Root/
1 | /* |
2 | * Procedures for maintaining information about logical memory blocks. |
3 | * |
4 | * Peter Bergner, IBM Corp. June 2001. |
5 | * Copyright (C) 2001 Peter Bergner. |
6 | * |
7 | * This program is free software; you can redistribute it and/or |
8 | * modify it under the terms of the GNU General Public License |
9 | * as published by the Free Software Foundation; either version |
10 | * 2 of the License, or (at your option) any later version. |
11 | */ |
12 | |
13 | #include <linux/kernel.h> |
14 | #include <linux/slab.h> |
15 | #include <linux/init.h> |
16 | #include <linux/bitops.h> |
17 | #include <linux/poison.h> |
18 | #include <linux/pfn.h> |
19 | #include <linux/debugfs.h> |
20 | #include <linux/seq_file.h> |
21 | #include <linux/memblock.h> |
22 | |
23 | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
24 | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
25 | |
26 | struct memblock memblock __initdata_memblock = { |
27 | .memory.regions = memblock_memory_init_regions, |
28 | .memory.cnt = 1, /* empty dummy entry */ |
29 | .memory.max = INIT_MEMBLOCK_REGIONS, |
30 | |
31 | .reserved.regions = memblock_reserved_init_regions, |
32 | .reserved.cnt = 1, /* empty dummy entry */ |
33 | .reserved.max = INIT_MEMBLOCK_REGIONS, |
34 | |
35 | .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
36 | }; |
37 | |
38 | int memblock_debug __initdata_memblock; |
39 | static int memblock_can_resize __initdata_memblock; |
40 | static int memblock_memory_in_slab __initdata_memblock = 0; |
41 | static int memblock_reserved_in_slab __initdata_memblock = 0; |
42 | |
43 | /* inline so we don't get a warning when pr_debug is compiled out */ |
44 | static inline const char *memblock_type_name(struct memblock_type *type) |
45 | { |
46 | if (type == &memblock.memory) |
47 | return "memory"; |
48 | else if (type == &memblock.reserved) |
49 | return "reserved"; |
50 | else |
51 | return "unknown"; |
52 | } |
53 | |
54 | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
55 | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) |
56 | { |
57 | return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); |
58 | } |
59 | |
60 | /* |
61 | * Address comparison utilities |
62 | */ |
63 | static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, |
64 | phys_addr_t base2, phys_addr_t size2) |
65 | { |
66 | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
67 | } |
68 | |
69 | static long __init_memblock memblock_overlaps_region(struct memblock_type *type, |
70 | phys_addr_t base, phys_addr_t size) |
71 | { |
72 | unsigned long i; |
73 | |
74 | for (i = 0; i < type->cnt; i++) { |
75 | phys_addr_t rgnbase = type->regions[i].base; |
76 | phys_addr_t rgnsize = type->regions[i].size; |
77 | if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) |
78 | break; |
79 | } |
80 | |
81 | return (i < type->cnt) ? i : -1; |
82 | } |
83 | |
84 | /** |
85 | * memblock_find_in_range_node - find free area in given range and node |
86 | * @start: start of candidate range |
87 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} |
88 | * @size: size of free area to find |
89 | * @align: alignment of free area to find |
90 | * @nid: nid of the free area to find, %MAX_NUMNODES for any node |
91 | * |
92 | * Find @size free area aligned to @align in the specified range and node. |
93 | * |
94 | * RETURNS: |
95 | * Found address on success, %0 on failure. |
96 | */ |
97 | phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, |
98 | phys_addr_t end, phys_addr_t size, |
99 | phys_addr_t align, int nid) |
100 | { |
101 | phys_addr_t this_start, this_end, cand; |
102 | u64 i; |
103 | |
104 | /* pump up @end */ |
105 | if (end == MEMBLOCK_ALLOC_ACCESSIBLE) |
106 | end = memblock.current_limit; |
107 | |
108 | /* avoid allocating the first page */ |
109 | start = max_t(phys_addr_t, start, PAGE_SIZE); |
110 | end = max(start, end); |
111 | |
