Root/mm/bootmem.c

1/*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/export.h>
16#include <linux/kmemleak.h>
17#include <linux/range.h>
18#include <linux/memblock.h>
19
20#include <asm/bug.h>
21#include <asm/io.h>
22#include <asm/processor.h>
23
24#include "internal.h"
25
26#ifndef CONFIG_NEED_MULTIPLE_NODES
27struct pglist_data __refdata contig_page_data = {
28    .bdata = &bootmem_node_data[0]
29};
30EXPORT_SYMBOL(contig_page_data);
31#endif
32
33unsigned long max_low_pfn;
34unsigned long min_low_pfn;
35unsigned long max_pfn;
36
37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41static int bootmem_debug;
42
43static int __init bootmem_debug_setup(char *buf)
44{
45    bootmem_debug = 1;
46    return 0;
47}
48early_param("bootmem_debug", bootmem_debug_setup);
49
50#define bdebug(fmt, args...) ({ \
51    if (unlikely(bootmem_debug)) \
52        printk(KERN_INFO \
53            "bootmem::%s " fmt, \
54            __func__, ## args); \
55})
56
57static unsigned long __init bootmap_bytes(unsigned long pages)
58{
59    unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61    return ALIGN(bytes, sizeof(long));
62}
63
64/**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69{
70    unsigned long bytes = bootmap_bytes(pages);
71
72    return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73}
74
75/*
76 * link bdata in order
77 */
78static void __init link_bootmem(bootmem_data_t *bdata)
79{
80    bootmem_data_t *ent;
81
82    list_for_each_entry(ent, &bdata_list, list) {
83        if (bdata->node_min_pfn < ent->node_min_pfn) {
84            list_add_tail(&bdata->list, &ent->list);
85            return;
86        }
87    }
88
89    list_add_tail(&bdata->list, &bdata_list);
90}
91
92/*
93 * Called once to set up the allocator itself.
94 */
95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96    unsigned long mapstart, unsigned long start, unsigned long end)
97{
98    unsigned long mapsize;
99
100    mminit_validate_memmodel_limits(&start, &end);
101    bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102    bdata->node_min_pfn = start;
103    bdata->node_low_pfn = end;
104    link_bootmem(bdata);
105
106    /*
107     * Initially all pages are reserved - setup_arch() has to
108     * register free RAM areas explicitly.
109     */
110    mapsize = bootmap_bytes(end - start);
111    memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113    bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114        bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116    return mapsize;
117}
118
119/**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129                unsigned long startpfn, unsigned long endpfn)
130{
131    return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132}
133
134/**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142{
143    max_low_pfn = pages;
144    min_low_pfn = start;
145    return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146}
147
148/*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157void __init free_bootmem_late(unsigned long addr, unsigned long size)
158{
159    unsigned long cursor, end;
160
161    kmemleak_free_part(__va(addr), size);
162
163    cursor = PFN_UP(addr);
164    end = PFN_DOWN(addr + size);
165
166    for (; cursor < end; cursor++) {
167        __free_pages_bootmem(pfn_to_page(cursor), 0);
168        totalram_pages++;
169    }
170}
171
172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173{
174    struct page *page;
175    unsigned long start, end, pages, count = 0;
176
177    if (!bdata->node_bootmem_map)
178        return 0;
179
180    start = bdata->node_min_pfn;
181    end = bdata->node_low_pfn;
182
183    bdebug("nid=%td start=%lx end=%lx\n",
184        bdata - bootmem_node_data, start, end);
185
186    while (start < end) {
187        unsigned long *map, idx, vec;
188
189        map = bdata->node_bootmem_map;
190        idx = start - bdata->node_min_pfn;
191        vec = ~map[idx / BITS_PER_LONG];
192        /*
193         * If we have a properly aligned and fully unreserved
194         * BITS_PER_LONG block of pages in front of us, free
195         * it in one go.
