Root/mm/ksm.c

1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/memory.h>
33#include <linux/mmu_notifier.h>
34#include <linux/swap.h>
35#include <linux/ksm.h>
36#include <linux/hash.h>
37#include <linux/freezer.h>
38#include <linux/oom.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * A few notes about the KSM scanning process,
45 * to make it easier to understand the data structures below:
46 *
47 * In order to reduce excessive scanning, KSM sorts the memory pages by their
48 * contents into a data structure that holds pointers to the pages' locations.
49 *
50 * Since the contents of the pages may change at any moment, KSM cannot just
51 * insert the pages into a normal sorted tree and expect it to find anything.
52 * Therefore KSM uses two data structures - the stable and the unstable tree.
53 *
54 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55 * by their contents. Because each such page is write-protected, searching on
56 * this tree is fully assured to be working (except when pages are unmapped),
57 * and therefore this tree is called the stable tree.
58 *
59 * In addition to the stable tree, KSM uses a second data structure called the
60 * unstable tree: this tree holds pointers to pages which have been found to
61 * be "unchanged for a period of time". The unstable tree sorts these pages
62 * by their contents, but since they are not write-protected, KSM cannot rely
63 * upon the unstable tree to work correctly - the unstable tree is liable to
64 * be corrupted as its contents are modified, and so it is called unstable.
65 *
66 * KSM solves this problem by several techniques:
67 *
68 * 1) The unstable tree is flushed every time KSM completes scanning all
69 * memory areas, and then the tree is rebuilt again from the beginning.
70 * 2) KSM will only insert into the unstable tree, pages whose hash value
71 * has not changed since the previous scan of all memory areas.
72 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73 * colors of the nodes and not on their contents, assuring that even when
74 * the tree gets "corrupted" it won't get out of balance, so scanning time
75 * remains the same (also, searching and inserting nodes in an rbtree uses
76 * the same algorithm, so we have no overhead when we flush and rebuild).
77 * 4) KSM never flushes the stable tree, which means that even if it were to
78 * take 10 attempts to find a page in the unstable tree, once it is found,
79 * it is secured in the stable tree. (When we scan a new page, we first
80 * compare it against the stable tree, and then against the unstable tree.)
81 */
82
83/**
84 * struct mm_slot - ksm information per mm that is being scanned
85 * @link: link to the mm_slots hash list
86 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
87 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
88 * @mm: the mm that this information is valid for
89 */
90struct mm_slot {
91    struct hlist_node link;
92    struct list_head mm_list;
93    struct rmap_item *rmap_list;
94    struct mm_struct *mm;
95};
96
97/**
98 * struct ksm_scan - cursor for scanning
99 * @mm_slot: the current mm_slot we are scanning
100 * @address: the next address inside that to be scanned
101 * @rmap_list: link to the next rmap to be scanned in the rmap_list
102 * @seqnr: count of completed full scans (needed when removing unstable node)
103 *
104 * There is only the one ksm_scan instance of this cursor structure.
105 */
106struct ksm_scan {
107    struct mm_slot *mm_slot;
108    unsigned long address;
109    struct rmap_item **rmap_list;
110    unsigned long seqnr;
111};
112
113/**
114 * struct stable_node - node of the stable rbtree
115 * @node: rb node of this ksm page in the stable tree
116 * @hlist: hlist head of rmap_items using this ksm page
117 * @kpfn: page frame number of this ksm page
118 */
119struct stable_node {
120    struct rb_node node;
121    struct hlist_head hlist;
122    unsigned long kpfn;
123};
124
125/**
126 * struct rmap_item - reverse mapping item for virtual addresses
127 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
128 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
129 * @mm: the memory structure this rmap_item is pointing into
130 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131 * @oldchecksum: previous checksum of the page at that virtual address
132 * @node: rb node of this rmap_item in the unstable tree
133 * @head: pointer to stable_node heading this list in the stable tree
134 * @hlist: link into hlist of rmap_items hanging off that stable_node
135 */
136struct rmap_item {
137    struct rmap_item *rmap_list;
138    struct anon_vma *anon_vma; /* when stable */
139    struct mm_struct *mm;
140    unsigned long address; /* + low bits used for flags below */
141    unsigned int oldchecksum; /* when unstable */
142    union {
143        struct rb_node node; /* when node of unstable tree */
144        struct { /* when listed from stable tree */
145            struct stable_node *head;
146            struct hlist_node hlist;
147        };
148    };
149};
150
151#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
152#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
153#define STABLE_FLAG 0x200 /* is listed from the stable tree */
154
155/* The stable and unstable tree heads */
156static struct rb_root root_stable_tree = RB_ROOT;
157static struct rb_root root_unstable_tree = RB_ROOT;
158
159#define MM_SLOTS_HASH_SHIFT 10
160#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
161static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
162
163static struct mm_slot ksm_mm_head = {
164    .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
165};
166static struct ksm_scan ksm_scan = {
167    .mm_slot = &ksm_mm_head,
168};
169
170static struct kmem_cache *rmap_item_cache;
171static struct kmem_cache *stable_node_cache;
172static struct kmem_cache *mm_slot_cache;
173
174/* The number of nodes in the stable tree */
175static unsigned long ksm_pages_shared;
176
177/* The number of page slots additionally sharing those nodes */
178static unsigned long ksm_pages_sharing;
179
180/* The number of nodes in the unstable tree */
181static unsigned long ksm_pages_unshared;
182
183/* The number of rmap_items in use: to calculate pages_volatile */
184static unsigned long ksm_rmap_items;
185
186/* Number of pages ksmd should scan in one batch */
187static unsigned int ksm_thread_pages_to_scan = 100;
188
189/* Milliseconds ksmd should sleep between batches */
190static unsigned int ksm_thread_sleep_millisecs = 20;
191
192#define KSM_RUN_STOP 0
193#define KSM_RUN_MERGE 1
194#define KSM_RUN_UNMERGE 2
195static unsigned int ksm_run = KSM_RUN_STOP;
196
197static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
198static DEFINE_MUTEX(ksm_thread_mutex);
199static DEFINE_SPINLOCK(ksm_mmlist_lock);
200
201#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
202        sizeof(struct __struct), __alignof__(struct __struct),\
203        (__flags), NULL)
204
205static int __init ksm_slab_init(void)
206{
207    rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
208    if (!rmap_item_cache)
209        goto out;
210
211    stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
212    if (!stable_node_cache)
213        goto out_free1;
214
215    mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
216    if (!mm_slot_cache)
217        goto out_free2;
218
219    return 0;
220
221out_free2:
222    kmem_cache_destroy(stable_node_cache);
223out_free1:
224    kmem_cache_destroy(rmap_item_cache);
225out:
226    return -ENOMEM;
227}
228
229static void __init ksm_slab_free(void)
230{
231    kmem_cache_destroy(mm_slot_cache);
232    kmem_cache_destroy(stable_node_cache);
233    kmem_cache_destroy(rmap_item_cache);
234    mm_slot_cache = NULL;
235}
236
237static inline struct rmap_item *alloc_rmap_item(void)
238{
239    struct rmap_item *rmap_item;
240
241    rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
242    if (rmap_item)
243        ksm_rmap_items++;
244    return rmap_item;
245}
246
247static inline void free_rmap_item(struct rmap_item *rmap_item)
248{
249    ksm_rmap_items--;
250    rmap_item->mm = NULL; /* debug safety */
251    kmem_cache_free(rmap_item_cache, rmap_item);
252}
253
254static inline struct stable_node *alloc_stable_node(void)
255{
256    return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
257}
258
259static inline void free_stable_node(struct stable_node *stable_node)
260{
261    kmem_cache_free(stable_node_cache, stable_node);
262}
263
264static inline struct mm_slot *alloc_mm_slot(void)
265{
266    if (!mm_slot_cache) /* initialization failed */
267        return NULL;
268    return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
269}
270
271static inline void free_mm_slot(struct mm_slot *mm_slot)
272{
273    kmem_cache_free(mm_slot_cache, mm_slot);
274}
275
276static struct mm_slot *get_mm_slot(struct mm_struct *mm)
277{
278    struct mm_slot *mm_slot;
279    struct hlist_head *bucket;
280    struct hlist_node *node;
281
282    bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
283    hlist_for_each_entry(mm_slot, node, bucket, link) {
284        if (mm == mm_slot->mm)
285            return mm_slot;
286    }
287    return NULL;
288}
289
290static void insert_to_mm_slots_hash(struct mm_struct *mm,
291                    struct mm_slot *mm_slot)
292{
293    struct hlist_head *bucket;
294
295    bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
296    mm_slot->mm = mm;
297    hlist_add_head(&mm_slot->link, bucket);
298}
299
300static inline int in_stable_tree(struct rmap_item *rmap_item)
301{
302    return rmap_item->address & STABLE_FLAG;
303}
304
305/*
306 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
307 * page tables after it has passed through ksm_exit() - which, if necessary,
308 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
309 * a special flag: they can just back out as soon as mm_users goes to zero.
