Root/mm/filemap.c

1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/export.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/cpuset.h>
33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34#include <linux/memcontrol.h>
35#include <linux/cleancache.h>
36#include "internal.h"
37
38/*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41#include <linux/buffer_head.h> /* for try_to_free_buffers */
42
43#include <asm/mman.h>
44
45/*
46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
47 * though.
48 *
49 * Shared mappings now work. 15.8.1995 Bruno.
50 *
51 * finished 'unifying' the page and buffer cache and SMP-threaded the
52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53 *
54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
55 */
56
57/*
58 * Lock ordering:
59 *
60 * ->i_mmap_mutex (truncate_pagecache)
61 * ->private_lock (__free_pte->__set_page_dirty_buffers)
62 * ->swap_lock (exclusive_swap_page, others)
63 * ->mapping->tree_lock
64 *
65 * ->i_mutex
66 * ->i_mmap_mutex (truncate->unmap_mapping_range)
67 *
68 * ->mmap_sem
69 * ->i_mmap_mutex
70 * ->page_table_lock or pte_lock (various, mainly in memory.c)
71 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
72 *
73 * ->mmap_sem
74 * ->lock_page (access_process_vm)
75 *
76 * ->i_mutex (generic_file_buffered_write)
77 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
78 *
79 * bdi->wb.list_lock
80 * sb_lock (fs/fs-writeback.c)
81 * ->mapping->tree_lock (__sync_single_inode)
82 *
83 * ->i_mmap_mutex
84 * ->anon_vma.lock (vma_adjust)
85 *
86 * ->anon_vma.lock
87 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
88 *
89 * ->page_table_lock or pte_lock
90 * ->swap_lock (try_to_unmap_one)
91 * ->private_lock (try_to_unmap_one)
92 * ->tree_lock (try_to_unmap_one)
93 * ->zone.lru_lock (follow_page->mark_page_accessed)
94 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
95 * ->private_lock (page_remove_rmap->set_page_dirty)
96 * ->tree_lock (page_remove_rmap->set_page_dirty)
97 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
98 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
99 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
100 * ->inode->i_lock (zap_pte_range->set_page_dirty)
101 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
102 *
103 * ->i_mmap_mutex
104 * ->tasklist_lock (memory_failure, collect_procs_ao)
105 */
106
107/*
108 * Delete a page from the page cache and free it. Caller has to make
109 * sure the page is locked and that nobody else uses it - or that usage
110 * is safe. The caller must hold the mapping's tree_lock.
111 */
112void __delete_from_page_cache(struct page *page)
113{
114    struct address_space *mapping = page->mapping;
115
116    /*
117     * if we're uptodate, flush out into the cleancache, otherwise
118     * invalidate any existing cleancache entries. We can't leave
119     * stale data around in the cleancache once our page is gone
120     */
121    if (PageUptodate(page) && PageMappedToDisk(page))
122        cleancache_put_page(page);
123    else
124        cleancache_invalidate_page(mapping, page);
125
126    radix_tree_delete(&mapping->page_tree, page->index);
127    page->mapping = NULL;
128    /* Leave page->index set: truncation lookup relies upon it */
129    mapping->nrpages--;
130    __dec_zone_page_state(page, NR_FILE_PAGES);
131    if (PageSwapBacked(page))
132        __dec_zone_page_state(page, NR_SHMEM);
133    BUG_ON(page_mapped(page));
134
135    /*
136     * Some filesystems seem to re-dirty the page even after
137     * the VM has canceled the dirty bit (eg ext3 journaling).
138     *
139     * Fix it up by doing a final dirty accounting check after
140     * having removed the page entirely.
141     */
142    if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
143        dec_zone_page_state(page, NR_FILE_DIRTY);
144        dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
145    }
146}
147
148/**
149 * delete_from_page_cache - delete page from page cache
150 * @page: the page which the kernel is trying to remove from page cache
151 *
152 * This must be called only on pages that have been verified to be in the page
153 * cache and locked. It will never put the page into the free list, the caller
154 * has a reference on the page.
155 */
156void delete_from_page_cache(struct page *page)
157{
158    struct address_space *mapping = page->mapping;
159    void (*freepage)(struct page *);
160
161    BUG_ON(!PageLocked(page));
162
163    freepage = mapping->a_ops->freepage;
164    spin_lock_irq(&mapping->tree_lock);
165    __delete_from_page_cache(page);
166    spin_unlock_irq(&mapping->tree_lock);
167    mem_cgroup_uncharge_cache_page(page);
168
169    if (freepage)
170        freepage(page);
171    page_cache_release(page);
172}
173EXPORT_SYMBOL(delete_from_page_cache);
174
175static int sleep_on_page(void *word)
176{
177    io_schedule();
178    return 0;
179}
180
181static int sleep_on_page_killable(void *word)
182{
183    sleep_on_page(word);
184    return fatal_signal_pending(current) ? -EINTR : 0;
185}
186
187/**
188 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
189 * @mapping: address space structure to write
190 * @start: offset in bytes where the range starts
191 * @end: offset in bytes where the range ends (inclusive)
192 * @sync_mode: enable synchronous operation
193 *
194 * Start writeback against all of a mapping's dirty pages that lie
195 * within the byte offsets <start, end> inclusive.
196 *
197 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
198 * opposed to a regular memory cleansing writeback. The difference between
199 * these two operations is that if a dirty page/buffer is encountered, it must
200 * be waited upon, and not just skipped over.
201 */
202int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
203                loff_t end, int sync_mode)
204{
205    int ret;
206    struct writeback_control wbc = {
207        .sync_mode = sync_mode,
208        .nr_to_write = LONG_MAX,
209        .range_start = start,
210        .range_end = end,
211    };
212
213    if (!mapping_cap_writeback_dirty(mapping))
214        return 0;
215
216    ret = do_writepages(mapping, &wbc);
217    return ret;
218}
219
220static inline int __filemap_fdatawrite(struct address_space *mapping,
221    int sync_mode)
222{
223    return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
224}
225
226int filemap_fdatawrite(struct address_space *mapping)
227{
228    return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
229}
230EXPORT_SYMBOL(filemap_fdatawrite);
231
232int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
233                loff_t end)
234{
235    return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
236}
237EXPORT_SYMBOL(filemap_fdatawrite_range);
238
239/**
240 * filemap_flush - mostly a non-blocking flush
241 * @mapping: target address_space
242 *
243 * This is a mostly non-blocking flush. Not suitable for data-integrity
244 * purposes - I/O may not be started against all dirty pages.
245 */
246int filemap_flush(struct address_space *mapping)
247{
248    return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
249}
250EXPORT_SYMBOL(filemap_flush);
251
252/**
253 * filemap_fdatawait_range - wait for writeback to complete
254 * @mapping: address space structure to wait for
255 * @start_byte: offset in bytes where the range starts
256 * @end_byte: offset in bytes where the range ends (inclusive)
257 *
258 * Walk the list of under-writeback pages of the given address space
259 * in the given range and wait for all of them.
260 */
261int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
262                loff_t end_byte)
263{
264    pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
265    pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
266    struct pagevec pvec;
267    int nr_pages;
268    int ret = 0;
269
270    if (end_byte < start_byte)
271        return 0;
272
273    pagevec_init(&pvec, 0);
274    while ((index <= end) &&
275            (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
276            PAGECACHE_TAG_WRITEBACK,
277            min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
278        unsigned i;
279
280        for (i = 0; i < nr_pages; i++) {
281            struct page *page = pvec.pages[i];
282
283            /* until radix tree lookup accepts end_index */
284            if (page->index > end)
285                continue;
286
287            wait_on_page_writeback(page);
288            if (TestClearPageError(page))
289                ret = -EIO;
290        }
291        pagevec_release(&pvec);
292        cond_resched();
293    }
294
295    /* Check for outstanding write errors */
296    if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297        ret = -ENOSPC;
298    if (test_and_clear_bit(AS_EIO, &mapping->flags))
299        ret = -EIO;
300
301    return ret;
302}
303EXPORT_SYMBOL(filemap_fdatawait_range);
304
305/**
306 * filemap_fdatawait - wait for all under-writeback pages to complete
307 * @mapping: address space structure to wait for
308 *
309 * Walk the list of under-writeback pages of the given address space
310 * and wait for all of them.
311 */
312int filemap_fdatawait(struct address_space *mapping)
313{
314    loff_t i_size = i_size_read(mapping->host);
315
316    if (i_size == 0)
317        return 0;
318
319    return filemap_fdatawait_range(mapping, 0, i_size - 1);
320}
321EXPORT_SYMBOL(filemap_fdatawait);
322
323int filemap_write_and_wait(struct address_space *mapping)
324{
325    int err = 0;
326
327    if (mapping->nrpages) {
328        err = filemap_fdatawrite(mapping);
329        /*
330         * Even if the above returned error, the pages may be
331         * written partially (e.g. -ENOSPC), so we wait for it.
332         * But the -EIO is special case, it may indicate the worst
333         * thing (e.g. bug) happened, so we avoid waiting for it.
334         */
335        if (err != -EIO) {
336            int err2 = filemap_fdatawait(mapping);
337            if (!err)
338                err = err2;
339        }
340    }
341    return err;
342}
343EXPORT_SYMBOL(filemap_write_and_wait);
344
345/**
346 * filemap_write_and_wait_range - write out & wait on a file range
347 * @mapping: the address_space for the pages
348 * @lstart: offset in bytes where the range starts
349 * @lend: offset in bytes where the range ends (inclusive)
350 *
351 * Write out and wait upon file offsets lstart->lend, inclusive.
352 *
353 * Note that `lend' is inclusive (describes the last byte to be written) so
354 * that this function can be used to write to the very end-of-file (end = -1).
