |
61 | struct sample_wrapper; |
62 | |
63 | /* |
64 | * Datastructure layout: |
65 | * We keep an list of "pid"s, matching the kernels notion of a task struct. |
66 | * Each "pid" entry, has a list of "comm"s. |
67 | * this is because we want to track different programs different, while |
68 | * exec will reuse the original pid (by design). |
69 | * Each comm has a list of samples that will be used to draw |
70 | * final graph. |
71 | */ |
72 | |
73 | struct per_pid { |
74 | struct per_pid *next; |
75 | |
76 | int pid; |
77 | int ppid; |
78 | |
79 | u64 start_time; |
80 | u64 end_time; |
81 | u64 total_time; |
82 | int display; |
83 | |
84 | struct per_pidcomm *all; |
85 | struct per_pidcomm *current; |
86 | }; |
87 | |
88 | |
89 | struct per_pidcomm { |
90 | struct per_pidcomm *next; |
91 | |
92 | u64 start_time; |
93 | u64 end_time; |
94 | u64 total_time; |
95 | |
96 | int Y; |
97 | int display; |
98 | |
99 | long state; |
100 | u64 state_since; |
101 | |
102 | char *comm; |
103 | |
104 | struct cpu_sample *samples; |
105 | }; |
106 | |
107 | struct sample_wrapper { |
108 | struct sample_wrapper *next; |
109 | |
110 | u64 timestamp; |
111 | unsigned char data[0]; |
112 | }; |
113 | |
114 | #define TYPE_NONE 0 |
115 | #define TYPE_RUNNING 1 |
116 | #define TYPE_WAITING 2 |
117 | #define TYPE_BLOCKED 3 |
118 | |
119 | struct cpu_sample { |
120 | struct cpu_sample *next; |
121 | |
122 | u64 start_time; |
123 | u64 end_time; |
124 | int type; |
125 | int cpu; |
126 | }; |
127 | |
128 | static struct per_pid *all_data; |
129 | |
130 | #define CSTATE 1 |
131 | #define PSTATE 2 |
132 | |
133 | struct power_event { |
134 | struct power_event *next; |
135 | int type; |
136 | int state; |
137 | u64 start_time; |
138 | u64 end_time; |
139 | int cpu; |
140 | }; |
141 | |
142 | struct wake_event { |
143 | struct wake_event *next; |
144 | int waker; |
145 | int wakee; |
146 | u64 time; |
147 | }; |
148 | |
149 | static struct power_event *power_events; |
150 | static struct wake_event *wake_events; |
151 | |
152 | struct process_filter; |
153 | struct process_filter { |
154 | char *name; |
155 | int pid; |
156 | struct process_filter *next; |
157 | }; |
158 | |
159 | static struct process_filter *process_filter; |
160 | |
161 | |
162 | static struct per_pid *find_create_pid(int pid) |
163 | { |
164 | struct per_pid *cursor = all_data; |
165 | |
166 | while (cursor) { |
167 | if (cursor->pid == pid) |
168 | return cursor; |
169 | cursor = cursor->next; |
170 | } |
171 | cursor = malloc(sizeof(struct per_pid)); |
172 | assert(cursor != NULL); |
173 | memset(cursor, 0, sizeof(struct per_pid)); |
174 | cursor->pid = pid; |
175 | cursor->next = all_data; |
176 | all_data = cursor; |
177 | return cursor; |
178 | } |
179 | |
180 | static void pid_set_comm(int pid, char *comm) |
181 | { |
182 | struct per_pid *p; |
183 | struct per_pidcomm *c; |
184 | p = find_create_pid(pid); |
185 | c = p->all; |
186 | while (c) { |
187 | if (c->comm && strcmp(c->comm, comm) == 0) { |
188 | p->current = c; |
189 | return; |
190 | } |
191 | if (!c->comm) { |
192 | c->comm = strdup(comm); |
193 | p->current = c; |
194 | return; |
195 | } |
196 | c = c->next; |
197 | } |
198 | c = malloc(sizeof(struct per_pidcomm)); |
199 | assert(c != NULL); |
200 | memset(c, 0, sizeof(struct per_pidcomm)); |
201 | c->comm = strdup(comm); |
202 | p->current = c; |
203 | c->next = p->all; |
204 | p->all = c; |
205 | } |
206 | |
207 | static void pid_fork(int pid, int ppid, u64 timestamp) |
208 | { |
209 | struct per_pid *p, *pp; |
210 | p = find_create_pid(pid); |
211 | pp = find_create_pid(ppid); |
212 | p->ppid = ppid; |
