Root/mm/hugetlb.c

1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/tlb.h>
28
29#include <linux/io.h>
30#include <linux/hugetlb.h>
31#include <linux/hugetlb_cgroup.h>
32#include <linux/node.h>
33#include <linux/hugetlb_cgroup.h>
34#include "internal.h"
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38unsigned long hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
44__initdata LIST_HEAD(huge_boot_pages);
45
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
49static unsigned long __initdata default_hstate_size;
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58    bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60    spin_unlock(&spool->lock);
61
62    /* If no pages are used, and no other handles to the subpool
63     * remain, free the subpool the subpool remain */
64    if (free)
65        kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70    struct hugepage_subpool *spool;
71
72    spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73    if (!spool)
74        return NULL;
75
76    spin_lock_init(&spool->lock);
77    spool->count = 1;
78    spool->max_hpages = nr_blocks;
79    spool->used_hpages = 0;
80
81    return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86    spin_lock(&spool->lock);
87    BUG_ON(!spool->count);
88    spool->count--;
89    unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                      long delta)
94{
95    int ret = 0;
96
97    if (!spool)
98        return 0;
99
100    spin_lock(&spool->lock);
101    if ((spool->used_hpages + delta) <= spool->max_hpages) {
102        spool->used_hpages += delta;
103    } else {
104        ret = -ENOMEM;
105    }
106    spin_unlock(&spool->lock);
107
108    return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                       long delta)
113{
114    if (!spool)
115        return;
116
117    spin_lock(&spool->lock);
118    spool->used_hpages -= delta;
119    /* If hugetlbfs_put_super couldn't free spool due to
120    * an outstanding quota reference, free it now. */
121    unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126    return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131    return subpool_inode(vma->vm_file->f_dentry->d_inode);
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149    struct list_head link;
150    long from;
151    long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156    struct file_region *rg, *nrg, *trg;
157
158    /* Locate the region we are either in or before. */
159    list_for_each_entry(rg, head, link)
160        if (f <= rg->to)
161            break;
162
163    /* Round our left edge to the current segment if it encloses us. */
164    if (f > rg->from)
165        f = rg->from;
166
167    /* Check for and consume any regions we now overlap with. */
168    nrg = rg;
169    list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170        if (&rg->link == head)
171            break;
172        if (rg->from > t)
173            break;
174
175        /* If this area reaches higher then extend our area to
176         * include it completely. If this is not the first area
177         * which we intend to reuse, free it. */
178        if (rg->to > t)
179            t = rg->to;
180        if (rg != nrg) {
181            list_del(&rg->link);
182            kfree(rg);
183        }
184    }
185    nrg->from = f;
186    nrg->to = t;
187    return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192    struct file_region *rg, *nrg;
193    long chg = 0;
194
195    /* Locate the region we are before or in. */
196    list_for_each_entry(rg, head, link)
197        if (f <= rg->to)
198            break;
199
200    /* If we are below the current region then a new region is required.
201     * Subtle, allocate a new region at the position but make it zero
202     * size such that we can guarantee to record the reservation. */
203    if (&rg->link == head || t < rg->from) {
204        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205        if (!nrg)
206            return -ENOMEM;
207        nrg->from = f;
208        nrg->to = f;
209        INIT_LIST_HEAD(&nrg->link);
210        list_add(&nrg->link, rg->link.prev);
211
212        return t - f;
213    }
214
215    /* Round our left edge to the current segment if it encloses us. */
216    if (f > rg->from)
217        f = rg->from;
218    chg = t - f;
219
220    /* Check for and consume any regions we now overlap with. */
221    list_for_each_entry(rg, rg->link.prev, link) {
222        if (&rg->link == head)
223            break;
224        if (rg->from > t)
225            return chg;
226
227        /* We overlap with this area, if it extends further than
228         * us then we must extend ourselves. Account for its
229         * existing reservation. */
230        if (rg->to > t) {
231            chg += rg->to - t;
232            t = rg->to;
233        }
234        chg -= rg->to - rg->from;
235    }
236    return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241    struct file_region *rg, *trg;
242    long chg = 0;
243
244    /* Locate the region we are either in or before. */
245    list_for_each_entry(rg, head, link)
246        if (end <= rg->to)
247            break;
248    if (&rg->link == head)
249        return 0;
250
251    /* If we are in the middle of a region then adjust it. */
252    if (end > rg->from) {
253        chg = rg->to - end;
254        rg->to = end;
255        rg = list_entry(rg->link.next, typeof(*rg), link);
256    }
257
258    /* Drop any remaining regions. */
259    list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260        if (&rg->link == head)
261            break;
262        chg += rg->to - rg->from;
263        list_del(&rg->link);
264        kfree(rg);
265    }
266    return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271    struct file_region *rg;
272    long chg = 0;
273
274    /* Locate each segment we overlap with, and count that overlap. */
275    list_for_each_entry(rg, head, link) {
276        long seg_from;
277        long seg_to;
278
279        if (rg->to <= f)
280            continue;
281        if (rg->from >= t)
282            break;
283
284        seg_from = max(rg->from, f);
285        seg_to = min(rg->to, t);
286
287        chg += seg_to - seg_from;
288    }
289
290    return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298            struct vm_area_struct *vma, unsigned long address)
299{
300    return ((address - vma->vm_start) >> huge_page_shift(h)) +
301            (vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                     unsigned long address)
306{
307    return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316    struct hstate *hstate;
317
318    if (!is_vm_hugetlb_page(vma))
319        return PAGE_SIZE;
320
321    hstate = hstate_vma(vma);
322
323    return 1UL << (hstate->order + PAGE_SHIFT);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336    return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370    return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374                            unsigned long value)
375{
376    vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380    struct kref refs;
381    struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386    struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387    if (!resv_map)
388        return NULL;
389
390    kref_init(&resv_map->refs);
391    INIT_LIST_HEAD(&resv_map->regions);
392
393    return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398    struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400    /* Clear out any active regions before we release the map. */
401    region_truncate(&resv_map->regions, 0);
402    kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407    VM_BUG_ON(!is_vm_hugetlb_page(vma));
408    if (!(vma->vm_flags & VM_MAYSHARE))
409        return (struct resv_map *)(get_vma_private_data(vma) &
410                            ~HPAGE_RESV_MASK);
411    return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416    VM_BUG_ON(!is_vm_hugetlb_page(vma));
417    VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419    set_vma_private_data(vma, (get_vma_private_data(vma) &
420                HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425    VM_BUG_ON(!is_vm_hugetlb_page(vma));
426    VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428    set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433    VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435    return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Decrement the reserved pages in the hugepage pool by one */
439static void decrement_hugepage_resv_vma(struct hstate *h,
440            struct vm_area_struct *vma)
441{
442    if (vma->vm_flags & VM_NORESERVE)
443        return;
444
445    if (vma->vm_flags & VM_MAYSHARE) {
446        /* Shared mappings always use reserves */
447        h->resv_huge_pages--;
448    } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449        /*
450         * Only the process that called mmap() has reserves for
451         * private mappings.
452         */
453        h->resv_huge_pages--;
454    }
455}
456
457/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459{
460    VM_BUG_ON(!is_vm_hugetlb_page(vma));
461    if (!(vma->vm_flags & VM_MAYSHARE))
462        vma->vm_private_data = (void *)0;
463}
464
465/* Returns true if the VMA has associated reserve pages */
466static int vma_has_reserves(struct vm_area_struct *vma)
467{
468    if (vma->vm_flags & VM_MAYSHARE)
469        return 1;
470    if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471        return 1;
472    return 0;
473}
474
475static void copy_gigantic_page(struct page *dst, struct page *src)
476{
477    int i;
478    struct hstate *h = page_hstate(src);
479    struct page *dst_base = dst;
480    struct page *src_base = src;
481
482    for (i = 0; i < pages_per_huge_page(h); ) {
483        cond_resched();
484        copy_highpage(dst, src);
485
486        i++;
487        dst = mem_map_next(dst, dst_base, i);
488        src = mem_map_next(src, src_base, i);
489    }
490}
491
492void copy_huge_page(struct page *dst, struct page *src)
493{
494    int i;
495    struct hstate *h = page_hstate(src);
496
497    if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498        copy_gigantic_page(dst, src);
499        return;
500    }
501
502    might_sleep();
503    for (i = 0; i < pages_per_huge_page(h); i++) {
504        cond_resched();
505        copy_highpage(dst + i, src + i);
506    }
507}
508
509static void enqueue_huge_page(struct hstate *h, struct page *page)
510{
511    int nid = page_to_nid(page);
512    list_move(&page->lru, &h->hugepage_freelists[nid]);
513    h->free_huge_pages++;
514    h->free_huge_pages_node[nid]++;
515}
516
517static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518{
519    struct page *page;
520
521    if (list_empty(&h->hugepage_freelists[nid]))
522        return NULL;
523    page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524    list_move(&page->lru, &h->hugepage_activelist);
525    set_page_refcounted(page);
526    h->free_huge_pages--;
527    h->free_huge_pages_node[nid]--;
528    return page;
529}
530
531static struct page *dequeue_huge_page_vma(struct hstate *h,
532                struct vm_area_struct *vma,
533                unsigned long address, int avoid_reserve)
534{
535    struct page *page = NULL;
536    struct mempolicy *mpol;
537    nodemask_t *nodemask;
538    struct zonelist *zonelist;
539    struct zone *zone;
540    struct zoneref *z;
541    unsigned int cpuset_mems_cookie;
542
543retry_cpuset:
544    cpuset_mems_cookie = get_mems_allowed();
545    zonelist = huge_zonelist(vma, address,
546                    htlb_alloc_mask, &mpol, &nodemask);
547    /*
548     * A child process with MAP_PRIVATE mappings created by their parent
549     * have no page reserves. This check ensures that reservations are
550     * not "stolen". The child may still get SIGKILLed
551     */
552    if (!vma_has_reserves(vma) &&
553            h->free_huge_pages - h->resv_huge_pages == 0)
554        goto err;
555
556    /* If reserves cannot be used, ensure enough pages are in the pool */
557    if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558        goto err;
559
560    for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                        MAX_NR_ZONES - 1, nodemask) {
562        if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563            page = dequeue_huge_page_node(h, zone_to_nid(zone));
564            if (page) {
565                if (!avoid_reserve)
566                    decrement_hugepage_resv_vma(h, vma);
567                break;
568            }
569        }
570    }
571
572    mpol_cond_put(mpol);
573    if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574        goto retry_cpuset;
575    return page;
576
577err:
578    mpol_cond_put(mpol);
579    return NULL;
580}
581
582static void update_and_free_page(struct hstate *h, struct page *page)
583{
584    int i;
585
586    VM_BUG_ON(h->order >= MAX_ORDER);
587
588    h->nr_huge_pages--;
589    h->nr_huge_pages_node[page_to_nid(page)]--;
590    for (i = 0; i < pages_per_huge_page(h); i++) {
591        page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                1 << PG_referenced | 1 << PG_dirty |
593                1 << PG_active | 1 << PG_reserved |
594                1 << PG_private | 1 << PG_writeback);
595    }
596    VM_BUG_ON(hugetlb_cgroup_from_page(page));
597    set_compound_page_dtor(page, NULL);
598    set_page_refcounted(page);
599    arch_release_hugepage(page);
600    __free_pages(page, huge_page_order(h));
601}
602
603struct hstate *size_to_hstate(unsigned long size)
604{
605    struct hstate *h;
606
607    for_each_hstate(h) {
608        if (huge_page_size(h) == size)
609            return h;
610    }
611    return NULL;
612}
613
614static void free_huge_page(struct page *page)
615{
616    /*
617     * Can't pass hstate in here because it is called from the
618     * compound page destructor.