355 */
356int filemap_write_and_wait_range(struct address_space *mapping,
357                 loff_t lstart, loff_t lend)
358{
359    int err = 0;
360
361    if (mapping->nrpages) {
362        err = __filemap_fdatawrite_range(mapping, lstart, lend,
363                         WB_SYNC_ALL);
364        /* See comment of filemap_write_and_wait() */
365        if (err != -EIO) {
366            int err2 = filemap_fdatawait_range(mapping,
367                        lstart, lend);
368            if (!err)
369                err = err2;
370        }
371    }
372    return err;
373}
374EXPORT_SYMBOL(filemap_write_and_wait_range);
375
376/**
377 * replace_page_cache_page - replace a pagecache page with a new one
378 * @old: page to be replaced
379 * @new: page to replace with
380 * @gfp_mask: allocation mode
381 *
382 * This function replaces a page in the pagecache with a new one. On
383 * success it acquires the pagecache reference for the new page and
384 * drops it for the old page. Both the old and new pages must be
385 * locked. This function does not add the new page to the LRU, the
386 * caller must do that.
387 *
388 * The remove + add is atomic. The only way this function can fail is
389 * memory allocation failure.
390 */
391int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
392{
393    int error;
394
395    VM_BUG_ON(!PageLocked(old));
396    VM_BUG_ON(!PageLocked(new));
397    VM_BUG_ON(new->mapping);
398
399    error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
400    if (!error) {
401        struct address_space *mapping = old->mapping;
402        void (*freepage)(struct page *);
403
404        pgoff_t offset = old->index;
405        freepage = mapping->a_ops->freepage;
406
407        page_cache_get(new);
408        new->mapping = mapping;
409        new->index = offset;
410
411        spin_lock_irq(&mapping->tree_lock);
412        __delete_from_page_cache(old);
413        error = radix_tree_insert(&mapping->page_tree, offset, new);
414        BUG_ON(error);
415        mapping->nrpages++;
416        __inc_zone_page_state(new, NR_FILE_PAGES);
417        if (PageSwapBacked(new))
418            __inc_zone_page_state(new, NR_SHMEM);
419        spin_unlock_irq(&mapping->tree_lock);
420        /* mem_cgroup codes must not be called under tree_lock */
421        mem_cgroup_replace_page_cache(old, new);
422        radix_tree_preload_end();
423        if (freepage)
424            freepage(old);
425        page_cache_release(old);
426    }
427
428    return error;
429}
430EXPORT_SYMBOL_GPL(replace_page_cache_page);
431
432/**
433 * add_to_page_cache_locked - add a locked page to the pagecache
434 * @page: page to add
435 * @mapping: the page's address_space
436 * @offset: page index
437 * @gfp_mask: page allocation mode
438 *
439 * This function is used to add a page to the pagecache. It must be locked.
440 * This function does not add the page to the LRU. The caller must do that.
441 */
442int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
443        pgoff_t offset, gfp_t gfp_mask)
444{
445    int error;
446
447    VM_BUG_ON(!PageLocked(page));
448    VM_BUG_ON(PageSwapBacked(page));
449
450    error = mem_cgroup_cache_charge(page, current->mm,
451                    gfp_mask & GFP_RECLAIM_MASK);
452    if (error)
453        goto out;
454
455    error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
456    if (error == 0) {
457        page_cache_get(page);
458        page->mapping = mapping;
459        page->index = offset;
460
461        spin_lock_irq(&mapping->tree_lock);
462        error = radix_tree_insert(&mapping->page_tree, offset, page);
463        if (likely(!error)) {
464            mapping->nrpages++;
465            __inc_zone_page_state(page, NR_FILE_PAGES);
466            spin_unlock_irq(&mapping->tree_lock);
467        } else {
468            page->mapping = NULL;
469            /* Leave page->index set: truncation relies upon it */
470            spin_unlock_irq(&mapping->tree_lock);
471            mem_cgroup_uncharge_cache_page(page);
472            page_cache_release(page);
473        }
474        radix_tree_preload_end();
475    } else
476        mem_cgroup_uncharge_cache_page(page);
477out:
478    return error;
479}
480EXPORT_SYMBOL(add_to_page_cache_locked);
481
482int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
483                pgoff_t offset, gfp_t gfp_mask)
484{
485    int ret;
486
487    ret = add_to_page_cache(page, mapping, offset, gfp_mask);
488    if (ret == 0)
489        lru_cache_add_file(page);
490    return ret;
491}
492EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
493
494#ifdef CONFIG_NUMA
495struct page *__page_cache_alloc(gfp_t gfp)
496{
497    int n;
498    struct page *page;
499
500    if (cpuset_do_page_mem_spread()) {
501        unsigned int cpuset_mems_cookie;
502        do {
503            cpuset_mems_cookie = get_mems_allowed();
504            n = cpuset_mem_spread_node();
505            page = alloc_pages_exact_node(n, gfp, 0);
506        } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
507
508        return page;
509    }
510    return alloc_pages(gfp, 0);
511}
512EXPORT_SYMBOL(__page_cache_alloc);
513#endif
514
515/*
516 * In order to wait for pages to become available there must be
517 * waitqueues associated with pages. By using a hash table of
518 * waitqueues where the bucket discipline is to maintain all
519 * waiters on the same queue and wake all when any of the pages
520 * become available, and for the woken contexts to check to be
521 * sure the appropriate page became available, this saves space
522 * at a cost of "thundering herd" phenomena during rare hash
523 * collisions.
524 */
525static wait_queue_head_t *page_waitqueue(struct page *page)
526{
527    const struct zone *zone = page_zone(page);
528
529    return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
530}
531
532static inline void wake_up_page(struct page *page, int bit)
533{
534    __wake_up_bit(page_waitqueue(page), &page->flags, bit);
535}
536
537void wait_on_page_bit(struct page *page, int bit_nr)
538{
539    DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
540
541    if (test_bit(bit_nr, &page->flags))
542        __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
543                            TASK_UNINTERRUPTIBLE);
544}
545EXPORT_SYMBOL(wait_on_page_bit);
546
547int wait_on_page_bit_killable(struct page *page, int bit_nr)
548{
549    DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
550
551    if (!test_bit(bit_nr, &page->flags))
552        return 0;
553
554    return __wait_on_bit(page_waitqueue(page), &wait,
555                 sleep_on_page_killable, TASK_KILLABLE);
556}
557
558/**
559 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
560 * @page: Page defining the wait queue of interest
561 * @waiter: Waiter to add to the queue
562 *
563 * Add an arbitrary @waiter to the wait queue for the nominated @page.
564 */
565void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
566{
567    wait_queue_head_t *q = page_waitqueue(page);
568    unsigned long flags;
569
570    spin_lock_irqsave(&q->lock, flags);
571    __add_wait_queue(q, waiter);
572    spin_unlock_irqrestore(&q->lock, flags);
573}
574EXPORT_SYMBOL_GPL(add_page_wait_queue);
575
576/**
577 * unlock_page - unlock a locked page
578 * @page: the page
579 *
580 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
581 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
582 * mechananism between PageLocked pages and PageWriteback pages is shared.
583 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
584 *
585 * The mb is necessary to enforce ordering between the clear_bit and the read
586 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
587 */
588void unlock_page(struct page *page)
589{
590    VM_BUG_ON(!PageLocked(page));
591    clear_bit_unlock(PG_locked, &page->flags);
592    smp_mb__after_clear_bit();
593    wake_up_page(page, PG_locked);
594}
595EXPORT_SYMBOL(unlock_page);
596
597/**
598 * end_page_writeback - end writeback against a page
599 * @page: the page
600 */
601void end_page_writeback(struct page *page)
602{
603    if (TestClearPageReclaim(page))
604        rotate_reclaimable_page(page);
605
606    if (!test_clear_page_writeback(page))
607        BUG();
608
609    smp_mb__after_clear_bit();
610    wake_up_page(page, PG_writeback);
611}
612EXPORT_SYMBOL(end_page_writeback);
613
614/**
615 * __lock_page - get a lock on the page, assuming we need to sleep to get it
616 * @page: the page to lock
617 */
618void __lock_page(struct page *page)
619{
620    DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
621
622    __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
623                            TASK_UNINTERRUPTIBLE);
624}
625EXPORT_SYMBOL(__lock_page);
626
627int __lock_page_killable(struct page *page)
628{
629    DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
630
631    return __wait_on_bit_lock(page_waitqueue(page), &wait,
632                    sleep_on_page_killable, TASK_KILLABLE);
633}
634EXPORT_SYMBOL_GPL(__lock_page_killable);
635
636int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
637             unsigned int flags)
638{
639    if (flags & FAULT_FLAG_ALLOW_RETRY) {
640        /*
641         * CAUTION! In this case, mmap_sem is not released
642         * even though return 0.
643         */
644        if (flags & FAULT_FLAG_RETRY_NOWAIT)
645            return 0;
646
647        up_read(&mm->mmap_sem);
648        if (flags & FAULT_FLAG_KILLABLE)
649            wait_on_page_locked_killable(page);
650        else
651            wait_on_page_locked(page);
652        return 0;
653    } else {
654        if (flags & FAULT_FLAG_KILLABLE) {
655            int ret;
656
657            ret = __lock_page_killable(page);
658            if (ret) {
659                up_read(&mm->mmap_sem);
660                return 0;
661            }
662        } else
663            __lock_page(page);
664        return 1;
665    }
666}
667
668/**
669 * find_get_page - find and get a page reference
670 * @mapping: the address_space to search
671 * @offset: the page index
672 *
673 * Is there a pagecache struct page at the given (mapping, offset) tuple?
674 * If yes, increment its refcount and return it; if no, return NULL.
