Root/
1 | /* |
2 | * DMA Pool allocator |
3 | * |
4 | * Copyright 2001 David Brownell |
5 | * Copyright 2007 Intel Corporation |
6 | * Author: Matthew Wilcox <willy@linux.intel.com> |
7 | * |
8 | * This software may be redistributed and/or modified under the terms of |
9 | * the GNU General Public License ("GPL") version 2 as published by the |
10 | * Free Software Foundation. |
11 | * |
12 | * This allocator returns small blocks of a given size which are DMA-able by |
13 | * the given device. It uses the dma_alloc_coherent page allocator to get |
14 | * new pages, then splits them up into blocks of the required size. |
15 | * Many older drivers still have their own code to do this. |
16 | * |
17 | * The current design of this allocator is fairly simple. The pool is |
18 | * represented by the 'struct dma_pool' which keeps a doubly-linked list of |
19 | * allocated pages. Each page in the page_list is split into blocks of at |
20 | * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked |
21 | * list of free blocks within the page. Used blocks aren't tracked, but we |
22 | * keep a count of how many are currently allocated from each page. |
23 | */ |
24 | |
25 | #include <linux/device.h> |
26 | #include <linux/dma-mapping.h> |
27 | #include <linux/dmapool.h> |
28 | #include <linux/kernel.h> |
29 | #include <linux/list.h> |
30 | #include <linux/export.h> |
31 | #include <linux/mutex.h> |
32 | #include <linux/poison.h> |
33 | #include <linux/sched.h> |
34 | #include <linux/slab.h> |
35 | #include <linux/stat.h> |
36 | #include <linux/spinlock.h> |
37 | #include <linux/string.h> |
38 | #include <linux/types.h> |
39 | #include <linux/wait.h> |
40 | |
41 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) |
42 | #define DMAPOOL_DEBUG 1 |
43 | #endif |
44 | |
45 | struct dma_pool { /* the pool */ |
46 | struct list_head page_list; |
47 | spinlock_t lock; |
48 | size_t size; |
49 | struct device *dev; |
50 | size_t allocation; |
51 | size_t boundary; |
52 | char name[32]; |
53 | wait_queue_head_t waitq; |
54 | struct list_head pools; |
55 | }; |
56 | |
57 | struct dma_page { /* cacheable header for 'allocation' bytes */ |
58 | struct list_head page_list; |
59 | void *vaddr; |
60 | dma_addr_t dma; |
61 | unsigned int in_use; |
62 | unsigned int offset; |
63 | }; |
64 | |
65 | #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000) |
66 | |
67 | static DEFINE_MUTEX(pools_lock); |
68 | |
69 | static ssize_t |
70 | show_pools(struct device *dev, struct device_attribute *attr, char *buf) |
71 | { |
72 | unsigned temp; |
73 | unsigned size; |
74 | char *next; |
75 | struct dma_page *page; |
76 | struct dma_pool *pool; |
77 | |
78 | next = buf; |
79 | size = PAGE_SIZE; |
80 | |
81 | temp = scnprintf(next, size, "poolinfo - 0.1\n"); |
82 | size -= temp; |
83 | next += temp; |
84 | |
85 | mutex_lock(&pools_lock); |
86 | list_for_each_entry(pool, &dev->dma_pools, pools) { |
87 | unsigned pages = 0; |
88 | unsigned blocks = 0; |
89 | |
90 | spin_lock_irq(&pool->lock); |
91 | list_for_each_entry(page, &pool->page_list, page_list) { |
92 | pages++; |
93 | blocks += page->in_use; |
94 | } |
95 | spin_unlock_irq(&pool->lock); |
96 | |
97 | /* per-pool info, no real statistics yet */ |
98 | temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", |
99 | pool->name, blocks, |
100 | pages * (pool->allocation / pool->size), |
101 | pool->size, pages); |
102 | size -= temp; |
103 | next += temp; |
104 | } |
105 | mutex_unlock(&pools_lock); |
106 | |
107 | return PAGE_SIZE - size; |
108 | } |
109 | |
110 | static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL); |
111 | |
112 | /** |
113 | * dma_pool_create - Creates a pool of consistent memory blocks, for dma. |
114 | * @name: name of pool, for diagnostics |
115 | * @dev: device that will be doing the DMA |
116 | * @size: size of the blocks in this pool. |
117 | * @align: alignment requirement for blocks; must be a power of two |
118 | * @boundary: returned blocks won't cross this power of two boundary |
119 | * Context: !in_interrupt() |
120 | * |
121 | * Returns a dma allocation pool with the requested characteristics, or |
