Root/
1 | /* |
2 | * Copyright (C) 2009 Red Hat, Inc. |
3 | * |
4 | * This work is licensed under the terms of the GNU GPL, version 2. See |
5 | * the COPYING file in the top-level directory. |
6 | */ |
7 | |
8 | #include <linux/mm.h> |
9 | #include <linux/sched.h> |
10 | #include <linux/highmem.h> |
11 | #include <linux/hugetlb.h> |
12 | #include <linux/mmu_notifier.h> |
13 | #include <linux/rmap.h> |
14 | #include <linux/swap.h> |
15 | #include <linux/mm_inline.h> |
16 | #include <linux/kthread.h> |
17 | #include <linux/khugepaged.h> |
18 | #include <linux/freezer.h> |
19 | #include <linux/mman.h> |
20 | #include <asm/tlb.h> |
21 | #include <asm/pgalloc.h> |
22 | #include "internal.h" |
23 | |
24 | /* |
25 | * By default transparent hugepage support is enabled for all mappings |
26 | * and khugepaged scans all mappings. Defrag is only invoked by |
27 | * khugepaged hugepage allocations and by page faults inside |
28 | * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived |
29 | * allocations. |
30 | */ |
31 | unsigned long transparent_hugepage_flags __read_mostly = |
32 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS |
33 | (1<<TRANSPARENT_HUGEPAGE_FLAG)| |
34 | #endif |
35 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE |
36 | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| |
37 | #endif |
38 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| |
39 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); |
40 | |
41 | /* default scan 8*512 pte (or vmas) every 30 second */ |
42 | static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; |
43 | static unsigned int khugepaged_pages_collapsed; |
44 | static unsigned int khugepaged_full_scans; |
45 | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; |
46 | /* during fragmentation poll the hugepage allocator once every minute */ |
47 | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; |
48 | static struct task_struct *khugepaged_thread __read_mostly; |
49 | static DEFINE_MUTEX(khugepaged_mutex); |
50 | static DEFINE_SPINLOCK(khugepaged_mm_lock); |
51 | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); |
52 | /* |
53 | * default collapse hugepages if there is at least one pte mapped like |
54 | * it would have happened if the vma was large enough during page |
55 | * fault. |
56 | */ |
57 | static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; |
58 | |
59 | static int khugepaged(void *none); |
60 | static int mm_slots_hash_init(void); |
61 | static int khugepaged_slab_init(void); |
62 | static void khugepaged_slab_free(void); |
63 | |
64 | #define MM_SLOTS_HASH_HEADS 1024 |
65 | static struct hlist_head *mm_slots_hash __read_mostly; |
66 | static struct kmem_cache *mm_slot_cache __read_mostly; |
67 | |
68 | /** |
69 | * struct mm_slot - hash lookup from mm to mm_slot |
70 | * @hash: hash collision list |
71 | * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head |
72 | * @mm: the mm that this information is valid for |
73 | */ |
74 | struct mm_slot { |
75 | struct hlist_node hash; |
76 | struct list_head mm_node; |
77 | struct mm_struct *mm; |
78 | }; |
79 | |
80 | /** |
81 | * struct khugepaged_scan - cursor for scanning |
82 | * @mm_head: the head of the mm list to scan |
83 | * @mm_slot: the current mm_slot we are scanning |
84 | * @address: the next address inside that to be scanned |
85 | * |
86 | * There is only the one khugepaged_scan instance of this cursor structure. |
87 | */ |
88 | struct khugepaged_scan { |
89 | struct list_head mm_head; |
90 | struct mm_slot *mm_slot; |
91 | unsigned long address; |
92 | }; |
93 | static struct khugepaged_scan khugepaged_scan = { |
94 | .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), |
95 | }; |
96 | |
97 | |
98 | static int set_recommended_min_free_kbytes(void) |
99 | { |
100 | struct zone *zone; |
101 | int nr_zones = 0; |
102 | unsigned long recommended_min; |
103 | extern int min_free_kbytes; |
104 | |
105 | if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG, |
106 | &transparent_hugepage_flags) && |
107 | !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
108 | &transparent_hugepage_flags)) |
109 | return 0; |
110 | |
111 | for_each_populated_zone(zone) |
112 | nr_zones++; |
113 | |
114 | /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ |
115 | recommended_min = pageblock_nr_pages * nr_zones * 2; |
116 | |
117 | /* |
118 | * Make sure that on average at least two pageblocks are almost free |
119 | * of another type, one for a migratetype to fall back to and a |
120 | * second to avoid subsequent fallbacks of other types There are 3 |
121 | * MIGRATE_TYPES we care about. |
122 | */ |
123 | recommended_min += pageblock_nr_pages * nr_zones * |
124 | MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; |
125 | |
126 | /* don't ever allow to reserve more than 5% of the lowmem */ |
127 | recommended_min = min(recommended_min, |
128 | (unsigned long) nr_free_buffer_pages() / 20); |
129 | recommended_min <<= (PAGE_SHIFT-10); |
130 | |
131 | if (recommended_min > min_free_kbytes) |
132 | min_free_kbytes = recommended_min; |
133 | setup_per_zone_wmarks(); |
134 | return 0; |
135 | } |
136 | late_initcall(set_recommended_min_free_kbytes); |
137 | |
138 | static int start_khugepaged(void) |
139 | { |
140 | int err = 0; |
141 | if (khugepaged_enabled()) { |
142 | int wakeup; |
143 | if (unlikely(!mm_slot_cache || !mm_slots_hash)) { |
144 | err = -ENOMEM; |
145 | goto out; |
146 | } |
147 | mutex_lock(&khugepaged_mutex); |
148 | if (!khugepaged_thread) |
149 | khugepaged_thread = kthread_run(khugepaged, NULL, |
150 | "khugepaged"); |
151 | if (unlikely(IS_ERR(khugepaged_thread))) { |
152 | printk(KERN_ERR |
153 | "khugepaged: kthread_run(khugepaged) failed\n"); |
154 | err = PTR_ERR(khugepaged_thread); |
155 | khugepaged_thread = NULL; |
156 | } |
157 | wakeup = !list_empty(&khugepaged_scan.mm_head); |
158 | mutex_unlock(&khugepaged_mutex); |
159 | if (wakeup) |
160 | wake_up_interruptible(&khugepaged_wait); |
161 | |
162 | set_recommended_min_free_kbytes(); |
163 | } else |
164 | /* wakeup to exit */ |
165 | wake_up_interruptible(&khugepaged_wait); |
166 | out: |
167 | return err; |
168 | } |
169 | |
170 | #ifdef CONFIG_SYSFS |
171 | |
172 | static ssize_t double_flag_show(struct kobject *kobj, |
173 | struct kobj_attribute *attr, char *buf, |
174 | enum transparent_hugepage_flag enabled, |
175 | enum transparent_hugepage_flag req_madv) |
176 | { |
177 | if (test_bit(enabled, &transparent_hugepage_flags)) { |
178 | VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); |
179 | return sprintf(buf, "[always] madvise never\n"); |
180 | } else if (test_bit(req_madv, &transparent_hugepage_flags)) |
181 | return sprintf(buf, "always [madvise] never\n"); |
182 | else |
183 | return sprintf(buf, "always madvise [never]\n"); |
184 | } |
185 | static ssize_t double_flag_store(struct kobject *kobj, |
186 | struct kobj_attribute *attr, |
187 | const char *buf, size_t count, |
188 | enum transparent_hugepage_flag enabled, |
189 | enum transparent_hugepage_flag req_madv) |
190 | { |
191 | if (!memcmp("always", buf, |
192 | min(sizeof("always")-1, count))) { |
193 | set_bit(enabled, &transparent_hugepage_flags); |
194 | clear_bit(req_madv, &transparent_hugepage_flags); |
195 | } else if (!memcmp("madvise", buf, |
196 | min(sizeof("madvise")-1, count))) { |
197 | clear_bit(enabled, &transparent_hugepage_flags); |
198 | set_bit(req_madv, &transparent_hugepage_flags); |
199 | } else if (!memcmp("never", buf, |
200 | min(sizeof("never")-1, count))) { |
201 | clear_bit(enabled, &transparent_hugepage_flags); |
202 | clear_bit(req_madv, &transparent_hugepage_flags); |
203 | } else |
204 | return -EINVAL; |
205 | |
206 | return count; |
207 | } |
208 | |
209 | static ssize_t enabled_show(struct kobject *kobj, |
210 | struct kobj_attribute *attr, char *buf) |
211 | { |
212 | return double_flag_show(kobj, attr, buf, |
213 | TRANSPARENT_HUGEPAGE_FLAG, |
214 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); |
215 | } |
216 | static ssize_t enabled_store(struct kobject *kobj, |
217 | struct kobj_attribute *attr, |
218 | const char *buf, size_t count) |
219 | { |
220 | ssize_t ret; |
221 | |
222 | ret = double_flag_store(kobj, attr, buf, count, |
223 | TRANSPARENT_HUGEPAGE_FLAG, |
224 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); |
225 | |
226 | if (ret > 0) { |
227 | int err = start_khugepaged(); |
228 | if (err) |
229 | ret = err; |
230 | } |
231 | |
232 | if (ret > 0 && |
233 | (test_bit(TRANSPARENT_HUGEPAGE_FLAG, |
234 | &transparent_hugepage_flags) || |
235 | test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
236 | &transparent_hugepage_flags))) |
237 | set_recommended_min_free_kbytes(); |
238 | |
239 | return ret; |
240 | } |
241 | static struct kobj_attribute enabled_attr = |
242 | __ATTR(enabled, 0644, enabled_show, enabled_store); |
243 | |
244 | static ssize_t single_flag_show(struct kobject *kobj, |
245 | struct kobj_attribute *attr, char *buf, |
246 | enum transparent_hugepage_flag flag) |
247 | { |
248 | return sprintf(buf, "%d\n", |
249 | !!test_bit(flag, &transparent_hugepage_flags)); |
250 | } |
251 | |
252 | static ssize_t single_flag_store(struct kobject *kobj, |
253 | struct kobj_attribute *attr, |
254 | const char *buf, size_t count, |
255 | enum transparent_hugepage_flag flag) |
256 | { |
257 | unsigned long value; |
258 | int ret; |
259 | |
260 | ret = kstrtoul(buf, 10, &value); |
261 | if (ret < 0) |
262 | return ret; |
263 | if (value > 1) |
264 | return -EINVAL; |
265 | |
266 | if (value) |
267 | set_bit(flag, &transparent_hugepage_flags); |
268 | else |
269 | clear_bit(flag, &transparent_hugepage_flags); |
270 | |
271 | return count; |
272 | } |
273 | |
274 | /* |
275 | * Currently defrag only disables __GFP_NOWAIT for allocation. A blind |
276 | * __GFP_REPEAT is too aggressive, it's never worth swapping tons of |
277 | * memory just to allocate one more hugepage. |
278 | */ |
279 | static ssize_t defrag_show(struct kobject *kobj, |
280 | struct kobj_attribute *attr, char *buf) |
281 | { |
282 | return double_flag_show(kobj, attr, buf, |
283 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, |
284 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); |