675 */
676struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
677{
678    void **pagep;
679    struct page *page;
680
681    rcu_read_lock();
682repeat:
683    page = NULL;
684    pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
685    if (pagep) {
686        page = radix_tree_deref_slot(pagep);
687        if (unlikely(!page))
688            goto out;
689        if (radix_tree_exception(page)) {
690            if (radix_tree_deref_retry(page))
691                goto repeat;
692            /*
693             * Otherwise, shmem/tmpfs must be storing a swap entry
694             * here as an exceptional entry: so return it without
695             * attempting to raise page count.
696             */
697            goto out;
698        }
699        if (!page_cache_get_speculative(page))
700            goto repeat;
701
702        /*
703         * Has the page moved?
704         * This is part of the lockless pagecache protocol. See
705         * include/linux/pagemap.h for details.
706         */
707        if (unlikely(page != *pagep)) {
708            page_cache_release(page);
709            goto repeat;
710        }
711    }
712out:
713    rcu_read_unlock();
714
715    return page;
716}
717EXPORT_SYMBOL(find_get_page);
718
719/**
720 * find_lock_page - locate, pin and lock a pagecache page
721 * @mapping: the address_space to search
722 * @offset: the page index
723 *
724 * Locates the desired pagecache page, locks it, increments its reference
725 * count and returns its address.
726 *
727 * Returns zero if the page was not present. find_lock_page() may sleep.
728 */
729struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
730{
731    struct page *page;
732
733repeat:
734    page = find_get_page(mapping, offset);
735    if (page && !radix_tree_exception(page)) {
736        lock_page(page);
737        /* Has the page been truncated? */
738        if (unlikely(page->mapping != mapping)) {
739            unlock_page(page);
740            page_cache_release(page);
741            goto repeat;
742        }
743        VM_BUG_ON(page->index != offset);
744    }
745    return page;
746}
747EXPORT_SYMBOL(find_lock_page);
748
749/**
750 * find_or_create_page - locate or add a pagecache page
751 * @mapping: the page's address_space
752 * @index: the page's index into the mapping
753 * @gfp_mask: page allocation mode
754 *
755 * Locates a page in the pagecache. If the page is not present, a new page
756 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
757 * LRU list. The returned page is locked and has its reference count
758 * incremented.
759 *
760 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
761 * allocation!
762 *
763 * find_or_create_page() returns the desired page's address, or zero on
764 * memory exhaustion.
765 */
766struct page *find_or_create_page(struct address_space *mapping,
767        pgoff_t index, gfp_t gfp_mask)
768{
769    struct page *page;
770    int err;
771repeat:
772    page = find_lock_page(mapping, index);
773    if (!page) {
774        page = __page_cache_alloc(gfp_mask);
775        if (!page)
776            return NULL;
777        /*
778         * We want a regular kernel memory (not highmem or DMA etc)
779         * allocation for the radix tree nodes, but we need to honour
780         * the context-specific requirements the caller has asked for.
781         * GFP_RECLAIM_MASK collects those requirements.
782         */
783        err = add_to_page_cache_lru(page, mapping, index,
784            (gfp_mask & GFP_RECLAIM_MASK));
785        if (unlikely(err)) {
786            page_cache_release(page);
787            page = NULL;
788            if (err == -EEXIST)
789                goto repeat;
790        }
791    }
792    return page;
793}
794EXPORT_SYMBOL(find_or_create_page);
795
796/**
797 * find_get_pages - gang pagecache lookup
798 * @mapping: The address_space to search
799 * @start: The starting page index
800 * @nr_pages: The maximum number of pages
801 * @pages: Where the resulting pages are placed
802 *
803 * find_get_pages() will search for and return a group of up to
804 * @nr_pages pages in the mapping. The pages are placed at @pages.
805 * find_get_pages() takes a reference against the returned pages.
806 *
807 * The search returns a group of mapping-contiguous pages with ascending
808 * indexes. There may be holes in the indices due to not-present pages.
809 *
810 * find_get_pages() returns the number of pages which were found.
811 */
812unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
813                unsigned int nr_pages, struct page **pages)
814{
815    struct radix_tree_iter iter;
816    void **slot;
817    unsigned ret = 0;
818
819    if (unlikely(!nr_pages))
820        return 0;
821
822    rcu_read_lock();
823restart:
824    radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
825        struct page *page;
826repeat:
827        page = radix_tree_deref_slot(slot);
828        if (unlikely(!page))
829            continue;
830
831        if (radix_tree_exception(page)) {
832            if (radix_tree_deref_retry(page)) {
833                /*
834                 * Transient condition which can only trigger
835                 * when entry at index 0 moves out of or back
836                 * to root: none yet gotten, safe to restart.
837                 */
838                WARN_ON(iter.index);
839                goto restart;
840            }
841            /*
842             * Otherwise, shmem/tmpfs must be storing a swap entry
843             * here as an exceptional entry: so skip over it -
844             * we only reach this from invalidate_mapping_pages().
845             */
846            continue;
847        }
848
849        if (!page_cache_get_speculative(page))
850            goto repeat;
851
852        /* Has the page moved? */
853        if (unlikely(page != *slot)) {
854            page_cache_release(page);
855            goto repeat;
856        }
857
858        pages[ret] = page;
859        if (++ret == nr_pages)
860            break;
861    }
862
863    rcu_read_unlock();
864    return ret;
865}
866
867/**
868 * find_get_pages_contig - gang contiguous pagecache lookup
869 * @mapping: The address_space to search
870 * @index: The starting page index
871 * @nr_pages: The maximum number of pages
872 * @pages: Where the resulting pages are placed
873 *
874 * find_get_pages_contig() works exactly like find_get_pages(), except
875 * that the returned number of pages are guaranteed to be contiguous.
876 *
877 * find_get_pages_contig() returns the number of pages which were found.
878 */
879unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
880                   unsigned int nr_pages, struct page **pages)
881{
882    struct radix_tree_iter iter;
883    void **slot;
884    unsigned int ret = 0;
885
886    if (unlikely(!nr_pages))
887        return 0;
888
889    rcu_read_lock();
890restart:
891    radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
892        struct page *page;
893repeat:
894        page = radix_tree_deref_slot(slot);
895        /* The hole, there no reason to continue */
896        if (unlikely(!page))
897            break;
898
899        if (radix_tree_exception(page)) {
900            if (radix_tree_deref_retry(page)) {
901                /*
902                 * Transient condition which can only trigger
903                 * when entry at index 0 moves out of or back
904                 * to root: none yet gotten, safe to restart.
905                 */
906                goto restart;
907            }
908            /*
909             * Otherwise, shmem/tmpfs must be storing a swap entry
910             * here as an exceptional entry: so stop looking for
911             * contiguous pages.
912             */
913            break;
914        }
915
916        if (!page_cache_get_speculative(page))
917            goto repeat;
918
919        /* Has the page moved? */
920        if (unlikely(page != *slot)) {
921            page_cache_release(page);
922            goto repeat;
923        }
924
925        /*
926         * must check mapping and index after taking the ref.
927         * otherwise we can get both false positives and false
928         * negatives, which is just confusing to the caller.
929         */
930        if (page->mapping == NULL || page->index != iter.index) {
931            page_cache_release(page);
932            break;
933        }
934
935        pages[ret] = page;
936        if (++ret == nr_pages)
937            break;
938    }
939    rcu_read_unlock();
940    return ret;
941}
942EXPORT_SYMBOL(find_get_pages_contig);
943
944/**
945 * find_get_pages_tag - find and return pages that match @tag
946 * @mapping: the address_space to search
947 * @index: the starting page index
948 * @tag: the tag index
949 * @nr_pages: the maximum number of pages
950 * @pages: where the resulting pages are placed
951 *
952 * Like find_get_pages, except we only return pages which are tagged with
953 * @tag. We update @index to index the next page for the traversal.
954 */
955unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
956            int tag, unsigned int nr_pages, struct page **pages)
957{
958    struct radix_tree_iter iter;
959    void **slot;
960    unsigned ret = 0;
961
962    if (unlikely(!nr_pages))
963        return 0;
964
965    rcu_read_lock();
966restart:
967    radix_tree_for_each_tagged(slot, &mapping->page_tree,
968                   &iter, *index, tag) {
969        struct page *page;
970repeat:
971        page = radix_tree_deref_slot(slot);
972        if (unlikely(!page))
973            continue;
974
975        if (radix_tree_exception(page)) {
976            if (radix_tree_deref_retry(page)) {
977                /*
978                 * Transient condition which can only trigger
979                 * when entry at index 0 moves out of or back
980                 * to root: none yet gotten, safe to restart.
981                 */
982                goto restart;
983            }
984            /*
985             * This function is never used on a shmem/tmpfs
986             * mapping, so a swap entry won't be found here.
987             */
988            BUG();
989        }
990
991        if (!page_cache_get_speculative(page))
992            goto repeat;
993
994        /* Has the page moved? */
995        if (unlikely(page != *slot)) {
996            page_cache_release(page);
997            goto repeat;
998        }
999
1000        pages[ret] = page;
1001        if (++ret == nr_pages)
1002            break;
1003    }
1004
1005    rcu_read_unlock();
1006
1007    if (ret)
1008        *index = pages[ret - 1]->index + 1;
1009
1010    return ret;
1011}
1012EXPORT_SYMBOL(find_get_pages_tag);
1013
1014/**
1015 * grab_cache_page_nowait - returns locked page at given index in given cache
1016 * @mapping: target address_space
1017 * @index: the page index
1018 *
1019 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020 * This is intended for speculative data generators, where the data can
1021 * be regenerated if the page couldn't be grabbed. This routine should
1022 * be safe to call while holding the lock for another page.
1023 *
1024 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025 * and deadlock against the caller's locked page.