310 * ksm_test_exit() is used throughout to make this test for exit: in some
311 * places for correctness, in some places just to avoid unnecessary work.
312 */
313static inline bool ksm_test_exit(struct mm_struct *mm)
314{
315    return atomic_read(&mm->mm_users) == 0;
316}
317
318/*
319 * We use break_ksm to break COW on a ksm page: it's a stripped down
320 *
321 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
322 * put_page(page);
323 *
324 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
325 * in case the application has unmapped and remapped mm,addr meanwhile.
326 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
327 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
328 */
329static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
330{
331    struct page *page;
332    int ret = 0;
333
334    do {
335        cond_resched();
336        page = follow_page(vma, addr, FOLL_GET);
337        if (IS_ERR_OR_NULL(page))
338            break;
339        if (PageKsm(page))
340            ret = handle_mm_fault(vma->vm_mm, vma, addr,
341                            FAULT_FLAG_WRITE);
342        else
343            ret = VM_FAULT_WRITE;
344        put_page(page);
345    } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
346    /*
347     * We must loop because handle_mm_fault() may back out if there's
348     * any difficulty e.g. if pte accessed bit gets updated concurrently.
349     *
350     * VM_FAULT_WRITE is what we have been hoping for: it indicates that
351     * COW has been broken, even if the vma does not permit VM_WRITE;
352     * but note that a concurrent fault might break PageKsm for us.
353     *
354     * VM_FAULT_SIGBUS could occur if we race with truncation of the
355     * backing file, which also invalidates anonymous pages: that's
356     * okay, that truncation will have unmapped the PageKsm for us.
357     *
358     * VM_FAULT_OOM: at the time of writing (late July 2009), setting
359     * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
360     * current task has TIF_MEMDIE set, and will be OOM killed on return
361     * to user; and ksmd, having no mm, would never be chosen for that.
362     *
363     * But if the mm is in a limited mem_cgroup, then the fault may fail
364     * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
365     * even ksmd can fail in this way - though it's usually breaking ksm
366     * just to undo a merge it made a moment before, so unlikely to oom.
367     *
368     * That's a pity: we might therefore have more kernel pages allocated
369     * than we're counting as nodes in the stable tree; but ksm_do_scan
370     * will retry to break_cow on each pass, so should recover the page
371     * in due course. The important thing is to not let VM_MERGEABLE
372     * be cleared while any such pages might remain in the area.
373     */
374    return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
375}
376
377static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
378        unsigned long addr)
379{
380    struct vm_area_struct *vma;
381    if (ksm_test_exit(mm))
382        return NULL;
383    vma = find_vma(mm, addr);
384    if (!vma || vma->vm_start > addr)
385        return NULL;
386    if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
387        return NULL;
388    return vma;
389}
390
391static void break_cow(struct rmap_item *rmap_item)
392{
393    struct mm_struct *mm = rmap_item->mm;
394    unsigned long addr = rmap_item->address;
395    struct vm_area_struct *vma;
396
397    /*
398     * It is not an accident that whenever we want to break COW
399     * to undo, we also need to drop a reference to the anon_vma.
400     */
401    put_anon_vma(rmap_item->anon_vma);
402
403    down_read(&mm->mmap_sem);
404    vma = find_mergeable_vma(mm, addr);
405    if (vma)
406        break_ksm(vma, addr);
407    up_read(&mm->mmap_sem);
408}
409
410static struct page *page_trans_compound_anon(struct page *page)
411{
412    if (PageTransCompound(page)) {
413        struct page *head = compound_trans_head(page);
414        /*
415         * head may actually be splitted and freed from under
416         * us but it's ok here.
417         */
418        if (PageAnon(head))
419            return head;
420    }
421    return NULL;
422}
423
424static struct page *get_mergeable_page(struct rmap_item *rmap_item)
425{
426    struct mm_struct *mm = rmap_item->mm;
427    unsigned long addr = rmap_item->address;
428    struct vm_area_struct *vma;
429    struct page *page;
430
431    down_read(&mm->mmap_sem);
432    vma = find_mergeable_vma(mm, addr);
433    if (!vma)
434        goto out;
435
436    page = follow_page(vma, addr, FOLL_GET);
437    if (IS_ERR_OR_NULL(page))
438        goto out;
439    if (PageAnon(page) || page_trans_compound_anon(page)) {
440        flush_anon_page(vma, page, addr);
441        flush_dcache_page(page);
442    } else {
443        put_page(page);
444out: page = NULL;
445    }
446    up_read(&mm->mmap_sem);
447    return page;
448}
449
450static void remove_node_from_stable_tree(struct stable_node *stable_node)
451{
452    struct rmap_item *rmap_item;
453    struct hlist_node *hlist;
454
455    hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
456        if (rmap_item->hlist.next)
457            ksm_pages_sharing--;
458        else
459            ksm_pages_shared--;
460        put_anon_vma(rmap_item->anon_vma);
461        rmap_item->address &= PAGE_MASK;
462        cond_resched();
463    }
464
465    rb_erase(&stable_node->node, &root_stable_tree);
466    free_stable_node(stable_node);
467}
468
469/*
470 * get_ksm_page: checks if the page indicated by the stable node
471 * is still its ksm page, despite having held no reference to it.
472 * In which case we can trust the content of the page, and it
473 * returns the gotten page; but if the page has now been zapped,
474 * remove the stale node from the stable tree and return NULL.
475 *
476 * You would expect the stable_node to hold a reference to the ksm page.
477 * But if it increments the page's count, swapping out has to wait for
478 * ksmd to come around again before it can free the page, which may take
479 * seconds or even minutes: much too unresponsive. So instead we use a
480 * "keyhole reference": access to the ksm page from the stable node peeps
481 * out through its keyhole to see if that page still holds the right key,
482 * pointing back to this stable node. This relies on freeing a PageAnon
483 * page to reset its page->mapping to NULL, and relies on no other use of
484 * a page to put something that might look like our key in page->mapping.
485 *
486 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
487 * but this is different - made simpler by ksm_thread_mutex being held, but
488 * interesting for assuming that no other use of the struct page could ever
489 * put our expected_mapping into page->mapping (or a field of the union which
490 * coincides with page->mapping). The RCU calls are not for KSM at all, but
491 * to keep the page_count protocol described with page_cache_get_speculative.
492 *
493 * Note: it is possible that get_ksm_page() will return NULL one moment,
494 * then page the next, if the page is in between page_freeze_refs() and
495 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
496 * is on its way to being freed; but it is an anomaly to bear in mind.
497 */
498static struct page *get_ksm_page(struct stable_node *stable_node)
499{
500    struct page *page;
501    void *expected_mapping;
502
503    page = pfn_to_page(stable_node->kpfn);
504    expected_mapping = (void *)stable_node +
505                (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
506    rcu_read_lock();
507    if (page->mapping != expected_mapping)
508        goto stale;
509    if (!get_page_unless_zero(page))
510        goto stale;
511    if (page->mapping != expected_mapping) {
512        put_page(page);
513        goto stale;
514    }
515    rcu_read_unlock();
516    return page;
517stale:
518    rcu_read_unlock();
519    remove_node_from_stable_tree(stable_node);
520    return NULL;
521}
522
523/*
524 * Removing rmap_item from stable or unstable tree.