213 | if (pp->current && pp->current->comm && !p->current) |
214 | pid_set_comm(pid, pp->current->comm); |
215 | |
216 | p->start_time = timestamp; |
217 | if (p->current) { |
218 | p->current->start_time = timestamp; |
219 | p->current->state_since = timestamp; |
220 | } |
221 | } |
222 | |
223 | static void pid_exit(int pid, u64 timestamp) |
224 | { |
225 | struct per_pid *p; |
226 | p = find_create_pid(pid); |
227 | p->end_time = timestamp; |
228 | if (p->current) |
229 | p->current->end_time = timestamp; |
230 | } |
231 | |
232 | static void |
233 | pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) |
234 | { |
235 | struct per_pid *p; |
236 | struct per_pidcomm *c; |
237 | struct cpu_sample *sample; |
238 | |
239 | p = find_create_pid(pid); |
240 | c = p->current; |
241 | if (!c) { |
242 | c = malloc(sizeof(struct per_pidcomm)); |
243 | assert(c != NULL); |
244 | memset(c, 0, sizeof(struct per_pidcomm)); |
245 | p->current = c; |
246 | c->next = p->all; |
247 | p->all = c; |
248 | } |
249 | |
250 | sample = malloc(sizeof(struct cpu_sample)); |
251 | assert(sample != NULL); |
252 | memset(sample, 0, sizeof(struct cpu_sample)); |
253 | sample->start_time = start; |
254 | sample->end_time = end; |
255 | sample->type = type; |
256 | sample->next = c->samples; |
257 | sample->cpu = cpu; |
258 | c->samples = sample; |
259 | |
260 | if (sample->type == TYPE_RUNNING && end > start && start > 0) { |
261 | c->total_time += (end-start); |
262 | p->total_time += (end-start); |
263 | } |
264 | |
265 | if (c->start_time == 0 || c->start_time > start) |
266 | c->start_time = start; |
267 | if (p->start_time == 0 || p->start_time > start) |
268 | p->start_time = start; |
269 | } |
270 | |
271 | #define MAX_CPUS 4096 |
272 | |
273 | static u64 cpus_cstate_start_times[MAX_CPUS]; |
274 | static int cpus_cstate_state[MAX_CPUS]; |
275 | static u64 cpus_pstate_start_times[MAX_CPUS]; |
276 | static u64 cpus_pstate_state[MAX_CPUS]; |
277 | |
278 | static int process_comm_event(struct perf_tool *tool __used, |
279 | union perf_event *event, |
280 | struct perf_sample *sample __used, |
281 | struct machine *machine __used) |
282 | { |
283 | pid_set_comm(event->comm.tid, event->comm.comm); |
284 | return 0; |
285 | } |
286 | |
287 | static int process_fork_event(struct perf_tool *tool __used, |
288 | union perf_event *event, |
289 | struct perf_sample *sample __used, |
290 | struct machine *machine __used) |
291 | { |
292 | pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); |
293 | return 0; |
294 | } |
295 | |
296 | static int process_exit_event(struct perf_tool *tool __used, |
297 | union perf_event *event, |
298 | struct perf_sample *sample __used, |
299 | struct machine *machine __used) |
300 | { |
301 | pid_exit(event->fork.pid, event->fork.time); |
302 | return 0; |
303 | } |
304 | |
305 | struct trace_entry { |
306 | unsigned short type; |
307 | unsigned char flags; |
308 | unsigned char preempt_count; |
309 | int pid; |
310 | int lock_depth; |
311 | }; |
312 | |
313 | #ifdef SUPPORT_OLD_POWER_EVENTS |
314 | static int use_old_power_events; |
315 | struct power_entry_old { |
316 | struct trace_entry te; |
317 | u64 type; |
318 | u64 value; |
319 | u64 cpu_id; |
320 | }; |
321 | #endif |
322 | |
323 | struct power_processor_entry { |
324 | struct trace_entry te; |
325 | u32 state; |
326 | u32 cpu_id; |
327 | }; |
328 | |
329 | #define TASK_COMM_LEN 16 |
330 | struct wakeup_entry { |
331 | struct trace_entry te; |
332 | char comm[TASK_COMM_LEN]; |
333 | int pid; |
334 | int prio; |
335 | int success; |
336 | }; |
337 | |
338 | /* |
339 | * trace_flag_type is an enumeration that holds different |
340 | * states when a trace occurs. These are: |