619     */
620    struct hstate *h = page_hstate(page);
621    int nid = page_to_nid(page);
622    struct hugepage_subpool *spool =
623        (struct hugepage_subpool *)page_private(page);
624
625    set_page_private(page, 0);
626    page->mapping = NULL;
627    BUG_ON(page_count(page));
628    BUG_ON(page_mapcount(page));
629
630    spin_lock(&hugetlb_lock);
631    hugetlb_cgroup_uncharge_page(hstate_index(h),
632                     pages_per_huge_page(h), page);
633    if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634        /* remove the page from active list */
635        list_del(&page->lru);
636        update_and_free_page(h, page);
637        h->surplus_huge_pages--;
638        h->surplus_huge_pages_node[nid]--;
639    } else {
640        enqueue_huge_page(h, page);
641    }
642    spin_unlock(&hugetlb_lock);
643    hugepage_subpool_put_pages(spool, 1);
644}
645
646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647{
648    INIT_LIST_HEAD(&page->lru);
649    set_compound_page_dtor(page, free_huge_page);
650    spin_lock(&hugetlb_lock);
651    set_hugetlb_cgroup(page, NULL);
652    h->nr_huge_pages++;
653    h->nr_huge_pages_node[nid]++;
654    spin_unlock(&hugetlb_lock);
655    put_page(page); /* free it into the hugepage allocator */
656}
657
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660    int i;
661    int nr_pages = 1 << order;
662    struct page *p = page + 1;
663
664    /* we rely on prep_new_huge_page to set the destructor */
665    set_compound_order(page, order);
666    __SetPageHead(page);
667    for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668        __SetPageTail(p);
669        set_page_count(p, 0);
670        p->first_page = page;
671    }
672}
673
674int PageHuge(struct page *page)
675{
676    compound_page_dtor *dtor;
677
678    if (!PageCompound(page))
679        return 0;
680
681    page = compound_head(page);
682    dtor = get_compound_page_dtor(page);
683
684    return dtor == free_huge_page;
685}
686EXPORT_SYMBOL_GPL(PageHuge);
687
688static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
689{
690    struct page *page;
691
692    if (h->order >= MAX_ORDER)
693        return NULL;
694
695    page = alloc_pages_exact_node(nid,
696        htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697                        __GFP_REPEAT|__GFP_NOWARN,
698        huge_page_order(h));
699    if (page) {
700        if (arch_prepare_hugepage(page)) {
701            __free_pages(page, huge_page_order(h));
702            return NULL;
703        }
704        prep_new_huge_page(h, page, nid);
705    }
706
707    return page;
708}
709
710/*
711 * common helper functions for hstate_next_node_to_{alloc|free}.
712 * We may have allocated or freed a huge page based on a different
713 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714 * be outside of *nodes_allowed. Ensure that we use an allowed
715 * node for alloc or free.
716 */
717static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718{
719    nid = next_node(nid, *nodes_allowed);
720    if (nid == MAX_NUMNODES)
721        nid = first_node(*nodes_allowed);
722    VM_BUG_ON(nid >= MAX_NUMNODES);
723
724    return nid;
725}
726
727static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728{
729    if (!node_isset(nid, *nodes_allowed))
730        nid = next_node_allowed(nid, nodes_allowed);
731    return nid;
732}
733
734/*
735 * returns the previously saved node ["this node"] from which to
736 * allocate a persistent huge page for the pool and advance the
737 * next node from which to allocate, handling wrap at end of node
738 * mask.
739 */
740static int hstate_next_node_to_alloc(struct hstate *h,
741                    nodemask_t *nodes_allowed)
742{
743    int nid;
744
745    VM_BUG_ON(!nodes_allowed);
746
747    nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748    h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749
750    return nid;
751}
752
753static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754{
755    struct page *page;
756    int start_nid;
757    int next_nid;
758    int ret = 0;
759
760    start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761    next_nid = start_nid;
762
763    do {
764        page = alloc_fresh_huge_page_node(h, next_nid);
765        if (page) {
766            ret = 1;
767            break;
768        }
769        next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770    } while (next_nid != start_nid);
771
772    if (ret)
773        count_vm_event(HTLB_BUDDY_PGALLOC);
774    else
775        count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776
777    return ret;
778}
779
780/*
781 * helper for free_pool_huge_page() - return the previously saved
782 * node ["this node"] from which to free a huge page. Advance the
783 * next node id whether or not we find a free huge page to free so
784 * that the next attempt to free addresses the next node.
785 */
786static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787{
788    int nid;
789
790    VM_BUG_ON(!nodes_allowed);
791
792    nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793    h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794
795    return nid;
796}
797
798/*
799 * Free huge page from pool from next node to free.
800 * Attempt to keep persistent huge pages more or less
801 * balanced over allowed nodes.
802 * Called with hugetlb_lock locked.
803 */
804static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805                             bool acct_surplus)
806{
807    int start_nid;
808    int next_nid;
809    int ret = 0;
810
811    start_nid = hstate_next_node_to_free(h, nodes_allowed);
812    next_nid = start_nid;
813
814    do {
815        /*
816         * If we're returning unused surplus pages, only examine
817         * nodes with surplus pages.
818         */
819        if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820            !list_empty(&h->hugepage_freelists[next_nid])) {
821            struct page *page =
822                list_entry(h->hugepage_freelists[next_nid].next,
823                      struct page, lru);
824            list_del(&page->lru);
825            h->free_huge_pages--;
826            h->free_huge_pages_node[next_nid]--;
827            if (acct_surplus) {
828                h->surplus_huge_pages--;
829                h->surplus_huge_pages_node[next_nid]--;
830            }
831            update_and_free_page(h, page);
832            ret = 1;
833            break;
834        }
835        next_nid = hstate_next_node_to_free(h, nodes_allowed);
836    } while (next_nid != start_nid);
837
838    return ret;
839}
840
841static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842{
843    struct page *page;
844    unsigned int r_nid;
845
846    if (h->order >= MAX_ORDER)
847        return NULL;
848
849    /*
850     * Assume we will successfully allocate the surplus page to
851     * prevent racing processes from causing the surplus to exceed
852     * overcommit
853     *
854     * This however introduces a different race, where a process B
855     * tries to grow the static hugepage pool while alloc_pages() is
856     * called by process A. B will only examine the per-node
857     * counters in determining if surplus huge pages can be
858     * converted to normal huge pages in adjust_pool_surplus(). A
859     * won't be able to increment the per-node counter, until the
860     * lock is dropped by B, but B doesn't drop hugetlb_lock until
861     * no more huge pages can be converted from surplus to normal
862     * state (and doesn't try to convert again). Thus, we have a
863     * case where a surplus huge page exists, the pool is grown, and
864     * the surplus huge page still exists after, even though it
865     * should just have been converted to a normal huge page. This
866     * does not leak memory, though, as the hugepage will be freed
867     * once it is out of use. It also does not allow the counters to
868     * go out of whack in adjust_pool_surplus() as we don't modify
869     * the node values until we've gotten the hugepage and only the
870     * per-node value is checked there.
871     */
872    spin_lock(&hugetlb_lock);
873    if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874        spin_unlock(&hugetlb_lock);
875        return NULL;
876    } else {
877        h->nr_huge_pages++;
878        h->surplus_huge_pages++;
879    }
880    spin_unlock(&hugetlb_lock);
881
882    if (nid == NUMA_NO_NODE)
883        page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884                   __GFP_REPEAT|__GFP_NOWARN,
885                   huge_page_order(h));
886    else
887        page = alloc_pages_exact_node(nid,
888            htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889            __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890
891    if (page && arch_prepare_hugepage(page)) {
892        __free_pages(page, huge_page_order(h));
893        page = NULL;
894    }
895
896    spin_lock(&hugetlb_lock);
897    if (page) {
898        INIT_LIST_HEAD(&page->lru);
899        r_nid = page_to_nid(page);
900        set_compound_page_dtor(page, free_huge_page);
901        set_hugetlb_cgroup(page, NULL);
902        /*
903         * We incremented the global counters already
904         */
905        h->nr_huge_pages_node[r_nid]++;
906        h->surplus_huge_pages_node[r_nid]++;
907        __count_vm_event(HTLB_BUDDY_PGALLOC);
908    } else {
909        h->nr_huge_pages--;
910        h->surplus_huge_pages--;
911        __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912    }
913    spin_unlock(&hugetlb_lock);
914
915    return page;
916}
917
918/*
919 * This allocation function is useful in the context where vma is irrelevant.
920 * E.g. soft-offlining uses this function because it only cares physical
921 * address of error page.
922 */
923struct page *alloc_huge_page_node(struct hstate *h, int nid)
924{
925    struct page *page;
926
927    spin_lock(&hugetlb_lock);
928    page = dequeue_huge_page_node(h, nid);
929    spin_unlock(&hugetlb_lock);
930
931    if (!page)
932        page = alloc_buddy_huge_page(h, nid);
933
934    return page;
935}
936
937/*
938 * Increase the hugetlb pool such that it can accommodate a reservation
939 * of size 'delta'.
940 */
941static int gather_surplus_pages(struct hstate *h, int delta)
942{
943    struct list_head surplus_list;
944    struct page *page, *tmp;
945    int ret, i;
946    int needed, allocated;
947    bool alloc_ok = true;
948
949    needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
950    if (needed <= 0) {
951        h->resv_huge_pages += delta;
952        return 0;
953    }
954
955    allocated = 0;
956    INIT_LIST_HEAD(&surplus_list);
957
958    ret = -ENOMEM;
959retry:
960    spin_unlock(&hugetlb_lock);
961    for (i = 0; i < needed; i++) {
962        page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
963        if (!page) {
964            alloc_ok = false;
965            break;
966        }
967        list_add(&page->lru, &surplus_list);
968    }
969    allocated += i;
970
971    /*
972     * After retaking hugetlb_lock, we need to recalculate 'needed'
973     * because either resv_huge_pages or free_huge_pages may have changed.
974     */
975    spin_lock(&hugetlb_lock);
976    needed = (h->resv_huge_pages + delta) -
977            (h->free_huge_pages + allocated);
978    if (needed > 0) {
979        if (alloc_ok)
980            goto retry;
981        /*
982         * We were not able to allocate enough pages to
983         * satisfy the entire reservation so we free what
984         * we've allocated so far.
985         */
986        goto free;
987    }
988    /*
989     * The surplus_list now contains _at_least_ the number of extra pages
990     * needed to accommodate the reservation. Add the appropriate number
991     * of pages to the hugetlb pool and free the extras back to the buddy
992     * allocator. Commit the entire reservation here to prevent another
993     * process from stealing the pages as they are added to the pool but
994     * before they are reserved.
995     */
996    needed += allocated;
997    h->resv_huge_pages += delta;
998    ret = 0;
999
1000    /* Free the needed pages to the hugetlb pool */
1001    list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1002        if ((--needed) < 0)
1003            break;
1004        /*
1005         * This page is now managed by the hugetlb allocator and has
1006         * no users -- drop the buddy allocator's reference.