525 * This function will clean the information from the stable/unstable tree.
526 */
527static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
528{
529    if (rmap_item->address & STABLE_FLAG) {
530        struct stable_node *stable_node;
531        struct page *page;
532
533        stable_node = rmap_item->head;
534        page = get_ksm_page(stable_node);
535        if (!page)
536            goto out;
537
538        lock_page(page);
539        hlist_del(&rmap_item->hlist);
540        unlock_page(page);
541        put_page(page);
542
543        if (stable_node->hlist.first)
544            ksm_pages_sharing--;
545        else
546            ksm_pages_shared--;
547
548        put_anon_vma(rmap_item->anon_vma);
549        rmap_item->address &= PAGE_MASK;
550
551    } else if (rmap_item->address & UNSTABLE_FLAG) {
552        unsigned char age;
553        /*
554         * Usually ksmd can and must skip the rb_erase, because
555         * root_unstable_tree was already reset to RB_ROOT.
556         * But be careful when an mm is exiting: do the rb_erase
557         * if this rmap_item was inserted by this scan, rather
558         * than left over from before.
559         */
560        age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
561        BUG_ON(age > 1);
562        if (!age)
563            rb_erase(&rmap_item->node, &root_unstable_tree);
564
565        ksm_pages_unshared--;
566        rmap_item->address &= PAGE_MASK;
567    }
568out:
569    cond_resched(); /* we're called from many long loops */
570}
571
572static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
573                       struct rmap_item **rmap_list)
574{
575    while (*rmap_list) {
576        struct rmap_item *rmap_item = *rmap_list;
577        *rmap_list = rmap_item->rmap_list;
578        remove_rmap_item_from_tree(rmap_item);
579        free_rmap_item(rmap_item);
580    }
581}
582
583/*
584 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
585 * than check every pte of a given vma, the locking doesn't quite work for
586 * that - an rmap_item is assigned to the stable tree after inserting ksm
587 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
588 * rmap_items from parent to child at fork time (so as not to waste time
589 * if exit comes before the next scan reaches it).
590 *
591 * Similarly, although we'd like to remove rmap_items (so updating counts
592 * and freeing memory) when unmerging an area, it's easier to leave that
593 * to the next pass of ksmd - consider, for example, how ksmd might be
594 * in cmp_and_merge_page on one of the rmap_items we would be removing.
595 */
596static int unmerge_ksm_pages(struct vm_area_struct *vma,
597                 unsigned long start, unsigned long end)
598{
599    unsigned long addr;
600    int err = 0;
601
602    for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
603        if (ksm_test_exit(vma->vm_mm))
604            break;
605        if (signal_pending(current))
606            err = -ERESTARTSYS;
607        else
608            err = break_ksm(vma, addr);
609    }
610    return err;
611}
612
613#ifdef CONFIG_SYSFS
614/*
615 * Only called through the sysfs control interface:
616 */
617static int unmerge_and_remove_all_rmap_items(void)
618{
619    struct mm_slot *mm_slot;
620    struct mm_struct *mm;
621    struct vm_area_struct *vma;
622    int err = 0;
623
624    spin_lock(&ksm_mmlist_lock);
625    ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
626                        struct mm_slot, mm_list);
627    spin_unlock(&ksm_mmlist_lock);
628
629    for (mm_slot = ksm_scan.mm_slot;
630            mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
631        mm = mm_slot->mm;
632        down_read(&mm->mmap_sem);
633        for (vma = mm->mmap; vma; vma = vma->vm_next) {
634            if (ksm_test_exit(mm))
635                break;
636            if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
637                continue;
638            err = unmerge_ksm_pages(vma,
639                        vma->vm_start, vma->vm_end);
640            if (err)
641                goto error;
642        }
643
644        remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
645
646        spin_lock(&ksm_mmlist_lock);
647        ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
648                        struct mm_slot, mm_list);
649        if (ksm_test_exit(mm)) {
650            hlist_del(&mm_slot->link);
651            list_del(&mm_slot->mm_list);
652            spin_unlock(&ksm_mmlist_lock);
653
654            free_mm_slot(mm_slot);
655            clear_bit(MMF_VM_MERGEABLE, &mm->flags);
656            up_read(&mm->mmap_sem);
657            mmdrop(mm);
658        } else {
659            spin_unlock(&ksm_mmlist_lock);
660            up_read(&mm->mmap_sem);
661        }
662    }
663
664    ksm_scan.seqnr = 0;
665    return 0;
666
667error:
668    up_read(&mm->mmap_sem);
669    spin_lock(&ksm_mmlist_lock);
670    ksm_scan.mm_slot = &ksm_mm_head;
671    spin_unlock(&ksm_mmlist_lock);
672    return err;
673}
674#endif /* CONFIG_SYSFS */
675
676static u32 calc_checksum(struct page *page)
677{
678    u32 checksum;
679    void *addr = kmap_atomic(page);
680    checksum = jhash2(addr, PAGE_SIZE / 4, 17);
681    kunmap_atomic(addr);
682    return checksum;
683}
684
685static int memcmp_pages(struct page *page1, struct page *page2)
686{
687    char *addr1, *addr2;
688    int ret;
689
690    addr1 = kmap_atomic(page1);
691    addr2 = kmap_atomic(page2);
692    ret = memcmp(addr1, addr2, PAGE_SIZE);
693    kunmap_atomic(addr2);
694    kunmap_atomic(addr1);
695    return ret;
696}
697
698static inline int pages_identical(struct page *page1, struct page *page2)
699{
700    return !memcmp_pages(page1, page2);
701}
702
703static int write_protect_page(struct vm_area_struct *vma, struct page *page,
704                  pte_t *orig_pte)
705{
706    struct mm_struct *mm = vma->vm_mm;
707    unsigned long addr;
708    pte_t *ptep;
709    spinlock_t *ptl;
710    int swapped;
711    int err = -EFAULT;
712
713    addr = page_address_in_vma(page, vma);
714    if (addr == -EFAULT)
715        goto out;
716
717    BUG_ON(PageTransCompound(page));
718    ptep = page_check_address(page, mm, addr, &ptl, 0);
719    if (!ptep)
720        goto out;
721
722    if (pte_write(*ptep) || pte_dirty(*ptep)) {
723        pte_t entry;
724
725        swapped = PageSwapCache(page);
726        flush_cache_page(vma, addr, page_to_pfn(page));
727        /*
728         * Ok this is tricky, when get_user_pages_fast() run it doesn't
729         * take any lock, therefore the check that we are going to make
730         * with the pagecount against the mapcount is racey and
731         * O_DIRECT can happen right after the check.
732         * So we clear the pte and flush the tlb before the check
733         * this assure us that no O_DIRECT can happen after the check
734         * or in the middle of the check.
735         */
736        entry = ptep_clear_flush(vma, addr, ptep);
737        /*
738         * Check that no O_DIRECT or similar I/O is in progress on the
739         * page
740         */
741        if (page_mapcount(page) + 1 + swapped != page_count(page)) {
742            set_pte_at(mm, addr, ptep, entry);
743            goto out_unlock;
744        }
745        if (pte_dirty(entry))
746            set_page_dirty(page);
747        entry = pte_mkclean(pte_wrprotect(entry));
748        set_pte_at_notify(mm, addr, ptep, entry);
749    }
750    *orig_pte = *ptep;
751    err = 0;
752
753out_unlock:
754    pte_unmap_unlock(ptep, ptl);
755out:
756    return err;
757}
758
759/**
760 * replace_page - replace page in vma by new ksm page
761 * @vma: vma that holds the pte pointing to page
762 * @page: the page we are replacing by kpage
763 * @kpage: the ksm page we replace page by
764 * @orig_pte: the original value of the pte
765 *
766 * Returns 0 on success, -EFAULT on failure.