1026 */
1027struct page *
1028grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1029{
1030    struct page *page = find_get_page(mapping, index);
1031
1032    if (page) {
1033        if (trylock_page(page))
1034            return page;
1035        page_cache_release(page);
1036        return NULL;
1037    }
1038    page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1039    if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1040        page_cache_release(page);
1041        page = NULL;
1042    }
1043    return page;
1044}
1045EXPORT_SYMBOL(grab_cache_page_nowait);
1046
1047/*
1048 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049 * a _large_ part of the i/o request. Imagine the worst scenario:
1050 *
1051 * ---R__________________________________________B__________
1052 * ^ reading here ^ bad block(assume 4k)
1053 *
1054 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055 * => failing the whole request => read(R) => read(R+1) =>
1056 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1059 *
1060 * It is going insane. Fix it by quickly scaling down the readahead size.
1061 */
1062static void shrink_readahead_size_eio(struct file *filp,
1063                    struct file_ra_state *ra)
1064{
1065    ra->ra_pages /= 4;
1066}
1067
1068/**
1069 * do_generic_file_read - generic file read routine
1070 * @filp: the file to read
1071 * @ppos: current file position
1072 * @desc: read_descriptor
1073 * @actor: read method
1074 *
1075 * This is a generic file read routine, and uses the
1076 * mapping->a_ops->readpage() function for the actual low-level stuff.
1077 *
1078 * This is really ugly. But the goto's actually try to clarify some
1079 * of the logic when it comes to error handling etc.
1080 */
1081static void do_generic_file_read(struct file *filp, loff_t *ppos,
1082        read_descriptor_t *desc, read_actor_t actor)
1083{
1084    struct address_space *mapping = filp->f_mapping;
1085    struct inode *inode = mapping->host;
1086    struct file_ra_state *ra = &filp->f_ra;
1087    pgoff_t index;
1088    pgoff_t last_index;
1089    pgoff_t prev_index;
1090    unsigned long offset; /* offset into pagecache page */
1091    unsigned int prev_offset;
1092    int error;
1093
1094    index = *ppos >> PAGE_CACHE_SHIFT;
1095    prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1096    prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1097    last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1098    offset = *ppos & ~PAGE_CACHE_MASK;
1099
1100    for (;;) {
1101        struct page *page;
1102        pgoff_t end_index;
1103        loff_t isize;
1104        unsigned long nr, ret;
1105
1106        cond_resched();
1107find_page:
1108        page = find_get_page(mapping, index);
1109        if (!page) {
1110            page_cache_sync_readahead(mapping,
1111                    ra, filp,
1112                    index, last_index - index);
1113            page = find_get_page(mapping, index);
1114            if (unlikely(page == NULL))
1115                goto no_cached_page;
1116        }
1117        if (PageReadahead(page)) {
1118            page_cache_async_readahead(mapping,
1119                    ra, filp, page,
1120                    index, last_index - index);
1121        }
1122        if (!PageUptodate(page)) {
1123            if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1124                    !mapping->a_ops->is_partially_uptodate)
1125                goto page_not_up_to_date;
1126            if (!trylock_page(page))
1127                goto page_not_up_to_date;
1128            /* Did it get truncated before we got the lock? */
1129            if (!page->mapping)
1130                goto page_not_up_to_date_locked;
1131            if (!mapping->a_ops->is_partially_uptodate(page,
1132                                desc, offset))
1133                goto page_not_up_to_date_locked;
1134            unlock_page(page);
1135        }
1136page_ok:
1137        /*
1138         * i_size must be checked after we know the page is Uptodate.
1139         *
1140         * Checking i_size after the check allows us to calculate
1141         * the correct value for "nr", which means the zero-filled
1142         * part of the page is not copied back to userspace (unless
1143         * another truncate extends the file - this is desired though).
1144         */
1145
1146        isize = i_size_read(inode);
1147        end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1148        if (unlikely(!isize || index > end_index)) {
1149            page_cache_release(page);
1150            goto out;
1151        }
1152
1153        /* nr is the maximum number of bytes to copy from this page */
1154        nr = PAGE_CACHE_SIZE;
1155        if (index == end_index) {
1156            nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1157            if (nr <= offset) {
1158                page_cache_release(page);
1159                goto out;
1160            }
1161        }
1162        nr = nr - offset;
1163
1164        /* If users can be writing to this page using arbitrary
1165         * virtual addresses, take care about potential aliasing
1166         * before reading the page on the kernel side.
1167         */
1168        if (mapping_writably_mapped(mapping))
1169            flush_dcache_page(page);
1170
1171        /*
1172         * When a sequential read accesses a page several times,
1173         * only mark it as accessed the first time.
1174         */
1175        if (prev_index != index || offset != prev_offset)
1176            mark_page_accessed(page);
1177        prev_index = index;
1178
1179        /*
1180         * Ok, we have the page, and it's up-to-date, so
1181         * now we can copy it to user space...
1182         *
1183         * The actor routine returns how many bytes were actually used..
1184         * NOTE! This may not be the same as how much of a user buffer
1185         * we filled up (we may be padding etc), so we can only update
1186         * "pos" here (the actor routine has to update the user buffer
1187         * pointers and the remaining count).
1188         */
1189        ret = actor(desc, page, offset, nr);
1190        offset += ret;
1191        index += offset >> PAGE_CACHE_SHIFT;
1192        offset &= ~PAGE_CACHE_MASK;
1193        prev_offset = offset;
1194
1195        page_cache_release(page);
1196        if (ret == nr && desc->count)
1197            continue;
1198        goto out;
1199
1200page_not_up_to_date:
1201        /* Get exclusive access to the page ... */
1202        error = lock_page_killable(page);
1203        if (unlikely(error))
1204            goto readpage_error;
1205
1206page_not_up_to_date_locked:
1207        /* Did it get truncated before we got the lock? */
1208        if (!page->mapping) {
1209            unlock_page(page);
1210            page_cache_release(page);
1211            continue;
1212        }
1213
1214        /* Did somebody else fill it already? */
1215        if (PageUptodate(page)) {
1216            unlock_page(page);
1217            goto page_ok;
1218        }
1219
1220readpage:
1221        /*
1222         * A previous I/O error may have been due to temporary
1223         * failures, eg. multipath errors.
1224         * PG_error will be set again if readpage fails.
1225         */
1226        ClearPageError(page);
1227        /* Start the actual read. The read will unlock the page. */
1228        error = mapping->a_ops->readpage(filp, page);
1229
1230        if (unlikely(error)) {
1231            if (error == AOP_TRUNCATED_PAGE) {
1232                page_cache_release(page);
1233                goto find_page;
1234            }
1235            goto readpage_error;
1236        }
1237
1238        if (!PageUptodate(page)) {
1239            error = lock_page_killable(page);
1240            if (unlikely(error))
1241                goto readpage_error;
1242            if (!PageUptodate(page)) {
1243                if (page->mapping == NULL) {
1244                    /*
1245                     * invalidate_mapping_pages got it
1246                     */
1247                    unlock_page(page);
1248                    page_cache_release(page);
1249                    goto find_page;
1250                }
1251                unlock_page(page);
1252                shrink_readahead_size_eio(filp, ra);
1253                error = -EIO;
1254                goto readpage_error;
1255            }
1256            unlock_page(page);
1257        }
1258
1259        goto page_ok;
1260
1261readpage_error:
1262        /* UHHUH! A synchronous read error occurred. Report it */
1263        desc->error = error;
1264        page_cache_release(page);
1265        goto out;
1266
1267no_cached_page:
1268        /*
1269         * Ok, it wasn't cached, so we need to create a new
1270         * page..
1271         */
1272        page = page_cache_alloc_cold(mapping);
1273        if (!page) {
1274            desc->error = -ENOMEM;
1275            goto out;
1276        }
1277        error = add_to_page_cache_lru(page, mapping,
1278                        index, GFP_KERNEL);
1279        if (error) {
1280            page_cache_release(page);
1281            if (error == -EEXIST)
1282                goto find_page;
1283            desc->error = error;
1284            goto out;
1285        }
1286        goto readpage;
1287    }
1288
1289out:
1290    ra->prev_pos = prev_index;
1291    ra->prev_pos <<= PAGE_CACHE_SHIFT;
1292    ra->prev_pos |= prev_offset;
1293
1294    *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1295    file_accessed(filp);
1296}
1297
1298int file_read_actor(read_descriptor_t *desc, struct page *page,
1299            unsigned long offset, unsigned long size)
1300{
1301    char *kaddr;
1302    unsigned long left, count = desc->count;
1303
1304    if (size > count)
1305        size = count;
1306
1307    /*
1308     * Faults on the destination of a read are common, so do it before
1309     * taking the kmap.
1310     */
1311    if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1312        kaddr = kmap_atomic(page);
1313        left = __copy_to_user_inatomic(desc->arg.buf,
1314                        kaddr + offset, size);
1315        kunmap_atomic(kaddr);
1316        if (left == 0)
1317            goto success;
1318    }
1319
1320    /* Do it the slow way */
1321    kaddr = kmap(page);
1322    left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1323    kunmap(page);
1324
1325    if (left) {
1326        size -= left;
1327        desc->error = -EFAULT;
1328    }
1329success:
1330    desc->count = count - size;
1331    desc->written += size;
1332    desc->arg.buf += size;
1333    return size;
1334}
1335
1336/*
1337 * Performs necessary checks before doing a write
1338 * @iov: io vector request
1339 * @nr_segs: number of segments in the iovec
1340 * @count: number of bytes to write
1341 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1342 *
1343 * Adjust number of segments and amount of bytes to write (nr_segs should be
1344 * properly initialized first). Returns appropriate error code that caller
1345 * should return or zero in case that write should be allowed.