341 | * IRQS_OFF - interrupts were disabled |
342 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
343 | * NEED_RESCED - reschedule is requested |
344 | * HARDIRQ - inside an interrupt handler |
345 | * SOFTIRQ - inside a softirq handler |
346 | */ |
347 | enum trace_flag_type { |
348 | TRACE_FLAG_IRQS_OFF = 0x01, |
349 | TRACE_FLAG_IRQS_NOSUPPORT = 0x02, |
350 | TRACE_FLAG_NEED_RESCHED = 0x04, |
351 | TRACE_FLAG_HARDIRQ = 0x08, |
352 | TRACE_FLAG_SOFTIRQ = 0x10, |
353 | }; |
354 | |
355 | |
356 | |
357 | struct sched_switch { |
358 | struct trace_entry te; |
359 | char prev_comm[TASK_COMM_LEN]; |
360 | int prev_pid; |
361 | int prev_prio; |
362 | long prev_state; /* Arjan weeps. */ |
363 | char next_comm[TASK_COMM_LEN]; |
364 | int next_pid; |
365 | int next_prio; |
366 | }; |
367 | |
368 | static void c_state_start(int cpu, u64 timestamp, int state) |
369 | { |
370 | cpus_cstate_start_times[cpu] = timestamp; |
371 | cpus_cstate_state[cpu] = state; |
372 | } |
373 | |
374 | static void c_state_end(int cpu, u64 timestamp) |
375 | { |
376 | struct power_event *pwr; |
377 | pwr = malloc(sizeof(struct power_event)); |
378 | if (!pwr) |
379 | return; |
380 | memset(pwr, 0, sizeof(struct power_event)); |
381 | |
382 | pwr->state = cpus_cstate_state[cpu]; |
383 | pwr->start_time = cpus_cstate_start_times[cpu]; |
384 | pwr->end_time = timestamp; |
385 | pwr->cpu = cpu; |
386 | pwr->type = CSTATE; |
387 | pwr->next = power_events; |
388 | |
389 | power_events = pwr; |
390 | } |
391 | |
392 | static void p_state_change(int cpu, u64 timestamp, u64 new_freq) |
393 | { |
394 | struct power_event *pwr; |
395 | pwr = malloc(sizeof(struct power_event)); |
396 | |
397 | if (new_freq > 8000000) /* detect invalid data */ |
398 | return; |
399 | |
400 | if (!pwr) |
401 | return; |
402 | memset(pwr, 0, sizeof(struct power_event)); |
403 | |
404 | pwr->state = cpus_pstate_state[cpu]; |
405 | pwr->start_time = cpus_pstate_start_times[cpu]; |
406 | pwr->end_time = timestamp; |
407 | pwr->cpu = cpu; |
408 | pwr->type = PSTATE; |
409 | pwr->next = power_events; |
410 | |
411 | if (!pwr->start_time) |
412 | pwr->start_time = first_time; |
413 | |
414 | power_events = pwr; |
415 | |
416 | cpus_pstate_state[cpu] = new_freq; |
417 | cpus_pstate_start_times[cpu] = timestamp; |
418 | |
419 | if ((u64)new_freq > max_freq) |
420 | max_freq = new_freq; |
421 | |
422 | if (new_freq < min_freq || min_freq == 0) |
423 | min_freq = new_freq; |
424 | |
425 | if (new_freq == max_freq - 1000) |
426 | turbo_frequency = max_freq; |
427 | } |
428 | |
429 | static void |
430 | sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) |
431 | { |
432 | struct wake_event *we; |
433 | struct per_pid *p; |
434 | struct wakeup_entry *wake = (void *)te; |
435 | |
436 | we = malloc(sizeof(struct wake_event)); |
437 | if (!we) |
438 | return; |
439 | |
440 | memset(we, 0, sizeof(struct wake_event)); |
441 | we->time = timestamp; |
442 | we->waker = pid; |
443 | |
444 | if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) |
445 | we->waker = -1; |
446 | |
447 | we->wakee = wake->pid; |
448 | we->next = wake_events; |
449 | wake_events = we; |
450 | p = find_create_pid(we->wakee); |
451 | |
452 | if (p && p->current && p->current->state == TYPE_NONE) { |
453 | p->current->state_since = timestamp; |
454 | p->current->state = TYPE_WAITING; |
455 | } |
456 | if (p && p->current && p->current->state == TYPE_BLOCKED) { |
457 | pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); |
458 | p->current->state_since = timestamp; |
459 | p->current->state = TYPE_WAITING; |
460 | } |
461 | } |
462 | |