767 */
768static int replace_page(struct vm_area_struct *vma, struct page *page,
769            struct page *kpage, pte_t orig_pte)
770{
771    struct mm_struct *mm = vma->vm_mm;
772    pgd_t *pgd;
773    pud_t *pud;
774    pmd_t *pmd;
775    pte_t *ptep;
776    spinlock_t *ptl;
777    unsigned long addr;
778    int err = -EFAULT;
779
780    addr = page_address_in_vma(page, vma);
781    if (addr == -EFAULT)
782        goto out;
783
784    pgd = pgd_offset(mm, addr);
785    if (!pgd_present(*pgd))
786        goto out;
787
788    pud = pud_offset(pgd, addr);
789    if (!pud_present(*pud))
790        goto out;
791
792    pmd = pmd_offset(pud, addr);
793    BUG_ON(pmd_trans_huge(*pmd));
794    if (!pmd_present(*pmd))
795        goto out;
796
797    ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
798    if (!pte_same(*ptep, orig_pte)) {
799        pte_unmap_unlock(ptep, ptl);
800        goto out;
801    }
802
803    get_page(kpage);
804    page_add_anon_rmap(kpage, vma, addr);
805
806    flush_cache_page(vma, addr, pte_pfn(*ptep));
807    ptep_clear_flush(vma, addr, ptep);
808    set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
809
810    page_remove_rmap(page);
811    if (!page_mapped(page))
812        try_to_free_swap(page);
813    put_page(page);
814
815    pte_unmap_unlock(ptep, ptl);
816    err = 0;
817out:
818    return err;
819}
820
821static int page_trans_compound_anon_split(struct page *page)
822{
823    int ret = 0;
824    struct page *transhuge_head = page_trans_compound_anon(page);
825    if (transhuge_head) {
826        /* Get the reference on the head to split it. */
827        if (get_page_unless_zero(transhuge_head)) {
828            /*
829             * Recheck we got the reference while the head
830             * was still anonymous.
831             */
832            if (PageAnon(transhuge_head))
833                ret = split_huge_page(transhuge_head);
834            else
835                /*
836                 * Retry later if split_huge_page run
837                 * from under us.
838                 */
839                ret = 1;
840            put_page(transhuge_head);
841        } else
842            /* Retry later if split_huge_page run from under us. */
843            ret = 1;
844    }
845    return ret;
846}
847
848/*
849 * try_to_merge_one_page - take two pages and merge them into one
850 * @vma: the vma that holds the pte pointing to page
851 * @page: the PageAnon page that we want to replace with kpage
852 * @kpage: the PageKsm page that we want to map instead of page,
853 * or NULL the first time when we want to use page as kpage.
854 *
855 * This function returns 0 if the pages were merged, -EFAULT otherwise.
856 */
857static int try_to_merge_one_page(struct vm_area_struct *vma,
858                 struct page *page, struct page *kpage)
859{
860    pte_t orig_pte = __pte(0);
861    int err = -EFAULT;
862
863    if (page == kpage) /* ksm page forked */
864        return 0;
865
866    if (!(vma->vm_flags & VM_MERGEABLE))
867        goto out;
868    if (PageTransCompound(page) && page_trans_compound_anon_split(page))
869        goto out;
870    BUG_ON(PageTransCompound(page));
871    if (!PageAnon(page))
872        goto out;
873
874    /*
875     * We need the page lock to read a stable PageSwapCache in
876     * write_protect_page(). We use trylock_page() instead of
877     * lock_page() because we don't want to wait here - we
878     * prefer to continue scanning and merging different pages,
879     * then come back to this page when it is unlocked.
880     */
881    if (!trylock_page(page))
882        goto out;
883    /*
884     * If this anonymous page is mapped only here, its pte may need
885     * to be write-protected. If it's mapped elsewhere, all of its
886     * ptes are necessarily already write-protected. But in either
887     * case, we need to lock and check page_count is not raised.
888     */
889    if (write_protect_page(vma, page, &orig_pte) == 0) {
890        if (!kpage) {
891            /*
892             * While we hold page lock, upgrade page from
893             * PageAnon+anon_vma to PageKsm+NULL stable_node:
894             * stable_tree_insert() will update stable_node.
895             */
896            set_page_stable_node(page, NULL);
897            mark_page_accessed(page);
898            err = 0;
899        } else if (pages_identical(page, kpage))
900            err = replace_page(vma, page, kpage, orig_pte);
901    }
902
903    if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
904        munlock_vma_page(page);
905        if (!PageMlocked(kpage)) {
906            unlock_page(page);
907            lock_page(kpage);
908            mlock_vma_page(kpage);
909            page = kpage; /* for final unlock */
910        }
911    }
912
913    unlock_page(page);
914out:
915    return err;
916}
917
918/*
919 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
920 * but no new kernel page is allocated: kpage must already be a ksm page.
921 *
922 * This function returns 0 if the pages were merged, -EFAULT otherwise.
923 */
924static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
925                      struct page *page, struct page *kpage)
926{
927    struct mm_struct *mm = rmap_item->mm;
928    struct vm_area_struct *vma;
929    int err = -EFAULT;
930
931    down_read(&mm->mmap_sem);
932    if (ksm_test_exit(mm))
933        goto out;
934    vma = find_vma(mm, rmap_item->address);
935    if (!vma || vma->vm_start > rmap_item->address)
936        goto out;
937
938    err = try_to_merge_one_page(vma, page, kpage);
939    if (err)
940        goto out;
941
942    /* Must get reference to anon_vma while still holding mmap_sem */
943    rmap_item->anon_vma = vma->anon_vma;
944    get_anon_vma(vma->anon_vma);
945out:
946    up_read(&mm->mmap_sem);
947    return err;
948}
949
950/*
951 * try_to_merge_two_pages - take two identical pages and prepare them
952 * to be merged into one page.
953 *
954 * This function returns the kpage if we successfully merged two identical
955 * pages into one ksm page, NULL otherwise.
956 *
957 * Note that this function upgrades page to ksm page: if one of the pages
958 * is already a ksm page, try_to_merge_with_ksm_page should be used.
959 */
960static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
961                       struct page *page,
962                       struct rmap_item *tree_rmap_item,
963                       struct page *tree_page)
964{
965    int err;
966
967    err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
968    if (!err) {
969        err = try_to_merge_with_ksm_page(tree_rmap_item,
970                            tree_page, page);
971        /*
972         * If that fails, we have a ksm page with only one pte
973         * pointing to it: so break it.
974         */
975        if (err)
976            break_cow(rmap_item);
977    }
978    return err ? NULL : page;
979}
980
981/*
982 * stable_tree_search - search for page inside the stable tree
983 *
984 * This function checks if there is a page inside the stable tree
985 * with identical content to the page that we are scanning right now.
986 *
987 * This function returns the stable tree node of identical content if found,
988 * NULL otherwise.
989 */
990static struct page *stable_tree_search(struct page *page)
991{
992    struct rb_node *node = root_stable_tree.rb_node;
993    struct stable_node *stable_node;
994
995    stable_node = page_stable_node(page);
996    if (stable_node) { /* ksm page forked */
997        get_page(page);
998        return page;
999    }
1000
1001    while (node) {
1002        struct page *tree_page;
1003        int ret;
1004
1005        cond_resched();
1006        stable_node = rb_entry(node, struct stable_node, node);
1007        tree_page = get_ksm_page(stable_node);
1008        if (!tree_page)
1009            return NULL;
1010
1011        ret = memcmp_pages(page, tree_page);
1012
1013        if (ret < 0) {
1014            put_page(tree_page);
1015            node = node->rb_left;
1016        } else if (ret > 0) {
1017            put_page(tree_page);
1018            node = node->rb_right;
1019        } else
1020            return tree_page;
1021    }
1022
1023    return NULL;
1024}
1025
1026/*
1027 * stable_tree_insert - insert rmap_item pointing to new ksm page
1028 * into the stable tree.
1029 *
1030 * This function returns the stable tree node just allocated on success,
1031 * NULL otherwise.