1007         */
1008        put_page_testzero(page);
1009        VM_BUG_ON(page_count(page));
1010        enqueue_huge_page(h, page);
1011    }
1012free:
1013    spin_unlock(&hugetlb_lock);
1014
1015    /* Free unnecessary surplus pages to the buddy allocator */
1016    if (!list_empty(&surplus_list)) {
1017        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1018            put_page(page);
1019        }
1020    }
1021    spin_lock(&hugetlb_lock);
1022
1023    return ret;
1024}
1025
1026/*
1027 * When releasing a hugetlb pool reservation, any surplus pages that were
1028 * allocated to satisfy the reservation must be explicitly freed if they were
1029 * never used.
1030 * Called with hugetlb_lock held.
1031 */
1032static void return_unused_surplus_pages(struct hstate *h,
1033                    unsigned long unused_resv_pages)
1034{
1035    unsigned long nr_pages;
1036
1037    /* Uncommit the reservation */
1038    h->resv_huge_pages -= unused_resv_pages;
1039
1040    /* Cannot return gigantic pages currently */
1041    if (h->order >= MAX_ORDER)
1042        return;
1043
1044    nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1045
1046    /*
1047     * We want to release as many surplus pages as possible, spread
1048     * evenly across all nodes with memory. Iterate across these nodes
1049     * until we can no longer free unreserved surplus pages. This occurs
1050     * when the nodes with surplus pages have no free pages.
1051     * free_pool_huge_page() will balance the the freed pages across the
1052     * on-line nodes with memory and will handle the hstate accounting.
1053     */
1054    while (nr_pages--) {
1055        if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1056            break;
1057    }
1058}
1059
1060/*
1061 * Determine if the huge page at addr within the vma has an associated
1062 * reservation. Where it does not we will need to logically increase
1063 * reservation and actually increase subpool usage before an allocation
1064 * can occur. Where any new reservation would be required the
1065 * reservation change is prepared, but not committed. Once the page
1066 * has been allocated from the subpool and instantiated the change should
1067 * be committed via vma_commit_reservation. No action is required on
1068 * failure.
1069 */
1070static long vma_needs_reservation(struct hstate *h,
1071            struct vm_area_struct *vma, unsigned long addr)
1072{
1073    struct address_space *mapping = vma->vm_file->f_mapping;
1074    struct inode *inode = mapping->host;
1075
1076    if (vma->vm_flags & VM_MAYSHARE) {
1077        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078        return region_chg(&inode->i_mapping->private_list,
1079                            idx, idx + 1);
1080
1081    } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1082        return 1;
1083
1084    } else {
1085        long err;
1086        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087        struct resv_map *reservations = vma_resv_map(vma);
1088
1089        err = region_chg(&reservations->regions, idx, idx + 1);
1090        if (err < 0)
1091            return err;
1092        return 0;
1093    }
1094}
1095static void vma_commit_reservation(struct hstate *h,
1096            struct vm_area_struct *vma, unsigned long addr)
1097{
1098    struct address_space *mapping = vma->vm_file->f_mapping;
1099    struct inode *inode = mapping->host;
1100
1101    if (vma->vm_flags & VM_MAYSHARE) {
1102        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103        region_add(&inode->i_mapping->private_list, idx, idx + 1);
1104
1105    } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107        struct resv_map *reservations = vma_resv_map(vma);
1108
1109        /* Mark this page used in the map. */
1110        region_add(&reservations->regions, idx, idx + 1);
1111    }
1112}
1113
1114static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115                    unsigned long addr, int avoid_reserve)
1116{
1117    struct hugepage_subpool *spool = subpool_vma(vma);
1118    struct hstate *h = hstate_vma(vma);
1119    struct page *page;
1120    long chg;
1121    int ret, idx;
1122    struct hugetlb_cgroup *h_cg;
1123
1124    idx = hstate_index(h);
1125    /*
1126     * Processes that did not create the mapping will have no
1127     * reserves and will not have accounted against subpool
1128     * limit. Check that the subpool limit can be made before
1129     * satisfying the allocation MAP_NORESERVE mappings may also
1130     * need pages and subpool limit allocated allocated if no reserve
1131     * mapping overlaps.
1132     */
1133    chg = vma_needs_reservation(h, vma, addr);
1134    if (chg < 0)
1135        return ERR_PTR(-ENOMEM);
1136    if (chg)
1137        if (hugepage_subpool_get_pages(spool, chg))
1138            return ERR_PTR(-ENOSPC);
1139
1140    ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1141    if (ret) {
1142        hugepage_subpool_put_pages(spool, chg);
1143        return ERR_PTR(-ENOSPC);
1144    }
1145    spin_lock(&hugetlb_lock);
1146    page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147    if (page) {
1148        /* update page cgroup details */
1149        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1150                         h_cg, page);
1151        spin_unlock(&hugetlb_lock);
1152    } else {
1153        spin_unlock(&hugetlb_lock);
1154        page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1155        if (!page) {
1156            hugetlb_cgroup_uncharge_cgroup(idx,
1157                               pages_per_huge_page(h),
1158                               h_cg);
1159            hugepage_subpool_put_pages(spool, chg);
1160            return ERR_PTR(-ENOSPC);
1161        }
1162        spin_lock(&hugetlb_lock);
1163        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1164                         h_cg, page);
1165        list_move(&page->lru, &h->hugepage_activelist);
1166        spin_unlock(&hugetlb_lock);
1167    }
1168
1169    set_page_private(page, (unsigned long)spool);
1170
1171    vma_commit_reservation(h, vma, addr);
1172    return page;
1173}
1174
1175int __weak alloc_bootmem_huge_page(struct hstate *h)
1176{
1177    struct huge_bootmem_page *m;
1178    int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1179
1180    while (nr_nodes) {
1181        void *addr;
1182
1183        addr = __alloc_bootmem_node_nopanic(
1184                NODE_DATA(hstate_next_node_to_alloc(h,
1185                        &node_states[N_HIGH_MEMORY])),
1186                huge_page_size(h), huge_page_size(h), 0);
1187
1188        if (addr) {
1189            /*
1190             * Use the beginning of the huge page to store the
1191             * huge_bootmem_page struct (until gather_bootmem
1192             * puts them into the mem_map).
1193             */
1194            m = addr;
1195            goto found;
1196        }
1197        nr_nodes--;
1198    }
1199    return 0;
1200
1201found:
1202    BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1203    /* Put them into a private list first because mem_map is not up yet */
1204    list_add(&m->list, &huge_boot_pages);
1205    m->hstate = h;
1206    return 1;
1207}
1208
1209static void prep_compound_huge_page(struct page *page, int order)
1210{
1211    if (unlikely(order > (MAX_ORDER - 1)))
1212        prep_compound_gigantic_page(page, order);
1213    else
1214        prep_compound_page(page, order);
1215}
1216
1217/* Put bootmem huge pages into the standard lists after mem_map is up */
1218static void __init gather_bootmem_prealloc(void)
1219{
1220    struct huge_bootmem_page *m;
1221
1222    list_for_each_entry(m, &huge_boot_pages, list) {
1223        struct hstate *h = m->hstate;
1224        struct page *page;
1225
1226#ifdef CONFIG_HIGHMEM
1227        page = pfn_to_page(m->phys >> PAGE_SHIFT);
1228        free_bootmem_late((unsigned long)m,
1229                  sizeof(struct huge_bootmem_page));
1230#else
1231        page = virt_to_page(m);
1232#endif
1233        __ClearPageReserved(page);
1234        WARN_ON(page_count(page) != 1);
1235        prep_compound_huge_page(page, h->order);
1236        prep_new_huge_page(h, page, page_to_nid(page));
1237        /*
1238         * If we had gigantic hugepages allocated at boot time, we need
1239         * to restore the 'stolen' pages to totalram_pages in order to
1240         * fix confusing memory reports from free(1) and another
1241         * side-effects, like CommitLimit going negative.
1242         */
1243        if (h->order > (MAX_ORDER - 1))
1244            totalram_pages += 1 << h->order;
1245    }
1246}
1247
1248static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1249{
1250    unsigned long i;
1251
1252    for (i = 0; i < h->max_huge_pages; ++i) {
1253        if (h->order >= MAX_ORDER) {
1254            if (!alloc_bootmem_huge_page(h))
1255                break;
1256        } else if (!alloc_fresh_huge_page(h,
1257                     &node_states[N_HIGH_MEMORY]))
1258            break;
1259    }
1260    h->max_huge_pages = i;
1261}
1262
1263static void __init hugetlb_init_hstates(void)
1264{
1265    struct hstate *h;
1266
1267    for_each_hstate(h) {
1268        /* oversize hugepages were init'ed in early boot */
1269        if (h->order < MAX_ORDER)
1270            hugetlb_hstate_alloc_pages(h);
1271    }
1272}
1273
1274static char * __init memfmt(char *buf, unsigned long n)
1275{
1276    if (n >= (1UL << 30))
1277        sprintf(buf, "%lu GB", n >> 30);
1278    else if (n >= (1UL << 20))
1279        sprintf(buf, "%lu MB", n >> 20);
1280    else
1281        sprintf(buf, "%lu KB", n >> 10);
1282    return buf;
1283}
1284
1285static void __init report_hugepages(void)
1286{
1287    struct hstate *h;
1288
1289    for_each_hstate(h) {
1290        char buf[32];
1291        printk(KERN_INFO "HugeTLB registered %s page size, "
1292                 "pre-allocated %ld pages\n",
1293            memfmt(buf, huge_page_size(h)),
1294            h->free_huge_pages);
1295    }
1296}
1297
1298#ifdef CONFIG_HIGHMEM
1299static void try_to_free_low(struct hstate *h, unsigned long count,
1300                        nodemask_t *nodes_allowed)
1301{
1302    int i;
1303
1304    if (h->order >= MAX_ORDER)
1305        return;
1306
1307    for_each_node_mask(i, *nodes_allowed) {
1308        struct page *page, *next;
1309        struct list_head *freel = &h->hugepage_freelists[i];
1310        list_for_each_entry_safe(page, next, freel, lru) {
1311            if (count >= h->nr_huge_pages)
1312                return;
1313            if (PageHighMem(page))
1314                continue;
1315            list_del(&page->lru);
1316            update_and_free_page(h, page);
1317            h->free_huge_pages--;
1318            h->free_huge_pages_node[page_to_nid(page)]--;
1319        }
1320    }
1321}
1322#else
1323static inline void try_to_free_low(struct hstate *h, unsigned long count,
1324                        nodemask_t *nodes_allowed)
1325{
1326}
1327#endif
1328
1329/*
1330 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1331 * balanced by operating on them in a round-robin fashion.
1332 * Returns 1 if an adjustment was made.
1333 */
1334static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1335                int delta)
1336{
1337    int start_nid, next_nid;
1338    int ret = 0;
1339
1340    VM_BUG_ON(delta != -1 && delta != 1);
1341
1342    if (delta < 0)
1343        start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1344    else
1345        start_nid = hstate_next_node_to_free(h, nodes_allowed);
1346    next_nid = start_nid;
1347
1348    do {
1349        int nid = next_nid;
1350        if (delta < 0) {
1351            /*
1352             * To shrink on this node, there must be a surplus page
1353             */
1354            if (!h->surplus_huge_pages_node[nid]) {
1355                next_nid = hstate_next_node_to_alloc(h,
1356                                nodes_allowed);
1357                continue;
1358            }
1359        }
1360        if (delta > 0) {
1361            /*
1362             * Surplus cannot exceed the total number of pages
1363             */
1364            if (h->surplus_huge_pages_node[nid] >=
1365                        h->nr_huge_pages_node[nid]) {
1366                next_nid = hstate_next_node_to_free(h,
1367                                nodes_allowed);
1368                continue;
1369            }
1370        }
1371
1372        h->surplus_huge_pages += delta;
1373        h->surplus_huge_pages_node[nid] += delta;
1374        ret = 1;
1375        break;
1376    } while (next_nid != start_nid);
1377
1378    return ret;
1379}
1380
1381#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1382static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1383                        nodemask_t *nodes_allowed)
1384{
1385    unsigned long min_count, ret;
1386
1387    if (h->order >= MAX_ORDER)
1388        return h->max_huge_pages;
1389
1390    /*
1391     * Increase the pool size
1392     * First take pages out of surplus state. Then make up the
1393     * remaining difference by allocating fresh huge pages.