1346 */
1347int generic_segment_checks(const struct iovec *iov,
1348            unsigned long *nr_segs, size_t *count, int access_flags)
1349{
1350    unsigned long seg;
1351    size_t cnt = 0;
1352    for (seg = 0; seg < *nr_segs; seg++) {
1353        const struct iovec *iv = &iov[seg];
1354
1355        /*
1356         * If any segment has a negative length, or the cumulative
1357         * length ever wraps negative then return -EINVAL.
1358         */
1359        cnt += iv->iov_len;
1360        if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1361            return -EINVAL;
1362        if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1363            continue;
1364        if (seg == 0)
1365            return -EFAULT;
1366        *nr_segs = seg;
1367        cnt -= iv->iov_len; /* This segment is no good */
1368        break;
1369    }
1370    *count = cnt;
1371    return 0;
1372}
1373EXPORT_SYMBOL(generic_segment_checks);
1374
1375/**
1376 * generic_file_aio_read - generic filesystem read routine
1377 * @iocb: kernel I/O control block
1378 * @iov: io vector request
1379 * @nr_segs: number of segments in the iovec
1380 * @pos: current file position
1381 *
1382 * This is the "read()" routine for all filesystems
1383 * that can use the page cache directly.
1384 */
1385ssize_t
1386generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1387        unsigned long nr_segs, loff_t pos)
1388{
1389    struct file *filp = iocb->ki_filp;
1390    ssize_t retval;
1391    unsigned long seg = 0;
1392    size_t count;
1393    loff_t *ppos = &iocb->ki_pos;
1394
1395    count = 0;
1396    retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397    if (retval)
1398        return retval;
1399
1400    /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401    if (filp->f_flags & O_DIRECT) {
1402        loff_t size;
1403        struct address_space *mapping;
1404        struct inode *inode;
1405
1406        mapping = filp->f_mapping;
1407        inode = mapping->host;
1408        if (!count)
1409            goto out; /* skip atime */
1410        size = i_size_read(inode);
1411        if (pos < size) {
1412            retval = filemap_write_and_wait_range(mapping, pos,
1413                    pos + iov_length(iov, nr_segs) - 1);
1414            if (!retval) {
1415                struct blk_plug plug;
1416
1417                blk_start_plug(&plug);
1418                retval = mapping->a_ops->direct_IO(READ, iocb,
1419                            iov, pos, nr_segs);
1420                blk_finish_plug(&plug);
1421            }
1422            if (retval > 0) {
1423                *ppos = pos + retval;
1424                count -= retval;
1425            }
1426
1427            /*
1428             * Btrfs can have a short DIO read if we encounter
1429             * compressed extents, so if there was an error, or if
1430             * we've already read everything we wanted to, or if
1431             * there was a short read because we hit EOF, go ahead
1432             * and return. Otherwise fallthrough to buffered io for
1433             * the rest of the read.
1434             */
1435            if (retval < 0 || !count || *ppos >= size) {
1436                file_accessed(filp);
1437                goto out;
1438            }
1439        }
1440    }
1441
1442    count = retval;
1443    for (seg = 0; seg < nr_segs; seg++) {
1444        read_descriptor_t desc;
1445        loff_t offset = 0;
1446
1447        /*
1448         * If we did a short DIO read we need to skip the section of the
1449         * iov that we've already read data into.
1450         */
1451        if (count) {
1452            if (count > iov[seg].iov_len) {
1453                count -= iov[seg].iov_len;
1454                continue;
1455            }
1456            offset = count;
1457            count = 0;
1458        }
1459
1460        desc.written = 0;
1461        desc.arg.buf = iov[seg].iov_base + offset;
1462        desc.count = iov[seg].iov_len - offset;
1463        if (desc.count == 0)
1464            continue;
1465        desc.error = 0;
1466        do_generic_file_read(filp, ppos, &desc, file_read_actor);
1467        retval += desc.written;
1468        if (desc.error) {
1469            retval = retval ?: desc.error;
1470            break;
1471        }
1472        if (desc.count > 0)
1473            break;
1474    }
1475out:
1476    return retval;
1477}
1478EXPORT_SYMBOL(generic_file_aio_read);
1479
1480#ifdef CONFIG_MMU
1481/**
1482 * page_cache_read - adds requested page to the page cache if not already there
1483 * @file: file to read
1484 * @offset: page index
1485 *
1486 * This adds the requested page to the page cache if it isn't already there,
1487 * and schedules an I/O to read in its contents from disk.
1488 */
1489static int page_cache_read(struct file *file, pgoff_t offset)
1490{
1491    struct address_space *mapping = file->f_mapping;
1492    struct page *page;
1493    int ret;
1494
1495    do {
1496        page = page_cache_alloc_cold(mapping);
1497        if (!page)
1498            return -ENOMEM;
1499
1500        ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1501        if (ret == 0)
1502            ret = mapping->a_ops->readpage(file, page);
1503        else if (ret == -EEXIST)
1504            ret = 0; /* losing race to add is OK */
1505
1506        page_cache_release(page);
1507
1508    } while (ret == AOP_TRUNCATED_PAGE);
1509        
1510    return ret;
1511}
1512
1513#define MMAP_LOTSAMISS (100)
1514
1515/*
1516 * Synchronous readahead happens when we don't even find
1517 * a page in the page cache at all.
1518 */
1519static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1520                   struct file_ra_state *ra,
1521                   struct file *file,
1522                   pgoff_t offset)
1523{
1524    unsigned long ra_pages;
1525    struct address_space *mapping = file->f_mapping;
1526
1527    /* If we don't want any read-ahead, don't bother */
1528    if (VM_RandomReadHint(vma))
1529        return;
1530    if (!ra->ra_pages)
1531        return;
1532
1533    if (VM_SequentialReadHint(vma)) {
1534        page_cache_sync_readahead(mapping, ra, file, offset,
1535                      ra->ra_pages);
1536        return;
1537    }
1538
1539    /* Avoid banging the cache line if not needed */
1540    if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1541        ra->mmap_miss++;
1542
1543    /*
1544     * Do we miss much more than hit in this file? If so,
1545     * stop bothering with read-ahead. It will only hurt.
1546     */
1547    if (ra->mmap_miss > MMAP_LOTSAMISS)
1548        return;
1549
1550    /*
1551     * mmap read-around
1552     */
1553    ra_pages = max_sane_readahead(ra->ra_pages);
1554    ra->start = max_t(long, 0, offset - ra_pages / 2);
1555    ra->size = ra_pages;
1556    ra->async_size = ra_pages / 4;
1557    ra_submit(ra, mapping, file);
1558}
1559
1560/*
1561 * Asynchronous readahead happens when we find the page and PG_readahead,
1562 * so we want to possibly extend the readahead further..
1563 */
1564static void do_async_mmap_readahead(struct vm_area_struct *vma,
1565                    struct file_ra_state *ra,
1566                    struct file *file,
1567                    struct page *page,
1568                    pgoff_t offset)
1569{
1570    struct address_space *mapping = file->f_mapping;
1571
1572    /* If we don't want any read-ahead, don't bother */
1573    if (VM_RandomReadHint(vma))
1574        return;
1575    if (ra->mmap_miss > 0)
1576        ra->mmap_miss--;
1577    if (PageReadahead(page))
1578        page_cache_async_readahead(mapping, ra, file,
1579                       page, offset, ra->ra_pages);
1580}
1581
1582/**
1583 * filemap_fault - read in file data for page fault handling
1584 * @vma: vma in which the fault was taken
1585 * @vmf: struct vm_fault containing details of the fault
1586 *
1587 * filemap_fault() is invoked via the vma operations vector for a
1588 * mapped memory region to read in file data during a page fault.
1589 *
1590 * The goto's are kind of ugly, but this streamlines the normal case of having
1591 * it in the page cache, and handles the special cases reasonably without
1592 * having a lot of duplicated code.
1593 */
1594int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1595{
1596    int error;
1597    struct file *file = vma->vm_file;
1598    struct address_space *mapping = file->f_mapping;
1599    struct file_ra_state *ra = &file->f_ra;
1600    struct inode *inode = mapping->host;
1601    pgoff_t offset = vmf->pgoff;
1602    struct page *page;
1603    pgoff_t size;
1604    int ret = 0;
1605
1606    size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1607    if (offset >= size)
1608        return VM_FAULT_SIGBUS;
1609
1610    /*
1611     * Do we have something in the page cache already?
1612     */
1613    page = find_get_page(mapping, offset);
1614    if (likely(page)) {
1615        /*
1616         * We found the page, so try async readahead before
1617         * waiting for the lock.
1618         */
1619        do_async_mmap_readahead(vma, ra, file, page, offset);
1620    } else {
1621        /* No page in the page cache at all */
1622        do_sync_mmap_readahead(vma, ra, file, offset);
1623        count_vm_event(PGMAJFAULT);
1624        mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1625        ret = VM_FAULT_MAJOR;
1626retry_find:
1627        page = find_get_page(mapping, offset);
1628        if (!page)
1629            goto no_cached_page;
1630    }
1631
1632    if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1633        page_cache_release(page);
1634        return ret | VM_FAULT_RETRY;
1635    }
1636
1637    /* Did it get truncated? */
1638    if (unlikely(page->mapping != mapping)) {
1639        unlock_page(page);
1640        put_page(page);
1641        goto retry_find;
1642    }
1643    VM_BUG_ON(page->index != offset);
1644
1645    /*
1646     * We have a locked page in the page cache, now we need to check
1647     * that it's up-to-date. If not, it is going to be due to an error.
1648     */
1649    if (unlikely(!PageUptodate(page)))
1650        goto page_not_uptodate;
1651
1652    /*
1653     * Found the page and have a reference on it.
1654     * We must recheck i_size under page lock.