463 | static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) |
464 | { |
465 | struct per_pid *p = NULL, *prev_p; |
466 | struct sched_switch *sw = (void *)te; |
467 | |
468 | |
469 | prev_p = find_create_pid(sw->prev_pid); |
470 | |
471 | p = find_create_pid(sw->next_pid); |
472 | |
473 | if (prev_p->current && prev_p->current->state != TYPE_NONE) |
474 | pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); |
475 | if (p && p->current) { |
476 | if (p->current->state != TYPE_NONE) |
477 | pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); |
478 | |
479 | p->current->state_since = timestamp; |
480 | p->current->state = TYPE_RUNNING; |
481 | } |
482 | |
483 | if (prev_p->current) { |
484 | prev_p->current->state = TYPE_NONE; |
485 | prev_p->current->state_since = timestamp; |
486 | if (sw->prev_state & 2) |
487 | prev_p->current->state = TYPE_BLOCKED; |
488 | if (sw->prev_state == 0) |
489 | prev_p->current->state = TYPE_WAITING; |
490 | } |
491 | } |
492 | |
493 | |
494 | static int process_sample_event(struct perf_tool *tool __used, |
495 | union perf_event *event __used, |
496 | struct perf_sample *sample, |
497 | struct perf_evsel *evsel, |
498 | struct machine *machine __used) |
499 | { |
500 | struct trace_entry *te; |
501 | |
502 | if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { |
503 | if (!first_time || first_time > sample->time) |
504 | first_time = sample->time; |
505 | if (last_time < sample->time) |
506 | last_time = sample->time; |
507 | } |
508 | |
509 | te = (void *)sample->raw_data; |
510 | if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) { |
511 | char *event_str; |
512 | #ifdef SUPPORT_OLD_POWER_EVENTS |
513 | struct power_entry_old *peo; |
514 | peo = (void *)te; |
515 | #endif |
516 | /* |
517 | * FIXME: use evsel, its already mapped from id to perf_evsel, |
518 | * remove perf_header__find_event infrastructure bits. |
519 | * Mapping all these "power:cpu_idle" strings to the tracepoint |
520 | * ID and then just comparing against evsel->attr.config. |
521 | * |
522 | * e.g.: |
523 | * |
524 | * if (evsel->attr.config == power_cpu_idle_id) |
525 | */ |
526 | event_str = perf_header__find_event(te->type); |
527 | |
528 | if (!event_str) |
529 | return 0; |
530 | |
531 | if (sample->cpu > numcpus) |
532 | numcpus = sample->cpu; |
533 | |
534 | if (strcmp(event_str, "power:cpu_idle") == 0) { |
535 | struct power_processor_entry *ppe = (void *)te; |
536 | if (ppe->state == (u32)PWR_EVENT_EXIT) |
537 | c_state_end(ppe->cpu_id, sample->time); |
538 | else |
539 | c_state_start(ppe->cpu_id, sample->time, |
540 | ppe->state); |
541 | } |
542 | else if (strcmp(event_str, "power:cpu_frequency") == 0) { |
543 | struct power_processor_entry *ppe = (void *)te; |
544 | p_state_change(ppe->cpu_id, sample->time, ppe->state); |
545 | } |
546 | |
547 | else if (strcmp(event_str, "sched:sched_wakeup") == 0) |
548 | sched_wakeup(sample->cpu, sample->time, sample->pid, te); |
549 | |
550 | else if (strcmp(event_str, "sched:sched_switch") == 0) |
551 | sched_switch(sample->cpu, sample->time, te); |
552 | |
553 | #ifdef SUPPORT_OLD_POWER_EVENTS |
554 | if (use_old_power_events) { |
555 | if (strcmp(event_str, "power:power_start") == 0) |
556 | c_state_start(peo->cpu_id, sample->time, |
557 | peo->value); |
558 | |
559 | else if (strcmp(event_str, "power:power_end") == 0) |
560 | c_state_end(sample->cpu, sample->time); |
561 | |
562 | else if (strcmp(event_str, |
563 | "power:power_frequency") == 0) |
564 | p_state_change(peo->cpu_id, sample->time, |
565 | peo->value); |
566 | } |
567 | #endif |
568 | } |
569 | return 0; |
570 | } |
571 | |
572 | /* |
573 | * After the last sample we need to wrap up the current C/P state |