1394     *
1395     * We might race with alloc_buddy_huge_page() here and be unable
1396     * to convert a surplus huge page to a normal huge page. That is
1397     * not critical, though, it just means the overall size of the
1398     * pool might be one hugepage larger than it needs to be, but
1399     * within all the constraints specified by the sysctls.
1400     */
1401    spin_lock(&hugetlb_lock);
1402    while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1403        if (!adjust_pool_surplus(h, nodes_allowed, -1))
1404            break;
1405    }
1406
1407    while (count > persistent_huge_pages(h)) {
1408        /*
1409         * If this allocation races such that we no longer need the
1410         * page, free_huge_page will handle it by freeing the page
1411         * and reducing the surplus.
1412         */
1413        spin_unlock(&hugetlb_lock);
1414        ret = alloc_fresh_huge_page(h, nodes_allowed);
1415        spin_lock(&hugetlb_lock);
1416        if (!ret)
1417            goto out;
1418
1419        /* Bail for signals. Probably ctrl-c from user */
1420        if (signal_pending(current))
1421            goto out;
1422    }
1423
1424    /*
1425     * Decrease the pool size
1426     * First return free pages to the buddy allocator (being careful
1427     * to keep enough around to satisfy reservations). Then place
1428     * pages into surplus state as needed so the pool will shrink
1429     * to the desired size as pages become free.
1430     *
1431     * By placing pages into the surplus state independent of the
1432     * overcommit value, we are allowing the surplus pool size to
1433     * exceed overcommit. There are few sane options here. Since
1434     * alloc_buddy_huge_page() is checking the global counter,
1435     * though, we'll note that we're not allowed to exceed surplus
1436     * and won't grow the pool anywhere else. Not until one of the
1437     * sysctls are changed, or the surplus pages go out of use.
1438     */
1439    min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1440    min_count = max(count, min_count);
1441    try_to_free_low(h, min_count, nodes_allowed);
1442    while (min_count < persistent_huge_pages(h)) {
1443        if (!free_pool_huge_page(h, nodes_allowed, 0))
1444            break;
1445    }
1446    while (count < persistent_huge_pages(h)) {
1447        if (!adjust_pool_surplus(h, nodes_allowed, 1))
1448            break;
1449    }
1450out:
1451    ret = persistent_huge_pages(h);
1452    spin_unlock(&hugetlb_lock);
1453    return ret;
1454}
1455
1456#define HSTATE_ATTR_RO(_name) \
1457    static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1458
1459#define HSTATE_ATTR(_name) \
1460    static struct kobj_attribute _name##_attr = \
1461        __ATTR(_name, 0644, _name##_show, _name##_store)
1462
1463static struct kobject *hugepages_kobj;
1464static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1465
1466static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1467
1468static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1469{
1470    int i;
1471
1472    for (i = 0; i < HUGE_MAX_HSTATE; i++)
1473        if (hstate_kobjs[i] == kobj) {
1474            if (nidp)
1475                *nidp = NUMA_NO_NODE;
1476            return &hstates[i];
1477        }
1478
1479    return kobj_to_node_hstate(kobj, nidp);
1480}
1481
1482static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1483                    struct kobj_attribute *attr, char *buf)
1484{
1485    struct hstate *h;
1486    unsigned long nr_huge_pages;
1487    int nid;
1488
1489    h = kobj_to_hstate(kobj, &nid);
1490    if (nid == NUMA_NO_NODE)
1491        nr_huge_pages = h->nr_huge_pages;
1492    else
1493        nr_huge_pages = h->nr_huge_pages_node[nid];
1494
1495    return sprintf(buf, "%lu\n", nr_huge_pages);
1496}
1497
1498static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1499            struct kobject *kobj, struct kobj_attribute *attr,
1500            const char *buf, size_t len)
1501{
1502    int err;
1503    int nid;
1504    unsigned long count;
1505    struct hstate *h;
1506    NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1507
1508    err = strict_strtoul(buf, 10, &count);
1509    if (err)
1510        goto out;
1511
1512    h = kobj_to_hstate(kobj, &nid);
1513    if (h->order >= MAX_ORDER) {
1514        err = -EINVAL;
1515        goto out;
1516    }
1517
1518    if (nid == NUMA_NO_NODE) {
1519        /*
1520         * global hstate attribute
1521         */
1522        if (!(obey_mempolicy &&
1523                init_nodemask_of_mempolicy(nodes_allowed))) {
1524            NODEMASK_FREE(nodes_allowed);
1525            nodes_allowed = &node_states[N_HIGH_MEMORY];
1526        }
1527    } else if (nodes_allowed) {
1528        /*
1529         * per node hstate attribute: adjust count to global,
1530         * but restrict alloc/free to the specified node.
1531         */
1532        count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1533        init_nodemask_of_node(nodes_allowed, nid);
1534    } else
1535        nodes_allowed = &node_states[N_HIGH_MEMORY];
1536
1537    h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1538
1539    if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1540        NODEMASK_FREE(nodes_allowed);
1541
1542    return len;
1543out:
1544    NODEMASK_FREE(nodes_allowed);
1545    return err;
1546}
1547
1548static ssize_t nr_hugepages_show(struct kobject *kobj,
1549                       struct kobj_attribute *attr, char *buf)
1550{
1551    return nr_hugepages_show_common(kobj, attr, buf);
1552}
1553
1554static ssize_t nr_hugepages_store(struct kobject *kobj,
1555           struct kobj_attribute *attr, const char *buf, size_t len)
1556{
1557    return nr_hugepages_store_common(false, kobj, attr, buf, len);
1558}
1559HSTATE_ATTR(nr_hugepages);
1560
1561#ifdef CONFIG_NUMA
1562
1563/*
1564 * hstate attribute for optionally mempolicy-based constraint on persistent
1565 * huge page alloc/free.
1566 */
1567static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1568                       struct kobj_attribute *attr, char *buf)
1569{
1570    return nr_hugepages_show_common(kobj, attr, buf);
1571}
1572
1573static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1574           struct kobj_attribute *attr, const char *buf, size_t len)
1575{
1576    return nr_hugepages_store_common(true, kobj, attr, buf, len);
1577}
1578HSTATE_ATTR(nr_hugepages_mempolicy);
1579#endif
1580
1581
1582static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1583                    struct kobj_attribute *attr, char *buf)
1584{
1585    struct hstate *h = kobj_to_hstate(kobj, NULL);
1586    return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1587}
1588
1589static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1590        struct kobj_attribute *attr, const char *buf, size_t count)
1591{
1592    int err;
1593    unsigned long input;
1594    struct hstate *h = kobj_to_hstate(kobj, NULL);
1595
1596    if (h->order >= MAX_ORDER)
1597        return -EINVAL;
1598
1599    err = strict_strtoul(buf, 10, &input);
1600    if (err)
1601        return err;
1602
1603    spin_lock(&hugetlb_lock);
1604    h->nr_overcommit_huge_pages = input;
1605    spin_unlock(&hugetlb_lock);
1606
1607    return count;
1608}
1609HSTATE_ATTR(nr_overcommit_hugepages);
1610
1611static ssize_t free_hugepages_show(struct kobject *kobj,
1612                    struct kobj_attribute *attr, char *buf)
1613{
1614    struct hstate *h;
1615    unsigned long free_huge_pages;
1616    int nid;
1617
1618    h = kobj_to_hstate(kobj, &nid);
1619    if (nid == NUMA_NO_NODE)
1620        free_huge_pages = h->free_huge_pages;
1621    else
1622        free_huge_pages = h->free_huge_pages_node[nid];
1623
1624    return sprintf(buf, "%lu\n", free_huge_pages);
1625}
1626HSTATE_ATTR_RO(free_hugepages);
1627
1628static ssize_t resv_hugepages_show(struct kobject *kobj,
1629                    struct kobj_attribute *attr, char *buf)
1630{
1631    struct hstate *h = kobj_to_hstate(kobj, NULL);
1632    return sprintf(buf, "%lu\n", h->resv_huge_pages);
1633}
1634HSTATE_ATTR_RO(resv_hugepages);
1635
1636static ssize_t surplus_hugepages_show(struct kobject *kobj,
1637                    struct kobj_attribute *attr, char *buf)
1638{
1639    struct hstate *h;
1640    unsigned long surplus_huge_pages;
1641    int nid;
1642
1643    h = kobj_to_hstate(kobj, &nid);
1644    if (nid == NUMA_NO_NODE)
1645        surplus_huge_pages = h->surplus_huge_pages;
1646    else
1647        surplus_huge_pages = h->surplus_huge_pages_node[nid];
1648
1649    return sprintf(buf, "%lu\n", surplus_huge_pages);
1650}
1651HSTATE_ATTR_RO(surplus_hugepages);
1652
1653static struct attribute *hstate_attrs[] = {
1654    &nr_hugepages_attr.attr,
1655    &nr_overcommit_hugepages_attr.attr,
1656    &free_hugepages_attr.attr,
1657    &resv_hugepages_attr.attr,
1658    &surplus_hugepages_attr.attr,
1659#ifdef CONFIG_NUMA
1660    &nr_hugepages_mempolicy_attr.attr,
1661#endif
1662    NULL,
1663};
1664
1665static struct attribute_group hstate_attr_group = {
1666    .attrs = hstate_attrs,
1667};
1668
1669static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1670                    struct kobject **hstate_kobjs,
1671                    struct attribute_group *hstate_attr_group)
1672{
1673    int retval;
1674    int hi = hstate_index(h);
1675
1676    hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1677    if (!hstate_kobjs[hi])
1678        return -ENOMEM;
1679
1680    retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1681    if (retval)
1682        kobject_put(hstate_kobjs[hi]);
1683
1684    return retval;
1685}
1686
1687static void __init hugetlb_sysfs_init(void)
1688{
1689    struct hstate *h;
1690    int err;
1691
1692    hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1693    if (!hugepages_kobj)
1694        return;
1695
1696    for_each_hstate(h) {
1697        err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1698                     hstate_kobjs, &hstate_attr_group);
1699        if (err)
1700            printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1701                                h->name);
1702    }
1703}
1704
1705#ifdef CONFIG_NUMA
1706
1707/*
1708 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1709 * with node devices in node_devices[] using a parallel array. The array
1710 * index of a node device or _hstate == node id.
1711 * This is here to avoid any static dependency of the node device driver, in
1712 * the base kernel, on the hugetlb module.
1713 */
1714struct node_hstate {
1715    struct kobject *hugepages_kobj;
1716    struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1717};
1718struct node_hstate node_hstates[MAX_NUMNODES];
1719
1720/*
1721 * A subset of global hstate attributes for node devices
1722 */
1723static struct attribute *per_node_hstate_attrs[] = {
1724    &nr_hugepages_attr.attr,
1725    &free_hugepages_attr.attr,
1726    &surplus_hugepages_attr.attr,
1727    NULL,
1728};
1729
1730static struct attribute_group per_node_hstate_attr_group = {
1731    .attrs = per_node_hstate_attrs,
1732};
1733
1734/*
1735 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1736 * Returns node id via non-NULL nidp.