1032 */
1033static struct stable_node *stable_tree_insert(struct page *kpage)
1034{
1035    struct rb_node **new = &root_stable_tree.rb_node;
1036    struct rb_node *parent = NULL;
1037    struct stable_node *stable_node;
1038
1039    while (*new) {
1040        struct page *tree_page;
1041        int ret;
1042
1043        cond_resched();
1044        stable_node = rb_entry(*new, struct stable_node, node);
1045        tree_page = get_ksm_page(stable_node);
1046        if (!tree_page)
1047            return NULL;
1048
1049        ret = memcmp_pages(kpage, tree_page);
1050        put_page(tree_page);
1051
1052        parent = *new;
1053        if (ret < 0)
1054            new = &parent->rb_left;
1055        else if (ret > 0)
1056            new = &parent->rb_right;
1057        else {
1058            /*
1059             * It is not a bug that stable_tree_search() didn't
1060             * find this node: because at that time our page was
1061             * not yet write-protected, so may have changed since.
1062             */
1063            return NULL;
1064        }
1065    }
1066
1067    stable_node = alloc_stable_node();
1068    if (!stable_node)
1069        return NULL;
1070
1071    rb_link_node(&stable_node->node, parent, new);
1072    rb_insert_color(&stable_node->node, &root_stable_tree);
1073
1074    INIT_HLIST_HEAD(&stable_node->hlist);
1075
1076    stable_node->kpfn = page_to_pfn(kpage);
1077    set_page_stable_node(kpage, stable_node);
1078
1079    return stable_node;
1080}
1081
1082/*
1083 * unstable_tree_search_insert - search for identical page,
1084 * else insert rmap_item into the unstable tree.
1085 *
1086 * This function searches for a page in the unstable tree identical to the
1087 * page currently being scanned; and if no identical page is found in the
1088 * tree, we insert rmap_item as a new object into the unstable tree.
1089 *
1090 * This function returns pointer to rmap_item found to be identical
1091 * to the currently scanned page, NULL otherwise.
1092 *
1093 * This function does both searching and inserting, because they share
1094 * the same walking algorithm in an rbtree.
1095 */
1096static
1097struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1098                          struct page *page,
1099                          struct page **tree_pagep)
1100
1101{
1102    struct rb_node **new = &root_unstable_tree.rb_node;
1103    struct rb_node *parent = NULL;
1104
1105    while (*new) {
1106        struct rmap_item *tree_rmap_item;
1107        struct page *tree_page;
1108        int ret;
1109
1110        cond_resched();
1111        tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1112        tree_page = get_mergeable_page(tree_rmap_item);
1113        if (IS_ERR_OR_NULL(tree_page))
1114            return NULL;
1115
1116        /*
1117         * Don't substitute a ksm page for a forked page.
1118         */
1119        if (page == tree_page) {
1120            put_page(tree_page);
1121            return NULL;
1122        }
1123
1124        ret = memcmp_pages(page, tree_page);
1125
1126        parent = *new;
1127        if (ret < 0) {
1128            put_page(tree_page);
1129            new = &parent->rb_left;
1130        } else if (ret > 0) {
1131            put_page(tree_page);
1132            new = &parent->rb_right;
1133        } else {
1134            *tree_pagep = tree_page;
1135            return tree_rmap_item;
1136        }
1137    }
1138
1139    rmap_item->address |= UNSTABLE_FLAG;
1140    rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1141    rb_link_node(&rmap_item->node, parent, new);
1142    rb_insert_color(&rmap_item->node, &root_unstable_tree);
1143
1144    ksm_pages_unshared++;
1145    return NULL;
1146}
1147
1148/*
1149 * stable_tree_append - add another rmap_item to the linked list of
1150 * rmap_items hanging off a given node of the stable tree, all sharing
1151 * the same ksm page.
1152 */
1153static void stable_tree_append(struct rmap_item *rmap_item,
1154                   struct stable_node *stable_node)
1155{
1156    rmap_item->head = stable_node;
1157    rmap_item->address |= STABLE_FLAG;
1158    hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1159
1160    if (rmap_item->hlist.next)
1161        ksm_pages_sharing++;
1162    else
1163        ksm_pages_shared++;
1164}
1165
1166/*
1167 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1168 * if not, compare checksum to previous and if it's the same, see if page can
1169 * be inserted into the unstable tree, or merged with a page already there and
1170 * both transferred to the stable tree.
1171 *
1172 * @page: the page that we are searching identical page to.
1173 * @rmap_item: the reverse mapping into the virtual address of this page
1174 */
1175static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1176{
1177    struct rmap_item *tree_rmap_item;
1178    struct page *tree_page = NULL;
1179    struct stable_node *stable_node;
1180    struct page *kpage;
1181    unsigned int checksum;
1182    int err;
1183
1184    remove_rmap_item_from_tree(rmap_item);
1185
1186    /* We first start with searching the page inside the stable tree */
1187    kpage = stable_tree_search(page);
1188    if (kpage) {
1189        err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1190        if (!err) {
1191            /*
1192             * The page was successfully merged:
1193             * add its rmap_item to the stable tree.
1194             */
1195            lock_page(kpage);
1196            stable_tree_append(rmap_item, page_stable_node(kpage));
1197            unlock_page(kpage);
1198        }
1199        put_page(kpage);
1200        return;
1201    }
1202
1203    /*
1204     * If the hash value of the page has changed from the last time
1205     * we calculated it, this page is changing frequently: therefore we
1206     * don't want to insert it in the unstable tree, and we don't want
1207     * to waste our time searching for something identical to it there.
1208     */
1209    checksum = calc_checksum(page);
1210    if (rmap_item->oldchecksum != checksum) {
1211        rmap_item->oldchecksum = checksum;
1212        return;
1213    }
1214
1215    tree_rmap_item =
1216        unstable_tree_search_insert(rmap_item, page, &tree_page);
1217    if (tree_rmap_item) {
1218        kpage = try_to_merge_two_pages(rmap_item, page,
1219                        tree_rmap_item, tree_page);
1220        put_page(tree_page);
1221        /*
1222         * As soon as we merge this page, we want to remove the
1223         * rmap_item of the page we have merged with from the unstable
1224         * tree, and insert it instead as new node in the stable tree.
1225         */
1226        if (kpage) {
1227            remove_rmap_item_from_tree(tree_rmap_item);
1228
1229            lock_page(kpage);
1230            stable_node = stable_tree_insert(kpage);
1231            if (stable_node) {
1232                stable_tree_append(tree_rmap_item, stable_node);
1233                stable_tree_append(rmap_item, stable_node);
1234            }
1235            unlock_page(kpage);
1236
1237            /*
1238             * If we fail to insert the page into the stable tree,
1239             * we will have 2 virtual addresses that are pointing
1240             * to a ksm page left outside the stable tree,
1241             * in which case we need to break_cow on both.
1242             */
1243            if (!stable_node) {
1244                break_cow(tree_rmap_item);
1245                break_cow(rmap_item);
1246            }
1247        }
1248    }
1249}
1250
1251static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1252                        struct rmap_item **rmap_list,
1253                        unsigned long addr)
1254{
1255    struct rmap_item *rmap_item;
1256
1257    while (*rmap_list) {
1258        rmap_item = *rmap_list;
1259        if ((rmap_item->address & PAGE_MASK) == addr)
1260            return rmap_item;
1261        if (rmap_item->address > addr)
1262            break;
1263        *rmap_list = rmap_item->rmap_list;
1264        remove_rmap_item_from_tree(rmap_item);
1265        free_rmap_item(rmap_item);
1266    }
1267
1268    rmap_item = alloc_rmap_item();
1269    if (rmap_item) {
1270        /* It has already been zeroed */
1271        rmap_item->mm = mm_slot->mm;
1272        rmap_item->address = addr;
1273        rmap_item->rmap_list = *rmap_list;
1274        *rmap_list = rmap_item;
1275    }
1276    return rmap_item;
1277}
1278
1279static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1280{
1281    struct mm_struct *mm;
1282    struct mm_slot *slot;
1283    struct vm_area_struct *vma;
1284    struct rmap_item *rmap_item;
1285
1286    if (list_empty(&ksm_mm_head.mm_list))
1287        return NULL;
1288
1289    slot = ksm_scan.mm_slot;
1290    if (slot == &ksm_mm_head) {
1291        /*
1292         * A number of pages can hang around indefinitely on per-cpu
1293         * pagevecs, raised page count preventing write_protect_page
1294         * from merging them. Though it doesn't really matter much,
1295         * it is puzzling to see some stuck in pages_volatile until
1296         * other activity jostles them out, and they also prevented
1297         * LTP's KSM test from succeeding deterministically; so drain
1298         * them here (here rather than on entry to ksm_do_scan(),
1299         * so we don't IPI too often when pages_to_scan is set low).