196         */
197        if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
198            int order = ilog2(BITS_PER_LONG);
199
200            __free_pages_bootmem(pfn_to_page(start), order);
201            count += BITS_PER_LONG;
202            start += BITS_PER_LONG;
203        } else {
204            unsigned long off = 0;
205
206            vec >>= start & (BITS_PER_LONG - 1);
207            while (vec) {
208                if (vec & 1) {
209                    page = pfn_to_page(start + off);
210                    __free_pages_bootmem(page, 0);
211                    count++;
212                }
213                vec >>= 1;
214                off++;
215            }
216            start = ALIGN(start + 1, BITS_PER_LONG);
217        }
218    }
219
220    page = virt_to_page(bdata->node_bootmem_map);
221    pages = bdata->node_low_pfn - bdata->node_min_pfn;
222    pages = bootmem_bootmap_pages(pages);
223    count += pages;
224    while (pages--)
225        __free_pages_bootmem(page++, 0);
226
227    bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
228
229    return count;
230}
231
232/**
233 * free_all_bootmem_node - release a node's free pages to the buddy allocator
234 * @pgdat: node to be released
235 *
236 * Returns the number of pages actually released.
237 */
238unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
239{
240    register_page_bootmem_info_node(pgdat);
241    return free_all_bootmem_core(pgdat->bdata);
242}
243
244/**
245 * free_all_bootmem - release free pages to the buddy allocator
246 *
247 * Returns the number of pages actually released.
248 */
249unsigned long __init free_all_bootmem(void)
250{
251    unsigned long total_pages = 0;
252    bootmem_data_t *bdata;
253
254    list_for_each_entry(bdata, &bdata_list, list)
255        total_pages += free_all_bootmem_core(bdata);
256
257    return total_pages;
258}
259
260static void __init __free(bootmem_data_t *bdata,
261            unsigned long sidx, unsigned long eidx)
262{
263    unsigned long idx;
264
265    bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
266        sidx + bdata->node_min_pfn,
267        eidx + bdata->node_min_pfn);
268
269    if (bdata->hint_idx > sidx)
270        bdata->hint_idx = sidx;
271
272    for (idx = sidx; idx < eidx; idx++)
273        if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
274            BUG();
275}
276
277static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
278            unsigned long eidx, int flags)
279{
280    unsigned long idx;
281    int exclusive = flags & BOOTMEM_EXCLUSIVE;
282
283    bdebug("nid=%td start=%lx end=%lx flags=%x\n",
284        bdata - bootmem_node_data,
285        sidx + bdata->node_min_pfn,
286        eidx + bdata->node_min_pfn,
287        flags);
288
289    for (idx = sidx; idx < eidx; idx++)
290        if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
291            if (exclusive) {
292                __free(bdata, sidx, idx);
293                return -EBUSY;
294            }
295            bdebug("silent double reserve of PFN %lx\n",
296                idx + bdata->node_min_pfn);
297        }
298    return 0;
299}
300
301static int __init mark_bootmem_node(bootmem_data_t *bdata,
302                unsigned long start, unsigned long end,
303                int reserve, int flags)
304{
305    unsigned long sidx, eidx;
306
307    bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
308        bdata - bootmem_node_data, start, end, reserve, flags);
309
310    BUG_ON(start < bdata->node_min_pfn);
311    BUG_ON(end > bdata->node_low_pfn);
312
313    sidx = start - bdata->node_min_pfn;
314    eidx = end - bdata->node_min_pfn;
315
316    if (reserve)
317        return __reserve(bdata, sidx, eidx, flags);
318    else
319        __free(bdata, sidx, eidx);
320    return 0;
321}
322
323static int __init mark_bootmem(unsigned long start, unsigned long end,
324                int reserve, int flags)
325{
326    unsigned long pos;
327    bootmem_data_t *bdata;
328
329    pos = start;
330    list_for_each_entry(bdata, &bdata_list, list) {
331        int err;
332        unsigned long max;
333
334        if (pos < bdata->node_min_pfn ||
335            pos >= bdata->node_low_pfn) {
336            BUG_ON(pos != start);
337            continue;
338        }
339
340        max = min(bdata->node_low_pfn, end);
341
342        err = mark_bootmem_node(bdata, pos, max, reserve, flags);
343        if (reserve && err) {
344            mark_bootmem(start, pos, 0, 0);
345            return err;
346        }
347
348        if (max == end)
349            return 0;
350        pos = bdata->node_low_pfn;
351    }
352    BUG();
353}
354
355/**
356 * free_bootmem_node - mark a page range as usable
357 * @pgdat: node the range resides on
358 * @physaddr: starting address of the range
359 * @size: size of the range in bytes
360 *
361 * Partial pages will be considered reserved and left as they are.