1655     */
1656    size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657    if (unlikely(offset >= size)) {
1658        unlock_page(page);
1659        page_cache_release(page);
1660        return VM_FAULT_SIGBUS;
1661    }
1662
1663    vmf->page = page;
1664    return ret | VM_FAULT_LOCKED;
1665
1666no_cached_page:
1667    /*
1668     * We're only likely to ever get here if MADV_RANDOM is in
1669     * effect.
1670     */
1671    error = page_cache_read(file, offset);
1672
1673    /*
1674     * The page we want has now been added to the page cache.
1675     * In the unlikely event that someone removed it in the
1676     * meantime, we'll just come back here and read it again.
1677     */
1678    if (error >= 0)
1679        goto retry_find;
1680
1681    /*
1682     * An error return from page_cache_read can result if the
1683     * system is low on memory, or a problem occurs while trying
1684     * to schedule I/O.
1685     */
1686    if (error == -ENOMEM)
1687        return VM_FAULT_OOM;
1688    return VM_FAULT_SIGBUS;
1689
1690page_not_uptodate:
1691    /*
1692     * Umm, take care of errors if the page isn't up-to-date.
1693     * Try to re-read it _once_. We do this synchronously,
1694     * because there really aren't any performance issues here
1695     * and we need to check for errors.
1696     */
1697    ClearPageError(page);
1698    error = mapping->a_ops->readpage(file, page);
1699    if (!error) {
1700        wait_on_page_locked(page);
1701        if (!PageUptodate(page))
1702            error = -EIO;
1703    }
1704    page_cache_release(page);
1705
1706    if (!error || error == AOP_TRUNCATED_PAGE)
1707        goto retry_find;
1708
1709    /* Things didn't work out. Return zero to tell the mm layer so. */
1710    shrink_readahead_size_eio(file, ra);
1711    return VM_FAULT_SIGBUS;
1712}
1713EXPORT_SYMBOL(filemap_fault);
1714
1715int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1716{
1717    struct page *page = vmf->page;
1718    struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1719    int ret = VM_FAULT_LOCKED;
1720
1721    sb_start_pagefault(inode->i_sb);
1722    file_update_time(vma->vm_file);
1723    lock_page(page);
1724    if (page->mapping != inode->i_mapping) {
1725        unlock_page(page);
1726        ret = VM_FAULT_NOPAGE;
1727        goto out;
1728    }
1729    /*
1730     * We mark the page dirty already here so that when freeze is in
1731     * progress, we are guaranteed that writeback during freezing will
1732     * see the dirty page and writeprotect it again.
1733     */
1734    set_page_dirty(page);
1735out:
1736    sb_end_pagefault(inode->i_sb);
1737    return ret;
1738}
1739EXPORT_SYMBOL(filemap_page_mkwrite);
1740
1741const struct vm_operations_struct generic_file_vm_ops = {
1742    .fault = filemap_fault,
1743    .page_mkwrite = filemap_page_mkwrite,
1744};
1745
1746/* This is used for a general mmap of a disk file */
1747
1748int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1749{
1750    struct address_space *mapping = file->f_mapping;
1751
1752    if (!mapping->a_ops->readpage)
1753        return -ENOEXEC;
1754    file_accessed(file);
1755    vma->vm_ops = &generic_file_vm_ops;
1756    vma->vm_flags |= VM_CAN_NONLINEAR;
1757    return 0;
1758}
1759
1760/*
1761 * This is for filesystems which do not implement ->writepage.
1762 */
1763int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1764{
1765    if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1766        return -EINVAL;
1767    return generic_file_mmap(file, vma);
1768}
1769#else
1770int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1771{
1772    return -ENOSYS;
1773}
1774int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1775{
1776    return -ENOSYS;
1777}
1778#endif /* CONFIG_MMU */
1779
1780EXPORT_SYMBOL(generic_file_mmap);
1781EXPORT_SYMBOL(generic_file_readonly_mmap);
1782
1783static struct page *__read_cache_page(struct address_space *mapping,
1784                pgoff_t index,
1785                int (*filler)(void *, struct page *),
1786                void *data,
1787                gfp_t gfp)
1788{
1789    struct page *page;
1790    int err;
1791repeat:
1792    page = find_get_page(mapping, index);
1793    if (!page) {
1794        page = __page_cache_alloc(gfp | __GFP_COLD);
1795        if (!page)
1796            return ERR_PTR(-ENOMEM);
1797        err = add_to_page_cache_lru(page, mapping, index, gfp);
1798        if (unlikely(err)) {
1799            page_cache_release(page);
1800            if (err == -EEXIST)
1801                goto repeat;
1802            /* Presumably ENOMEM for radix tree node */
1803            return ERR_PTR(err);
1804        }
1805        err = filler(data, page);
1806        if (err < 0) {
1807            page_cache_release(page);
1808            page = ERR_PTR(err);
1809        }
1810    }
1811    return page;
1812}
1813
1814static struct page *do_read_cache_page(struct address_space *mapping,
1815                pgoff_t index,
1816                int (*filler)(void *, struct page *),
1817                void *data,
1818                gfp_t gfp)
1819
1820{
1821    struct page *page;
1822    int err;
1823
1824retry:
1825    page = __read_cache_page(mapping, index, filler, data, gfp);
1826    if (IS_ERR(page))
1827        return page;
1828    if (PageUptodate(page))
1829        goto out;
1830
1831    lock_page(page);
1832    if (!page->mapping) {
1833        unlock_page(page);
1834        page_cache_release(page);
1835        goto retry;
1836    }
1837    if (PageUptodate(page)) {
1838        unlock_page(page);
1839        goto out;
1840    }
1841    err = filler(data, page);
1842    if (err < 0) {
1843        page_cache_release(page);
1844        return ERR_PTR(err);
1845    }
1846out:
1847    mark_page_accessed(page);
1848    return page;
1849}
1850
1851/**
1852 * read_cache_page_async - read into page cache, fill it if needed
1853 * @mapping: the page's address_space
1854 * @index: the page index
1855 * @filler: function to perform the read
1856 * @data: first arg to filler(data, page) function, often left as NULL
1857 *
1858 * Same as read_cache_page, but don't wait for page to become unlocked
1859 * after submitting it to the filler.
1860 *
1861 * Read into the page cache. If a page already exists, and PageUptodate() is
1862 * not set, try to fill the page but don't wait for it to become unlocked.
1863 *
1864 * If the page does not get brought uptodate, return -EIO.
1865 */
1866struct page *read_cache_page_async(struct address_space *mapping,
1867                pgoff_t index,
1868                int (*filler)(void *, struct page *),
1869                void *data)
1870{
1871    return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1872}
1873EXPORT_SYMBOL(read_cache_page_async);
1874
1875static struct page *wait_on_page_read(struct page *page)
1876{
1877    if (!IS_ERR(page)) {
1878        wait_on_page_locked(page);
1879        if (!PageUptodate(page)) {
1880            page_cache_release(page);
1881            page = ERR_PTR(-EIO);
1882        }
1883    }
1884    return page;
1885}
1886
1887/**
1888 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1889 * @mapping: the page's address_space
1890 * @index: the page index
1891 * @gfp: the page allocator flags to use if allocating
1892 *
1893 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1894 * any new page allocations done using the specified allocation flags.
1895 *
1896 * If the page does not get brought uptodate, return -EIO.
1897 */
1898struct page *read_cache_page_gfp(struct address_space *mapping,
1899                pgoff_t index,
1900                gfp_t gfp)
1901{
1902    filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1903
1904    return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1905}
1906EXPORT_SYMBOL(read_cache_page_gfp);
1907
1908/**
1909 * read_cache_page - read into page cache, fill it if needed
1910 * @mapping: the page's address_space
1911 * @index: the page index
1912 * @filler: function to perform the read
1913 * @data: first arg to filler(data, page) function, often left as NULL
1914 *
1915 * Read into the page cache. If a page already exists, and PageUptodate() is
1916 * not set, try to fill the page then wait for it to become unlocked.
1917 *
1918 * If the page does not get brought uptodate, return -EIO.
1919 */
1920struct page *read_cache_page(struct address_space *mapping,
1921                pgoff_t index,
1922                int (*filler)(void *, struct page *),
1923                void *data)
1924{
1925    return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1926}
1927EXPORT_SYMBOL(read_cache_page);
1928
1929static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1930            const struct iovec *iov, size_t base, size_t bytes)
1931{
1932    size_t copied = 0, left = 0;
1933
1934    while (bytes) {
1935        char __user *buf = iov->iov_base + base;
1936        int copy = min(bytes, iov->iov_len - base);
1937
1938        base = 0;
1939        left = __copy_from_user_inatomic(vaddr, buf, copy);
1940        copied += copy;
1941        bytes -= copy;
1942        vaddr += copy;
1943        iov++;
1944
1945        if (unlikely(left))
1946            break;
1947    }
1948    return copied - left;
1949}
1950
1951/*
1952 * Copy as much as we can into the page and return the number of bytes which
1953 * were successfully copied. If a fault is encountered then return the number of
1954 * bytes which were copied.
1955 */
1956size_t iov_iter_copy_from_user_atomic(struct page *page,
1957        struct iov_iter *i, unsigned long offset, size_t bytes)
1958{
1959    char *kaddr;
1960    size_t copied;
1961
1962    BUG_ON(!in_atomic());
1963    kaddr = kmap_atomic(page);
1964    if (likely(i->nr_segs == 1)) {
1965        int left;
1966        char __user *buf = i->iov->iov_base + i->iov_offset;
1967        left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1968        copied = bytes - left;
1969    } else {
1970        copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1971                        i->iov, i->iov_offset, bytes);
1972    }
1973    kunmap_atomic(kaddr);
1974
1975    return copied;
1976}
1977EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1978
1979/*
1980 * This has the same sideeffects and return value as
1981 * iov_iter_copy_from_user_atomic().
1982 * The difference is that it attempts to resolve faults.