285 | } |
286 | static ssize_t defrag_store(struct kobject *kobj, |
287 | struct kobj_attribute *attr, |
288 | const char *buf, size_t count) |
289 | { |
290 | return double_flag_store(kobj, attr, buf, count, |
291 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, |
292 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); |
293 | } |
294 | static struct kobj_attribute defrag_attr = |
295 | __ATTR(defrag, 0644, defrag_show, defrag_store); |
296 | |
297 | #ifdef CONFIG_DEBUG_VM |
298 | static ssize_t debug_cow_show(struct kobject *kobj, |
299 | struct kobj_attribute *attr, char *buf) |
300 | { |
301 | return single_flag_show(kobj, attr, buf, |
302 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
303 | } |
304 | static ssize_t debug_cow_store(struct kobject *kobj, |
305 | struct kobj_attribute *attr, |
306 | const char *buf, size_t count) |
307 | { |
308 | return single_flag_store(kobj, attr, buf, count, |
309 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
310 | } |
311 | static struct kobj_attribute debug_cow_attr = |
312 | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); |
313 | #endif /* CONFIG_DEBUG_VM */ |
314 | |
315 | static struct attribute *hugepage_attr[] = { |
316 | &enabled_attr.attr, |
317 | &defrag_attr.attr, |
318 | #ifdef CONFIG_DEBUG_VM |
319 | &debug_cow_attr.attr, |
320 | #endif |
321 | NULL, |
322 | }; |
323 | |
324 | static struct attribute_group hugepage_attr_group = { |
325 | .attrs = hugepage_attr, |
326 | }; |
327 | |
328 | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, |
329 | struct kobj_attribute *attr, |
330 | char *buf) |
331 | { |
332 | return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); |
333 | } |
334 | |
335 | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, |
336 | struct kobj_attribute *attr, |
337 | const char *buf, size_t count) |
338 | { |
339 | unsigned long msecs; |
340 | int err; |
341 | |
342 | err = strict_strtoul(buf, 10, &msecs); |
343 | if (err || msecs > UINT_MAX) |
344 | return -EINVAL; |
345 | |
346 | khugepaged_scan_sleep_millisecs = msecs; |
347 | wake_up_interruptible(&khugepaged_wait); |
348 | |
349 | return count; |
350 | } |
351 | static struct kobj_attribute scan_sleep_millisecs_attr = |
352 | __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, |
353 | scan_sleep_millisecs_store); |
354 | |
355 | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, |
356 | struct kobj_attribute *attr, |
357 | char *buf) |
358 | { |
359 | return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); |
360 | } |
361 | |
362 | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, |
363 | struct kobj_attribute *attr, |
364 | const char *buf, size_t count) |
365 | { |
366 | unsigned long msecs; |
367 | int err; |
368 | |
369 | err = strict_strtoul(buf, 10, &msecs); |
370 | if (err || msecs > UINT_MAX) |
371 | return -EINVAL; |
372 | |
373 | khugepaged_alloc_sleep_millisecs = msecs; |
374 | wake_up_interruptible(&khugepaged_wait); |
375 | |
376 | return count; |
377 | } |
378 | static struct kobj_attribute alloc_sleep_millisecs_attr = |
379 | __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, |
380 | alloc_sleep_millisecs_store); |
381 | |
382 | static ssize_t pages_to_scan_show(struct kobject *kobj, |
383 | struct kobj_attribute *attr, |
384 | char *buf) |
385 | { |
386 | return sprintf(buf, "%u\n", khugepaged_pages_to_scan); |
387 | } |
388 | static ssize_t pages_to_scan_store(struct kobject *kobj, |
389 | struct kobj_attribute *attr, |
390 | const char *buf, size_t count) |
391 | { |
392 | int err; |
393 | unsigned long pages; |
394 | |
395 | err = strict_strtoul(buf, 10, &pages); |
396 | if (err || !pages || pages > UINT_MAX) |
397 | return -EINVAL; |
398 | |
399 | khugepaged_pages_to_scan = pages; |
400 | |
401 | return count; |
402 | } |
403 | static struct kobj_attribute pages_to_scan_attr = |
404 | __ATTR(pages_to_scan, 0644, pages_to_scan_show, |
405 | pages_to_scan_store); |
406 | |
407 | static ssize_t pages_collapsed_show(struct kobject *kobj, |
408 | struct kobj_attribute *attr, |
409 | char *buf) |
410 | { |
411 | return sprintf(buf, "%u\n", khugepaged_pages_collapsed); |
412 | } |
413 | static struct kobj_attribute pages_collapsed_attr = |
414 | __ATTR_RO(pages_collapsed); |
415 | |
416 | static ssize_t full_scans_show(struct kobject *kobj, |
417 | struct kobj_attribute *attr, |
418 | char *buf) |
419 | { |
420 | return sprintf(buf, "%u\n", khugepaged_full_scans); |
421 | } |
422 | static struct kobj_attribute full_scans_attr = |
423 | __ATTR_RO(full_scans); |
424 | |
425 | static ssize_t khugepaged_defrag_show(struct kobject *kobj, |
426 | struct kobj_attribute *attr, char *buf) |
427 | { |
428 | return single_flag_show(kobj, attr, buf, |
429 | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); |
430 | } |
431 | static ssize_t khugepaged_defrag_store(struct kobject *kobj, |
432 | struct kobj_attribute *attr, |
433 | const char *buf, size_t count) |
434 | { |
435 | return single_flag_store(kobj, attr, buf, count, |
436 | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); |
437 | } |
438 | static struct kobj_attribute khugepaged_defrag_attr = |
439 | __ATTR(defrag, 0644, khugepaged_defrag_show, |
440 | khugepaged_defrag_store); |
441 | |
442 | /* |
443 | * max_ptes_none controls if khugepaged should collapse hugepages over |
444 | * any unmapped ptes in turn potentially increasing the memory |
445 | * footprint of the vmas. When max_ptes_none is 0 khugepaged will not |
446 | * reduce the available free memory in the system as it |
447 | * runs. Increasing max_ptes_none will instead potentially reduce the |
448 | * free memory in the system during the khugepaged scan. |
449 | */ |
450 | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, |
451 | struct kobj_attribute *attr, |
452 | char *buf) |
453 | { |
454 | return sprintf(buf, "%u\n", khugepaged_max_ptes_none); |
455 | } |
456 | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, |
457 | struct kobj_attribute *attr, |
458 | const char *buf, size_t count) |
459 | { |
460 | int err; |
461 | unsigned long max_ptes_none; |
462 | |
463 | err = strict_strtoul(buf, 10, &max_ptes_none); |
464 | if (err || max_ptes_none > HPAGE_PMD_NR-1) |
465 | return -EINVAL; |
466 | |
467 | khugepaged_max_ptes_none = max_ptes_none; |
468 | |
469 | return count; |
470 | } |
471 | static struct kobj_attribute khugepaged_max_ptes_none_attr = |
472 | __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, |
473 | khugepaged_max_ptes_none_store); |
474 | |
475 | static struct attribute *khugepaged_attr[] = { |
476 | &khugepaged_defrag_attr.attr, |
477 | &khugepaged_max_ptes_none_attr.attr, |
478 | &pages_to_scan_attr.attr, |
479 | &pages_collapsed_attr.attr, |
480 | &full_scans_attr.attr, |
481 | &scan_sleep_millisecs_attr.attr, |
482 | &alloc_sleep_millisecs_attr.attr, |
483 | NULL, |
484 | }; |
485 | |
486 | static struct attribute_group khugepaged_attr_group = { |
487 | .attrs = khugepaged_attr, |
488 | .name = "khugepaged", |
489 | }; |
490 | |
491 | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) |
492 | { |
493 | int err; |
494 | |
495 | *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); |
496 | if (unlikely(!*hugepage_kobj)) { |
497 | printk(KERN_ERR "hugepage: failed kobject create\n"); |
498 | return -ENOMEM; |
499 | } |
500 | |
501 | err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); |
502 | if (err) { |
503 | printk(KERN_ERR "hugepage: failed register hugeage group\n"); |
504 | goto delete_obj; |
505 | } |
506 | |
507 | err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); |
508 | if (err) { |
509 | printk(KERN_ERR "hugepage: failed register hugeage group\n"); |
510 | goto remove_hp_group; |
511 | } |
512 | |
513 | return 0; |
514 | |
515 | remove_hp_group: |
516 | sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); |
517 | delete_obj: |
518 | kobject_put(*hugepage_kobj); |
519 | return err; |
520 | } |
521 | |
522 | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
523 | { |
524 | sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); |
525 | sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); |
526 | kobject_put(hugepage_kobj); |
527 | } |
528 | #else |
529 | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) |
530 | { |
531 | return 0; |
532 | } |
533 | |
534 | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
535 | { |
536 | } |
537 | #endif /* CONFIG_SYSFS */ |
538 | |
539 | static int __init hugepage_init(void) |
540 | { |
541 | int err; |
542 | struct kobject *hugepage_kobj; |
543 | |
544 | if (!has_transparent_hugepage()) { |
545 | transparent_hugepage_flags = 0; |
546 | return -EINVAL; |
547 | } |
548 | |
549 | err = hugepage_init_sysfs(&hugepage_kobj); |
550 | if (err) |
551 | return err; |
552 | |
553 | err = khugepaged_slab_init(); |
554 | if (err) |
555 | goto out; |
556 | |
557 | err = mm_slots_hash_init(); |
558 | if (err) { |
559 | khugepaged_slab_free(); |
560 | goto out; |
561 | } |
562 | |
563 | /* |
564 | * By default disable transparent hugepages on smaller systems, |
565 | * where the extra memory used could hurt more than TLB overhead |
566 | * is likely to save. The admin can still enable it through /sys. |
567 | */ |
568 | if (totalram_pages < (512 << (20 - PAGE_SHIFT))) |
569 | transparent_hugepage_flags = 0; |
570 | |
571 | start_khugepaged(); |
572 | |
573 | set_recommended_min_free_kbytes(); |
574 | |
575 | return 0; |
576 | out: |
577 | hugepage_exit_sysfs(hugepage_kobj); |
578 | return err; |
579 | } |
580 | module_init(hugepage_init) |
581 | |
582 | static int __init setup_transparent_hugepage(char *str) |
583 | { |
584 | int ret = 0; |
585 | if (!str) |
586 | goto out; |
587 | if (!strcmp(str, "always")) { |
588 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, |
589 | &transparent_hugepage_flags); |
590 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
591 | &transparent_hugepage_flags); |
592 | ret = 1; |
593 | } else if (!strcmp(str, "madvise")) { |
594 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
595 | &transparent_hugepage_flags); |
596 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
597 | &transparent_hugepage_flags); |
598 | ret = 1; |