122 | * null if one can't be created. Given one of these pools, dma_pool_alloc() |
123 | * may be used to allocate memory. Such memory will all have "consistent" |
124 | * DMA mappings, accessible by the device and its driver without using |
125 | * cache flushing primitives. The actual size of blocks allocated may be |
126 | * larger than requested because of alignment. |
127 | * |
128 | * If @boundary is nonzero, objects returned from dma_pool_alloc() won't |
129 | * cross that size boundary. This is useful for devices which have |
130 | * addressing restrictions on individual DMA transfers, such as not crossing |
131 | * boundaries of 4KBytes. |
132 | */ |
133 | struct dma_pool *dma_pool_create(const char *name, struct device *dev, |
134 | size_t size, size_t align, size_t boundary) |
135 | { |
136 | struct dma_pool *retval; |
137 | size_t allocation; |
138 | |
139 | if (align == 0) { |
140 | align = 1; |
141 | } else if (align & (align - 1)) { |
142 | return NULL; |
143 | } |
144 | |
145 | if (size == 0) { |
146 | return NULL; |
147 | } else if (size < 4) { |
148 | size = 4; |
149 | } |
150 | |
151 | if ((size % align) != 0) |
152 | size = ALIGN(size, align); |
153 | |
154 | allocation = max_t(size_t, size, PAGE_SIZE); |
155 | |
156 | if (!boundary) { |
157 | boundary = allocation; |
158 | } else if ((boundary < size) || (boundary & (boundary - 1))) { |
159 | return NULL; |
160 | } |
161 | |
162 | retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); |
163 | if (!retval) |
164 | return retval; |
165 | |
166 | strlcpy(retval->name, name, sizeof(retval->name)); |
167 | |
168 | retval->dev = dev; |
169 | |
170 | INIT_LIST_HEAD(&retval->page_list); |
171 | spin_lock_init(&retval->lock); |
172 | retval->size = size; |
173 | retval->boundary = boundary; |
174 | retval->allocation = allocation; |
175 | init_waitqueue_head(&retval->waitq); |
176 | |
177 | if (dev) { |
178 | int ret; |
179 | |
180 | mutex_lock(&pools_lock); |
181 | if (list_empty(&dev->dma_pools)) |
182 | ret = device_create_file(dev, &dev_attr_pools); |
183 | else |
184 | ret = 0; |
185 | /* note: not currently insisting "name" be unique */ |
186 | if (!ret) |
187 | list_add(&retval->pools, &dev->dma_pools); |
188 | else { |
189 | kfree(retval); |
190 | retval = NULL; |
191 | } |
192 | mutex_unlock(&pools_lock); |
193 | } else |
194 | INIT_LIST_HEAD(&retval->pools); |
195 | |
196 | return retval; |
197 | } |
198 | EXPORT_SYMBOL(dma_pool_create); |
199 | |
200 | static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) |
201 | { |
202 | unsigned int offset = 0; |
203 | unsigned int next_boundary = pool->boundary; |
204 | |
205 | do { |
206 | unsigned int next = offset + pool->size; |
207 | if (unlikely((next + pool->size) >= next_boundary)) { |
208 | next = next_boundary; |
209 | next_boundary += pool->boundary; |
210 | } |
211 | *(int *)(page->vaddr + offset) = next; |
212 | offset = next; |
213 | } while (offset < pool->allocation); |
214 | } |
215 | |
216 | static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) |
217 | { |
218 | struct dma_page *page; |
219 | |
220 | page = kmalloc(sizeof(*page), mem_flags); |
221 | if (!page) |
222 | return NULL; |
223 | page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, |
224 | &page->dma, mem_flags); |
225 | if (page->vaddr) { |
226 | #ifdef DMAPOOL_DEBUG |
227 | memset(page->vaddr, POOL_POISON_FREED, pool->allocation); |
228 | #endif |
229 | pool_initialise_page(pool, page); |
230 | list_add(&page->page_list, &pool->page_list); |
231 | page->in_use = 0; |
232 | page->offset = 0; |
233 | } else { |
234 | kfree(page); |
235 | page = NULL; |
236 | } |
237 | return page; |
238 | } |
239 | |
240 | static inline int is_page_busy(struct dma_page *page) |
241 | { |
242 | return page->in_use != 0; |
243 | } |
244 | |
245 | static void pool_free_page(struct dma_pool *pool, struct dma_page *page) |
246 | { |
247 | dma_addr_t dma = page->dma; |
248 | |
249 | #ifdef DMAPOOL_DEBUG |
250 | memset(page->vaddr, POOL_POISON_FREED, pool->allocation); |
251 | #endif |
252 | dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); |