1737 */
1738static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1739{
1740    int nid;
1741
1742    for (nid = 0; nid < nr_node_ids; nid++) {
1743        struct node_hstate *nhs = &node_hstates[nid];
1744        int i;
1745        for (i = 0; i < HUGE_MAX_HSTATE; i++)
1746            if (nhs->hstate_kobjs[i] == kobj) {
1747                if (nidp)
1748                    *nidp = nid;
1749                return &hstates[i];
1750            }
1751    }
1752
1753    BUG();
1754    return NULL;
1755}
1756
1757/*
1758 * Unregister hstate attributes from a single node device.
1759 * No-op if no hstate attributes attached.
1760 */
1761void hugetlb_unregister_node(struct node *node)
1762{
1763    struct hstate *h;
1764    struct node_hstate *nhs = &node_hstates[node->dev.id];
1765
1766    if (!nhs->hugepages_kobj)
1767        return; /* no hstate attributes */
1768
1769    for_each_hstate(h) {
1770        int idx = hstate_index(h);
1771        if (nhs->hstate_kobjs[idx]) {
1772            kobject_put(nhs->hstate_kobjs[idx]);
1773            nhs->hstate_kobjs[idx] = NULL;
1774        }
1775    }
1776
1777    kobject_put(nhs->hugepages_kobj);
1778    nhs->hugepages_kobj = NULL;
1779}
1780
1781/*
1782 * hugetlb module exit: unregister hstate attributes from node devices
1783 * that have them.
1784 */
1785static void hugetlb_unregister_all_nodes(void)
1786{
1787    int nid;
1788
1789    /*
1790     * disable node device registrations.
1791     */
1792    register_hugetlbfs_with_node(NULL, NULL);
1793
1794    /*
1795     * remove hstate attributes from any nodes that have them.
1796     */
1797    for (nid = 0; nid < nr_node_ids; nid++)
1798        hugetlb_unregister_node(&node_devices[nid]);
1799}
1800
1801/*
1802 * Register hstate attributes for a single node device.
1803 * No-op if attributes already registered.
1804 */
1805void hugetlb_register_node(struct node *node)
1806{
1807    struct hstate *h;
1808    struct node_hstate *nhs = &node_hstates[node->dev.id];
1809    int err;
1810
1811    if (nhs->hugepages_kobj)
1812        return; /* already allocated */
1813
1814    nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1815                            &node->dev.kobj);
1816    if (!nhs->hugepages_kobj)
1817        return;
1818
1819    for_each_hstate(h) {
1820        err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1821                        nhs->hstate_kobjs,
1822                        &per_node_hstate_attr_group);
1823        if (err) {
1824            printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1825                    " for node %d\n",
1826                        h->name, node->dev.id);
1827            hugetlb_unregister_node(node);
1828            break;
1829        }
1830    }
1831}
1832
1833/*
1834 * hugetlb init time: register hstate attributes for all registered node
1835 * devices of nodes that have memory. All on-line nodes should have
1836 * registered their associated device by this time.
1837 */
1838static void hugetlb_register_all_nodes(void)
1839{
1840    int nid;
1841
1842    for_each_node_state(nid, N_HIGH_MEMORY) {
1843        struct node *node = &node_devices[nid];
1844        if (node->dev.id == nid)
1845            hugetlb_register_node(node);
1846    }
1847
1848    /*
1849     * Let the node device driver know we're here so it can
1850     * [un]register hstate attributes on node hotplug.
1851     */
1852    register_hugetlbfs_with_node(hugetlb_register_node,
1853                     hugetlb_unregister_node);
1854}
1855#else /* !CONFIG_NUMA */
1856
1857static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858{
1859    BUG();
1860    if (nidp)
1861        *nidp = -1;
1862    return NULL;
1863}
1864
1865static void hugetlb_unregister_all_nodes(void) { }
1866
1867static void hugetlb_register_all_nodes(void) { }
1868
1869#endif
1870
1871static void __exit hugetlb_exit(void)
1872{
1873    struct hstate *h;
1874
1875    hugetlb_unregister_all_nodes();
1876
1877    for_each_hstate(h) {
1878        kobject_put(hstate_kobjs[hstate_index(h)]);
1879    }
1880
1881    kobject_put(hugepages_kobj);
1882}
1883module_exit(hugetlb_exit);
1884
1885static int __init hugetlb_init(void)
1886{
1887    /* Some platform decide whether they support huge pages at boot
1888     * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889     * there is no such support
1890     */
1891    if (HPAGE_SHIFT == 0)
1892        return 0;
1893
1894    if (!size_to_hstate(default_hstate_size)) {
1895        default_hstate_size = HPAGE_SIZE;
1896        if (!size_to_hstate(default_hstate_size))
1897            hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1898    }
1899    default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1900    if (default_hstate_max_huge_pages)
1901        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1902
1903    hugetlb_init_hstates();
1904
1905    gather_bootmem_prealloc();
1906
1907    report_hugepages();
1908
1909    hugetlb_sysfs_init();
1910
1911    hugetlb_register_all_nodes();
1912
1913    return 0;
1914}
1915module_init(hugetlb_init);
1916
1917/* Should be called on processing a hugepagesz=... option */
1918void __init hugetlb_add_hstate(unsigned order)
1919{
1920    struct hstate *h;
1921    unsigned long i;
1922
1923    if (size_to_hstate(PAGE_SIZE << order)) {
1924        printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1925        return;
1926    }
1927    BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1928    BUG_ON(order == 0);
1929    h = &hstates[hugetlb_max_hstate++];
1930    h->order = order;
1931    h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1932    h->nr_huge_pages = 0;
1933    h->free_huge_pages = 0;
1934    for (i = 0; i < MAX_NUMNODES; ++i)
1935        INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1936    INIT_LIST_HEAD(&h->hugepage_activelist);
1937    h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1938    h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1939    snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1940                    huge_page_size(h)/1024);
1941    /*
1942     * Add cgroup control files only if the huge page consists
1943     * of more than two normal pages. This is because we use
1944     * page[2].lru.next for storing cgoup details.
1945     */
1946    if (order >= HUGETLB_CGROUP_MIN_ORDER)
1947        hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1948
1949    parsed_hstate = h;
1950}
1951
1952static int __init hugetlb_nrpages_setup(char *s)
1953{
1954    unsigned long *mhp;
1955    static unsigned long *last_mhp;
1956
1957    /*
1958     * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1959     * so this hugepages= parameter goes to the "default hstate".
1960     */
1961    if (!hugetlb_max_hstate)
1962        mhp = &default_hstate_max_huge_pages;
1963    else
1964        mhp = &parsed_hstate->max_huge_pages;
1965
1966    if (mhp == last_mhp) {
1967        printk(KERN_WARNING "hugepages= specified twice without "
1968            "interleaving hugepagesz=, ignoring\n");
1969        return 1;
1970    }
1971
1972    if (sscanf(s, "%lu", mhp) <= 0)
1973        *mhp = 0;
1974
1975    /*
1976     * Global state is always initialized later in hugetlb_init.
1977     * But we need to allocate >= MAX_ORDER hstates here early to still
1978     * use the bootmem allocator.
1979     */
1980    if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1981        hugetlb_hstate_alloc_pages(parsed_hstate);
1982
1983    last_mhp = mhp;
1984
1985    return 1;
1986}
1987__setup("hugepages=", hugetlb_nrpages_setup);
1988
1989static int __init hugetlb_default_setup(char *s)
1990{
1991    default_hstate_size = memparse(s, &s);
1992    return 1;
1993}
1994__setup("default_hugepagesz=", hugetlb_default_setup);
1995
1996static unsigned int cpuset_mems_nr(unsigned int *array)
1997{
1998    int node;
1999    unsigned int nr = 0;
2000
2001    for_each_node_mask(node, cpuset_current_mems_allowed)
2002        nr += array[node];
2003
2004    return nr;
2005}
2006
2007#ifdef CONFIG_SYSCTL
2008static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2009             struct ctl_table *table, int write,
2010             void __user *buffer, size_t *length, loff_t *ppos)
2011{
2012    struct hstate *h = &default_hstate;
2013    unsigned long tmp;
2014    int ret;
2015
2016    tmp = h->max_huge_pages;
2017
2018    if (write && h->order >= MAX_ORDER)
2019        return -EINVAL;
2020
2021    table->data = &tmp;
2022    table->maxlen = sizeof(unsigned long);
2023    ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2024    if (ret)
2025        goto out;
2026
2027    if (write) {
2028        NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2029                        GFP_KERNEL | __GFP_NORETRY);
2030        if (!(obey_mempolicy &&
2031                   init_nodemask_of_mempolicy(nodes_allowed))) {
2032            NODEMASK_FREE(nodes_allowed);
2033            nodes_allowed = &node_states[N_HIGH_MEMORY];
2034        }
2035        h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2036
2037        if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2038            NODEMASK_FREE(nodes_allowed);
2039    }
2040out:
2041    return ret;
2042}
2043
2044int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2045              void __user *buffer, size_t *length, loff_t *ppos)
2046{
2047
2048    return hugetlb_sysctl_handler_common(false, table, write,
2049                            buffer, length, ppos);
2050}
2051
2052#ifdef CONFIG_NUMA
2053int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2054              void __user *buffer, size_t *length, loff_t *ppos)
2055{
2056    return hugetlb_sysctl_handler_common(true, table, write,
2057                            buffer, length, ppos);
2058}
2059#endif /* CONFIG_NUMA */
2060
2061int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062            void __user *buffer,
2063            size_t *length, loff_t *ppos)
2064{
2065    proc_dointvec(table, write, buffer, length, ppos);
2066    if (hugepages_treat_as_movable)
2067        htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2068    else
2069        htlb_alloc_mask = GFP_HIGHUSER;
2070    return 0;
2071}
2072
2073int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074            void __user *buffer,
2075            size_t *length, loff_t *ppos)
2076{
2077    struct hstate *h = &default_hstate;
2078    unsigned long tmp;
2079    int ret;
2080
2081    tmp = h->nr_overcommit_huge_pages;
2082
2083    if (write && h->order >= MAX_ORDER)
2084        return -EINVAL;
2085
2086    table->data = &tmp;
2087    table->maxlen = sizeof(unsigned long);
2088    ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089    if (ret)
2090        goto out;
2091
2092    if (write) {
2093        spin_lock(&hugetlb_lock);
2094        h->nr_overcommit_huge_pages = tmp;
2095        spin_unlock(&hugetlb_lock);
2096    }
2097out:
2098    return ret;
2099}
2100
2101#endif /* CONFIG_SYSCTL */
2102
2103void hugetlb_report_meminfo(struct seq_file *m)
2104{
2105    struct hstate *h = &default_hstate;
2106    seq_printf(m,
2107            "HugePages_Total: %5lu\n"
2108            "HugePages_Free: %5lu\n"
2109            "HugePages_Rsvd: %5lu\n"
2110            "HugePages_Surp: %5lu\n"
2111            "Hugepagesize: %8lu kB\n",
2112            h->nr_huge_pages,
2113            h->free_huge_pages,
2114            h->resv_huge_pages,
2115            h->surplus_huge_pages,
2116            1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2117}
2118
2119int hugetlb_report_node_meminfo(int nid, char *buf)
2120{
2121    struct hstate *h = &default_hstate;
2122    return sprintf(buf,
2123        "Node %d HugePages_Total: %5u\n"
2124        "Node %d HugePages_Free: %5u\n"
2125        "Node %d HugePages_Surp: %5u\n",
2126        nid, h->nr_huge_pages_node[nid],
2127        nid, h->free_huge_pages_node[nid],
2128        nid, h->surplus_huge_pages_node[nid]);
2129}
2130
2131/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2132unsigned long hugetlb_total_pages(void)
2133{
2134    struct hstate *h = &default_hstate;
2135    return h->nr_huge_pages * pages_per_huge_page(h);
2136}
2137
2138static int hugetlb_acct_memory(struct hstate *h, long delta)
2139{
2140    int ret = -ENOMEM;
2141
2142    spin_lock(&hugetlb_lock);
2143    /*
2144     * When cpuset is configured, it breaks the strict hugetlb page
2145     * reservation as the accounting is done on a global variable. Such
2146     * reservation is completely rubbish in the presence of cpuset because
2147     * the reservation is not checked against page availability for the
2148     * current cpuset. Application can still potentially OOM'ed by kernel
2149     * with lack of free htlb page in cpuset that the task is in.