599 | } else if (!strcmp(str, "never")) { |
600 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
601 | &transparent_hugepage_flags); |
602 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
603 | &transparent_hugepage_flags); |
604 | ret = 1; |
605 | } |
606 | out: |
607 | if (!ret) |
608 | printk(KERN_WARNING |
609 | "transparent_hugepage= cannot parse, ignored\n"); |
610 | return ret; |
611 | } |
612 | __setup("transparent_hugepage=", setup_transparent_hugepage); |
613 | |
614 | static void prepare_pmd_huge_pte(pgtable_t pgtable, |
615 | struct mm_struct *mm) |
616 | { |
617 | assert_spin_locked(&mm->page_table_lock); |
618 | |
619 | /* FIFO */ |
620 | if (!mm->pmd_huge_pte) |
621 | INIT_LIST_HEAD(&pgtable->lru); |
622 | else |
623 | list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); |
624 | mm->pmd_huge_pte = pgtable; |
625 | } |
626 | |
627 | static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
628 | { |
629 | if (likely(vma->vm_flags & VM_WRITE)) |
630 | pmd = pmd_mkwrite(pmd); |
631 | return pmd; |
632 | } |
633 | |
634 | static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, |
635 | struct vm_area_struct *vma, |
636 | unsigned long haddr, pmd_t *pmd, |
637 | struct page *page) |
638 | { |
639 | pgtable_t pgtable; |
640 | |
641 | VM_BUG_ON(!PageCompound(page)); |
642 | pgtable = pte_alloc_one(mm, haddr); |
643 | if (unlikely(!pgtable)) |
644 | return VM_FAULT_OOM; |
645 | |
646 | clear_huge_page(page, haddr, HPAGE_PMD_NR); |
647 | __SetPageUptodate(page); |
648 | |
649 | spin_lock(&mm->page_table_lock); |
650 | if (unlikely(!pmd_none(*pmd))) { |
651 | spin_unlock(&mm->page_table_lock); |
652 | mem_cgroup_uncharge_page(page); |
653 | put_page(page); |
654 | pte_free(mm, pgtable); |
655 | } else { |
656 | pmd_t entry; |
657 | entry = mk_pmd(page, vma->vm_page_prot); |
658 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
659 | entry = pmd_mkhuge(entry); |
660 | /* |
661 | * The spinlocking to take the lru_lock inside |
662 | * page_add_new_anon_rmap() acts as a full memory |
663 | * barrier to be sure clear_huge_page writes become |
664 | * visible after the set_pmd_at() write. |
665 | */ |
666 | page_add_new_anon_rmap(page, vma, haddr); |
667 | set_pmd_at(mm, haddr, pmd, entry); |
668 | prepare_pmd_huge_pte(pgtable, mm); |
669 | add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); |
670 | mm->nr_ptes++; |
671 | spin_unlock(&mm->page_table_lock); |
672 | } |
673 | |
674 | return 0; |
675 | } |
676 | |
677 | static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) |
678 | { |
679 | return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; |
680 | } |
681 | |
682 | static inline struct page *alloc_hugepage_vma(int defrag, |
683 | struct vm_area_struct *vma, |
684 | unsigned long haddr, int nd, |
685 | gfp_t extra_gfp) |
686 | { |
687 | return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), |
688 | HPAGE_PMD_ORDER, vma, haddr, nd); |
689 | } |
690 | |
691 | #ifndef CONFIG_NUMA |
692 | static inline struct page *alloc_hugepage(int defrag) |
693 | { |
694 | return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), |
695 | HPAGE_PMD_ORDER); |
696 | } |
697 | #endif |
698 | |
699 | int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
700 | unsigned long address, pmd_t *pmd, |
701 | unsigned int flags) |
702 | { |
703 | struct page *page; |
704 | unsigned long haddr = address & HPAGE_PMD_MASK; |
705 | pte_t *pte; |
706 | |
707 | if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { |
708 | if (unlikely(anon_vma_prepare(vma))) |
709 | return VM_FAULT_OOM; |
710 | if (unlikely(khugepaged_enter(vma))) |
711 | return VM_FAULT_OOM; |
712 | page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), |
713 | vma, haddr, numa_node_id(), 0); |
714 | if (unlikely(!page)) { |
715 | count_vm_event(THP_FAULT_FALLBACK); |
716 | goto out; |
717 | } |
718 | count_vm_event(THP_FAULT_ALLOC); |
719 | if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { |
720 | put_page(page); |
721 | goto out; |
722 | } |
723 | if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, |
724 | page))) { |
725 | mem_cgroup_uncharge_page(page); |
726 | put_page(page); |
727 | goto out; |
728 | } |
729 | |
730 | return 0; |
731 | } |
732 | out: |
733 | /* |
734 | * Use __pte_alloc instead of pte_alloc_map, because we can't |
735 | * run pte_offset_map on the pmd, if an huge pmd could |
736 | * materialize from under us from a different thread. |
737 | */ |
738 | if (unlikely(__pte_alloc(mm, vma, pmd, address))) |
739 | return VM_FAULT_OOM; |
740 | /* if an huge pmd materialized from under us just retry later */ |
741 | if (unlikely(pmd_trans_huge(*pmd))) |
742 | return 0; |
743 | /* |
744 | * A regular pmd is established and it can't morph into a huge pmd |
745 | * from under us anymore at this point because we hold the mmap_sem |
746 | * read mode and khugepaged takes it in write mode. So now it's |
747 | * safe to run pte_offset_map(). |
748 | */ |
749 | pte = pte_offset_map(pmd, address); |
750 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
751 | } |
752 | |
753 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
754 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, |
755 | struct vm_area_struct *vma) |
756 | { |
757 | struct page *src_page; |
758 | pmd_t pmd; |
759 | pgtable_t pgtable; |
760 | int ret; |
761 | |
762 | ret = -ENOMEM; |
763 | pgtable = pte_alloc_one(dst_mm, addr); |
764 | if (unlikely(!pgtable)) |
765 | goto out; |
766 | |
767 | spin_lock(&dst_mm->page_table_lock); |
768 | spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); |
769 | |
770 | ret = -EAGAIN; |
771 | pmd = *src_pmd; |
772 | if (unlikely(!pmd_trans_huge(pmd))) { |
773 | pte_free(dst_mm, pgtable); |
774 | goto out_unlock; |
775 | } |
776 | if (unlikely(pmd_trans_splitting(pmd))) { |
777 | /* split huge page running from under us */ |
778 | spin_unlock(&src_mm->page_table_lock); |
779 | spin_unlock(&dst_mm->page_table_lock); |
780 | pte_free(dst_mm, pgtable); |
781 | |
782 | wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ |
783 | goto out; |
784 | } |
785 | src_page = pmd_page(pmd); |
786 | VM_BUG_ON(!PageHead(src_page)); |
787 | get_page(src_page); |
788 | page_dup_rmap(src_page); |
789 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
790 | |
791 | pmdp_set_wrprotect(src_mm, addr, src_pmd); |
792 | pmd = pmd_mkold(pmd_wrprotect(pmd)); |
793 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
794 | prepare_pmd_huge_pte(pgtable, dst_mm); |
795 | dst_mm->nr_ptes++; |
796 | |
797 | ret = 0; |
798 | out_unlock: |
799 | spin_unlock(&src_mm->page_table_lock); |
800 | spin_unlock(&dst_mm->page_table_lock); |
801 | out: |
802 | return ret; |
803 | } |
804 | |
805 | /* no "address" argument so destroys page coloring of some arch */ |
806 | pgtable_t get_pmd_huge_pte(struct mm_struct *mm) |
807 | { |
808 | pgtable_t pgtable; |
809 | |
810 | assert_spin_locked(&mm->page_table_lock); |
811 | |
812 | /* FIFO */ |
813 | pgtable = mm->pmd_huge_pte; |
814 | if (list_empty(&pgtable->lru)) |
815 | mm->pmd_huge_pte = NULL; |
816 | else { |
817 | mm->pmd_huge_pte = list_entry(pgtable->lru.next, |
818 | struct page, lru); |
819 | list_del(&pgtable->lru); |
820 | } |
821 | return pgtable; |
822 | } |
823 | |
824 | static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, |
825 | struct vm_area_struct *vma, |
826 | unsigned long address, |
827 | pmd_t *pmd, pmd_t orig_pmd, |
828 | struct page *page, |
829 | unsigned long haddr) |
830 | { |
831 | pgtable_t pgtable; |
832 | pmd_t _pmd; |
833 | int ret = 0, i; |
834 | struct page **pages; |
835 | |
836 | pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, |
837 | GFP_KERNEL); |
838 | if (unlikely(!pages)) { |
839 | ret |= VM_FAULT_OOM; |
840 | goto out; |
841 | } |
842 | |
843 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
844 | pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | |
845 | __GFP_OTHER_NODE, |
846 | vma, address, page_to_nid(page)); |
847 | if (unlikely(!pages[i] || |
848 | mem_cgroup_newpage_charge(pages[i], mm, |
849 | GFP_KERNEL))) { |
850 | if (pages[i]) |
851 | put_page(pages[i]); |
852 | mem_cgroup_uncharge_start(); |
853 | while (--i >= 0) { |
854 | mem_cgroup_uncharge_page(pages[i]); |
855 | put_page(pages[i]); |
856 | } |
857 | mem_cgroup_uncharge_end(); |
858 | kfree(pages); |
859 | ret |= VM_FAULT_OOM; |
860 | goto out; |
861 | } |
862 | } |
863 | |
864 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
865 | copy_user_highpage(pages[i], page + i, |
866 | haddr + PAGE_SIZE * i, vma); |
867 | __SetPageUptodate(pages[i]); |
868 | cond_resched(); |
869 | } |
870 | |
871 | spin_lock(&mm->page_table_lock); |
872 | if (unlikely(!pmd_same(*pmd, orig_pmd))) |
873 | goto out_free_pages; |
874 | VM_BUG_ON(!PageHead(page)); |
875 | |
876 | pmdp_clear_flush_notify(vma, haddr, pmd); |
877 | /* leave pmd empty until pte is filled */ |
878 | |
879 | pgtable = get_pmd_huge_pte(mm); |
880 | pmd_populate(mm, &_pmd, pgtable); |
881 | |
882 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { |
883 | pte_t *pte, entry; |
884 | entry = mk_pte(pages[i], vma->vm_page_prot); |
885 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
886 | page_add_new_anon_rmap(pages[i], vma, haddr); |
887 | pte = pte_offset_map(&_pmd, haddr); |
888 | VM_BUG_ON(!pte_none(*pte)); |
889 | set_pte_at(mm, haddr, pte, entry); |
890 | pte_unmap(pte); |
891 | } |
892 | kfree(pages); |
893 | |
894 | smp_wmb(); /* make pte visible before pmd */ |
895 | pmd_populate(mm, pmd, pgtable); |
896 | page_remove_rmap(page); |
897 | spin_unlock(&mm->page_table_lock); |
898 | |
899 | ret |= VM_FAULT_WRITE; |
900 | put_page(page); |
901 | |
902 | out: |
903 | return ret; |
904 | |
905 | out_free_pages: |
906 | spin_unlock(&mm->page_table_lock); |
907 | mem_cgroup_uncharge_start(); |
908 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
909 | mem_cgroup_uncharge_page(pages[i]); |
910 | put_page(pages[i]); |
911 | } |
912 | mem_cgroup_uncharge_end(); |
913 | kfree(pages); |
914 | goto out; |
915 | } |
916 | |
917 | int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
918 | unsigned long address, pmd_t *pmd, pmd_t orig_pmd) |
919 | { |
920 | int ret = 0; |
921 | struct page *page, *new_page; |