253 | list_del(&page->page_list); |
254 | kfree(page); |
255 | } |
256 | |
257 | /** |
258 | * dma_pool_destroy - destroys a pool of dma memory blocks. |
259 | * @pool: dma pool that will be destroyed |
260 | * Context: !in_interrupt() |
261 | * |
262 | * Caller guarantees that no more memory from the pool is in use, |
263 | * and that nothing will try to use the pool after this call. |
264 | */ |
265 | void dma_pool_destroy(struct dma_pool *pool) |
266 | { |
267 | mutex_lock(&pools_lock); |
268 | list_del(&pool->pools); |
269 | if (pool->dev && list_empty(&pool->dev->dma_pools)) |
270 | device_remove_file(pool->dev, &dev_attr_pools); |
271 | mutex_unlock(&pools_lock); |
272 | |
273 | while (!list_empty(&pool->page_list)) { |
274 | struct dma_page *page; |
275 | page = list_entry(pool->page_list.next, |
276 | struct dma_page, page_list); |
277 | if (is_page_busy(page)) { |
278 | if (pool->dev) |
279 | dev_err(pool->dev, |
280 | "dma_pool_destroy %s, %p busy\n", |
281 | pool->name, page->vaddr); |
282 | else |
283 | printk(KERN_ERR |
284 | "dma_pool_destroy %s, %p busy\n", |
285 | pool->name, page->vaddr); |
286 | /* leak the still-in-use consistent memory */ |
287 | list_del(&page->page_list); |
288 | kfree(page); |
289 | } else |
290 | pool_free_page(pool, page); |
291 | } |
292 | |
293 | kfree(pool); |
294 | } |
295 | EXPORT_SYMBOL(dma_pool_destroy); |
296 | |
297 | /** |
298 | * dma_pool_alloc - get a block of consistent memory |
299 | * @pool: dma pool that will produce the block |
300 | * @mem_flags: GFP_* bitmask |
301 | * @handle: pointer to dma address of block |
302 | * |
303 | * This returns the kernel virtual address of a currently unused block, |
304 | * and reports its dma address through the handle. |
305 | * If such a memory block can't be allocated, %NULL is returned. |
306 | */ |
307 | void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, |
308 | dma_addr_t *handle) |
309 | { |
310 | unsigned long flags; |
311 | struct dma_page *page; |
312 | size_t offset; |
313 | void *retval; |
314 | |
315 | might_sleep_if(mem_flags & __GFP_WAIT); |
316 | |
317 | spin_lock_irqsave(&pool->lock, flags); |
318 | restart: |
319 | list_for_each_entry(page, &pool->page_list, page_list) { |
320 | if (page->offset < pool->allocation) |
321 | goto ready; |
322 | } |
323 | page = pool_alloc_page(pool, GFP_ATOMIC); |
324 | if (!page) { |
325 | if (mem_flags & __GFP_WAIT) { |
326 | DECLARE_WAITQUEUE(wait, current); |
327 | |
328 | __set_current_state(TASK_UNINTERRUPTIBLE); |
329 | __add_wait_queue(&pool->waitq, &wait); |
330 | spin_unlock_irqrestore(&pool->lock, flags); |
331 | |
332 | schedule_timeout(POOL_TIMEOUT_JIFFIES); |
333 | |
334 | spin_lock_irqsave(&pool->lock, flags); |
335 | __remove_wait_queue(&pool->waitq, &wait); |
336 | goto restart; |
337 | } |
338 | retval = NULL; |
339 | goto done; |
340 | } |
341 | |
342 | ready: |
343 | page->in_use++; |
344 | offset = page->offset; |
345 | page->offset = *(int *)(page->vaddr + offset); |
346 | retval = offset + page->vaddr; |
347 | *handle = offset + page->dma; |
348 | #ifdef DMAPOOL_DEBUG |
349 | memset(retval, POOL_POISON_ALLOCATED, pool->size); |
350 | #endif |
351 | done: |
352 | spin_unlock_irqrestore(&pool->lock, flags); |
353 | return retval; |
354 | } |
355 | EXPORT_SYMBOL(dma_pool_alloc); |
356 | |
357 | static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) |
358 | { |
359 | struct dma_page *page; |
360 | |
361 | list_for_each_entry(page, &pool->page_list, page_list) { |
362 | if (dma < page->dma) |
363 | continue; |
364 | if (dma < (page->dma + pool->allocation)) |
365 | return page; |
366 | } |
367 | return NULL; |
368 | } |
369 | |
370 | /** |
371 | * dma_pool_free - put block back into dma pool |
372 | * @pool: the dma pool holding the block |
373 | * @vaddr: virtual address of block |
374 | * @dma: dma address of block |
375 | * |
376 | * Caller promises neither device nor driver will again touch this block |
377 | * unless it is first re-allocated. |
378 | */ |
379 | void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) |
380 | { |
381 | struct dma_page *page; |