2150     * Attempt to enforce strict accounting with cpuset is almost
2151     * impossible (or too ugly) because cpuset is too fluid that
2152     * task or memory node can be dynamically moved between cpusets.
2153     *
2154     * The change of semantics for shared hugetlb mapping with cpuset is
2155     * undesirable. However, in order to preserve some of the semantics,
2156     * we fall back to check against current free page availability as
2157     * a best attempt and hopefully to minimize the impact of changing
2158     * semantics that cpuset has.
2159     */
2160    if (delta > 0) {
2161        if (gather_surplus_pages(h, delta) < 0)
2162            goto out;
2163
2164        if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2165            return_unused_surplus_pages(h, delta);
2166            goto out;
2167        }
2168    }
2169
2170    ret = 0;
2171    if (delta < 0)
2172        return_unused_surplus_pages(h, (unsigned long) -delta);
2173
2174out:
2175    spin_unlock(&hugetlb_lock);
2176    return ret;
2177}
2178
2179static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2180{
2181    struct resv_map *reservations = vma_resv_map(vma);
2182
2183    /*
2184     * This new VMA should share its siblings reservation map if present.
2185     * The VMA will only ever have a valid reservation map pointer where
2186     * it is being copied for another still existing VMA. As that VMA
2187     * has a reference to the reservation map it cannot disappear until
2188     * after this open call completes. It is therefore safe to take a
2189     * new reference here without additional locking.
2190     */
2191    if (reservations)
2192        kref_get(&reservations->refs);
2193}
2194
2195static void resv_map_put(struct vm_area_struct *vma)
2196{
2197    struct resv_map *reservations = vma_resv_map(vma);
2198
2199    if (!reservations)
2200        return;
2201    kref_put(&reservations->refs, resv_map_release);
2202}
2203
2204static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2205{
2206    struct hstate *h = hstate_vma(vma);
2207    struct resv_map *reservations = vma_resv_map(vma);
2208    struct hugepage_subpool *spool = subpool_vma(vma);
2209    unsigned long reserve;
2210    unsigned long start;
2211    unsigned long end;
2212
2213    if (reservations) {
2214        start = vma_hugecache_offset(h, vma, vma->vm_start);
2215        end = vma_hugecache_offset(h, vma, vma->vm_end);
2216
2217        reserve = (end - start) -
2218            region_count(&reservations->regions, start, end);
2219
2220        resv_map_put(vma);
2221
2222        if (reserve) {
2223            hugetlb_acct_memory(h, -reserve);
2224            hugepage_subpool_put_pages(spool, reserve);
2225        }
2226    }
2227}
2228
2229/*
2230 * We cannot handle pagefaults against hugetlb pages at all. They cause
2231 * handle_mm_fault() to try to instantiate regular-sized pages in the
2232 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2233 * this far.
2234 */
2235static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2236{
2237    BUG();
2238    return 0;
2239}
2240
2241const struct vm_operations_struct hugetlb_vm_ops = {
2242    .fault = hugetlb_vm_op_fault,
2243    .open = hugetlb_vm_op_open,
2244    .close = hugetlb_vm_op_close,
2245};
2246
2247static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2248                int writable)
2249{
2250    pte_t entry;
2251
2252    if (writable) {
2253        entry =
2254            pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2255    } else {
2256        entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2257    }
2258    entry = pte_mkyoung(entry);
2259    entry = pte_mkhuge(entry);
2260    entry = arch_make_huge_pte(entry, vma, page, writable);
2261
2262    return entry;
2263}
2264
2265static void set_huge_ptep_writable(struct vm_area_struct *vma,
2266                   unsigned long address, pte_t *ptep)
2267{
2268    pte_t entry;
2269
2270    entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2271    if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2272        update_mmu_cache(vma, address, ptep);
2273}
2274
2275
2276int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2277                struct vm_area_struct *vma)
2278{
2279    pte_t *src_pte, *dst_pte, entry;
2280    struct page *ptepage;
2281    unsigned long addr;
2282    int cow;
2283    struct hstate *h = hstate_vma(vma);
2284    unsigned long sz = huge_page_size(h);
2285
2286    cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2287
2288    for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2289        src_pte = huge_pte_offset(src, addr);
2290        if (!src_pte)
2291            continue;
2292        dst_pte = huge_pte_alloc(dst, addr, sz);
2293        if (!dst_pte)
2294            goto nomem;
2295
2296        /* If the pagetables are shared don't copy or take references */
2297        if (dst_pte == src_pte)
2298            continue;
2299
2300        spin_lock(&dst->page_table_lock);
2301        spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2302        if (!huge_pte_none(huge_ptep_get(src_pte))) {
2303            if (cow)
2304                huge_ptep_set_wrprotect(src, addr, src_pte);
2305            entry = huge_ptep_get(src_pte);
2306            ptepage = pte_page(entry);
2307            get_page(ptepage);
2308            page_dup_rmap(ptepage);
2309            set_huge_pte_at(dst, addr, dst_pte, entry);
2310        }
2311        spin_unlock(&src->page_table_lock);
2312        spin_unlock(&dst->page_table_lock);
2313    }
2314    return 0;
2315
2316nomem:
2317    return -ENOMEM;
2318}
2319
2320static int is_hugetlb_entry_migration(pte_t pte)
2321{
2322    swp_entry_t swp;
2323
2324    if (huge_pte_none(pte) || pte_present(pte))
2325        return 0;
2326    swp = pte_to_swp_entry(pte);
2327    if (non_swap_entry(swp) && is_migration_entry(swp))
2328        return 1;
2329    else
2330        return 0;
2331}
2332
2333static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2334{
2335    swp_entry_t swp;
2336
2337    if (huge_pte_none(pte) || pte_present(pte))
2338        return 0;
2339    swp = pte_to_swp_entry(pte);
2340    if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2341        return 1;
2342    else
2343        return 0;
2344}
2345
2346void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2347                unsigned long start, unsigned long end,
2348                struct page *ref_page)
2349{
2350    int force_flush = 0;
2351    struct mm_struct *mm = vma->vm_mm;
2352    unsigned long address;
2353    pte_t *ptep;
2354    pte_t pte;
2355    struct page *page;
2356    struct hstate *h = hstate_vma(vma);
2357    unsigned long sz = huge_page_size(h);
2358
2359    WARN_ON(!is_vm_hugetlb_page(vma));
2360    BUG_ON(start & ~huge_page_mask(h));
2361    BUG_ON(end & ~huge_page_mask(h));
2362
2363    tlb_start_vma(tlb, vma);
2364    mmu_notifier_invalidate_range_start(mm, start, end);
2365again:
2366    spin_lock(&mm->page_table_lock);
2367    for (address = start; address < end; address += sz) {
2368        ptep = huge_pte_offset(mm, address);
2369        if (!ptep)
2370            continue;
2371
2372        if (huge_pmd_unshare(mm, &address, ptep))
2373            continue;
2374
2375        pte = huge_ptep_get(ptep);
2376        if (huge_pte_none(pte))
2377            continue;
2378
2379        /*
2380         * HWPoisoned hugepage is already unmapped and dropped reference
2381         */
2382        if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2383            continue;
2384
2385        page = pte_page(pte);
2386        /*
2387         * If a reference page is supplied, it is because a specific
2388         * page is being unmapped, not a range. Ensure the page we
2389         * are about to unmap is the actual page of interest.
2390         */
2391        if (ref_page) {
2392            if (page != ref_page)
2393                continue;
2394
2395            /*
2396             * Mark the VMA as having unmapped its page so that
2397             * future faults in this VMA will fail rather than
2398             * looking like data was lost
2399             */
2400            set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2401        }
2402
2403        pte = huge_ptep_get_and_clear(mm, address, ptep);
2404        tlb_remove_tlb_entry(tlb, ptep, address);
2405        if (pte_dirty(pte))
2406            set_page_dirty(page);
2407
2408        page_remove_rmap(page);
2409        force_flush = !__tlb_remove_page(tlb, page);
2410        if (force_flush)
2411            break;
2412        /* Bail out after unmapping reference page if supplied */
2413        if (ref_page)
2414            break;
2415    }
2416    spin_unlock(&mm->page_table_lock);
2417    /*
2418     * mmu_gather ran out of room to batch pages, we break out of
2419     * the PTE lock to avoid doing the potential expensive TLB invalidate
2420     * and page-free while holding it.
2421     */
2422    if (force_flush) {
2423        force_flush = 0;
2424        tlb_flush_mmu(tlb);
2425        if (address < end && !ref_page)
2426            goto again;
2427    }
2428    mmu_notifier_invalidate_range_end(mm, start, end);
2429    tlb_end_vma(tlb, vma);
2430}
2431
2432void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2433              struct vm_area_struct *vma, unsigned long start,
2434              unsigned long end, struct page *ref_page)
2435{
2436    __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2437
2438    /*
2439     * Clear this flag so that x86's huge_pmd_share page_table_shareable
2440     * test will fail on a vma being torn down, and not grab a page table
2441     * on its way out. We're lucky that the flag has such an appropriate
2442     * name, and can in fact be safely cleared here. We could clear it
2443     * before the __unmap_hugepage_range above, but all that's necessary
2444     * is to clear it before releasing the i_mmap_mutex. This works
2445     * because in the context this is called, the VMA is about to be
2446     * destroyed and the i_mmap_mutex is held.
2447     */
2448    vma->vm_flags &= ~VM_MAYSHARE;
2449}
2450
2451void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2452              unsigned long end, struct page *ref_page)
2453{
2454    struct mm_struct *mm;
2455    struct mmu_gather tlb;
2456
2457    mm = vma->vm_mm;
2458
2459    tlb_gather_mmu(&tlb, mm, 0);
2460    __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2461    tlb_finish_mmu(&tlb, start, end);
2462}
2463
2464/*
2465 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2466 * mappping it owns the reserve page for. The intention is to unmap the page
2467 * from other VMAs and let the children be SIGKILLed if they are faulting the
2468 * same region.
2469 */
2470static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2471                struct page *page, unsigned long address)
2472{
2473    struct hstate *h = hstate_vma(vma);
2474    struct vm_area_struct *iter_vma;
2475    struct address_space *mapping;
2476    struct prio_tree_iter iter;
2477    pgoff_t pgoff;
2478
2479    /*
2480     * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2481     * from page cache lookup which is in HPAGE_SIZE units.