1983 * Page must not be locked.
1984 */
1985size_t iov_iter_copy_from_user(struct page *page,
1986        struct iov_iter *i, unsigned long offset, size_t bytes)
1987{
1988    char *kaddr;
1989    size_t copied;
1990
1991    kaddr = kmap(page);
1992    if (likely(i->nr_segs == 1)) {
1993        int left;
1994        char __user *buf = i->iov->iov_base + i->iov_offset;
1995        left = __copy_from_user(kaddr + offset, buf, bytes);
1996        copied = bytes - left;
1997    } else {
1998        copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1999                        i->iov, i->iov_offset, bytes);
2000    }
2001    kunmap(page);
2002    return copied;
2003}
2004EXPORT_SYMBOL(iov_iter_copy_from_user);
2005
2006void iov_iter_advance(struct iov_iter *i, size_t bytes)
2007{
2008    BUG_ON(i->count < bytes);
2009
2010    if (likely(i->nr_segs == 1)) {
2011        i->iov_offset += bytes;
2012        i->count -= bytes;
2013    } else {
2014        const struct iovec *iov = i->iov;
2015        size_t base = i->iov_offset;
2016        unsigned long nr_segs = i->nr_segs;
2017
2018        /*
2019         * The !iov->iov_len check ensures we skip over unlikely
2020         * zero-length segments (without overruning the iovec).
2021         */
2022        while (bytes || unlikely(i->count && !iov->iov_len)) {
2023            int copy;
2024
2025            copy = min(bytes, iov->iov_len - base);
2026            BUG_ON(!i->count || i->count < copy);
2027            i->count -= copy;
2028            bytes -= copy;
2029            base += copy;
2030            if (iov->iov_len == base) {
2031                iov++;
2032                nr_segs--;
2033                base = 0;
2034            }
2035        }
2036        i->iov = iov;
2037        i->iov_offset = base;
2038        i->nr_segs = nr_segs;
2039    }
2040}
2041EXPORT_SYMBOL(iov_iter_advance);
2042
2043/*
2044 * Fault in the first iovec of the given iov_iter, to a maximum length
2045 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2046 * accessed (ie. because it is an invalid address).
2047 *
2048 * writev-intensive code may want this to prefault several iovecs -- that
2049 * would be possible (callers must not rely on the fact that _only_ the
2050 * first iovec will be faulted with the current implementation).
2051 */
2052int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2053{
2054    char __user *buf = i->iov->iov_base + i->iov_offset;
2055    bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2056    return fault_in_pages_readable(buf, bytes);
2057}
2058EXPORT_SYMBOL(iov_iter_fault_in_readable);
2059
2060/*
2061 * Return the count of just the current iov_iter segment.
2062 */
2063size_t iov_iter_single_seg_count(struct iov_iter *i)
2064{
2065    const struct iovec *iov = i->iov;
2066    if (i->nr_segs == 1)
2067        return i->count;
2068    else
2069        return min(i->count, iov->iov_len - i->iov_offset);
2070}
2071EXPORT_SYMBOL(iov_iter_single_seg_count);
2072
2073/*
2074 * Performs necessary checks before doing a write
2075 *
2076 * Can adjust writing position or amount of bytes to write.
2077 * Returns appropriate error code that caller should return or
2078 * zero in case that write should be allowed.
2079 */
2080inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2081{
2082    struct inode *inode = file->f_mapping->host;
2083    unsigned long limit = rlimit(RLIMIT_FSIZE);
2084
2085        if (unlikely(*pos < 0))
2086                return -EINVAL;
2087
2088    if (!isblk) {
2089        /* FIXME: this is for backwards compatibility with 2.4 */
2090        if (file->f_flags & O_APPEND)
2091                        *pos = i_size_read(inode);
2092
2093        if (limit != RLIM_INFINITY) {
2094            if (*pos >= limit) {
2095                send_sig(SIGXFSZ, current, 0);
2096                return -EFBIG;
2097            }
2098            if (*count > limit - (typeof(limit))*pos) {
2099                *count = limit - (typeof(limit))*pos;
2100            }
2101        }
2102    }
2103
2104    /*
2105     * LFS rule
2106     */
2107    if (unlikely(*pos + *count > MAX_NON_LFS &&
2108                !(file->f_flags & O_LARGEFILE))) {
2109        if (*pos >= MAX_NON_LFS) {
2110            return -EFBIG;
2111        }
2112        if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2113            *count = MAX_NON_LFS - (unsigned long)*pos;
2114        }
2115    }
2116
2117    /*
2118     * Are we about to exceed the fs block limit ?
2119     *
2120     * If we have written data it becomes a short write. If we have
2121     * exceeded without writing data we send a signal and return EFBIG.
2122     * Linus frestrict idea will clean these up nicely..
2123     */
2124    if (likely(!isblk)) {
2125        if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2126            if (*count || *pos > inode->i_sb->s_maxbytes) {
2127                return -EFBIG;
2128            }
2129            /* zero-length writes at ->s_maxbytes are OK */
2130        }
2131
2132        if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2133            *count = inode->i_sb->s_maxbytes - *pos;
2134    } else {
2135#ifdef CONFIG_BLOCK
2136        loff_t isize;
2137        if (bdev_read_only(I_BDEV(inode)))
2138            return -EPERM;
2139        isize = i_size_read(inode);
2140        if (*pos >= isize) {
2141            if (*count || *pos > isize)
2142                return -ENOSPC;
2143        }
2144
2145        if (*pos + *count > isize)
2146            *count = isize - *pos;
2147#else
2148        return -EPERM;
2149#endif
2150    }
2151    return 0;
2152}
2153EXPORT_SYMBOL(generic_write_checks);
2154
2155int pagecache_write_begin(struct file *file, struct address_space *mapping,
2156                loff_t pos, unsigned len, unsigned flags,
2157                struct page **pagep, void **fsdata)
2158{
2159    const struct address_space_operations *aops = mapping->a_ops;
2160
2161    return aops->write_begin(file, mapping, pos, len, flags,
2162                            pagep, fsdata);
2163}
2164EXPORT_SYMBOL(pagecache_write_begin);
2165
2166int pagecache_write_end(struct file *file, struct address_space *mapping,
2167                loff_t pos, unsigned len, unsigned copied,
2168                struct page *page, void *fsdata)
2169{
2170    const struct address_space_operations *aops = mapping->a_ops;
2171
2172    mark_page_accessed(page);
2173    return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2174}
2175EXPORT_SYMBOL(pagecache_write_end);
2176
2177ssize_t
2178generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2179        unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2180        size_t count, size_t ocount)
2181{
2182    struct file *file = iocb->ki_filp;
2183    struct address_space *mapping = file->f_mapping;
2184    struct inode *inode = mapping->host;
2185    ssize_t written;
2186    size_t write_len;
2187    pgoff_t end;
2188
2189    if (count != ocount)
2190        *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2191
2192    write_len = iov_length(iov, *nr_segs);
2193    end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2194
2195    written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2196    if (written)
2197        goto out;
2198
2199    /*
2200     * After a write we want buffered reads to be sure to go to disk to get
2201     * the new data. We invalidate clean cached page from the region we're
2202     * about to write. We do this *before* the write so that we can return
2203     * without clobbering -EIOCBQUEUED from ->direct_IO().
2204     */
2205    if (mapping->nrpages) {
2206        written = invalidate_inode_pages2_range(mapping,
2207                    pos >> PAGE_CACHE_SHIFT, end);
2208        /*
2209         * If a page can not be invalidated, return 0 to fall back
2210         * to buffered write.
2211         */
2212        if (written) {
2213            if (written == -EBUSY)
2214                return 0;
2215            goto out;
2216        }
2217    }
2218
2219    written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2220
2221    /*
2222     * Finally, try again to invalidate clean pages which might have been
2223     * cached by non-direct readahead, or faulted in by get_user_pages()
2224     * if the source of the write was an mmap'ed region of the file
2225     * we're writing. Either one is a pretty crazy thing to do,
2226     * so we don't support it 100%. If this invalidation
2227     * fails, tough, the write still worked...
2228     */
2229    if (mapping->nrpages) {
2230        invalidate_inode_pages2_range(mapping,
2231                          pos >> PAGE_CACHE_SHIFT, end);
2232    }
2233
2234    if (written > 0) {
2235        pos += written;
2236        if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2237            i_size_write(inode, pos);
2238            mark_inode_dirty(inode);
2239        }
2240        *ppos = pos;
2241    }
2242out:
2243    return written;
2244}
2245EXPORT_SYMBOL(generic_file_direct_write);
2246
2247/*
2248 * Find or create a page at the given pagecache position. Return the locked
2249 * page. This function is specifically for buffered writes.
2250 */
2251struct page *grab_cache_page_write_begin(struct address_space *mapping,
2252                    pgoff_t index, unsigned flags)
2253{
2254    int status;
2255    gfp_t gfp_mask;
2256    struct page *page;
2257    gfp_t gfp_notmask = 0;
2258
2259    gfp_mask = mapping_gfp_mask(mapping);
2260    if (mapping_cap_account_dirty(mapping))
2261        gfp_mask |= __GFP_WRITE;
2262    if (flags & AOP_FLAG_NOFS)
2263        gfp_notmask = __GFP_FS;
2264repeat:
2265    page = find_lock_page(mapping, index);
2266    if (page)
2267        goto found;
2268
2269    page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2270    if (!page)
2271        return NULL;
2272    status = add_to_page_cache_lru(page, mapping, index,
2273                        GFP_KERNEL & ~gfp_notmask);
2274    if (unlikely(status)) {
2275        page_cache_release(page);
2276        if (status == -EEXIST)
2277            goto repeat;
2278        return NULL;
2279    }
2280found:
2281    wait_on_page_writeback(page);
2282    return page;
2283}
2284EXPORT_SYMBOL(grab_cache_page_write_begin);
2285
2286static ssize_t generic_perform_write(struct file *file,
2287                struct iov_iter *i, loff_t pos)
2288{
2289    struct address_space *mapping = file->f_mapping;
2290    const struct address_space_operations *a_ops = mapping->a_ops;
2291    long status = 0;
2292    ssize_t written = 0;
2293    unsigned int flags = 0;
2294
2295    /*
2296     * Copies from kernel address space cannot fail (NFSD is a big user).