922 | unsigned long haddr; |
923 | |
924 | VM_BUG_ON(!vma->anon_vma); |
925 | spin_lock(&mm->page_table_lock); |
926 | if (unlikely(!pmd_same(*pmd, orig_pmd))) |
927 | goto out_unlock; |
928 | |
929 | page = pmd_page(orig_pmd); |
930 | VM_BUG_ON(!PageCompound(page) || !PageHead(page)); |
931 | haddr = address & HPAGE_PMD_MASK; |
932 | if (page_mapcount(page) == 1) { |
933 | pmd_t entry; |
934 | entry = pmd_mkyoung(orig_pmd); |
935 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
936 | if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) |
937 | update_mmu_cache(vma, address, entry); |
938 | ret |= VM_FAULT_WRITE; |
939 | goto out_unlock; |
940 | } |
941 | get_page(page); |
942 | spin_unlock(&mm->page_table_lock); |
943 | |
944 | if (transparent_hugepage_enabled(vma) && |
945 | !transparent_hugepage_debug_cow()) |
946 | new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), |
947 | vma, haddr, numa_node_id(), 0); |
948 | else |
949 | new_page = NULL; |
950 | |
951 | if (unlikely(!new_page)) { |
952 | count_vm_event(THP_FAULT_FALLBACK); |
953 | ret = do_huge_pmd_wp_page_fallback(mm, vma, address, |
954 | pmd, orig_pmd, page, haddr); |
955 | if (ret & VM_FAULT_OOM) |
956 | split_huge_page(page); |
957 | put_page(page); |
958 | goto out; |
959 | } |
960 | count_vm_event(THP_FAULT_ALLOC); |
961 | |
962 | if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { |
963 | put_page(new_page); |
964 | split_huge_page(page); |
965 | put_page(page); |
966 | ret |= VM_FAULT_OOM; |
967 | goto out; |
968 | } |
969 | |
970 | copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); |
971 | __SetPageUptodate(new_page); |
972 | |
973 | spin_lock(&mm->page_table_lock); |
974 | put_page(page); |
975 | if (unlikely(!pmd_same(*pmd, orig_pmd))) { |
976 | spin_unlock(&mm->page_table_lock); |
977 | mem_cgroup_uncharge_page(new_page); |
978 | put_page(new_page); |
979 | goto out; |
980 | } else { |
981 | pmd_t entry; |
982 | VM_BUG_ON(!PageHead(page)); |
983 | entry = mk_pmd(new_page, vma->vm_page_prot); |
984 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
985 | entry = pmd_mkhuge(entry); |
986 | pmdp_clear_flush_notify(vma, haddr, pmd); |
987 | page_add_new_anon_rmap(new_page, vma, haddr); |
988 | set_pmd_at(mm, haddr, pmd, entry); |
989 | update_mmu_cache(vma, address, entry); |
990 | page_remove_rmap(page); |
991 | put_page(page); |
992 | ret |= VM_FAULT_WRITE; |
993 | } |
994 | out_unlock: |
995 | spin_unlock(&mm->page_table_lock); |
996 | out: |
997 | return ret; |
998 | } |
999 | |
1000 | struct page *follow_trans_huge_pmd(struct mm_struct *mm, |
1001 | unsigned long addr, |
1002 | pmd_t *pmd, |
1003 | unsigned int flags) |
1004 | { |
1005 | struct page *page = NULL; |
1006 | |
1007 | assert_spin_locked(&mm->page_table_lock); |
1008 | |
1009 | if (flags & FOLL_WRITE && !pmd_write(*pmd)) |
1010 | goto out; |
1011 | |
1012 | page = pmd_page(*pmd); |
1013 | VM_BUG_ON(!PageHead(page)); |
1014 | if (flags & FOLL_TOUCH) { |
1015 | pmd_t _pmd; |
1016 | /* |
1017 | * We should set the dirty bit only for FOLL_WRITE but |
1018 | * for now the dirty bit in the pmd is meaningless. |
1019 | * And if the dirty bit will become meaningful and |
1020 | * we'll only set it with FOLL_WRITE, an atomic |
1021 | * set_bit will be required on the pmd to set the |
1022 | * young bit, instead of the current set_pmd_at. |
1023 | */ |
1024 | _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); |
1025 | set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); |
1026 | } |
1027 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; |
1028 | VM_BUG_ON(!PageCompound(page)); |
1029 | if (flags & FOLL_GET) |
1030 | get_page_foll(page); |
1031 | |
1032 | out: |
1033 | return page; |
1034 | } |
1035 | |
1036 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
1037 | pmd_t *pmd, unsigned long addr) |
1038 | { |
1039 | int ret = 0; |
1040 | |
1041 | if (__pmd_trans_huge_lock(pmd, vma) == 1) { |
1042 | struct page *page; |
1043 | pgtable_t pgtable; |
1044 | pgtable = get_pmd_huge_pte(tlb->mm); |
1045 | page = pmd_page(*pmd); |
1046 | pmd_clear(pmd); |
1047 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
1048 | page_remove_rmap(page); |
1049 | VM_BUG_ON(page_mapcount(page) < 0); |
1050 | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
1051 | VM_BUG_ON(!PageHead(page)); |
1052 | tlb->mm->nr_ptes--; |
1053 | spin_unlock(&tlb->mm->page_table_lock); |
1054 | tlb_remove_page(tlb, page); |
1055 | pte_free(tlb->mm, pgtable); |
1056 | ret = 1; |
1057 | } |
1058 | return ret; |
1059 | } |
1060 | |
1061 | int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
1062 | unsigned long addr, unsigned long end, |
1063 | unsigned char *vec) |
1064 | { |
1065 | int ret = 0; |
1066 | |
1067 | if (__pmd_trans_huge_lock(pmd, vma) == 1) { |
1068 | /* |
1069 | * All logical pages in the range are present |
1070 | * if backed by a huge page. |
1071 | */ |
1072 | spin_unlock(&vma->vm_mm->page_table_lock); |
1073 | memset(vec, 1, (end - addr) >> PAGE_SHIFT); |
1074 | ret = 1; |
1075 | } |
1076 | |
1077 | return ret; |
1078 | } |
1079 | |
1080 | int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, |
1081 | unsigned long old_addr, |
1082 | unsigned long new_addr, unsigned long old_end, |
1083 | pmd_t *old_pmd, pmd_t *new_pmd) |
1084 | { |
1085 | int ret = 0; |
1086 | pmd_t pmd; |
1087 | |
1088 | struct mm_struct *mm = vma->vm_mm; |
1089 | |
1090 | if ((old_addr & ~HPAGE_PMD_MASK) || |
1091 | (new_addr & ~HPAGE_PMD_MASK) || |
1092 | old_end - old_addr < HPAGE_PMD_SIZE || |
1093 | (new_vma->vm_flags & VM_NOHUGEPAGE)) |
1094 | goto out; |
1095 | |
1096 | /* |
1097 | * The destination pmd shouldn't be established, free_pgtables() |
1098 | * should have release it. |
1099 | */ |
1100 | if (WARN_ON(!pmd_none(*new_pmd))) { |
1101 | VM_BUG_ON(pmd_trans_huge(*new_pmd)); |
1102 | goto out; |
1103 | } |
1104 | |
1105 | ret = __pmd_trans_huge_lock(old_pmd, vma); |
1106 | if (ret == 1) { |
1107 | pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); |
1108 | VM_BUG_ON(!pmd_none(*new_pmd)); |
1109 | set_pmd_at(mm, new_addr, new_pmd, pmd); |
1110 | spin_unlock(&mm->page_table_lock); |
1111 | } |
1112 | out: |
1113 | return ret; |
1114 | } |
1115 | |
1116 | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
1117 | unsigned long addr, pgprot_t newprot) |
1118 | { |
1119 | struct mm_struct *mm = vma->vm_mm; |
1120 | int ret = 0; |
1121 | |
1122 | if (__pmd_trans_huge_lock(pmd, vma) == 1) { |
1123 | pmd_t entry; |
1124 | entry = pmdp_get_and_clear(mm, addr, pmd); |
1125 | entry = pmd_modify(entry, newprot); |
1126 | set_pmd_at(mm, addr, pmd, entry); |
1127 | spin_unlock(&vma->vm_mm->page_table_lock); |
1128 | ret = 1; |
1129 | } |
1130 | |
1131 | return ret; |
1132 | } |
1133 | |
1134 | /* |
1135 | * Returns 1 if a given pmd maps a stable (not under splitting) thp. |
1136 | * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. |
1137 | * |
1138 | * Note that if it returns 1, this routine returns without unlocking page |
1139 | * table locks. So callers must unlock them. |
1140 | */ |
1141 | int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) |
1142 | { |
1143 | spin_lock(&vma->vm_mm->page_table_lock); |
1144 | if (likely(pmd_trans_huge(*pmd))) { |
1145 | if (unlikely(pmd_trans_splitting(*pmd))) { |
1146 | spin_unlock(&vma->vm_mm->page_table_lock); |
1147 | wait_split_huge_page(vma->anon_vma, pmd); |
1148 | return -1; |
1149 | } else { |
1150 | /* Thp mapped by 'pmd' is stable, so we can |
1151 | * handle it as it is. */ |
1152 | return 1; |
1153 | } |
1154 | } |
1155 | spin_unlock(&vma->vm_mm->page_table_lock); |
1156 | return 0; |
1157 | } |
1158 | |
1159 | pmd_t *page_check_address_pmd(struct page *page, |
1160 | struct mm_struct *mm, |
1161 | unsigned long address, |
1162 | enum page_check_address_pmd_flag flag) |
1163 | { |
1164 | pgd_t *pgd; |
1165 | pud_t *pud; |
1166 | pmd_t *pmd, *ret = NULL; |
1167 | |
1168 | if (address & ~HPAGE_PMD_MASK) |
1169 | goto out; |
1170 | |
1171 | pgd = pgd_offset(mm, address); |
1172 | if (!pgd_present(*pgd)) |
1173 | goto out; |
1174 | |
1175 | pud = pud_offset(pgd, address); |
1176 | if (!pud_present(*pud)) |
1177 | goto out; |
1178 | |
1179 | pmd = pmd_offset(pud, address); |
1180 | if (pmd_none(*pmd)) |
1181 | goto out; |
1182 | if (pmd_page(*pmd) != page) |
1183 | goto out; |
1184 | /* |
1185 | * split_vma() may create temporary aliased mappings. There is |
1186 | * no risk as long as all huge pmd are found and have their |
1187 | * splitting bit set before __split_huge_page_refcount |
1188 | * runs. Finding the same huge pmd more than once during the |
1189 | * same rmap walk is not a problem. |
1190 | */ |
1191 | if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && |
1192 | pmd_trans_splitting(*pmd)) |
1193 | goto out; |
1194 | if (pmd_trans_huge(*pmd)) { |
1195 | VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && |
1196 | !pmd_trans_splitting(*pmd)); |
1197 | ret = pmd; |
1198 | } |
1199 | out: |
1200 | return ret; |
1201 | } |
1202 | |
1203 | static int __split_huge_page_splitting(struct page *page, |
1204 | struct vm_area_struct *vma, |
1205 | unsigned long address) |
1206 | { |
1207 | struct mm_struct *mm = vma->vm_mm; |
1208 | pmd_t *pmd; |
1209 | int ret = 0; |
1210 | |
1211 | spin_lock(&mm->page_table_lock); |
1212 | pmd = page_check_address_pmd(page, mm, address, |
1213 | PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); |
1214 | if (pmd) { |
1215 | /* |
1216 | * We can't temporarily set the pmd to null in order |
1217 | * to split it, the pmd must remain marked huge at all |
1218 | * times or the VM won't take the pmd_trans_huge paths |
1219 | * and it won't wait on the anon_vma->root->mutex to |
1220 | * serialize against split_huge_page*. |
1221 | */ |
1222 | pmdp_splitting_flush_notify(vma, address, pmd); |
1223 | ret = 1; |
1224 | } |
1225 | spin_unlock(&mm->page_table_lock); |
1226 | |
1227 | return ret; |
1228 | } |
1229 | |
1230 | static void __split_huge_page_refcount(struct page *page) |
1231 | { |
1232 | int i; |
1233 | struct zone *zone = page_zone(page); |
1234 | struct lruvec *lruvec; |
1235 | int tail_count = 0; |
1236 | |
1237 | /* prevent PageLRU to go away from under us, and freeze lru stats */ |