112 | for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { |
113 | this_start = clamp(this_start, start, end); |
114 | this_end = clamp(this_end, start, end); |
115 | |
116 | if (this_end < size) |
117 | continue; |
118 | |
119 | cand = round_down(this_end - size, align); |
120 | if (cand >= this_start) |
121 | return cand; |
122 | } |
123 | return 0; |
124 | } |
125 | |
126 | /** |
127 | * memblock_find_in_range - find free area in given range |
128 | * @start: start of candidate range |
129 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} |
130 | * @size: size of free area to find |
131 | * @align: alignment of free area to find |
132 | * |
133 | * Find @size free area aligned to @align in the specified range. |
134 | * |
135 | * RETURNS: |
136 | * Found address on success, %0 on failure. |
137 | */ |
138 | phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
139 | phys_addr_t end, phys_addr_t size, |
140 | phys_addr_t align) |
141 | { |
142 | return memblock_find_in_range_node(start, end, size, align, |
143 | MAX_NUMNODES); |
144 | } |
145 | |
146 | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
147 | { |
148 | type->total_size -= type->regions[r].size; |
149 | memmove(&type->regions[r], &type->regions[r + 1], |
150 | (type->cnt - (r + 1)) * sizeof(type->regions[r])); |
151 | type->cnt--; |
152 | |
153 | /* Special case for empty arrays */ |
154 | if (type->cnt == 0) { |
155 | WARN_ON(type->total_size != 0); |
156 | type->cnt = 1; |
157 | type->regions[0].base = 0; |
158 | type->regions[0].size = 0; |
159 | memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
160 | } |
161 | } |
162 | |
163 | phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( |
164 | phys_addr_t *addr) |
165 | { |
166 | if (memblock.reserved.regions == memblock_reserved_init_regions) |
167 | return 0; |
168 | |
169 | *addr = __pa(memblock.reserved.regions); |
170 | |
171 | return PAGE_ALIGN(sizeof(struct memblock_region) * |
172 | memblock.reserved.max); |
173 | } |
174 | |
175 | /** |
176 | * memblock_double_array - double the size of the memblock regions array |
177 | * @type: memblock type of the regions array being doubled |
178 | * @new_area_start: starting address of memory range to avoid overlap with |
179 | * @new_area_size: size of memory range to avoid overlap with |
180 | * |
181 | * Double the size of the @type regions array. If memblock is being used to |
182 | * allocate memory for a new reserved regions array and there is a previously |
183 | * allocated memory range [@new_area_start,@new_area_start+@new_area_size] |
184 | * waiting to be reserved, ensure the memory used by the new array does |
185 | * not overlap. |
186 | * |
187 | * RETURNS: |
188 | * 0 on success, -1 on failure. |
189 | */ |
190 | static int __init_memblock memblock_double_array(struct memblock_type *type, |
191 | phys_addr_t new_area_start, |
192 | phys_addr_t new_area_size) |
193 | { |
194 | struct memblock_region *new_array, *old_array; |
195 | phys_addr_t old_alloc_size, new_alloc_size; |
196 | phys_addr_t old_size, new_size, addr; |
197 | int use_slab = slab_is_available(); |
198 | int *in_slab; |
199 | |
200 | /* We don't allow resizing until we know about the reserved regions |
201 | * of memory that aren't suitable for allocation |
202 | */ |
203 | if (!memblock_can_resize) |
204 | return -1; |
205 | |
206 | /* Calculate new doubled size */ |
207 | old_size = type->max * sizeof(struct memblock_region); |
208 | new_size = old_size << 1; |
209 | /* |
210 | * We need to allocated new one align to PAGE_SIZE, |
211 | * so we can free them completely later. |
212 | */ |
213 | old_alloc_size = PAGE_ALIGN(old_size); |
214 | new_alloc_size = PAGE_ALIGN(new_size); |
215 | |
216 | /* Retrieve the slab flag */ |
217 | if (type == &memblock.memory) |
218 | in_slab = &memblock_memory_in_slab; |
219 | else |
220 | in_slab = &memblock_reserved_in_slab; |
221 | |
222 | /* Try to find some space for it. |