362 *
363 * The range must reside completely on the specified node.
364 */
365void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
366                  unsigned long size)
367{
368    unsigned long start, end;
369
370    kmemleak_free_part(__va(physaddr), size);
371
372    start = PFN_UP(physaddr);
373    end = PFN_DOWN(physaddr + size);
374
375    mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
376}
377
378/**
379 * free_bootmem - mark a page range as usable
380 * @addr: starting address of the range
381 * @size: size of the range in bytes
382 *
383 * Partial pages will be considered reserved and left as they are.
384 *
385 * The range must be contiguous but may span node boundaries.
386 */
387void __init free_bootmem(unsigned long addr, unsigned long size)
388{
389    unsigned long start, end;
390
391    kmemleak_free_part(__va(addr), size);
392
393    start = PFN_UP(addr);
394    end = PFN_DOWN(addr + size);
395
396    mark_bootmem(start, end, 0, 0);
397}
398
399/**
400 * reserve_bootmem_node - mark a page range as reserved
401 * @pgdat: node the range resides on
402 * @physaddr: starting address of the range
403 * @size: size of the range in bytes
404 * @flags: reservation flags (see linux/bootmem.h)
405 *
406 * Partial pages will be reserved.
407 *
408 * The range must reside completely on the specified node.
409 */
410int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
411                 unsigned long size, int flags)
412{
413    unsigned long start, end;
414
415    start = PFN_DOWN(physaddr);
416    end = PFN_UP(physaddr + size);
417
418    return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
419}
420
421/**
422 * reserve_bootmem - mark a page range as usable
423 * @addr: starting address of the range
424 * @size: size of the range in bytes
425 * @flags: reservation flags (see linux/bootmem.h)
426 *
427 * Partial pages will be reserved.
428 *
429 * The range must be contiguous but may span node boundaries.
430 */
431int __init reserve_bootmem(unsigned long addr, unsigned long size,
432                int flags)
433{
434    unsigned long start, end;
435
436    start = PFN_DOWN(addr);
437    end = PFN_UP(addr + size);
438
439    return mark_bootmem(start, end, 1, flags);
440}
441
442int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
443                   int flags)
444{
445    return reserve_bootmem(phys, len, flags);
446}
447
448static unsigned long __init align_idx(struct bootmem_data *bdata,
449                      unsigned long idx, unsigned long step)
450{
451    unsigned long base = bdata->node_min_pfn;
452
453    /*
454     * Align the index with respect to the node start so that the
455     * combination of both satisfies the requested alignment.
456     */
457
458    return ALIGN(base + idx, step) - base;
459}
460
461static unsigned long __init align_off(struct bootmem_data *bdata,
462                      unsigned long off, unsigned long align)
463{
464    unsigned long base = PFN_PHYS(bdata->node_min_pfn);
465
466    /* Same as align_idx for byte offsets */
467
468    return ALIGN(base + off, align) - base;
469}
470
471static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
472                    unsigned long size, unsigned long align,
473                    unsigned long goal, unsigned long limit)
474{
475    unsigned long fallback = 0;
476    unsigned long min, max, start, sidx, midx, step;
477
478    bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
479        bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
480        align, goal, limit);
481
482    BUG_ON(!size);
483    BUG_ON(align & (align - 1));
484    BUG_ON(limit && goal + size > limit);
485
486    if (!bdata->node_bootmem_map)
487        return NULL;
488
489    min = bdata->node_min_pfn;
490    max = bdata->node_low_pfn;
491
492    goal >>= PAGE_SHIFT;
493    limit >>= PAGE_SHIFT;
494
495    if (limit && max > limit)
496        max = limit;
497    if (max <= min)
498        return NULL;
499
500    step = max(align >> PAGE_SHIFT, 1UL);
501
502    if (goal && min < goal && goal < max)
503        start = ALIGN(goal, step);
504    else
505        start = ALIGN(min, step);
506
507    sidx = start - bdata->node_min_pfn;
508    midx = max - bdata->node_min_pfn;
509
510    if (bdata->hint_idx > sidx) {
511        /*
512         * Handle the valid case of sidx being zero and still
513         * catch the fallback below.