1238 | spin_lock_irq(&zone->lru_lock); |
1239 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1240 | |
1241 | compound_lock(page); |
1242 | /* complete memcg works before add pages to LRU */ |
1243 | mem_cgroup_split_huge_fixup(page); |
1244 | |
1245 | for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { |
1246 | struct page *page_tail = page + i; |
1247 | |
1248 | /* tail_page->_mapcount cannot change */ |
1249 | BUG_ON(page_mapcount(page_tail) < 0); |
1250 | tail_count += page_mapcount(page_tail); |
1251 | /* check for overflow */ |
1252 | BUG_ON(tail_count < 0); |
1253 | BUG_ON(atomic_read(&page_tail->_count) != 0); |
1254 | /* |
1255 | * tail_page->_count is zero and not changing from |
1256 | * under us. But get_page_unless_zero() may be running |
1257 | * from under us on the tail_page. If we used |
1258 | * atomic_set() below instead of atomic_add(), we |
1259 | * would then run atomic_set() concurrently with |
1260 | * get_page_unless_zero(), and atomic_set() is |
1261 | * implemented in C not using locked ops. spin_unlock |
1262 | * on x86 sometime uses locked ops because of PPro |
1263 | * errata 66, 92, so unless somebody can guarantee |
1264 | * atomic_set() here would be safe on all archs (and |
1265 | * not only on x86), it's safer to use atomic_add(). |
1266 | */ |
1267 | atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, |
1268 | &page_tail->_count); |
1269 | |
1270 | /* after clearing PageTail the gup refcount can be released */ |
1271 | smp_mb(); |
1272 | |
1273 | /* |
1274 | * retain hwpoison flag of the poisoned tail page: |
1275 | * fix for the unsuitable process killed on Guest Machine(KVM) |
1276 | * by the memory-failure. |
1277 | */ |
1278 | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; |
1279 | page_tail->flags |= (page->flags & |
1280 | ((1L << PG_referenced) | |
1281 | (1L << PG_swapbacked) | |
1282 | (1L << PG_mlocked) | |
1283 | (1L << PG_uptodate))); |
1284 | page_tail->flags |= (1L << PG_dirty); |
1285 | |
1286 | /* clear PageTail before overwriting first_page */ |
1287 | smp_wmb(); |
1288 | |
1289 | /* |
1290 | * __split_huge_page_splitting() already set the |
1291 | * splitting bit in all pmd that could map this |
1292 | * hugepage, that will ensure no CPU can alter the |
1293 | * mapcount on the head page. The mapcount is only |
1294 | * accounted in the head page and it has to be |
1295 | * transferred to all tail pages in the below code. So |
1296 | * for this code to be safe, the split the mapcount |
1297 | * can't change. But that doesn't mean userland can't |
1298 | * keep changing and reading the page contents while |
1299 | * we transfer the mapcount, so the pmd splitting |
1300 | * status is achieved setting a reserved bit in the |
1301 | * pmd, not by clearing the present bit. |
1302 | */ |
1303 | page_tail->_mapcount = page->_mapcount; |
1304 | |
1305 | BUG_ON(page_tail->mapping); |
1306 | page_tail->mapping = page->mapping; |
1307 | |
1308 | page_tail->index = page->index + i; |
1309 | |
1310 | BUG_ON(!PageAnon(page_tail)); |
1311 | BUG_ON(!PageUptodate(page_tail)); |
1312 | BUG_ON(!PageDirty(page_tail)); |
1313 | BUG_ON(!PageSwapBacked(page_tail)); |
1314 | |
1315 | lru_add_page_tail(page, page_tail, lruvec); |
1316 | } |
1317 | atomic_sub(tail_count, &page->_count); |
1318 | BUG_ON(atomic_read(&page->_count) <= 0); |
1319 | |
1320 | __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); |
1321 | __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR); |
1322 | |
1323 | ClearPageCompound(page); |
1324 | compound_unlock(page); |
1325 | spin_unlock_irq(&zone->lru_lock); |
1326 | |
1327 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
1328 | struct page *page_tail = page + i; |
1329 | BUG_ON(page_count(page_tail) <= 0); |
1330 | /* |
1331 | * Tail pages may be freed if there wasn't any mapping |
1332 | * like if add_to_swap() is running on a lru page that |
1333 | * had its mapping zapped. And freeing these pages |
1334 | * requires taking the lru_lock so we do the put_page |
1335 | * of the tail pages after the split is complete. |
1336 | */ |
1337 | put_page(page_tail); |
1338 | } |
1339 | |
1340 | /* |
1341 | * Only the head page (now become a regular page) is required |
1342 | * to be pinned by the caller. |
1343 | */ |
1344 | BUG_ON(page_count(page) <= 0); |
1345 | } |
1346 | |
1347 | static int __split_huge_page_map(struct page *page, |
1348 | struct vm_area_struct *vma, |
1349 | unsigned long address) |
1350 | { |
1351 | struct mm_struct *mm = vma->vm_mm; |
1352 | pmd_t *pmd, _pmd; |
1353 | int ret = 0, i; |
1354 | pgtable_t pgtable; |
1355 | unsigned long haddr; |
1356 | |
1357 | spin_lock(&mm->page_table_lock); |
1358 | pmd = page_check_address_pmd(page, mm, address, |
1359 | PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); |
1360 | if (pmd) { |
1361 | pgtable = get_pmd_huge_pte(mm); |
1362 | pmd_populate(mm, &_pmd, pgtable); |
1363 | |
1364 | for (i = 0, haddr = address; i < HPAGE_PMD_NR; |
1365 | i++, haddr += PAGE_SIZE) { |
1366 | pte_t *pte, entry; |
1367 | BUG_ON(PageCompound(page+i)); |
1368 | entry = mk_pte(page + i, vma->vm_page_prot); |
1369 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1370 | if (!pmd_write(*pmd)) |
1371 | entry = pte_wrprotect(entry); |
1372 | else |
1373 | BUG_ON(page_mapcount(page) != 1); |
1374 | if (!pmd_young(*pmd)) |
1375 | entry = pte_mkold(entry); |
1376 | pte = pte_offset_map(&_pmd, haddr); |
1377 | BUG_ON(!pte_none(*pte)); |
1378 | set_pte_at(mm, haddr, pte, entry); |
1379 | pte_unmap(pte); |
1380 | } |
1381 | |
1382 | smp_wmb(); /* make pte visible before pmd */ |
1383 | /* |
1384 | * Up to this point the pmd is present and huge and |
1385 | * userland has the whole access to the hugepage |
1386 | * during the split (which happens in place). If we |
1387 | * overwrite the pmd with the not-huge version |
1388 | * pointing to the pte here (which of course we could |
1389 | * if all CPUs were bug free), userland could trigger |
1390 | * a small page size TLB miss on the small sized TLB |
1391 | * while the hugepage TLB entry is still established |
1392 | * in the huge TLB. Some CPU doesn't like that. See |
1393 | * http://support.amd.com/us/Processor_TechDocs/41322.pdf, |
1394 | * Erratum 383 on page 93. Intel should be safe but is |
1395 | * also warns that it's only safe if the permission |
1396 | * and cache attributes of the two entries loaded in |
1397 | * the two TLB is identical (which should be the case |
1398 | * here). But it is generally safer to never allow |
1399 | * small and huge TLB entries for the same virtual |
1400 | * address to be loaded simultaneously. So instead of |
1401 | * doing "pmd_populate(); flush_tlb_range();" we first |
1402 | * mark the current pmd notpresent (atomically because |
1403 | * here the pmd_trans_huge and pmd_trans_splitting |
1404 | * must remain set at all times on the pmd until the |
1405 | * split is complete for this pmd), then we flush the |
1406 | * SMP TLB and finally we write the non-huge version |
1407 | * of the pmd entry with pmd_populate. |
1408 | */ |
1409 | set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); |
1410 | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); |
1411 | pmd_populate(mm, pmd, pgtable); |
1412 | ret = 1; |
1413 | } |
1414 | spin_unlock(&mm->page_table_lock); |
1415 | |
1416 | return ret; |
1417 | } |
1418 | |
1419 | /* must be called with anon_vma->root->mutex hold */ |
1420 | static void __split_huge_page(struct page *page, |
1421 | struct anon_vma *anon_vma) |
1422 | { |
1423 | int mapcount, mapcount2; |
1424 | struct anon_vma_chain *avc; |
1425 | |
1426 | BUG_ON(!PageHead(page)); |
1427 | BUG_ON(PageTail(page)); |
1428 | |
1429 | mapcount = 0; |
1430 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1431 | struct vm_area_struct *vma = avc->vma; |
1432 | unsigned long addr = vma_address(page, vma); |
1433 | BUG_ON(is_vma_temporary_stack(vma)); |
1434 | if (addr == -EFAULT) |
1435 | continue; |
1436 | mapcount += __split_huge_page_splitting(page, vma, addr); |
1437 | } |
1438 | /* |
1439 | * It is critical that new vmas are added to the tail of the |
1440 | * anon_vma list. This guarantes that if copy_huge_pmd() runs |
1441 | * and establishes a child pmd before |
1442 | * __split_huge_page_splitting() freezes the parent pmd (so if |
1443 | * we fail to prevent copy_huge_pmd() from running until the |
1444 | * whole __split_huge_page() is complete), we will still see |
1445 | * the newly established pmd of the child later during the |
1446 | * walk, to be able to set it as pmd_trans_splitting too. |
1447 | */ |
1448 | if (mapcount != page_mapcount(page)) |
1449 | printk(KERN_ERR "mapcount %d page_mapcount %d\n", |
1450 | mapcount, page_mapcount(page)); |
1451 | BUG_ON(mapcount != page_mapcount(page)); |
1452 | |
1453 | __split_huge_page_refcount(page); |
1454 | |
1455 | mapcount2 = 0; |
1456 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1457 | struct vm_area_struct *vma = avc->vma; |
1458 | unsigned long addr = vma_address(page, vma); |
1459 | BUG_ON(is_vma_temporary_stack(vma)); |
1460 | if (addr == -EFAULT) |
1461 | continue; |
1462 | mapcount2 += __split_huge_page_map(page, vma, addr); |
1463 | } |
1464 | if (mapcount != mapcount2) |
1465 | printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", |
1466 | mapcount, mapcount2, page_mapcount(page)); |
1467 | BUG_ON(mapcount != mapcount2); |
1468 | } |
1469 | |
1470 | int split_huge_page(struct page *page) |
1471 | { |
1472 | struct anon_vma *anon_vma; |
1473 | int ret = 1; |
1474 | |
1475 | BUG_ON(!PageAnon(page)); |
1476 | anon_vma = page_lock_anon_vma(page); |
1477 | if (!anon_vma) |
1478 | goto out; |
1479 | ret = 0; |
1480 | if (!PageCompound(page)) |
1481 | goto out_unlock; |
1482 | |
1483 | BUG_ON(!PageSwapBacked(page)); |
1484 | __split_huge_page(page, anon_vma); |
1485 | count_vm_event(THP_SPLIT); |
1486 | |
1487 | BUG_ON(PageCompound(page)); |
1488 | out_unlock: |
1489 | page_unlock_anon_vma(anon_vma); |
1490 | out: |
1491 | return ret; |
1492 | } |
1493 | |
1494 | #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \ |
1495 | VM_HUGETLB|VM_SHARED|VM_MAYSHARE) |
1496 | |
1497 | int hugepage_madvise(struct vm_area_struct *vma, |