1300         */
1301        lru_add_drain_all();
1302
1303        root_unstable_tree = RB_ROOT;
1304
1305        spin_lock(&ksm_mmlist_lock);
1306        slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1307        ksm_scan.mm_slot = slot;
1308        spin_unlock(&ksm_mmlist_lock);
1309        /*
1310         * Although we tested list_empty() above, a racing __ksm_exit
1311         * of the last mm on the list may have removed it since then.
1312         */
1313        if (slot == &ksm_mm_head)
1314            return NULL;
1315next_mm:
1316        ksm_scan.address = 0;
1317        ksm_scan.rmap_list = &slot->rmap_list;
1318    }
1319
1320    mm = slot->mm;
1321    down_read(&mm->mmap_sem);
1322    if (ksm_test_exit(mm))
1323        vma = NULL;
1324    else
1325        vma = find_vma(mm, ksm_scan.address);
1326
1327    for (; vma; vma = vma->vm_next) {
1328        if (!(vma->vm_flags & VM_MERGEABLE))
1329            continue;
1330        if (ksm_scan.address < vma->vm_start)
1331            ksm_scan.address = vma->vm_start;
1332        if (!vma->anon_vma)
1333            ksm_scan.address = vma->vm_end;
1334
1335        while (ksm_scan.address < vma->vm_end) {
1336            if (ksm_test_exit(mm))
1337                break;
1338            *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1339            if (IS_ERR_OR_NULL(*page)) {
1340                ksm_scan.address += PAGE_SIZE;
1341                cond_resched();
1342                continue;
1343            }
1344            if (PageAnon(*page) ||
1345                page_trans_compound_anon(*page)) {
1346                flush_anon_page(vma, *page, ksm_scan.address);
1347                flush_dcache_page(*page);
1348                rmap_item = get_next_rmap_item(slot,
1349                    ksm_scan.rmap_list, ksm_scan.address);
1350                if (rmap_item) {
1351                    ksm_scan.rmap_list =
1352                            &rmap_item->rmap_list;
1353                    ksm_scan.address += PAGE_SIZE;
1354                } else
1355                    put_page(*page);
1356                up_read(&mm->mmap_sem);
1357                return rmap_item;
1358            }
1359            put_page(*page);
1360            ksm_scan.address += PAGE_SIZE;
1361            cond_resched();
1362        }
1363    }
1364
1365    if (ksm_test_exit(mm)) {
1366        ksm_scan.address = 0;
1367        ksm_scan.rmap_list = &slot->rmap_list;
1368    }
1369    /*
1370     * Nuke all the rmap_items that are above this current rmap:
1371     * because there were no VM_MERGEABLE vmas with such addresses.
1372     */
1373    remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1374
1375    spin_lock(&ksm_mmlist_lock);
1376    ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1377                        struct mm_slot, mm_list);
1378    if (ksm_scan.address == 0) {
1379        /*
1380         * We've completed a full scan of all vmas, holding mmap_sem
1381         * throughout, and found no VM_MERGEABLE: so do the same as
1382         * __ksm_exit does to remove this mm from all our lists now.
1383         * This applies either when cleaning up after __ksm_exit
1384         * (but beware: we can reach here even before __ksm_exit),
1385         * or when all VM_MERGEABLE areas have been unmapped (and
1386         * mmap_sem then protects against race with MADV_MERGEABLE).
1387         */
1388        hlist_del(&slot->link);
1389        list_del(&slot->mm_list);
1390        spin_unlock(&ksm_mmlist_lock);
1391
1392        free_mm_slot(slot);
1393        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1394        up_read(&mm->mmap_sem);
1395        mmdrop(mm);
1396    } else {
1397        spin_unlock(&ksm_mmlist_lock);
1398        up_read(&mm->mmap_sem);
1399    }
1400
1401    /* Repeat until we've completed scanning the whole list */
1402    slot = ksm_scan.mm_slot;
1403    if (slot != &ksm_mm_head)
1404        goto next_mm;
1405
1406    ksm_scan.seqnr++;
1407    return NULL;
1408}
1409
1410/**
1411 * ksm_do_scan - the ksm scanner main worker function.
1412 * @scan_npages - number of pages we want to scan before we return.
1413 */
1414static void ksm_do_scan(unsigned int scan_npages)
1415{
1416    struct rmap_item *rmap_item;
1417    struct page *uninitialized_var(page);
1418
1419    while (scan_npages-- && likely(!freezing(current))) {
1420        cond_resched();
1421        rmap_item = scan_get_next_rmap_item(&page);
1422        if (!rmap_item)
1423            return;
1424        if (!PageKsm(page) || !in_stable_tree(rmap_item))
1425            cmp_and_merge_page(page, rmap_item);
1426        put_page(page);
1427    }
1428}
1429
1430static int ksmd_should_run(void)
1431{
1432    return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1433}
1434
1435static int ksm_scan_thread(void *nothing)
1436{
1437    set_freezable();
1438    set_user_nice(current, 5);
1439
1440    while (!kthread_should_stop()) {
1441        mutex_lock(&ksm_thread_mutex);
1442        if (ksmd_should_run())
1443            ksm_do_scan(ksm_thread_pages_to_scan);
1444        mutex_unlock(&ksm_thread_mutex);
1445
1446        try_to_freeze();
1447
1448        if (ksmd_should_run()) {
1449            schedule_timeout_interruptible(
1450                msecs_to_jiffies(ksm_thread_sleep_millisecs));
1451        } else {
1452            wait_event_freezable(ksm_thread_wait,
1453                ksmd_should_run() || kthread_should_stop());
1454        }
1455    }
1456    return 0;
1457}
1458
1459int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1460        unsigned long end, int advice, unsigned long *vm_flags)
1461{
1462    struct mm_struct *mm = vma->vm_mm;
1463    int err;
1464
1465    switch (advice) {
1466    case MADV_MERGEABLE:
1467        /*
1468         * Be somewhat over-protective for now!
1469         */
1470        if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1471                 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1472                 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1473                 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1474            return 0; /* just ignore the advice */
1475
1476        if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1477            err = __ksm_enter(mm);
1478            if (err)
1479                return err;
1480        }
1481
1482        *vm_flags |= VM_MERGEABLE;
1483        break;
1484
1485    case MADV_UNMERGEABLE:
1486        if (!(*vm_flags & VM_MERGEABLE))
1487            return 0; /* just ignore the advice */
1488
1489        if (vma->anon_vma) {
1490            err = unmerge_ksm_pages(vma, start, end);
1491            if (err)
1492                return err;
1493        }
1494
1495        *vm_flags &= ~VM_MERGEABLE;
1496        break;
1497    }
1498
1499    return 0;
1500}
1501
1502int __ksm_enter(struct mm_struct *mm)
1503{
1504    struct mm_slot *mm_slot;
1505    int needs_wakeup;
1506
1507    mm_slot = alloc_mm_slot();
1508    if (!mm_slot)
1509        return -ENOMEM;
1510
1511    /* Check ksm_run too? Would need tighter locking */
1512    needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1513
1514    spin_lock(&ksm_mmlist_lock);
1515    insert_to_mm_slots_hash(mm, mm_slot);
1516    /*
1517     * Insert just behind the scanning cursor, to let the area settle
1518     * down a little; when fork is followed by immediate exec, we don't
1519     * want ksmd to waste time setting up and tearing down an rmap_list.