2482     */
2483    address = address & huge_page_mask(h);
2484    pgoff = vma_hugecache_offset(h, vma, address);
2485    mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2486
2487    /*
2488     * Take the mapping lock for the duration of the table walk. As
2489     * this mapping should be shared between all the VMAs,
2490     * __unmap_hugepage_range() is called as the lock is already held
2491     */
2492    mutex_lock(&mapping->i_mmap_mutex);
2493    vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2494        /* Do not unmap the current VMA */
2495        if (iter_vma == vma)
2496            continue;
2497
2498        /*
2499         * Unmap the page from other VMAs without their own reserves.
2500         * They get marked to be SIGKILLed if they fault in these
2501         * areas. This is because a future no-page fault on this VMA
2502         * could insert a zeroed page instead of the data existing
2503         * from the time of fork. This would look like data corruption
2504         */
2505        if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506            unmap_hugepage_range(iter_vma, address,
2507                         address + huge_page_size(h), page);
2508    }
2509    mutex_unlock(&mapping->i_mmap_mutex);
2510
2511    return 1;
2512}
2513
2514/*
2515 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2517 * cannot race with other handlers or page migration.
2518 * Keep the pte_same checks anyway to make transition from the mutex easier.
2519 */
2520static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521            unsigned long address, pte_t *ptep, pte_t pte,
2522            struct page *pagecache_page)
2523{
2524    struct hstate *h = hstate_vma(vma);
2525    struct page *old_page, *new_page;
2526    int avoidcopy;
2527    int outside_reserve = 0;
2528
2529    old_page = pte_page(pte);
2530
2531retry_avoidcopy:
2532    /* If no-one else is actually using this page, avoid the copy
2533     * and just make the page writable */
2534    avoidcopy = (page_mapcount(old_page) == 1);
2535    if (avoidcopy) {
2536        if (PageAnon(old_page))
2537            page_move_anon_rmap(old_page, vma, address);
2538        set_huge_ptep_writable(vma, address, ptep);
2539        return 0;
2540    }
2541
2542    /*
2543     * If the process that created a MAP_PRIVATE mapping is about to
2544     * perform a COW due to a shared page count, attempt to satisfy
2545     * the allocation without using the existing reserves. The pagecache
2546     * page is used to determine if the reserve at this address was
2547     * consumed or not. If reserves were used, a partial faulted mapping
2548     * at the time of fork() could consume its reserves on COW instead
2549     * of the full address range.
2550     */
2551    if (!(vma->vm_flags & VM_MAYSHARE) &&
2552            is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2553            old_page != pagecache_page)
2554        outside_reserve = 1;
2555
2556    page_cache_get(old_page);
2557
2558    /* Drop page_table_lock as buddy allocator may be called */
2559    spin_unlock(&mm->page_table_lock);
2560    new_page = alloc_huge_page(vma, address, outside_reserve);
2561
2562    if (IS_ERR(new_page)) {
2563        long err = PTR_ERR(new_page);
2564        page_cache_release(old_page);
2565
2566        /*
2567         * If a process owning a MAP_PRIVATE mapping fails to COW,
2568         * it is due to references held by a child and an insufficient
2569         * huge page pool. To guarantee the original mappers
2570         * reliability, unmap the page from child processes. The child
2571         * may get SIGKILLed if it later faults.
2572         */
2573        if (outside_reserve) {
2574            BUG_ON(huge_pte_none(pte));
2575            if (unmap_ref_private(mm, vma, old_page, address)) {
2576                BUG_ON(huge_pte_none(pte));
2577                spin_lock(&mm->page_table_lock);
2578                ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2579                if (likely(pte_same(huge_ptep_get(ptep), pte)))
2580                    goto retry_avoidcopy;
2581                /*
2582                 * race occurs while re-acquiring page_table_lock, and
2583                 * our job is done.
2584                 */
2585                return 0;
2586            }
2587            WARN_ON_ONCE(1);
2588        }
2589
2590        /* Caller expects lock to be held */
2591        spin_lock(&mm->page_table_lock);
2592        if (err == -ENOMEM)
2593            return VM_FAULT_OOM;
2594        else
2595            return VM_FAULT_SIGBUS;
2596    }
2597
2598    /*
2599     * When the original hugepage is shared one, it does not have
2600     * anon_vma prepared.
2601     */
2602    if (unlikely(anon_vma_prepare(vma))) {
2603        page_cache_release(new_page);
2604        page_cache_release(old_page);
2605        /* Caller expects lock to be held */
2606        spin_lock(&mm->page_table_lock);
2607        return VM_FAULT_OOM;
2608    }
2609
2610    copy_user_huge_page(new_page, old_page, address, vma,
2611                pages_per_huge_page(h));
2612    __SetPageUptodate(new_page);
2613
2614    /*
2615     * Retake the page_table_lock to check for racing updates
2616     * before the page tables are altered
2617     */
2618    spin_lock(&mm->page_table_lock);
2619    ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2620    if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2621        /* Break COW */
2622        mmu_notifier_invalidate_range_start(mm,
2623            address & huge_page_mask(h),
2624            (address & huge_page_mask(h)) + huge_page_size(h));
2625        huge_ptep_clear_flush(vma, address, ptep);
2626        set_huge_pte_at(mm, address, ptep,
2627                make_huge_pte(vma, new_page, 1));
2628        page_remove_rmap(old_page);
2629        hugepage_add_new_anon_rmap(new_page, vma, address);
2630        /* Make the old page be freed below */
2631        new_page = old_page;
2632        mmu_notifier_invalidate_range_end(mm,
2633            address & huge_page_mask(h),
2634            (address & huge_page_mask(h)) + huge_page_size(h));
2635    }
2636    page_cache_release(new_page);
2637    page_cache_release(old_page);
2638    return 0;
2639}
2640
2641/* Return the pagecache page at a given address within a VMA */
2642static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2643            struct vm_area_struct *vma, unsigned long address)
2644{
2645    struct address_space *mapping;
2646    pgoff_t idx;
2647
2648    mapping = vma->vm_file->f_mapping;
2649    idx = vma_hugecache_offset(h, vma, address);
2650
2651    return find_lock_page(mapping, idx);
2652}
2653
2654/*
2655 * Return whether there is a pagecache page to back given address within VMA.
2656 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2657 */
2658static bool hugetlbfs_pagecache_present(struct hstate *h,
2659            struct vm_area_struct *vma, unsigned long address)
2660{
2661    struct address_space *mapping;
2662    pgoff_t idx;
2663    struct page *page;
2664
2665    mapping = vma->vm_file->f_mapping;
2666    idx = vma_hugecache_offset(h, vma, address);
2667
2668    page = find_get_page(mapping, idx);
2669    if (page)
2670        put_page(page);
2671    return page != NULL;
2672}
2673
2674static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2675            unsigned long address, pte_t *ptep, unsigned int flags)
2676{
2677    struct hstate *h = hstate_vma(vma);
2678    int ret = VM_FAULT_SIGBUS;
2679    int anon_rmap = 0;
2680    pgoff_t idx;
2681    unsigned long size;
2682    struct page *page;
2683    struct address_space *mapping;
2684    pte_t new_pte;
2685
2686    /*
2687     * Currently, we are forced to kill the process in the event the
2688     * original mapper has unmapped pages from the child due to a failed
2689     * COW. Warn that such a situation has occurred as it may not be obvious
2690     */
2691    if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2692        printk(KERN_WARNING
2693            "PID %d killed due to inadequate hugepage pool\n",
2694            current->pid);
2695        return ret;
2696    }
2697
2698    mapping = vma->vm_file->f_mapping;
2699    idx = vma_hugecache_offset(h, vma, address);
2700
2701    /*
2702     * Use page lock to guard against racing truncation
2703     * before we get page_table_lock.
2704     */
2705retry:
2706    page = find_lock_page(mapping, idx);
2707    if (!page) {
2708        size = i_size_read(mapping->host) >> huge_page_shift(h);
2709        if (idx >= size)
2710            goto out;
2711        page = alloc_huge_page(vma, address, 0);
2712        if (IS_ERR(page)) {
2713            ret = PTR_ERR(page);
2714            if (ret == -ENOMEM)
2715                ret = VM_FAULT_OOM;
2716            else
2717                ret = VM_FAULT_SIGBUS;
2718            goto out;
2719        }
2720        clear_huge_page(page, address, pages_per_huge_page(h));
2721        __SetPageUptodate(page);
2722
2723        if (vma->vm_flags & VM_MAYSHARE) {
2724            int err;
2725            struct inode *inode = mapping->host;
2726
2727            err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2728            if (err) {
2729                put_page(page);
2730                if (err == -EEXIST)
2731                    goto retry;
2732                goto out;
2733            }
2734
2735            spin_lock(&inode->i_lock);
2736            inode->i_blocks += blocks_per_huge_page(h);
2737            spin_unlock(&inode->i_lock);
2738        } else {
2739            lock_page(page);
2740            if (unlikely(anon_vma_prepare(vma))) {
2741                ret = VM_FAULT_OOM;
2742                goto backout_unlocked;
2743            }
2744            anon_rmap = 1;
2745        }
2746    } else {
2747        /*
2748         * If memory error occurs between mmap() and fault, some process
2749         * don't have hwpoisoned swap entry for errored virtual address.
2750         * So we need to block hugepage fault by PG_hwpoison bit check.
2751         */
2752        if (unlikely(PageHWPoison(page))) {
2753            ret = VM_FAULT_HWPOISON |
2754                VM_FAULT_SET_HINDEX(hstate_index(h));
2755            goto backout_unlocked;
2756        }
2757    }
2758
2759    /*
2760     * If we are going to COW a private mapping later, we examine the
2761     * pending reservations for this page now. This will ensure that
2762     * any allocations necessary to record that reservation occur outside
2763     * the spinlock.
2764     */
2765    if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2766        if (vma_needs_reservation(h, vma, address) < 0) {
2767            ret = VM_FAULT_OOM;
2768            goto backout_unlocked;
2769        }
2770
2771    spin_lock(&mm->page_table_lock);
2772    size = i_size_read(mapping->host) >> huge_page_shift(h);
2773    if (idx >= size)
2774        goto backout;
2775
2776    ret = 0;
2777    if (!huge_pte_none(huge_ptep_get(ptep)))
2778        goto backout;
2779
2780    if (anon_rmap)
2781        hugepage_add_new_anon_rmap(page, vma, address);
2782    else
2783        page_dup_rmap(page);
2784    new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2785                && (vma->vm_flags & VM_SHARED)));
2786    set_huge_pte_at(mm, address, ptep, new_pte);
2787
2788    if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2789        /* Optimization, do the COW without a second fault */
2790        ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2791    }
2792
2793    spin_unlock(&mm->page_table_lock);
2794    unlock_page(page);
2795out:
2796    return ret;
2797
2798backout:
2799    spin_unlock(&mm->page_table_lock);
2800backout_unlocked:
2801    unlock_page(page);
2802    put_page(page);
2803    goto out;
2804}
2805
2806int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807            unsigned long address, unsigned int flags)
2808{
2809    pte_t *ptep;
2810    pte_t entry;
2811    int ret;
2812    struct page *page = NULL;
2813    struct page *pagecache_page = NULL;
2814    static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2815    struct hstate *h = hstate_vma(vma);
2816
2817    address &= huge_page_mask(h);
2818
2819    ptep = huge_pte_offset(mm, address);
2820    if (ptep) {
2821        entry = huge_ptep_get(ptep);
2822        if (unlikely(is_hugetlb_entry_migration(entry))) {
2823            migration_entry_wait(mm, (pmd_t *)ptep, address);
2824            return 0;
2825        } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826            return VM_FAULT_HWPOISON_LARGE |
2827                VM_FAULT_SET_HINDEX(hstate_index(h));
2828    }
2829
2830    ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2831    if (!ptep)
2832        return VM_FAULT_OOM;
2833
2834    /*
2835     * Serialize hugepage allocation and instantiation, so that we don't
2836     * get spurious allocation failures if two CPUs race to instantiate
2837     * the same page in the page cache.