2297     */
2298    if (segment_eq(get_fs(), KERNEL_DS))
2299        flags |= AOP_FLAG_UNINTERRUPTIBLE;
2300
2301    do {
2302        struct page *page;
2303        unsigned long offset; /* Offset into pagecache page */
2304        unsigned long bytes; /* Bytes to write to page */
2305        size_t copied; /* Bytes copied from user */
2306        void *fsdata;
2307
2308        offset = (pos & (PAGE_CACHE_SIZE - 1));
2309        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2310                        iov_iter_count(i));
2311
2312again:
2313        /*
2314         * Bring in the user page that we will copy from _first_.
2315         * Otherwise there's a nasty deadlock on copying from the
2316         * same page as we're writing to, without it being marked
2317         * up-to-date.
2318         *
2319         * Not only is this an optimisation, but it is also required
2320         * to check that the address is actually valid, when atomic
2321         * usercopies are used, below.
2322         */
2323        if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2324            status = -EFAULT;
2325            break;
2326        }
2327
2328        status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2329                        &page, &fsdata);
2330        if (unlikely(status))
2331            break;
2332
2333        if (mapping_writably_mapped(mapping))
2334            flush_dcache_page(page);
2335
2336        pagefault_disable();
2337        copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2338        pagefault_enable();
2339        flush_dcache_page(page);
2340
2341        mark_page_accessed(page);
2342        status = a_ops->write_end(file, mapping, pos, bytes, copied,
2343                        page, fsdata);
2344        if (unlikely(status < 0))
2345            break;
2346        copied = status;
2347
2348        cond_resched();
2349
2350        iov_iter_advance(i, copied);
2351        if (unlikely(copied == 0)) {
2352            /*
2353             * If we were unable to copy any data at all, we must
2354             * fall back to a single segment length write.
2355             *
2356             * If we didn't fallback here, we could livelock
2357             * because not all segments in the iov can be copied at
2358             * once without a pagefault.
2359             */
2360            bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2361                        iov_iter_single_seg_count(i));
2362            goto again;
2363        }
2364        pos += copied;
2365        written += copied;
2366
2367        balance_dirty_pages_ratelimited(mapping);
2368        if (fatal_signal_pending(current)) {
2369            status = -EINTR;
2370            break;
2371        }
2372    } while (iov_iter_count(i));
2373
2374    return written ? written : status;
2375}
2376
2377ssize_t
2378generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2379        unsigned long nr_segs, loff_t pos, loff_t *ppos,
2380        size_t count, ssize_t written)
2381{
2382    struct file *file = iocb->ki_filp;
2383    ssize_t status;
2384    struct iov_iter i;
2385
2386    iov_iter_init(&i, iov, nr_segs, count, written);
2387    status = generic_perform_write(file, &i, pos);
2388
2389    if (likely(status >= 0)) {
2390        written += status;
2391        *ppos = pos + status;
2392      }
2393    
2394    return written ? written : status;
2395}
2396EXPORT_SYMBOL(generic_file_buffered_write);
2397
2398/**
2399 * __generic_file_aio_write - write data to a file
2400 * @iocb: IO state structure (file, offset, etc.)
2401 * @iov: vector with data to write
2402 * @nr_segs: number of segments in the vector
2403 * @ppos: position where to write
2404 *
2405 * This function does all the work needed for actually writing data to a
2406 * file. It does all basic checks, removes SUID from the file, updates
2407 * modification times and calls proper subroutines depending on whether we
2408 * do direct IO or a standard buffered write.
2409 *
2410 * It expects i_mutex to be grabbed unless we work on a block device or similar
2411 * object which does not need locking at all.
2412 *
2413 * This function does *not* take care of syncing data in case of O_SYNC write.
2414 * A caller has to handle it. This is mainly due to the fact that we want to
2415 * avoid syncing under i_mutex.
2416 */
2417ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2418                 unsigned long nr_segs, loff_t *ppos)
2419{
2420    struct file *file = iocb->ki_filp;
2421    struct address_space * mapping = file->f_mapping;
2422    size_t ocount; /* original count */
2423    size_t count; /* after file limit checks */
2424    struct inode *inode = mapping->host;
2425    loff_t pos;
2426    ssize_t written;
2427    ssize_t err;
2428
2429    ocount = 0;
2430    err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2431    if (err)
2432        return err;
2433
2434    count = ocount;
2435    pos = *ppos;
2436
2437    /* We can write back this queue in page reclaim */
2438    current->backing_dev_info = mapping->backing_dev_info;
2439    written = 0;
2440
2441    err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2442    if (err)
2443        goto out;
2444
2445    if (count == 0)
2446        goto out;
2447
2448    err = file_remove_suid(file);
2449    if (err)
2450        goto out;
2451
2452    err = file_update_time(file);
2453    if (err)
2454        goto out;
2455
2456    /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2457    if (unlikely(file->f_flags & O_DIRECT)) {
2458        loff_t endbyte;
2459        ssize_t written_buffered;
2460
2461        written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2462                            ppos, count, ocount);
2463        if (written < 0 || written == count)
2464            goto out;
2465        /*
2466         * direct-io write to a hole: fall through to buffered I/O
2467         * for completing the rest of the request.
2468         */
2469        pos += written;
2470        count -= written;
2471        written_buffered = generic_file_buffered_write(iocb, iov,
2472                        nr_segs, pos, ppos, count,
2473                        written);
2474        /*
2475         * If generic_file_buffered_write() retuned a synchronous error
2476         * then we want to return the number of bytes which were
2477         * direct-written, or the error code if that was zero. Note
2478         * that this differs from normal direct-io semantics, which
2479         * will return -EFOO even if some bytes were written.
2480         */
2481        if (written_buffered < 0) {
2482            err = written_buffered;
2483            goto out;
2484        }
2485
2486        /*
2487         * We need to ensure that the page cache pages are written to
2488         * disk and invalidated to preserve the expected O_DIRECT
2489         * semantics.
2490         */
2491        endbyte = pos + written_buffered - written - 1;
2492        err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2493        if (err == 0) {
2494            written = written_buffered;
2495            invalidate_mapping_pages(mapping,
2496                         pos >> PAGE_CACHE_SHIFT,
2497                         endbyte >> PAGE_CACHE_SHIFT);
2498        } else {
2499            /*
2500             * We don't know how much we wrote, so just return
2501             * the number of bytes which were direct-written
2502             */
2503        }
2504    } else {
2505        written = generic_file_buffered_write(iocb, iov, nr_segs,
2506                pos, ppos, count, written);
2507    }
2508out:
2509    current->backing_dev_info = NULL;
2510    return written ? written : err;
2511}
2512EXPORT_SYMBOL(__generic_file_aio_write);
2513
2514/**
2515 * generic_file_aio_write - write data to a file
2516 * @iocb: IO state structure
2517 * @iov: vector with data to write
2518 * @nr_segs: number of segments in the vector
2519 * @pos: position in file where to write
2520 *
2521 * This is a wrapper around __generic_file_aio_write() to be used by most
2522 * filesystems. It takes care of syncing the file in case of O_SYNC file
2523 * and acquires i_mutex as needed.
2524 */
2525ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2526        unsigned long nr_segs, loff_t pos)
2527{
2528    struct file *file = iocb->ki_filp;
2529    struct inode *inode = file->f_mapping->host;
2530    struct blk_plug plug;
2531    ssize_t ret;
2532
2533    BUG_ON(iocb->ki_pos != pos);
2534
2535    sb_start_write(inode->i_sb);
2536    mutex_lock(&inode->i_mutex);
2537    blk_start_plug(&plug);
2538    ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2539    mutex_unlock(&inode->i_mutex);
2540
2541    if (ret > 0 || ret == -EIOCBQUEUED) {
2542        ssize_t err;
2543
2544        err = generic_write_sync(file, pos, ret);
2545        if (err < 0 && ret > 0)
2546            ret = err;
2547    }
2548    blk_finish_plug(&plug);
2549    sb_end_write(inode->i_sb);
2550    return ret;
2551}
2552EXPORT_SYMBOL(generic_file_aio_write);
2553
2554/**
2555 * try_to_release_page() - release old fs-specific metadata on a page
2556 *
2557 * @page: the page which the kernel is trying to free
2558 * @gfp_mask: memory allocation flags (and I/O mode)
2559 *
2560 * The address_space is to try to release any data against the page
2561 * (presumably at page->private). If the release was successful, return `1'.
2562 * Otherwise return zero.
2563 *
2564 * This may also be called if PG_fscache is set on a page, indicating that the
2565 * page is known to the local caching routines.
2566 *
2567 * The @gfp_mask argument specifies whether I/O may be performed to release
2568 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2569 *
2570 */
2571int try_to_release_page(struct page *page, gfp_t gfp_mask)
2572{
2573    struct address_space * const mapping = page->mapping;
2574
2575    BUG_ON(!PageLocked(page));
2576    if (PageWriteback(page))
2577        return 0;
2578
2579    if (mapping && mapping->a_ops->releasepage)
2580        return mapping->a_ops->releasepage(page, gfp_mask);
2581    return try_to_free_buffers(page);
2582}
2583
2584EXPORT_SYMBOL(try_to_release_page);
2585

Archive Download this file



interactive