1520     */
1521    list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1522    spin_unlock(&ksm_mmlist_lock);
1523
1524    set_bit(MMF_VM_MERGEABLE, &mm->flags);
1525    atomic_inc(&mm->mm_count);
1526
1527    if (needs_wakeup)
1528        wake_up_interruptible(&ksm_thread_wait);
1529
1530    return 0;
1531}
1532
1533void __ksm_exit(struct mm_struct *mm)
1534{
1535    struct mm_slot *mm_slot;
1536    int easy_to_free = 0;
1537
1538    /*
1539     * This process is exiting: if it's straightforward (as is the
1540     * case when ksmd was never running), free mm_slot immediately.
1541     * But if it's at the cursor or has rmap_items linked to it, use
1542     * mmap_sem to synchronize with any break_cows before pagetables
1543     * are freed, and leave the mm_slot on the list for ksmd to free.
1544     * Beware: ksm may already have noticed it exiting and freed the slot.
1545     */
1546
1547    spin_lock(&ksm_mmlist_lock);
1548    mm_slot = get_mm_slot(mm);
1549    if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1550        if (!mm_slot->rmap_list) {
1551            hlist_del(&mm_slot->link);
1552            list_del(&mm_slot->mm_list);
1553            easy_to_free = 1;
1554        } else {
1555            list_move(&mm_slot->mm_list,
1556                  &ksm_scan.mm_slot->mm_list);
1557        }
1558    }
1559    spin_unlock(&ksm_mmlist_lock);
1560
1561    if (easy_to_free) {
1562        free_mm_slot(mm_slot);
1563        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1564        mmdrop(mm);
1565    } else if (mm_slot) {
1566        down_write(&mm->mmap_sem);
1567        up_write(&mm->mmap_sem);
1568    }
1569}
1570
1571struct page *ksm_does_need_to_copy(struct page *page,
1572            struct vm_area_struct *vma, unsigned long address)
1573{
1574    struct page *new_page;
1575
1576    new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1577    if (new_page) {
1578        copy_user_highpage(new_page, page, address, vma);
1579
1580        SetPageDirty(new_page);
1581        __SetPageUptodate(new_page);
1582        SetPageSwapBacked(new_page);
1583        __set_page_locked(new_page);
1584
1585        if (page_evictable(new_page, vma))
1586            lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1587        else
1588            add_page_to_unevictable_list(new_page);
1589    }
1590
1591    return new_page;
1592}
1593
1594int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1595            unsigned long *vm_flags)
1596{
1597    struct stable_node *stable_node;
1598    struct rmap_item *rmap_item;
1599    struct hlist_node *hlist;
1600    unsigned int mapcount = page_mapcount(page);
1601    int referenced = 0;
1602    int search_new_forks = 0;
1603
1604    VM_BUG_ON(!PageKsm(page));
1605    VM_BUG_ON(!PageLocked(page));
1606
1607    stable_node = page_stable_node(page);
1608    if (!stable_node)
1609        return 0;
1610again:
1611    hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1612        struct anon_vma *anon_vma = rmap_item->anon_vma;
1613        struct anon_vma_chain *vmac;
1614        struct vm_area_struct *vma;
1615
1616        anon_vma_lock(anon_vma);
1617        list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1618            vma = vmac->vma;
1619            if (rmap_item->address < vma->vm_start ||
1620                rmap_item->address >= vma->vm_end)
1621                continue;
1622            /*
1623             * Initially we examine only the vma which covers this
1624             * rmap_item; but later, if there is still work to do,
1625             * we examine covering vmas in other mms: in case they
1626             * were forked from the original since ksmd passed.
1627             */
1628            if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1629                continue;
1630
1631            if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1632                continue;
1633
1634            referenced += page_referenced_one(page, vma,
1635                rmap_item->address, &mapcount, vm_flags);
1636            if (!search_new_forks || !mapcount)
1637                break;
1638        }
1639        anon_vma_unlock(anon_vma);
1640        if (!mapcount)
1641            goto out;
1642    }
1643    if (!search_new_forks++)
1644        goto again;
1645out:
1646    return referenced;
1647}
1648
1649int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1650{
1651    struct stable_node *stable_node;
1652    struct hlist_node *hlist;
1653    struct rmap_item *rmap_item;
1654    int ret = SWAP_AGAIN;
1655    int search_new_forks = 0;
1656
1657    VM_BUG_ON(!PageKsm(page));
1658    VM_BUG_ON(!PageLocked(page));
1659
1660    stable_node = page_stable_node(page);
1661    if (!stable_node)
1662        return SWAP_FAIL;
1663again:
1664    hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1665        struct anon_vma *anon_vma = rmap_item->anon_vma;
1666        struct anon_vma_chain *vmac;
1667        struct vm_area_struct *vma;
1668
1669        anon_vma_lock(anon_vma);
1670        list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1671            vma = vmac->vma;
1672            if (rmap_item->address < vma->vm_start ||
1673                rmap_item->address >= vma->vm_end)
1674                continue;
1675            /*
1676             * Initially we examine only the vma which covers this
1677             * rmap_item; but later, if there is still work to do,
1678             * we examine covering vmas in other mms: in case they
1679             * were forked from the original since ksmd passed.
1680             */
1681            if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1682                continue;
1683
1684            ret = try_to_unmap_one(page, vma,
1685                    rmap_item->address, flags);
1686            if (ret != SWAP_AGAIN || !page_mapped(page)) {
1687                anon_vma_unlock(anon_vma);
1688                goto out;
1689            }
1690        }
1691        anon_vma_unlock(anon_vma);
1692    }
1693    if (!search_new_forks++)
1694        goto again;
1695out:
1696    return ret;
1697}
1698
1699#ifdef CONFIG_MIGRATION
1700int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1701          struct vm_area_struct *, unsigned long, void *), void *arg)
1702{
1703    struct stable_node *stable_node;
1704    struct hlist_node *hlist;
1705    struct rmap_item *rmap_item;
1706    int ret = SWAP_AGAIN;
1707    int search_new_forks = 0;
1708
1709    VM_BUG_ON(!PageKsm(page));
1710    VM_BUG_ON(!PageLocked(page));
1711
1712    stable_node = page_stable_node(page);
1713    if (!stable_node)
1714        return ret;
1715again:
1716    hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1717        struct anon_vma *anon_vma = rmap_item->anon_vma;
1718        struct anon_vma_chain *vmac;
1719        struct vm_area_struct *vma;
1720
1721        anon_vma_lock(anon_vma);
1722        list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1723            vma = vmac->vma;
1724            if (rmap_item->address < vma->vm_start ||
1725                rmap_item->address >= vma->vm_end)
1726                continue;
1727            /*
1728             * Initially we examine only the vma which covers this
1729             * rmap_item; but later, if there is still work to do,
1730             * we examine covering vmas in other mms: in case they
1731             * were forked from the original since ksmd passed.
1732             */
1733            if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1734                continue;
1735
1736            ret = rmap_one(page, vma, rmap_item->address, arg);
1737            if (ret != SWAP_AGAIN) {
1738                anon_vma_unlock(anon_vma);
1739                goto out;
1740            }
1741        }
1742        anon_vma_unlock(anon_vma);
1743    }
1744    if (!search_new_forks++)
1745        goto again;
1746out:
1747    return ret;
1748}
1749
1750void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1751{
1752    struct stable_node *stable_node;
1753
1754    VM_BUG_ON(!PageLocked(oldpage));
1755    VM_BUG_ON(!PageLocked(newpage));
1756    VM_BUG_ON(newpage->mapping != oldpage->mapping);
1757
1758    stable_node = page_stable_node(newpage);
1759    if (stable_node) {
1760        VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1761        stable_node->kpfn = page_to_pfn(newpage);
1762    }
1763}
1764#endif /* CONFIG_MIGRATION */
1765
1766#ifdef CONFIG_MEMORY_HOTREMOVE
1767static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1768                         unsigned long end_pfn)
1769{
1770    struct rb_node *node;
1771
1772    for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1773        struct stable_node *stable_node;
1774
1775        stable_node = rb_entry(node, struct stable_node, node);
1776        if (stable_node->kpfn >= start_pfn &&
1777            stable_node->kpfn < end_pfn)
1778            return stable_node;
1779    }
1780    return NULL;
1781}
1782
1783static int ksm_memory_callback(struct notifier_block *self,
1784                   unsigned long action, void *arg)
1785{
1786    struct memory_notify *mn = arg;
1787    struct stable_node *stable_node;
1788
1789    switch (action) {
1790    case MEM_GOING_OFFLINE:
1791        /*
1792         * Keep it very simple for now: just lock out ksmd and
1793         * MADV_UNMERGEABLE while any memory is going offline.