382 | unsigned long flags; |
383 | unsigned int offset; |
384 | |
385 | spin_lock_irqsave(&pool->lock, flags); |
386 | page = pool_find_page(pool, dma); |
387 | if (!page) { |
388 | spin_unlock_irqrestore(&pool->lock, flags); |
389 | if (pool->dev) |
390 | dev_err(pool->dev, |
391 | "dma_pool_free %s, %p/%lx (bad dma)\n", |
392 | pool->name, vaddr, (unsigned long)dma); |
393 | else |
394 | printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", |
395 | pool->name, vaddr, (unsigned long)dma); |
396 | return; |
397 | } |
398 | |
399 | offset = vaddr - page->vaddr; |
400 | #ifdef DMAPOOL_DEBUG |
401 | if ((dma - page->dma) != offset) { |
402 | spin_unlock_irqrestore(&pool->lock, flags); |
403 | if (pool->dev) |
404 | dev_err(pool->dev, |
405 | "dma_pool_free %s, %p (bad vaddr)/%Lx\n", |
406 | pool->name, vaddr, (unsigned long long)dma); |
407 | else |
408 | printk(KERN_ERR |
409 | "dma_pool_free %s, %p (bad vaddr)/%Lx\n", |
410 | pool->name, vaddr, (unsigned long long)dma); |
411 | return; |
412 | } |
413 | { |
414 | unsigned int chain = page->offset; |
415 | while (chain < pool->allocation) { |
416 | if (chain != offset) { |
417 | chain = *(int *)(page->vaddr + chain); |
418 | continue; |
419 | } |
420 | spin_unlock_irqrestore(&pool->lock, flags); |
421 | if (pool->dev) |
422 | dev_err(pool->dev, "dma_pool_free %s, dma %Lx " |
423 | "already free\n", pool->name, |
424 | (unsigned long long)dma); |
425 | else |
426 | printk(KERN_ERR "dma_pool_free %s, dma %Lx " |
427 | "already free\n", pool->name, |
428 | (unsigned long long)dma); |
429 | return; |
430 | } |
431 | } |
432 | memset(vaddr, POOL_POISON_FREED, pool->size); |
433 | #endif |
434 | |
435 | page->in_use--; |
436 | *(int *)vaddr = page->offset; |
437 | page->offset = offset; |
438 | if (waitqueue_active(&pool->waitq)) |
439 | wake_up_locked(&pool->waitq); |
440 | /* |
441 | * Resist a temptation to do |
442 | * if (!is_page_busy(page)) pool_free_page(pool, page); |
443 | * Better have a few empty pages hang around. |
444 | */ |
445 | spin_unlock_irqrestore(&pool->lock, flags); |
446 | } |
447 | EXPORT_SYMBOL(dma_pool_free); |
448 | |
449 | /* |
450 | * Managed DMA pool |
451 | */ |
452 | static void dmam_pool_release(struct device *dev, void *res) |
453 | { |
454 | struct dma_pool *pool = *(struct dma_pool **)res; |
455 | |
456 | dma_pool_destroy(pool); |
457 | } |
458 | |
459 | static int dmam_pool_match(struct device *dev, void *res, void *match_data) |
460 | { |
461 | return *(struct dma_pool **)res == match_data; |
462 | } |
463 | |
464 | /** |
465 | * dmam_pool_create - Managed dma_pool_create() |
466 | * @name: name of pool, for diagnostics |
467 | * @dev: device that will be doing the DMA |
468 | * @size: size of the blocks in this pool. |
469 | * @align: alignment requirement for blocks; must be a power of two |
470 | * @allocation: returned blocks won't cross this boundary (or zero) |
471 | * |
472 | * Managed dma_pool_create(). DMA pool created with this function is |
473 | * automatically destroyed on driver detach. |
474 | */ |
475 | struct dma_pool *dmam_pool_create(const char *name, struct device *dev, |
476 | size_t size, size_t align, size_t allocation) |
477 | { |
478 | struct dma_pool **ptr, *pool; |
479 | |
480 | ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); |
481 | if (!ptr) |
482 | return NULL; |
483 | |
484 | pool = *ptr = dma_pool_create(name, dev, size, align, allocation); |
485 | if (pool) |
486 | devres_add(dev, ptr); |
487 | else |
488 | devres_free(ptr); |
489 | |
490 | return pool; |
491 | } |
492 | EXPORT_SYMBOL(dmam_pool_create); |
493 | |
494 | /** |
495 | * dmam_pool_destroy - Managed dma_pool_destroy() |
496 | * @pool: dma pool that will be destroyed |
497 | * |
498 | * Managed dma_pool_destroy(). |
499 | */ |
500 | void dmam_pool_destroy(struct dma_pool *pool) |
501 | { |
502 | struct device *dev = pool->dev; |
503 | |
504 | WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool)); |
505 | dma_pool_destroy(pool); |
506 | } |
507 | EXPORT_SYMBOL(dmam_pool_destroy); |
508 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9