1498 | unsigned long *vm_flags, int advice) |
1499 | { |
1500 | switch (advice) { |
1501 | case MADV_HUGEPAGE: |
1502 | /* |
1503 | * Be somewhat over-protective like KSM for now! |
1504 | */ |
1505 | if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) |
1506 | return -EINVAL; |
1507 | *vm_flags &= ~VM_NOHUGEPAGE; |
1508 | *vm_flags |= VM_HUGEPAGE; |
1509 | /* |
1510 | * If the vma become good for khugepaged to scan, |
1511 | * register it here without waiting a page fault that |
1512 | * may not happen any time soon. |
1513 | */ |
1514 | if (unlikely(khugepaged_enter_vma_merge(vma))) |
1515 | return -ENOMEM; |
1516 | break; |
1517 | case MADV_NOHUGEPAGE: |
1518 | /* |
1519 | * Be somewhat over-protective like KSM for now! |
1520 | */ |
1521 | if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) |
1522 | return -EINVAL; |
1523 | *vm_flags &= ~VM_HUGEPAGE; |
1524 | *vm_flags |= VM_NOHUGEPAGE; |
1525 | /* |
1526 | * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning |
1527 | * this vma even if we leave the mm registered in khugepaged if |
1528 | * it got registered before VM_NOHUGEPAGE was set. |
1529 | */ |
1530 | break; |
1531 | } |
1532 | |
1533 | return 0; |
1534 | } |
1535 | |
1536 | static int __init khugepaged_slab_init(void) |
1537 | { |
1538 | mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", |
1539 | sizeof(struct mm_slot), |
1540 | __alignof__(struct mm_slot), 0, NULL); |
1541 | if (!mm_slot_cache) |
1542 | return -ENOMEM; |
1543 | |
1544 | return 0; |
1545 | } |
1546 | |
1547 | static void __init khugepaged_slab_free(void) |
1548 | { |
1549 | kmem_cache_destroy(mm_slot_cache); |
1550 | mm_slot_cache = NULL; |
1551 | } |
1552 | |
1553 | static inline struct mm_slot *alloc_mm_slot(void) |
1554 | { |
1555 | if (!mm_slot_cache) /* initialization failed */ |
1556 | return NULL; |
1557 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); |
1558 | } |
1559 | |
1560 | static inline void free_mm_slot(struct mm_slot *mm_slot) |
1561 | { |
1562 | kmem_cache_free(mm_slot_cache, mm_slot); |
1563 | } |
1564 | |
1565 | static int __init mm_slots_hash_init(void) |
1566 | { |
1567 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), |
1568 | GFP_KERNEL); |
1569 | if (!mm_slots_hash) |
1570 | return -ENOMEM; |
1571 | return 0; |
1572 | } |
1573 | |
1574 | #if 0 |
1575 | static void __init mm_slots_hash_free(void) |
1576 | { |
1577 | kfree(mm_slots_hash); |
1578 | mm_slots_hash = NULL; |
1579 | } |
1580 | #endif |
1581 | |
1582 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) |
1583 | { |
1584 | struct mm_slot *mm_slot; |
1585 | struct hlist_head *bucket; |
1586 | struct hlist_node *node; |
1587 | |
1588 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) |
1589 | % MM_SLOTS_HASH_HEADS]; |
1590 | hlist_for_each_entry(mm_slot, node, bucket, hash) { |
1591 | if (mm == mm_slot->mm) |
1592 | return mm_slot; |
1593 | } |
1594 | return NULL; |
1595 | } |
1596 | |
1597 | static void insert_to_mm_slots_hash(struct mm_struct *mm, |
1598 | struct mm_slot *mm_slot) |
1599 | { |
1600 | struct hlist_head *bucket; |
1601 | |
1602 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) |
1603 | % MM_SLOTS_HASH_HEADS]; |
1604 | mm_slot->mm = mm; |
1605 | hlist_add_head(&mm_slot->hash, bucket); |
1606 | } |
1607 | |
1608 | static inline int khugepaged_test_exit(struct mm_struct *mm) |
1609 | { |
1610 | return atomic_read(&mm->mm_users) == 0; |
1611 | } |
1612 | |
1613 | int __khugepaged_enter(struct mm_struct *mm) |
1614 | { |
1615 | struct mm_slot *mm_slot; |
1616 | int wakeup; |
1617 | |
1618 | mm_slot = alloc_mm_slot(); |
1619 | if (!mm_slot) |
1620 | return -ENOMEM; |
1621 | |
1622 | /* __khugepaged_exit() must not run from under us */ |
1623 | VM_BUG_ON(khugepaged_test_exit(mm)); |
1624 | if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { |
1625 | free_mm_slot(mm_slot); |
1626 | return 0; |
1627 | } |
1628 | |
1629 | spin_lock(&khugepaged_mm_lock); |
1630 | insert_to_mm_slots_hash(mm, mm_slot); |
1631 | /* |
1632 | * Insert just behind the scanning cursor, to let the area settle |
1633 | * down a little. |
1634 | */ |
1635 | wakeup = list_empty(&khugepaged_scan.mm_head); |
1636 | list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); |
1637 | spin_unlock(&khugepaged_mm_lock); |
1638 | |
1639 | atomic_inc(&mm->mm_count); |
1640 | if (wakeup) |
1641 | wake_up_interruptible(&khugepaged_wait); |
1642 | |
1643 | return 0; |
1644 | } |
1645 | |
1646 | int khugepaged_enter_vma_merge(struct vm_area_struct *vma) |
1647 | { |
1648 | unsigned long hstart, hend; |
1649 | if (!vma->anon_vma) |
1650 | /* |
1651 | * Not yet faulted in so we will register later in the |
1652 | * page fault if needed. |
1653 | */ |
1654 | return 0; |
1655 | if (vma->vm_ops) |
1656 | /* khugepaged not yet working on file or special mappings */ |
1657 | return 0; |
1658 | /* |
1659 | * If is_pfn_mapping() is true is_learn_pfn_mapping() must be |
1660 | * true too, verify it here. |
1661 | */ |
1662 | VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); |
1663 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
1664 | hend = vma->vm_end & HPAGE_PMD_MASK; |
1665 | if (hstart < hend) |
1666 | return khugepaged_enter(vma); |
1667 | return 0; |
1668 | } |
1669 | |
1670 | void __khugepaged_exit(struct mm_struct *mm) |
1671 | { |
1672 | struct mm_slot *mm_slot; |
1673 | int free = 0; |
1674 | |
1675 | spin_lock(&khugepaged_mm_lock); |
1676 | mm_slot = get_mm_slot(mm); |
1677 | if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { |
1678 | hlist_del(&mm_slot->hash); |
1679 | list_del(&mm_slot->mm_node); |
1680 | free = 1; |
1681 | } |
1682 | spin_unlock(&khugepaged_mm_lock); |
1683 | |
1684 | if (free) { |
1685 | clear_bit(MMF_VM_HUGEPAGE, &mm->flags); |
1686 | free_mm_slot(mm_slot); |
1687 | mmdrop(mm); |
1688 | } else if (mm_slot) { |
1689 | /* |
1690 | * This is required to serialize against |
1691 | * khugepaged_test_exit() (which is guaranteed to run |
1692 | * under mmap sem read mode). Stop here (after we |
1693 | * return all pagetables will be destroyed) until |
1694 | * khugepaged has finished working on the pagetables |
1695 | * under the mmap_sem. |
1696 | */ |
1697 | down_write(&mm->mmap_sem); |
1698 | up_write(&mm->mmap_sem); |
1699 | } |
1700 | } |
1701 | |
1702 | static void release_pte_page(struct page *page) |
1703 | { |
1704 | /* 0 stands for page_is_file_cache(page) == false */ |
1705 | dec_zone_page_state(page, NR_ISOLATED_ANON + 0); |
1706 | unlock_page(page); |
1707 | putback_lru_page(page); |
1708 | } |
1709 | |
1710 | static void release_pte_pages(pte_t *pte, pte_t *_pte) |
1711 | { |
1712 | while (--_pte >= pte) { |
1713 | pte_t pteval = *_pte; |
1714 | if (!pte_none(pteval)) |
1715 | release_pte_page(pte_page(pteval)); |
1716 | } |
1717 | } |
1718 | |
1719 | static void release_all_pte_pages(pte_t *pte) |
1720 | { |
1721 | release_pte_pages(pte, pte + HPAGE_PMD_NR); |
1722 | } |
1723 | |
1724 | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, |
1725 | unsigned long address, |
1726 | pte_t *pte) |
1727 | { |
1728 | struct page *page; |
1729 | pte_t *_pte; |
1730 | int referenced = 0, isolated = 0, none = 0; |
1731 | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; |
1732 | _pte++, address += PAGE_SIZE) { |
1733 | pte_t pteval = *_pte; |
1734 | if (pte_none(pteval)) { |
1735 | if (++none <= khugepaged_max_ptes_none) |
1736 | continue; |
1737 | else { |
1738 | release_pte_pages(pte, _pte); |
1739 | goto out; |
1740 | } |
1741 | } |
1742 | if (!pte_present(pteval) || !pte_write(pteval)) { |
1743 | release_pte_pages(pte, _pte); |
1744 | goto out; |
1745 | } |
1746 | page = vm_normal_page(vma, address, pteval); |
1747 | if (unlikely(!page)) { |
1748 | release_pte_pages(pte, _pte); |
1749 | goto out; |
1750 | } |
1751 | VM_BUG_ON(PageCompound(page)); |
1752 | BUG_ON(!PageAnon(page)); |
1753 | VM_BUG_ON(!PageSwapBacked(page)); |
1754 | |
1755 | /* cannot use mapcount: can't collapse if there's a gup pin */ |
1756 | if (page_count(page) != 1) { |
1757 | release_pte_pages(pte, _pte); |
1758 | goto out; |
1759 | } |
1760 | /* |
1761 | * We can do it before isolate_lru_page because the |
1762 | * page can't be freed from under us. NOTE: PG_lock |
1763 | * is needed to serialize against split_huge_page |
1764 | * when invoked from the VM. |
1765 | */ |
1766 | if (!trylock_page(page)) { |
1767 | release_pte_pages(pte, _pte); |
1768 | goto out; |
1769 | } |
1770 | /* |
1771 | * Isolate the page to avoid collapsing an hugepage |
1772 | * currently in use by the VM. |
1773 | */ |
1774 | if (isolate_lru_page(page)) { |
1775 | unlock_page(page); |
1776 | release_pte_pages(pte, _pte); |
1777 | goto out; |
1778 | } |
1779 | /* 0 stands for page_is_file_cache(page) == false */ |
1780 | inc_zone_page_state(page, NR_ISOLATED_ANON + 0); |
1781 | VM_BUG_ON(!PageLocked(page)); |
1782 | VM_BUG_ON(PageLRU(page)); |
1783 | |
1784 | /* If there is no mapped pte young don't collapse the page */ |
1785 | if (pte_young(pteval) || PageReferenced(page) || |
1786 | mmu_notifier_test_young(vma->vm_mm, address)) |
1787 | referenced = 1; |
1788 | } |
1789 | if (unlikely(!referenced)) |
1790 | release_all_pte_pages(pte); |
1791 | else |
1792 | isolated = 1; |
1793 | out: |
1794 | return isolated; |
1795 | } |
1796 | |
1797 | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, |
1798 | struct vm_area_struct *vma, |
1799 | unsigned long address, |
1800 | spinlock_t *ptl) |
1801 | { |
1802 | pte_t *_pte; |
1803 | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { |
1804 | pte_t pteval = *_pte; |
1805 | struct page *src_page; |
1806 | |
1807 | if (pte_none(pteval)) { |
1808 | clear_user_highpage(page, address); |
1809 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); |
1810 | } else { |
1811 | src_page = pte_page(pteval); |
1812 | copy_user_highpage(page, src_page, address, vma); |
1813 | VM_BUG_ON(page_mapcount(src_page) != 1); |
1814 | VM_BUG_ON(page_count(src_page) != 2); |
1815 | release_pte_page(src_page); |
1816 | /* |
1817 | * ptl mostly unnecessary, but preempt has to |
1818 | * be disabled to update the per-cpu stats |
1819 | * inside page_remove_rmap(). |
1820 | */ |
1821 | spin_lock(ptl); |
1822 | /* |