514         */
515        fallback = sidx + 1;
516        sidx = align_idx(bdata, bdata->hint_idx, step);
517    }
518
519    while (1) {
520        int merge;
521        void *region;
522        unsigned long eidx, i, start_off, end_off;
523find_block:
524        sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
525        sidx = align_idx(bdata, sidx, step);
526        eidx = sidx + PFN_UP(size);
527
528        if (sidx >= midx || eidx > midx)
529            break;
530
531        for (i = sidx; i < eidx; i++)
532            if (test_bit(i, bdata->node_bootmem_map)) {
533                sidx = align_idx(bdata, i, step);
534                if (sidx == i)
535                    sidx += step;
536                goto find_block;
537            }
538
539        if (bdata->last_end_off & (PAGE_SIZE - 1) &&
540                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
541            start_off = align_off(bdata, bdata->last_end_off, align);
542        else
543            start_off = PFN_PHYS(sidx);
544
545        merge = PFN_DOWN(start_off) < sidx;
546        end_off = start_off + size;
547
548        bdata->last_end_off = end_off;
549        bdata->hint_idx = PFN_UP(end_off);
550
551        /*
552         * Reserve the area now:
553         */
554        if (__reserve(bdata, PFN_DOWN(start_off) + merge,
555                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
556            BUG();
557
558        region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
559                start_off);
560        memset(region, 0, size);
561        /*
562         * The min_count is set to 0 so that bootmem allocated blocks
563         * are never reported as leaks.
564         */
565        kmemleak_alloc(region, size, 0, 0);
566        return region;
567    }
568
569    if (fallback) {
570        sidx = align_idx(bdata, fallback - 1, step);
571        fallback = 0;
572        goto find_block;
573    }
574
575    return NULL;
576}
577
578static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
579                    unsigned long size, unsigned long align,
580                    unsigned long goal, unsigned long limit)
581{
582    if (WARN_ON_ONCE(slab_is_available()))
583        return kzalloc(size, GFP_NOWAIT);
584
585#ifdef CONFIG_HAVE_ARCH_BOOTMEM
586    {
587        bootmem_data_t *p_bdata;
588
589        p_bdata = bootmem_arch_preferred_node(bdata, size, align,
590                            goal, limit);
591        if (p_bdata)
592            return alloc_bootmem_bdata(p_bdata, size, align,
593                            goal, limit);
594    }
595#endif
596    return NULL;
597}
598
599static void * __init alloc_bootmem_core(unsigned long size,
600                    unsigned long align,
601                    unsigned long goal,
602                    unsigned long limit)
603{
604    bootmem_data_t *bdata;
605    void *region;
606
607    region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
608    if (region)
609        return region;
610
611    list_for_each_entry(bdata, &bdata_list, list) {
612        if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
613            continue;
614        if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
615            break;
616
617        region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
618        if (region)
619            return region;
620    }
621
622    return NULL;
623}
624
625static void * __init ___alloc_bootmem_nopanic(unsigned long size,
626                          unsigned long align,
627                          unsigned long goal,
628                          unsigned long limit)
629{
630    void *ptr;
631
632restart:
633    ptr = alloc_bootmem_core(size, align, goal, limit);
634    if (ptr)
635        return ptr;
636    if (goal) {
637        goal = 0;
638        goto restart;
639    }
640
641    return NULL;
642}
643
644/**
645 * __alloc_bootmem_nopanic - allocate boot memory without panicking
646 * @size: size of the request in bytes
647 * @align: alignment of the region
648 * @goal: preferred starting address of the region
649 *
650 * The goal is dropped if it can not be satisfied and the allocation will
651 * fall back to memory below @goal.
652 *
653 * Allocation may happen on any node in the system.
654 *
655 * Returns NULL on failure.
656 */
657void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
658                    unsigned long goal)
659{
660    unsigned long limit = 0;
661
662    return ___alloc_bootmem_nopanic(size, align, goal, limit);
663}
664
665static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
666                    unsigned long goal, unsigned long limit)
667{
668    void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
669
670    if (mem)
671        return mem;
672    /*
673     * Whoops, we cannot satisfy the allocation request.
674     */
675    printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
676    panic("Out of memory");
677    return NULL;
678}
679
680/**
681 * __alloc_bootmem - allocate boot memory
682 * @size: size of the request in bytes
683 * @align: alignment of the region
684 * @goal: preferred starting address of the region
685 *
686 * The goal is dropped if it can not be satisfied and the allocation will
687 * fall back to memory below @goal.