574 | * and close out each CPU for these. |
575 | */ |
576 | static void end_sample_processing(void) |
577 | { |
578 | u64 cpu; |
579 | struct power_event *pwr; |
580 | |
581 | for (cpu = 0; cpu <= numcpus; cpu++) { |
582 | pwr = malloc(sizeof(struct power_event)); |
583 | if (!pwr) |
584 | return; |
585 | memset(pwr, 0, sizeof(struct power_event)); |
586 | |
587 | /* C state */ |
588 | #if 0 |
589 | pwr->state = cpus_cstate_state[cpu]; |
590 | pwr->start_time = cpus_cstate_start_times[cpu]; |
591 | pwr->end_time = last_time; |
592 | pwr->cpu = cpu; |
593 | pwr->type = CSTATE; |
594 | pwr->next = power_events; |
595 | |
596 | power_events = pwr; |
597 | #endif |
598 | /* P state */ |
599 | |
600 | pwr = malloc(sizeof(struct power_event)); |
601 | if (!pwr) |
602 | return; |
603 | memset(pwr, 0, sizeof(struct power_event)); |
604 | |
605 | pwr->state = cpus_pstate_state[cpu]; |
606 | pwr->start_time = cpus_pstate_start_times[cpu]; |
607 | pwr->end_time = last_time; |
608 | pwr->cpu = cpu; |
609 | pwr->type = PSTATE; |
610 | pwr->next = power_events; |
611 | |
612 | if (!pwr->start_time) |
613 | pwr->start_time = first_time; |
614 | if (!pwr->state) |
615 | pwr->state = min_freq; |
616 | power_events = pwr; |
617 | } |
618 | } |
619 | |
620 | /* |
621 | * Sort the pid datastructure |
622 | */ |
623 | static void sort_pids(void) |
624 | { |
625 | struct per_pid *new_list, *p, *cursor, *prev; |
626 | /* sort by ppid first, then by pid, lowest to highest */ |
627 | |
628 | new_list = NULL; |
629 | |
630 | while (all_data) { |
631 | p = all_data; |
632 | all_data = p->next; |
633 | p->next = NULL; |
634 | |
635 | if (new_list == NULL) { |
636 | new_list = p; |
637 | p->next = NULL; |
638 | continue; |
639 | } |
640 | prev = NULL; |
641 | cursor = new_list; |
642 | while (cursor) { |
643 | if (cursor->ppid > p->ppid || |
644 | (cursor->ppid == p->ppid && cursor->pid > p->pid)) { |
645 | /* must insert before */ |
646 | if (prev) { |
647 | p->next = prev->next; |
648 | prev->next = p; |
649 | cursor = NULL; |
650 | continue; |
651 | } else { |
652 | p->next = new_list; |
653 | new_list = p; |
654 | cursor = NULL; |
655 | continue; |
656 | } |
657 | } |
658 | |
659 | prev = cursor; |
660 | cursor = cursor->next; |
661 | if (!cursor) |
662 | prev->next = p; |
663 | } |
664 | } |
665 | all_data = new_list; |
666 | } |
667 | |
668 | |
669 | static void draw_c_p_states(void) |
670 | { |
671 | struct power_event *pwr; |
672 | pwr = power_events; |
673 | |
674 | /* |
675 | * two pass drawing so that the P state bars are on top of the C state blocks |
676 | */ |
677 | while (pwr) { |
678 | if (pwr->type == CSTATE) |
679 | svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
680 | pwr = pwr->next; |
681 | } |
682 | |
683 | pwr = power_events; |
684 | while (pwr) { |
685 | if (pwr->type == PSTATE) { |
686 | if (!pwr->state) |
687 | pwr->state = min_freq; |
688 | svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
689 | } |
690 | pwr = pwr->next; |
691 | } |
692 | } |
693 | |
694 | static void draw_wakeups(void) |
695 | { |
696 | struct wake_event *we; |
697 | struct per_pid *p; |
698 | struct per_pidcomm *c; |
699 | |
700 | we = wake_events; |
701 | while (we) { |
702 | int from = 0, to = 0; |
703 | char *task_from = NULL, *task_to = NULL; |
704 | |
705 | /* locate the column of the waker and wakee */ |
706 | p = all_data; |
707 | while (p) { |
708 | if (p->pid == we->waker || p->pid == we->wakee) { |
709 | c = p->all; |
710 | while (c) { |
711 | if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { |
712 | if (p->pid == we->waker && !from) { |
713 | from = c->Y; |