1823 | * paravirt calls inside pte_clear here are |
1824 | * superfluous. |
1825 | */ |
1826 | pte_clear(vma->vm_mm, address, _pte); |
1827 | page_remove_rmap(src_page); |
1828 | spin_unlock(ptl); |
1829 | free_page_and_swap_cache(src_page); |
1830 | } |
1831 | |
1832 | address += PAGE_SIZE; |
1833 | page++; |
1834 | } |
1835 | } |
1836 | |
1837 | static void collapse_huge_page(struct mm_struct *mm, |
1838 | unsigned long address, |
1839 | struct page **hpage, |
1840 | struct vm_area_struct *vma, |
1841 | int node) |
1842 | { |
1843 | pgd_t *pgd; |
1844 | pud_t *pud; |
1845 | pmd_t *pmd, _pmd; |
1846 | pte_t *pte; |
1847 | pgtable_t pgtable; |
1848 | struct page *new_page; |
1849 | spinlock_t *ptl; |
1850 | int isolated; |
1851 | unsigned long hstart, hend; |
1852 | |
1853 | VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
1854 | #ifndef CONFIG_NUMA |
1855 | up_read(&mm->mmap_sem); |
1856 | VM_BUG_ON(!*hpage); |
1857 | new_page = *hpage; |
1858 | #else |
1859 | VM_BUG_ON(*hpage); |
1860 | /* |
1861 | * Allocate the page while the vma is still valid and under |
1862 | * the mmap_sem read mode so there is no memory allocation |
1863 | * later when we take the mmap_sem in write mode. This is more |
1864 | * friendly behavior (OTOH it may actually hide bugs) to |
1865 | * filesystems in userland with daemons allocating memory in |
1866 | * the userland I/O paths. Allocating memory with the |
1867 | * mmap_sem in read mode is good idea also to allow greater |
1868 | * scalability. |
1869 | */ |
1870 | new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address, |
1871 | node, __GFP_OTHER_NODE); |
1872 | |
1873 | /* |
1874 | * After allocating the hugepage, release the mmap_sem read lock in |
1875 | * preparation for taking it in write mode. |
1876 | */ |
1877 | up_read(&mm->mmap_sem); |
1878 | if (unlikely(!new_page)) { |
1879 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); |
1880 | *hpage = ERR_PTR(-ENOMEM); |
1881 | return; |
1882 | } |
1883 | #endif |
1884 | |
1885 | count_vm_event(THP_COLLAPSE_ALLOC); |
1886 | if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { |
1887 | #ifdef CONFIG_NUMA |
1888 | put_page(new_page); |
1889 | #endif |
1890 | return; |
1891 | } |
1892 | |
1893 | /* |
1894 | * Prevent all access to pagetables with the exception of |
1895 | * gup_fast later hanlded by the ptep_clear_flush and the VM |
1896 | * handled by the anon_vma lock + PG_lock. |
1897 | */ |
1898 | down_write(&mm->mmap_sem); |
1899 | if (unlikely(khugepaged_test_exit(mm))) |
1900 | goto out; |
1901 | |
1902 | vma = find_vma(mm, address); |
1903 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
1904 | hend = vma->vm_end & HPAGE_PMD_MASK; |
1905 | if (address < hstart || address + HPAGE_PMD_SIZE > hend) |
1906 | goto out; |
1907 | |
1908 | if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || |
1909 | (vma->vm_flags & VM_NOHUGEPAGE)) |
1910 | goto out; |
1911 | |
1912 | if (!vma->anon_vma || vma->vm_ops) |
1913 | goto out; |
1914 | if (is_vma_temporary_stack(vma)) |
1915 | goto out; |
1916 | /* |
1917 | * If is_pfn_mapping() is true is_learn_pfn_mapping() must be |
1918 | * true too, verify it here. |
1919 | */ |
1920 | VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); |
1921 | |
1922 | pgd = pgd_offset(mm, address); |
1923 | if (!pgd_present(*pgd)) |
1924 | goto out; |
1925 | |
1926 | pud = pud_offset(pgd, address); |
1927 | if (!pud_present(*pud)) |
1928 | goto out; |
1929 | |
1930 | pmd = pmd_offset(pud, address); |
1931 | /* pmd can't go away or become huge under us */ |
1932 | if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) |
1933 | goto out; |
1934 | |
1935 | anon_vma_lock(vma->anon_vma); |
1936 | |
1937 | pte = pte_offset_map(pmd, address); |
1938 | ptl = pte_lockptr(mm, pmd); |
1939 | |
1940 | spin_lock(&mm->page_table_lock); /* probably unnecessary */ |
1941 | /* |
1942 | * After this gup_fast can't run anymore. This also removes |
1943 | * any huge TLB entry from the CPU so we won't allow |
1944 | * huge and small TLB entries for the same virtual address |
1945 | * to avoid the risk of CPU bugs in that area. |
1946 | */ |
1947 | _pmd = pmdp_clear_flush_notify(vma, address, pmd); |
1948 | spin_unlock(&mm->page_table_lock); |
1949 | |
1950 | spin_lock(ptl); |
1951 | isolated = __collapse_huge_page_isolate(vma, address, pte); |
1952 | spin_unlock(ptl); |
1953 | |
1954 | if (unlikely(!isolated)) { |
1955 | pte_unmap(pte); |
1956 | spin_lock(&mm->page_table_lock); |
1957 | BUG_ON(!pmd_none(*pmd)); |
1958 | set_pmd_at(mm, address, pmd, _pmd); |
1959 | spin_unlock(&mm->page_table_lock); |
1960 | anon_vma_unlock(vma->anon_vma); |
1961 | goto out; |
1962 | } |
1963 | |
1964 | /* |
1965 | * All pages are isolated and locked so anon_vma rmap |
1966 | * can't run anymore. |
1967 | */ |
1968 | anon_vma_unlock(vma->anon_vma); |
1969 | |
1970 | __collapse_huge_page_copy(pte, new_page, vma, address, ptl); |
1971 | pte_unmap(pte); |
1972 | __SetPageUptodate(new_page); |
1973 | pgtable = pmd_pgtable(_pmd); |
1974 | VM_BUG_ON(page_count(pgtable) != 1); |
1975 | VM_BUG_ON(page_mapcount(pgtable) != 0); |
1976 | |
1977 | _pmd = mk_pmd(new_page, vma->vm_page_prot); |
1978 | _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); |
1979 | _pmd = pmd_mkhuge(_pmd); |
1980 | |
1981 | /* |
1982 | * spin_lock() below is not the equivalent of smp_wmb(), so |
1983 | * this is needed to avoid the copy_huge_page writes to become |
1984 | * visible after the set_pmd_at() write. |
1985 | */ |
1986 | smp_wmb(); |
1987 | |
1988 | spin_lock(&mm->page_table_lock); |
1989 | BUG_ON(!pmd_none(*pmd)); |
1990 | page_add_new_anon_rmap(new_page, vma, address); |
1991 | set_pmd_at(mm, address, pmd, _pmd); |
1992 | update_mmu_cache(vma, address, _pmd); |
1993 | prepare_pmd_huge_pte(pgtable, mm); |
1994 | spin_unlock(&mm->page_table_lock); |
1995 | |
1996 | #ifndef CONFIG_NUMA |
1997 | *hpage = NULL; |
1998 | #endif |
1999 | khugepaged_pages_collapsed++; |
2000 | out_up_write: |
2001 | up_write(&mm->mmap_sem); |
2002 | return; |
2003 | |
2004 | out: |
2005 | mem_cgroup_uncharge_page(new_page); |
2006 | #ifdef CONFIG_NUMA |
2007 | put_page(new_page); |
2008 | #endif |
2009 | goto out_up_write; |
2010 | } |
2011 | |
2012 | static int khugepaged_scan_pmd(struct mm_struct *mm, |
2013 | struct vm_area_struct *vma, |
2014 | unsigned long address, |
2015 | struct page **hpage) |
2016 | { |
2017 | pgd_t *pgd; |
2018 | pud_t *pud; |
2019 | pmd_t *pmd; |
2020 | pte_t *pte, *_pte; |
2021 | int ret = 0, referenced = 0, none = 0; |
2022 | struct page *page; |
2023 | unsigned long _address; |
2024 | spinlock_t *ptl; |
2025 | int node = -1; |
2026 | |
2027 | VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
2028 | |
2029 | pgd = pgd_offset(mm, address); |
2030 | if (!pgd_present(*pgd)) |
2031 | goto out; |
2032 | |
2033 | pud = pud_offset(pgd, address); |
2034 | if (!pud_present(*pud)) |
2035 | goto out; |
2036 | |
2037 | pmd = pmd_offset(pud, address); |
2038 | if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) |
2039 | goto out; |
2040 | |
2041 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
2042 | for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; |
2043 | _pte++, _address += PAGE_SIZE) { |
2044 | pte_t pteval = *_pte; |
2045 | if (pte_none(pteval)) { |
2046 | if (++none <= khugepaged_max_ptes_none) |
2047 | continue; |
2048 | else |
2049 | goto out_unmap; |
2050 | } |
2051 | if (!pte_present(pteval) || !pte_write(pteval)) |
2052 | goto out_unmap; |
2053 | page = vm_normal_page(vma, _address, pteval); |
2054 | if (unlikely(!page)) |
2055 | goto out_unmap; |
2056 | /* |
2057 | * Chose the node of the first page. This could |
2058 | * be more sophisticated and look at more pages, |
2059 | * but isn't for now. |
2060 | */ |
2061 | if (node == -1) |
2062 | node = page_to_nid(page); |
2063 | VM_BUG_ON(PageCompound(page)); |
2064 | if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) |
2065 | goto out_unmap; |
2066 | /* cannot use mapcount: can't collapse if there's a gup pin */ |
2067 | if (page_count(page) != 1) |
2068 | goto out_unmap; |
2069 | if (pte_young(pteval) || PageReferenced(page) || |
2070 | mmu_notifier_test_young(vma->vm_mm, address)) |
2071 | referenced = 1; |
2072 | } |
2073 | if (referenced) |
2074 | ret = 1; |
2075 | out_unmap: |
2076 | pte_unmap_unlock(pte, ptl); |
2077 | if (ret) |
2078 | /* collapse_huge_page will return with the mmap_sem released */ |
2079 | collapse_huge_page(mm, address, hpage, vma, node); |
2080 | out: |
2081 | return ret; |
2082 | } |
2083 | |
2084 | static void collect_mm_slot(struct mm_slot *mm_slot) |
2085 | { |
2086 | struct mm_struct *mm = mm_slot->mm; |
2087 | |
2088 | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); |
2089 | |
2090 | if (khugepaged_test_exit(mm)) { |
2091 | /* free mm_slot */ |
2092 | hlist_del(&mm_slot->hash); |
2093 | list_del(&mm_slot->mm_node); |
2094 | |
2095 | /* |
2096 | * Not strictly needed because the mm exited already. |
2097 | * |
2098 | * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); |
2099 | */ |
2100 | |
2101 | /* khugepaged_mm_lock actually not necessary for the below */ |
2102 | free_mm_slot(mm_slot); |
2103 | mmdrop(mm); |
2104 | } |
2105 | } |
2106 | |
2107 | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, |
2108 | struct page **hpage) |
2109 | __releases(&khugepaged_mm_lock) |
2110 | __acquires(&khugepaged_mm_lock) |
2111 | { |
2112 | struct mm_slot *mm_slot; |
2113 | struct mm_struct *mm; |
2114 | struct vm_area_struct *vma; |
2115 | int progress = 0; |
2116 | |
2117 | VM_BUG_ON(!pages); |
2118 | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); |
2119 | |
2120 | if (khugepaged_scan.mm_slot) |
2121 | mm_slot = khugepaged_scan.mm_slot; |
2122 | else { |
2123 | mm_slot = list_entry(khugepaged_scan.mm_head.next, |
2124 | struct mm_slot, mm_node); |
2125 | khugepaged_scan.address = 0; |
2126 | khugepaged_scan.mm_slot = mm_slot; |
2127 | } |
2128 | spin_unlock(&khugepaged_mm_lock); |
2129 | |
2130 | mm = mm_slot->mm; |
2131 | down_read(&mm->mmap_sem); |
2132 | if (unlikely(khugepaged_test_exit(mm))) |
2133 | vma = NULL; |
2134 | else |
2135 | vma = find_vma(mm, khugepaged_scan.address); |
2136 | |
2137 | progress++; |