688 *
689 * Allocation may happen on any node in the system.
690 *
691 * The function panics if the request can not be satisfied.
692 */
693void * __init __alloc_bootmem(unsigned long size, unsigned long align,
694                  unsigned long goal)
695{
696    unsigned long limit = 0;
697
698    return ___alloc_bootmem(size, align, goal, limit);
699}
700
701void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
702                unsigned long size, unsigned long align,
703                unsigned long goal, unsigned long limit)
704{
705    void *ptr;
706
707again:
708    ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size,
709                       align, goal, limit);
710    if (ptr)
711        return ptr;
712
713    /* do not panic in alloc_bootmem_bdata() */
714    if (limit && goal + size > limit)
715        limit = 0;
716
717    ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
718    if (ptr)
719        return ptr;
720
721    ptr = alloc_bootmem_core(size, align, goal, limit);
722    if (ptr)
723        return ptr;
724
725    if (goal) {
726        goal = 0;
727        goto again;
728    }
729
730    return NULL;
731}
732
733void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
734                   unsigned long align, unsigned long goal)
735{
736    if (WARN_ON_ONCE(slab_is_available()))
737        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
738
739    return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
740}
741
742void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
743                    unsigned long align, unsigned long goal,
744                    unsigned long limit)
745{
746    void *ptr;
747
748    ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
749    if (ptr)
750        return ptr;
751
752    printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
753    panic("Out of memory");
754    return NULL;
755}
756
757/**
758 * __alloc_bootmem_node - allocate boot memory from a specific node
759 * @pgdat: node to allocate from
760 * @size: size of the request in bytes
761 * @align: alignment of the region
762 * @goal: preferred starting address of the region
763 *
764 * The goal is dropped if it can not be satisfied and the allocation will
765 * fall back to memory below @goal.
766 *
767 * Allocation may fall back to any node in the system if the specified node
768 * can not hold the requested memory.
769 *
770 * The function panics if the request can not be satisfied.
771 */
772void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
773                   unsigned long align, unsigned long goal)
774{
775    if (WARN_ON_ONCE(slab_is_available()))
776        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
777
778    return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
779}
780
781void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
782                   unsigned long align, unsigned long goal)
783{
784#ifdef MAX_DMA32_PFN
785    unsigned long end_pfn;
786
787    if (WARN_ON_ONCE(slab_is_available()))
788        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
789
790    /* update goal according ...MAX_DMA32_PFN */
791    end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
792
793    if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
794        (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
795        void *ptr;
796        unsigned long new_goal;
797
798        new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
799        ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
800                         new_goal, 0);
801        if (ptr)
802            return ptr;
803    }
804#endif
805
806    return __alloc_bootmem_node(pgdat, size, align, goal);
807
808}
809
810#ifndef ARCH_LOW_ADDRESS_LIMIT
811#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
812#endif
813
814/**
815 * __alloc_bootmem_low - allocate low boot memory
816 * @size: size of the request in bytes
817 * @align: alignment of the region
818 * @goal: preferred starting address of the region
819 *
820 * The goal is dropped if it can not be satisfied and the allocation will
821 * fall back to memory below @goal.
822 *
823 * Allocation may happen on any node in the system.
824 *
825 * The function panics if the request can not be satisfied.
826 */
827void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
828                  unsigned long goal)
829{
830    return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
831}
832
833/**
834 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
835 * @pgdat: node to allocate from
836 * @size: size of the request in bytes
837 * @align: alignment of the region
838 * @goal: preferred starting address of the region
839 *
840 * The goal is dropped if it can not be satisfied and the allocation will
841 * fall back to memory below @goal.
842 *
843 * Allocation may fall back to any node in the system if the specified node
844 * can not hold the requested memory.
845 *
846 * The function panics if the request can not be satisfied.
847 */
848void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
849                       unsigned long align, unsigned long goal)
850{
851    if (WARN_ON_ONCE(slab_is_available()))
852        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
853
854    return ___alloc_bootmem_node(pgdat, size, align,
855                     goal, ARCH_LOW_ADDRESS_LIMIT);
856}
857

Archive Download this file



interactive