714 | task_from = strdup(c->comm); |
715 | } |
716 | if (p->pid == we->wakee && !to) { |
717 | to = c->Y; |
718 | task_to = strdup(c->comm); |
719 | } |
720 | } |
721 | c = c->next; |
722 | } |
723 | c = p->all; |
724 | while (c) { |
725 | if (p->pid == we->waker && !from) { |
726 | from = c->Y; |
727 | task_from = strdup(c->comm); |
728 | } |
729 | if (p->pid == we->wakee && !to) { |
730 | to = c->Y; |
731 | task_to = strdup(c->comm); |
732 | } |
733 | c = c->next; |
734 | } |
735 | } |
736 | p = p->next; |
737 | } |
738 | |
739 | if (!task_from) { |
740 | task_from = malloc(40); |
741 | sprintf(task_from, "[%i]", we->waker); |
742 | } |
743 | if (!task_to) { |
744 | task_to = malloc(40); |
745 | sprintf(task_to, "[%i]", we->wakee); |
746 | } |
747 | |
748 | if (we->waker == -1) |
749 | svg_interrupt(we->time, to); |
750 | else if (from && to && abs(from - to) == 1) |
751 | svg_wakeline(we->time, from, to); |
752 | else |
753 | svg_partial_wakeline(we->time, from, task_from, to, task_to); |
754 | we = we->next; |
755 | |
756 | free(task_from); |
757 | free(task_to); |
758 | } |
759 | } |
760 | |
761 | static void draw_cpu_usage(void) |
762 | { |
763 | struct per_pid *p; |
764 | struct per_pidcomm *c; |
765 | struct cpu_sample *sample; |
766 | p = all_data; |
767 | while (p) { |
768 | c = p->all; |
769 | while (c) { |
770 | sample = c->samples; |
771 | while (sample) { |
772 | if (sample->type == TYPE_RUNNING) |
773 | svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); |
774 | |
775 | sample = sample->next; |
776 | } |
777 | c = c->next; |
778 | } |
779 | p = p->next; |
780 | } |
781 | } |
782 | |
783 | static void draw_process_bars(void) |
784 | { |
785 | struct per_pid *p; |
786 | struct per_pidcomm *c; |
787 | struct cpu_sample *sample; |
788 | int Y = 0; |
789 | |
790 | Y = 2 * numcpus + 2; |
791 | |
792 | p = all_data; |
793 | while (p) { |
794 | c = p->all; |
795 | while (c) { |
796 | if (!c->display) { |
797 | c->Y = 0; |
798 | c = c->next; |
799 | continue; |
800 | } |
801 | |
802 | svg_box(Y, c->start_time, c->end_time, "process"); |
803 | sample = c->samples; |
804 | while (sample) { |
805 | if (sample->type == TYPE_RUNNING) |
806 | svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); |
807 | if (sample->type == TYPE_BLOCKED) |
808 | svg_box(Y, sample->start_time, sample->end_time, "blocked"); |
809 | if (sample->type == TYPE_WAITING) |
810 | svg_waiting(Y, sample->start_time, sample->end_time); |
811 | sample = sample->next; |
812 | } |
813 | |
814 | if (c->comm) { |
815 | char comm[256]; |
816 | if (c->total_time > 5000000000) /* 5 seconds */ |
817 | sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); |
818 | else |
819 | sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); |
820 | |
821 | svg_text(Y, c->start_time, comm); |
822 | } |
823 | c->Y = Y; |
824 | Y++; |
825 | c = c->next; |
826 | } |
827 | p = p->next; |
828 | } |
829 | } |
830 | |
831 | static void add_process_filter(const char *string) |
832 | { |
833 | struct process_filter *filt; |
834 | int pid; |
835 | |
836 | pid = strtoull(string, NULL, 10); |
837 | filt = malloc(sizeof(struct process_filter)); |
838 | if (!filt) |
839 | return; |
840 | |
841 | filt->name = strdup(string); |
842 | filt->pid = pid; |
843 | filt->next = process_filter; |
844 | |
845 | process_filter = filt; |
846 | } |
847 | |
848 | static int passes_filter(struct per_pid *p, struct per_pidcomm *c) |
849 | { |
850 | struct process_filter *filt; |
851 | if (!process_filter) |
852 | return 1; |
853 | |
854 | filt = process_filter; |
855 | while (filt) { |
856 | if (filt->pid && p->pid == filt->pid) |
857 | return 1; |