1794         * mutex_lock_nested() is necessary because lockdep was alarmed
1795         * that here we take ksm_thread_mutex inside notifier chain
1796         * mutex, and later take notifier chain mutex inside
1797         * ksm_thread_mutex to unlock it. But that's safe because both
1798         * are inside mem_hotplug_mutex.
1799         */
1800        mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1801        break;
1802
1803    case MEM_OFFLINE:
1804        /*
1805         * Most of the work is done by page migration; but there might
1806         * be a few stable_nodes left over, still pointing to struct
1807         * pages which have been offlined: prune those from the tree.
1808         */
1809        while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1810                    mn->start_pfn + mn->nr_pages)) != NULL)
1811            remove_node_from_stable_tree(stable_node);
1812        /* fallthrough */
1813
1814    case MEM_CANCEL_OFFLINE:
1815        mutex_unlock(&ksm_thread_mutex);
1816        break;
1817    }
1818    return NOTIFY_OK;
1819}
1820#endif /* CONFIG_MEMORY_HOTREMOVE */
1821
1822#ifdef CONFIG_SYSFS
1823/*
1824 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1825 */
1826
1827#define KSM_ATTR_RO(_name) \
1828    static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1829#define KSM_ATTR(_name) \
1830    static struct kobj_attribute _name##_attr = \
1831        __ATTR(_name, 0644, _name##_show, _name##_store)
1832
1833static ssize_t sleep_millisecs_show(struct kobject *kobj,
1834                    struct kobj_attribute *attr, char *buf)
1835{
1836    return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1837}
1838
1839static ssize_t sleep_millisecs_store(struct kobject *kobj,
1840                     struct kobj_attribute *attr,
1841                     const char *buf, size_t count)
1842{
1843    unsigned long msecs;
1844    int err;
1845
1846    err = strict_strtoul(buf, 10, &msecs);
1847    if (err || msecs > UINT_MAX)
1848        return -EINVAL;
1849
1850    ksm_thread_sleep_millisecs = msecs;
1851
1852    return count;
1853}
1854KSM_ATTR(sleep_millisecs);
1855
1856static ssize_t pages_to_scan_show(struct kobject *kobj,
1857                  struct kobj_attribute *attr, char *buf)
1858{
1859    return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1860}
1861
1862static ssize_t pages_to_scan_store(struct kobject *kobj,
1863                   struct kobj_attribute *attr,
1864                   const char *buf, size_t count)
1865{
1866    int err;
1867    unsigned long nr_pages;
1868
1869    err = strict_strtoul(buf, 10, &nr_pages);
1870    if (err || nr_pages > UINT_MAX)
1871        return -EINVAL;
1872
1873    ksm_thread_pages_to_scan = nr_pages;
1874
1875    return count;
1876}
1877KSM_ATTR(pages_to_scan);
1878
1879static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1880            char *buf)
1881{
1882    return sprintf(buf, "%u\n", ksm_run);
1883}
1884
1885static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1886             const char *buf, size_t count)
1887{
1888    int err;
1889    unsigned long flags;
1890
1891    err = strict_strtoul(buf, 10, &flags);
1892    if (err || flags > UINT_MAX)
1893        return -EINVAL;
1894    if (flags > KSM_RUN_UNMERGE)
1895        return -EINVAL;
1896
1897    /*
1898     * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1899     * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1900     * breaking COW to free the pages_shared (but leaves mm_slots
1901     * on the list for when ksmd may be set running again).
1902     */
1903
1904    mutex_lock(&ksm_thread_mutex);
1905    if (ksm_run != flags) {
1906        ksm_run = flags;
1907        if (flags & KSM_RUN_UNMERGE) {
1908            int oom_score_adj;
1909
1910            oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1911            err = unmerge_and_remove_all_rmap_items();
1912            compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX,
1913                                oom_score_adj);
1914            if (err) {
1915                ksm_run = KSM_RUN_STOP;
1916                count = err;
1917            }
1918        }
1919    }
1920    mutex_unlock(&ksm_thread_mutex);
1921
1922    if (flags & KSM_RUN_MERGE)
1923        wake_up_interruptible(&ksm_thread_wait);
1924
1925    return count;
1926}
1927KSM_ATTR(run);
1928
1929static ssize_t pages_shared_show(struct kobject *kobj,
1930                 struct kobj_attribute *attr, char *buf)
1931{
1932    return sprintf(buf, "%lu\n", ksm_pages_shared);
1933}
1934KSM_ATTR_RO(pages_shared);
1935
1936static ssize_t pages_sharing_show(struct kobject *kobj,
1937                  struct kobj_attribute *attr, char *buf)
1938{
1939    return sprintf(buf, "%lu\n", ksm_pages_sharing);
1940}
1941KSM_ATTR_RO(pages_sharing);
1942
1943static ssize_t pages_unshared_show(struct kobject *kobj,
1944                   struct kobj_attribute *attr, char *buf)
1945{
1946    return sprintf(buf, "%lu\n", ksm_pages_unshared);
1947}
1948KSM_ATTR_RO(pages_unshared);
1949
1950static ssize_t pages_volatile_show(struct kobject *kobj,
1951                   struct kobj_attribute *attr, char *buf)
1952{
1953    long ksm_pages_volatile;
1954
1955    ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1956                - ksm_pages_sharing - ksm_pages_unshared;
1957    /*
1958     * It was not worth any locking to calculate that statistic,
1959     * but it might therefore sometimes be negative: conceal that.
1960     */
1961    if (ksm_pages_volatile < 0)
1962        ksm_pages_volatile = 0;
1963    return sprintf(buf, "%ld\n", ksm_pages_volatile);
1964}
1965KSM_ATTR_RO(pages_volatile);
1966
1967static ssize_t full_scans_show(struct kobject *kobj,
1968                   struct kobj_attribute *attr, char *buf)
1969{
1970    return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1971}
1972KSM_ATTR_RO(full_scans);
1973
1974static struct attribute *ksm_attrs[] = {
1975    &sleep_millisecs_attr.attr,
1976    &pages_to_scan_attr.attr,
1977    &run_attr.attr,
1978    &pages_shared_attr.attr,
1979    &pages_sharing_attr.attr,
1980    &pages_unshared_attr.attr,
1981    &pages_volatile_attr.attr,
1982    &full_scans_attr.attr,
1983    NULL,
1984};
1985
1986static struct attribute_group ksm_attr_group = {
1987    .attrs = ksm_attrs,
1988    .name = "ksm",
1989};
1990#endif /* CONFIG_SYSFS */
1991
1992static int __init ksm_init(void)
1993{
1994    struct task_struct *ksm_thread;
1995    int err;
1996
1997    err = ksm_slab_init();
1998    if (err)
1999        goto out;
2000
2001    ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2002    if (IS_ERR(ksm_thread)) {
2003        printk(KERN_ERR "ksm: creating kthread failed\n");
2004        err = PTR_ERR(ksm_thread);
2005        goto out_free;
2006    }
2007
2008#ifdef CONFIG_SYSFS
2009    err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2010    if (err) {
2011        printk(KERN_ERR "ksm: register sysfs failed\n");
2012        kthread_stop(ksm_thread);
2013        goto out_free;
2014    }
2015#else
2016    ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2017
2018#endif /* CONFIG_SYSFS */
2019
2020#ifdef CONFIG_MEMORY_HOTREMOVE
2021    /*
2022     * Choose a high priority since the callback takes ksm_thread_mutex:
2023     * later callbacks could only be taking locks which nest within that.
2024     */
2025    hotplug_memory_notifier(ksm_memory_callback, 100);
2026#endif
2027    return 0;
2028
2029out_free:
2030    ksm_slab_free();
2031out:
2032    return err;
2033}
2034module_init(ksm_init)
2035

Archive Download this file



interactive