2138 | for (; vma; vma = vma->vm_next) { |
2139 | unsigned long hstart, hend; |
2140 | |
2141 | cond_resched(); |
2142 | if (unlikely(khugepaged_test_exit(mm))) { |
2143 | progress++; |
2144 | break; |
2145 | } |
2146 | |
2147 | if ((!(vma->vm_flags & VM_HUGEPAGE) && |
2148 | !khugepaged_always()) || |
2149 | (vma->vm_flags & VM_NOHUGEPAGE)) { |
2150 | skip: |
2151 | progress++; |
2152 | continue; |
2153 | } |
2154 | if (!vma->anon_vma || vma->vm_ops) |
2155 | goto skip; |
2156 | if (is_vma_temporary_stack(vma)) |
2157 | goto skip; |
2158 | /* |
2159 | * If is_pfn_mapping() is true is_learn_pfn_mapping() |
2160 | * must be true too, verify it here. |
2161 | */ |
2162 | VM_BUG_ON(is_linear_pfn_mapping(vma) || |
2163 | vma->vm_flags & VM_NO_THP); |
2164 | |
2165 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
2166 | hend = vma->vm_end & HPAGE_PMD_MASK; |
2167 | if (hstart >= hend) |
2168 | goto skip; |
2169 | if (khugepaged_scan.address > hend) |
2170 | goto skip; |
2171 | if (khugepaged_scan.address < hstart) |
2172 | khugepaged_scan.address = hstart; |
2173 | VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); |
2174 | |
2175 | while (khugepaged_scan.address < hend) { |
2176 | int ret; |
2177 | cond_resched(); |
2178 | if (unlikely(khugepaged_test_exit(mm))) |
2179 | goto breakouterloop; |
2180 | |
2181 | VM_BUG_ON(khugepaged_scan.address < hstart || |
2182 | khugepaged_scan.address + HPAGE_PMD_SIZE > |
2183 | hend); |
2184 | ret = khugepaged_scan_pmd(mm, vma, |
2185 | khugepaged_scan.address, |
2186 | hpage); |
2187 | /* move to next address */ |
2188 | khugepaged_scan.address += HPAGE_PMD_SIZE; |
2189 | progress += HPAGE_PMD_NR; |
2190 | if (ret) |
2191 | /* we released mmap_sem so break loop */ |
2192 | goto breakouterloop_mmap_sem; |
2193 | if (progress >= pages) |
2194 | goto breakouterloop; |
2195 | } |
2196 | } |
2197 | breakouterloop: |
2198 | up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ |
2199 | breakouterloop_mmap_sem: |
2200 | |
2201 | spin_lock(&khugepaged_mm_lock); |
2202 | VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); |
2203 | /* |
2204 | * Release the current mm_slot if this mm is about to die, or |
2205 | * if we scanned all vmas of this mm. |
2206 | */ |
2207 | if (khugepaged_test_exit(mm) || !vma) { |
2208 | /* |
2209 | * Make sure that if mm_users is reaching zero while |
2210 | * khugepaged runs here, khugepaged_exit will find |
2211 | * mm_slot not pointing to the exiting mm. |
2212 | */ |
2213 | if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { |
2214 | khugepaged_scan.mm_slot = list_entry( |
2215 | mm_slot->mm_node.next, |
2216 | struct mm_slot, mm_node); |
2217 | khugepaged_scan.address = 0; |
2218 | } else { |
2219 | khugepaged_scan.mm_slot = NULL; |
2220 | khugepaged_full_scans++; |
2221 | } |
2222 | |
2223 | collect_mm_slot(mm_slot); |
2224 | } |
2225 | |
2226 | return progress; |
2227 | } |
2228 | |
2229 | static int khugepaged_has_work(void) |
2230 | { |
2231 | return !list_empty(&khugepaged_scan.mm_head) && |
2232 | khugepaged_enabled(); |
2233 | } |
2234 | |
2235 | static int khugepaged_wait_event(void) |
2236 | { |
2237 | return !list_empty(&khugepaged_scan.mm_head) || |
2238 | !khugepaged_enabled(); |
2239 | } |
2240 | |
2241 | static void khugepaged_do_scan(struct page **hpage) |
2242 | { |
2243 | unsigned int progress = 0, pass_through_head = 0; |
2244 | unsigned int pages = khugepaged_pages_to_scan; |
2245 | |
2246 | barrier(); /* write khugepaged_pages_to_scan to local stack */ |
2247 | |
2248 | while (progress < pages) { |
2249 | cond_resched(); |
2250 | |
2251 | #ifndef CONFIG_NUMA |
2252 | if (!*hpage) { |
2253 | *hpage = alloc_hugepage(khugepaged_defrag()); |
2254 | if (unlikely(!*hpage)) { |
2255 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); |
2256 | break; |
2257 | } |
2258 | count_vm_event(THP_COLLAPSE_ALLOC); |
2259 | } |
2260 | #else |
2261 | if (IS_ERR(*hpage)) |
2262 | break; |
2263 | #endif |
2264 | |
2265 | if (unlikely(kthread_should_stop() || freezing(current))) |
2266 | break; |
2267 | |
2268 | spin_lock(&khugepaged_mm_lock); |
2269 | if (!khugepaged_scan.mm_slot) |
2270 | pass_through_head++; |
2271 | if (khugepaged_has_work() && |
2272 | pass_through_head < 2) |
2273 | progress += khugepaged_scan_mm_slot(pages - progress, |
2274 | hpage); |
2275 | else |
2276 | progress = pages; |
2277 | spin_unlock(&khugepaged_mm_lock); |
2278 | } |
2279 | } |
2280 | |
2281 | static void khugepaged_alloc_sleep(void) |
2282 | { |
2283 | wait_event_freezable_timeout(khugepaged_wait, false, |
2284 | msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); |
2285 | } |
2286 | |
2287 | #ifndef CONFIG_NUMA |
2288 | static struct page *khugepaged_alloc_hugepage(void) |
2289 | { |
2290 | struct page *hpage; |
2291 | |
2292 | do { |
2293 | hpage = alloc_hugepage(khugepaged_defrag()); |
2294 | if (!hpage) { |
2295 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); |
2296 | khugepaged_alloc_sleep(); |
2297 | } else |
2298 | count_vm_event(THP_COLLAPSE_ALLOC); |
2299 | } while (unlikely(!hpage) && |
2300 | likely(khugepaged_enabled())); |
2301 | return hpage; |
2302 | } |
2303 | #endif |
2304 | |
2305 | static void khugepaged_loop(void) |
2306 | { |
2307 | struct page *hpage; |
2308 | |
2309 | #ifdef CONFIG_NUMA |
2310 | hpage = NULL; |
2311 | #endif |
2312 | while (likely(khugepaged_enabled())) { |
2313 | #ifndef CONFIG_NUMA |
2314 | hpage = khugepaged_alloc_hugepage(); |
2315 | if (unlikely(!hpage)) |
2316 | break; |
2317 | #else |
2318 | if (IS_ERR(hpage)) { |
2319 | khugepaged_alloc_sleep(); |
2320 | hpage = NULL; |
2321 | } |
2322 | #endif |
2323 | |
2324 | khugepaged_do_scan(&hpage); |
2325 | #ifndef CONFIG_NUMA |
2326 | if (hpage) |
2327 | put_page(hpage); |
2328 | #endif |
2329 | try_to_freeze(); |
2330 | if (unlikely(kthread_should_stop())) |
2331 | break; |
2332 | if (khugepaged_has_work()) { |
2333 | if (!khugepaged_scan_sleep_millisecs) |
2334 | continue; |
2335 | wait_event_freezable_timeout(khugepaged_wait, false, |
2336 | msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); |
2337 | } else if (khugepaged_enabled()) |
2338 | wait_event_freezable(khugepaged_wait, |
2339 | khugepaged_wait_event()); |
2340 | } |
2341 | } |
2342 | |
2343 | static int khugepaged(void *none) |
2344 | { |
2345 | struct mm_slot *mm_slot; |
2346 | |
2347 | set_freezable(); |
2348 | set_user_nice(current, 19); |
2349 | |
2350 | /* serialize with start_khugepaged() */ |
2351 | mutex_lock(&khugepaged_mutex); |
2352 | |
2353 | for (;;) { |
2354 | mutex_unlock(&khugepaged_mutex); |
2355 | VM_BUG_ON(khugepaged_thread != current); |
2356 | khugepaged_loop(); |
2357 | VM_BUG_ON(khugepaged_thread != current); |
2358 | |
2359 | mutex_lock(&khugepaged_mutex); |
2360 | if (!khugepaged_enabled()) |
2361 | break; |
2362 | if (unlikely(kthread_should_stop())) |
2363 | break; |
2364 | } |
2365 | |
2366 | spin_lock(&khugepaged_mm_lock); |
2367 | mm_slot = khugepaged_scan.mm_slot; |
2368 | khugepaged_scan.mm_slot = NULL; |
2369 | if (mm_slot) |
2370 | collect_mm_slot(mm_slot); |
2371 | spin_unlock(&khugepaged_mm_lock); |
2372 | |
2373 | khugepaged_thread = NULL; |
2374 | mutex_unlock(&khugepaged_mutex); |
2375 | |
2376 | return 0; |
2377 | } |
2378 | |
2379 | void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) |
2380 | { |
2381 | struct page *page; |
2382 | |
2383 | spin_lock(&mm->page_table_lock); |
2384 | if (unlikely(!pmd_trans_huge(*pmd))) { |
2385 | spin_unlock(&mm->page_table_lock); |
2386 | return; |
2387 | } |
2388 | page = pmd_page(*pmd); |
2389 | VM_BUG_ON(!page_count(page)); |
2390 | get_page(page); |
2391 | spin_unlock(&mm->page_table_lock); |
2392 | |
2393 | split_huge_page(page); |
2394 | |
2395 | put_page(page); |
2396 | BUG_ON(pmd_trans_huge(*pmd)); |
2397 | } |
2398 | |
2399 | static void split_huge_page_address(struct mm_struct *mm, |
2400 | unsigned long address) |
2401 | { |
2402 | pgd_t *pgd; |
2403 | pud_t *pud; |
2404 | pmd_t *pmd; |
2405 | |
2406 | VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); |
2407 | |
2408 | pgd = pgd_offset(mm, address); |
2409 | if (!pgd_present(*pgd)) |
2410 | return; |
2411 | |
2412 | pud = pud_offset(pgd, address); |
2413 | if (!pud_present(*pud)) |
2414 | return; |
2415 | |
2416 | pmd = pmd_offset(pud, address); |
2417 | if (!pmd_present(*pmd)) |
2418 | return; |
2419 | /* |
2420 | * Caller holds the mmap_sem write mode, so a huge pmd cannot |
2421 | * materialize from under us. |
2422 | */ |
2423 | split_huge_page_pmd(mm, pmd); |
2424 | } |
2425 | |
2426 | void __vma_adjust_trans_huge(struct vm_area_struct *vma, |
2427 | unsigned long start, |
2428 | unsigned long end, |
2429 | long adjust_next) |
2430 | { |
2431 | /* |
2432 | * If the new start address isn't hpage aligned and it could |
2433 | * previously contain an hugepage: check if we need to split |
2434 | * an huge pmd. |
2435 | */ |
2436 | if (start & ~HPAGE_PMD_MASK && |
2437 | (start & HPAGE_PMD_MASK) >= vma->vm_start && |
2438 | (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) |
2439 | split_huge_page_address(vma->vm_mm, start); |
2440 | |
2441 | /* |
2442 | * If the new end address isn't hpage aligned and it could |
2443 | * previously contain an hugepage: check if we need to split |
2444 | * an huge pmd. |
2445 | */ |
2446 | if (end & ~HPAGE_PMD_MASK && |
2447 | (end & HPAGE_PMD_MASK) >= vma->vm_start && |
2448 | (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) |
2449 | split_huge_page_address(vma->vm_mm, end); |
2450 | |
2451 | /* |
2452 | * If we're also updating the vma->vm_next->vm_start, if the new |
2453 | * vm_next->vm_start isn't page aligned and it could previously |
2454 | * contain an hugepage: check if we need to split an huge pmd. |
2455 | */ |
2456 | if (adjust_next > 0) { |
2457 | struct vm_area_struct *next = vma->vm_next; |
2458 | unsigned long nstart = next->vm_start; |
2459 | nstart += adjust_next << PAGE_SHIFT; |
2460 | if (nstart & ~HPAGE_PMD_MASK && |
2461 | (nstart & HPAGE_PMD_MASK) >= next->vm_start && |
2462 | (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) |
2463 | split_huge_page_address(next->vm_mm, nstart); |
2464 | } |
2465 | } |
2466 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9