858 | if (strcmp(filt->name, c->comm) == 0) |
859 | return 1; |
860 | filt = filt->next; |
861 | } |
862 | return 0; |
863 | } |
864 | |
865 | static int determine_display_tasks_filtered(void) |
866 | { |
867 | struct per_pid *p; |
868 | struct per_pidcomm *c; |
869 | int count = 0; |
870 | |
871 | p = all_data; |
872 | while (p) { |
873 | p->display = 0; |
874 | if (p->start_time == 1) |
875 | p->start_time = first_time; |
876 | |
877 | /* no exit marker, task kept running to the end */ |
878 | if (p->end_time == 0) |
879 | p->end_time = last_time; |
880 | |
881 | c = p->all; |
882 | |
883 | while (c) { |
884 | c->display = 0; |
885 | |
886 | if (c->start_time == 1) |
887 | c->start_time = first_time; |
888 | |
889 | if (passes_filter(p, c)) { |
890 | c->display = 1; |
891 | p->display = 1; |
892 | count++; |
893 | } |
894 | |
895 | if (c->end_time == 0) |
896 | c->end_time = last_time; |
897 | |
898 | c = c->next; |
899 | } |
900 | p = p->next; |
901 | } |
902 | return count; |
903 | } |
904 | |
905 | static int determine_display_tasks(u64 threshold) |
906 | { |
907 | struct per_pid *p; |
908 | struct per_pidcomm *c; |
909 | int count = 0; |
910 | |
911 | if (process_filter) |
912 | return determine_display_tasks_filtered(); |
913 | |
914 | p = all_data; |
915 | while (p) { |
916 | p->display = 0; |
917 | if (p->start_time == 1) |
918 | p->start_time = first_time; |
919 | |
920 | /* no exit marker, task kept running to the end */ |
921 | if (p->end_time == 0) |
922 | p->end_time = last_time; |
923 | if (p->total_time >= threshold && !power_only) |
924 | p->display = 1; |
925 | |
926 | c = p->all; |
927 | |
928 | while (c) { |
929 | c->display = 0; |
930 | |
931 | if (c->start_time == 1) |
932 | c->start_time = first_time; |
933 | |
934 | if (c->total_time >= threshold && !power_only) { |
935 | c->display = 1; |
936 | count++; |
937 | } |
938 | |
939 | if (c->end_time == 0) |
940 | c->end_time = last_time; |
941 | |
942 | c = c->next; |
943 | } |
944 | p = p->next; |
945 | } |
946 | return count; |
947 | } |
948 | |
949 | |
950 | |
951 | #define TIME_THRESH 10000000 |
952 | |
953 | static void write_svg_file(const char *filename) |
954 | { |
955 | u64 i; |
956 | int count; |
957 | |
958 | numcpus++; |
959 | |
960 | |
961 | count = determine_display_tasks(TIME_THRESH); |
962 | |
963 | /* We'd like to show at least 15 tasks; be less picky if we have fewer */ |
964 | if (count < 15) |
965 | count = determine_display_tasks(TIME_THRESH / 10); |
966 | |
967 | open_svg(filename, numcpus, count, first_time, last_time); |
968 | |
969 | svg_time_grid(); |
970 | svg_legenda(); |
971 | |
972 | for (i = 0; i < numcpus; i++) |
973 | svg_cpu_box(i, max_freq, turbo_frequency); |
974 | |
975 | draw_cpu_usage(); |
976 | draw_process_bars(); |
977 | draw_c_p_states(); |
978 | draw_wakeups(); |
979 | |
980 | svg_close(); |
981 | } |
982 | |
983 | static struct perf_tool perf_timechart = { |
984 | .comm = process_comm_event, |
985 | .fork = process_fork_event, |
986 | .exit = process_exit_event, |
987 | .sample = process_sample_event, |
988 | .ordered_samples = true, |
989 | }; |
990 | |
991 | static int __cmd_timechart(void) |
992 | { |
993 | struct perf_session *session = perf_session__new(input_name, O_RDONLY, |
994 | 0, false, &perf_timechart); |
995 | int ret = -EINVAL; |
996 | |
997 | if (session == NULL) |
998 | return -ENOMEM; |
999 | |
1000 | if (!perf_session__has_traces(session, "timechart record")) |
1001 | goto out_delete; |
1002 | |
1003 | ret = perf_session__process_events(session, &perf_timechart); |
1004 | if (ret) |
1005 | goto out_delete; |
1006 | |
1007 | end_sample_processing(); |
1008 | |
1009 | sort_pids(); |