2838     */
2839    mutex_lock(&hugetlb_instantiation_mutex);
2840    entry = huge_ptep_get(ptep);
2841    if (huge_pte_none(entry)) {
2842        ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843        goto out_mutex;
2844    }
2845
2846    ret = 0;
2847
2848    /*
2849     * If we are going to COW the mapping later, we examine the pending
2850     * reservations for this page now. This will ensure that any
2851     * allocations necessary to record that reservation occur outside the
2852     * spinlock. For private mappings, we also lookup the pagecache
2853     * page now as it is used to determine if a reservation has been
2854     * consumed.
2855     */
2856    if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2857        if (vma_needs_reservation(h, vma, address) < 0) {
2858            ret = VM_FAULT_OOM;
2859            goto out_mutex;
2860        }
2861
2862        if (!(vma->vm_flags & VM_MAYSHARE))
2863            pagecache_page = hugetlbfs_pagecache_page(h,
2864                                vma, address);
2865    }
2866
2867    /*
2868     * hugetlb_cow() requires page locks of pte_page(entry) and
2869     * pagecache_page, so here we need take the former one
2870     * when page != pagecache_page or !pagecache_page.
2871     * Note that locking order is always pagecache_page -> page,
2872     * so no worry about deadlock.
2873     */
2874    page = pte_page(entry);
2875    get_page(page);
2876    if (page != pagecache_page)
2877        lock_page(page);
2878
2879    spin_lock(&mm->page_table_lock);
2880    /* Check for a racing update before calling hugetlb_cow */
2881    if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2882        goto out_page_table_lock;
2883
2884
2885    if (flags & FAULT_FLAG_WRITE) {
2886        if (!pte_write(entry)) {
2887            ret = hugetlb_cow(mm, vma, address, ptep, entry,
2888                            pagecache_page);
2889            goto out_page_table_lock;
2890        }
2891        entry = pte_mkdirty(entry);
2892    }
2893    entry = pte_mkyoung(entry);
2894    if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2895                        flags & FAULT_FLAG_WRITE))
2896        update_mmu_cache(vma, address, ptep);
2897
2898out_page_table_lock:
2899    spin_unlock(&mm->page_table_lock);
2900
2901    if (pagecache_page) {
2902        unlock_page(pagecache_page);
2903        put_page(pagecache_page);
2904    }
2905    if (page != pagecache_page)
2906        unlock_page(page);
2907    put_page(page);
2908
2909out_mutex:
2910    mutex_unlock(&hugetlb_instantiation_mutex);
2911
2912    return ret;
2913}
2914
2915/* Can be overriden by architectures */
2916__attribute__((weak)) struct page *
2917follow_huge_pud(struct mm_struct *mm, unsigned long address,
2918           pud_t *pud, int write)
2919{
2920    BUG();
2921    return NULL;
2922}
2923
2924int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925            struct page **pages, struct vm_area_struct **vmas,
2926            unsigned long *position, int *length, int i,
2927            unsigned int flags)
2928{
2929    unsigned long pfn_offset;
2930    unsigned long vaddr = *position;
2931    int remainder = *length;
2932    struct hstate *h = hstate_vma(vma);
2933
2934    spin_lock(&mm->page_table_lock);
2935    while (vaddr < vma->vm_end && remainder) {
2936        pte_t *pte;
2937        int absent;
2938        struct page *page;
2939
2940        /*
2941         * Some archs (sparc64, sh*) have multiple pte_ts to
2942         * each hugepage. We have to make sure we get the
2943         * first, for the page indexing below to work.
2944         */
2945        pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2946        absent = !pte || huge_pte_none(huge_ptep_get(pte));
2947
2948        /*
2949         * When coredumping, it suits get_dump_page if we just return
2950         * an error where there's an empty slot with no huge pagecache
2951         * to back it. This way, we avoid allocating a hugepage, and
2952         * the sparse dumpfile avoids allocating disk blocks, but its
2953         * huge holes still show up with zeroes where they need to be.
2954         */
2955        if (absent && (flags & FOLL_DUMP) &&
2956            !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2957            remainder = 0;
2958            break;
2959        }
2960
2961        if (absent ||
2962            ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2963            int ret;
2964
2965            spin_unlock(&mm->page_table_lock);
2966            ret = hugetlb_fault(mm, vma, vaddr,
2967                (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2968            spin_lock(&mm->page_table_lock);
2969            if (!(ret & VM_FAULT_ERROR))
2970                continue;
2971
2972            remainder = 0;
2973            break;
2974        }
2975
2976        pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2977        page = pte_page(huge_ptep_get(pte));
2978same_page:
2979        if (pages) {
2980            pages[i] = mem_map_offset(page, pfn_offset);
2981            get_page(pages[i]);
2982        }
2983
2984        if (vmas)
2985            vmas[i] = vma;
2986
2987        vaddr += PAGE_SIZE;
2988        ++pfn_offset;
2989        --remainder;
2990        ++i;
2991        if (vaddr < vma->vm_end && remainder &&
2992                pfn_offset < pages_per_huge_page(h)) {
2993            /*
2994             * We use pfn_offset to avoid touching the pageframes
2995             * of this compound page.
2996             */
2997            goto same_page;
2998        }
2999    }
3000    spin_unlock(&mm->page_table_lock);
3001    *length = remainder;
3002    *position = vaddr;
3003
3004    return i ? i : -EFAULT;
3005}
3006
3007void hugetlb_change_protection(struct vm_area_struct *vma,
3008        unsigned long address, unsigned long end, pgprot_t newprot)
3009{
3010    struct mm_struct *mm = vma->vm_mm;
3011    unsigned long start = address;
3012    pte_t *ptep;
3013    pte_t pte;
3014    struct hstate *h = hstate_vma(vma);
3015
3016    BUG_ON(address >= end);
3017    flush_cache_range(vma, address, end);
3018
3019    mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3020    spin_lock(&mm->page_table_lock);
3021    for (; address < end; address += huge_page_size(h)) {
3022        ptep = huge_pte_offset(mm, address);
3023        if (!ptep)
3024            continue;
3025        if (huge_pmd_unshare(mm, &address, ptep))
3026            continue;
3027        if (!huge_pte_none(huge_ptep_get(ptep))) {
3028            pte = huge_ptep_get_and_clear(mm, address, ptep);
3029            pte = pte_mkhuge(pte_modify(pte, newprot));
3030            set_huge_pte_at(mm, address, ptep, pte);
3031        }
3032    }
3033    spin_unlock(&mm->page_table_lock);
3034    /*
3035     * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3036     * may have cleared our pud entry and done put_page on the page table:
3037     * once we release i_mmap_mutex, another task can do the final put_page
3038     * and that page table be reused and filled with junk.
3039     */
3040    flush_tlb_range(vma, start, end);
3041    mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3042}
3043
3044int hugetlb_reserve_pages(struct inode *inode,
3045                    long from, long to,
3046                    struct vm_area_struct *vma,
3047                    vm_flags_t vm_flags)
3048{
3049    long ret, chg;
3050    struct hstate *h = hstate_inode(inode);
3051    struct hugepage_subpool *spool = subpool_inode(inode);
3052
3053    /*
3054     * Only apply hugepage reservation if asked. At fault time, an
3055     * attempt will be made for VM_NORESERVE to allocate a page
3056     * without using reserves
3057     */
3058    if (vm_flags & VM_NORESERVE)
3059        return 0;
3060
3061    /*
3062     * Shared mappings base their reservation on the number of pages that
3063     * are already allocated on behalf of the file. Private mappings need
3064     * to reserve the full area even if read-only as mprotect() may be
3065     * called to make the mapping read-write. Assume !vma is a shm mapping
3066     */
3067    if (!vma || vma->vm_flags & VM_MAYSHARE)
3068        chg = region_chg(&inode->i_mapping->private_list, from, to);
3069    else {
3070        struct resv_map *resv_map = resv_map_alloc();
3071        if (!resv_map)
3072            return -ENOMEM;
3073
3074        chg = to - from;
3075
3076        set_vma_resv_map(vma, resv_map);
3077        set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3078    }
3079
3080    if (chg < 0) {
3081        ret = chg;
3082        goto out_err;
3083    }
3084
3085    /* There must be enough pages in the subpool for the mapping */
3086    if (hugepage_subpool_get_pages(spool, chg)) {
3087        ret = -ENOSPC;
3088        goto out_err;
3089    }
3090
3091    /*
3092     * Check enough hugepages are available for the reservation.
3093     * Hand the pages back to the subpool if there are not
3094     */
3095    ret = hugetlb_acct_memory(h, chg);
3096    if (ret < 0) {
3097        hugepage_subpool_put_pages(spool, chg);
3098        goto out_err;
3099    }
3100
3101    /*
3102     * Account for the reservations made. Shared mappings record regions
3103     * that have reservations as they are shared by multiple VMAs.
3104     * When the last VMA disappears, the region map says how much
3105     * the reservation was and the page cache tells how much of
3106     * the reservation was consumed. Private mappings are per-VMA and
3107     * only the consumed reservations are tracked. When the VMA
3108     * disappears, the original reservation is the VMA size and the
3109     * consumed reservations are stored in the map. Hence, nothing
3110     * else has to be done for private mappings here
3111     */
3112    if (!vma || vma->vm_flags & VM_MAYSHARE)
3113        region_add(&inode->i_mapping->private_list, from, to);
3114    return 0;
3115out_err:
3116    if (vma)
3117        resv_map_put(vma);
3118    return ret;
3119}
3120
3121void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3122{
3123    struct hstate *h = hstate_inode(inode);
3124    long chg = region_truncate(&inode->i_mapping->private_list, offset);
3125    struct hugepage_subpool *spool = subpool_inode(inode);
3126
3127    spin_lock(&inode->i_lock);
3128    inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3129    spin_unlock(&inode->i_lock);
3130
3131    hugepage_subpool_put_pages(spool, (chg - freed));
3132    hugetlb_acct_memory(h, -(chg - freed));
3133}
3134
3135#ifdef CONFIG_MEMORY_FAILURE
3136
3137/* Should be called in hugetlb_lock */
3138static int is_hugepage_on_freelist(struct page *hpage)
3139{
3140    struct page *page;
3141    struct page *tmp;
3142    struct hstate *h = page_hstate(hpage);
3143    int nid = page_to_nid(hpage);
3144
3145    list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3146        if (page == hpage)
3147            return 1;
3148    return 0;
3149}
3150
3151/*
3152 * This function is called from memory failure code.
3153 * Assume the caller holds page lock of the head page.
3154 */
3155int dequeue_hwpoisoned_huge_page(struct page *hpage)
3156{
3157    struct hstate *h = page_hstate(hpage);
3158    int nid = page_to_nid(hpage);
3159    int ret = -EBUSY;
3160
3161    spin_lock(&hugetlb_lock);
3162    if (is_hugepage_on_freelist(hpage)) {
3163        list_del(&hpage->lru);
3164        set_page_refcounted(hpage);
3165        h->free_huge_pages--;
3166        h->free_huge_pages_node[nid]--;
3167        ret = 0;
3168    }
3169    spin_unlock(&hugetlb_lock);
3170    return ret;
3171}
3172#endif
3173

Archive Download this file



interactive