1010 | |
1011 | write_svg_file(output_name); |
1012 | |
1013 | pr_info("Written %2.1f seconds of trace to %s.\n", |
1014 | (last_time - first_time) / 1000000000.0, output_name); |
1015 | out_delete: |
1016 | perf_session__delete(session); |
1017 | return ret; |
1018 | } |
1019 | |
1020 | static const char * const timechart_usage[] = { |
1021 | "perf timechart [<options>] {record}", |
1022 | NULL |
1023 | }; |
1024 | |
1025 | #ifdef SUPPORT_OLD_POWER_EVENTS |
1026 | static const char * const record_old_args[] = { |
1027 | "record", |
1028 | "-a", |
1029 | "-R", |
1030 | "-f", |
1031 | "-c", "1", |
1032 | "-e", "power:power_start", |
1033 | "-e", "power:power_end", |
1034 | "-e", "power:power_frequency", |
1035 | "-e", "sched:sched_wakeup", |
1036 | "-e", "sched:sched_switch", |
1037 | }; |
1038 | #endif |
1039 | |
1040 | static const char * const record_new_args[] = { |
1041 | "record", |
1042 | "-a", |
1043 | "-R", |
1044 | "-f", |
1045 | "-c", "1", |
1046 | "-e", "power:cpu_frequency", |
1047 | "-e", "power:cpu_idle", |
1048 | "-e", "sched:sched_wakeup", |
1049 | "-e", "sched:sched_switch", |
1050 | }; |
1051 | |
1052 | static int __cmd_record(int argc, const char **argv) |
1053 | { |
1054 | unsigned int rec_argc, i, j; |
1055 | const char **rec_argv; |
1056 | const char * const *record_args = record_new_args; |
1057 | unsigned int record_elems = ARRAY_SIZE(record_new_args); |
1058 | |
1059 | #ifdef SUPPORT_OLD_POWER_EVENTS |
1060 | if (!is_valid_tracepoint("power:cpu_idle") && |
1061 | is_valid_tracepoint("power:power_start")) { |
1062 | use_old_power_events = 1; |
1063 | record_args = record_old_args; |
1064 | record_elems = ARRAY_SIZE(record_old_args); |
1065 | } |
1066 | #endif |
1067 | |
1068 | rec_argc = record_elems + argc - 1; |
1069 | rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
1070 | |
1071 | if (rec_argv == NULL) |
1072 | return -ENOMEM; |
1073 | |
1074 | for (i = 0; i < record_elems; i++) |
1075 | rec_argv[i] = strdup(record_args[i]); |
1076 | |
1077 | for (j = 1; j < (unsigned int)argc; j++, i++) |
1078 | rec_argv[i] = argv[j]; |
1079 | |
1080 | return cmd_record(i, rec_argv, NULL); |
1081 | } |
1082 | |
1083 | static int |
1084 | parse_process(const struct option *opt __used, const char *arg, int __used unset) |
1085 | { |
1086 | if (arg) |
1087 | add_process_filter(arg); |
1088 | return 0; |
1089 | } |
1090 | |
1091 | static const struct option options[] = { |
1092 | OPT_STRING('i', "input", &input_name, "file", |
1093 | "input file name"), |
1094 | OPT_STRING('o', "output", &output_name, "file", |
1095 | "output file name"), |
1096 | OPT_INTEGER('w', "width", &svg_page_width, |
1097 | "page width"), |
1098 | OPT_BOOLEAN('P', "power-only", &power_only, |
1099 | "output power data only"), |
1100 | OPT_CALLBACK('p', "process", NULL, "process", |
1101 | "process selector. Pass a pid or process name.", |
1102 | parse_process), |
1103 | OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", |
1104 | "Look for files with symbols relative to this directory"), |
1105 | OPT_END() |
1106 | }; |
1107 | |
1108 | |
1109 | int cmd_timechart(int argc, const char **argv, const char *prefix __used) |
1110 | { |
1111 | argc = parse_options(argc, argv, options, timechart_usage, |
1112 | PARSE_OPT_STOP_AT_NON_OPTION); |
1113 | |
1114 | symbol__init(); |
1115 | |
1116 | if (argc && !strncmp(argv[0], "rec", 3)) |
1117 | return __cmd_record(argc, argv); |
1118 | else if (argc) |
1119 | usage_with_options(timechart_usage, options); |
1120 | |
1121 | setup_pager(); |
1122 | |
1123 | return __cmd_timechart(); |
1124 | } |
1125 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9