223 | * |
224 | * WARNING: We assume that either slab_is_available() and we use it or |
225 | * we use MEMBLOCK for allocations. That means that this is unsafe to |
226 | * use when bootmem is currently active (unless bootmem itself is |
227 | * implemented on top of MEMBLOCK which isn't the case yet) |
228 | * |
229 | * This should however not be an issue for now, as we currently only |
230 | * call into MEMBLOCK while it's still active, or much later when slab |
231 | * is active for memory hotplug operations |
232 | */ |
233 | if (use_slab) { |
234 | new_array = kmalloc(new_size, GFP_KERNEL); |
235 | addr = new_array ? __pa(new_array) : 0; |
236 | } else { |
237 | /* only exclude range when trying to double reserved.regions */ |
238 | if (type != &memblock.reserved) |
239 | new_area_start = new_area_size = 0; |
240 | |
241 | addr = memblock_find_in_range(new_area_start + new_area_size, |
242 | memblock.current_limit, |
243 | new_alloc_size, PAGE_SIZE); |
244 | if (!addr && new_area_size) |
245 | addr = memblock_find_in_range(0, |
246 | min(new_area_start, memblock.current_limit), |
247 | new_alloc_size, PAGE_SIZE); |
248 | |
249 | new_array = addr ? __va(addr) : 0; |
250 | } |
251 | if (!addr) { |
252 | pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
253 | memblock_type_name(type), type->max, type->max * 2); |
254 | return -1; |
255 | } |
256 | |
257 | memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", |
258 | memblock_type_name(type), type->max * 2, (u64)addr, |
259 | (u64)addr + new_size - 1); |
260 | |
261 | /* |
262 | * Found space, we now need to move the array over before we add the |
263 | * reserved region since it may be our reserved array itself that is |
264 | * full. |
265 | */ |
266 | memcpy(new_array, type->regions, old_size); |
267 | memset(new_array + type->max, 0, old_size); |
268 | old_array = type->regions; |
269 | type->regions = new_array; |
270 | type->max <<= 1; |
271 | |
272 | /* Free old array. We needn't free it if the array is the static one */ |
273 | if (*in_slab) |
274 | kfree(old_array); |
275 | else if (old_array != memblock_memory_init_regions && |
276 | old_array != memblock_reserved_init_regions) |
277 | memblock_free(__pa(old_array), old_alloc_size); |
278 | |
279 | /* |
280 | * Reserve the new array if that comes from the memblock. Otherwise, we |
281 | * needn't do it |
282 | */ |
283 | if (!use_slab) |
284 | BUG_ON(memblock_reserve(addr, new_alloc_size)); |
285 | |
286 | /* Update slab flag */ |
287 | *in_slab = use_slab; |
288 | |
289 | return 0; |
290 | } |
291 | |
292 | /** |
293 | * memblock_merge_regions - merge neighboring compatible regions |
294 | * @type: memblock type to scan |
295 | * |
296 | * Scan @type and merge neighboring compatible regions. |
297 | */ |
298 | static void __init_memblock memblock_merge_regions(struct memblock_type *type) |
299 | { |
300 | int i = 0; |
301 | |
302 | /* cnt never goes below 1 */ |
303 | while (i < type->cnt - 1) { |
304 | struct memblock_region *this = &type->regions[i]; |
305 | struct memblock_region *next = &type->regions[i + 1]; |
306 | |
307 | if (this->base + this->size != next->base || |
308 | memblock_get_region_node(this) != |
309 | memblock_get_region_node(next)) { |
310 | BUG_ON(this->base + this->size > next->base); |
311 | i++; |
312 | continue; |
313 | } |
314 | |
315 | this->size += next->size; |
316 | memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); |
317 | type->cnt--; |
318 | } |
319 | } |
320 | |
321 | /** |
322 | * memblock_insert_region - insert new memblock region |
323 | * @type: memblock type to insert into |
324 | * @idx: index for the insertion point |
325 | * @base: base address of the new region |
326 | * @size: size of the new region |
327 | * |
328 | * Insert new memblock region [@base,@base+@size) into @type at @idx. |
329 | * @type must already have extra room to accomodate the new region. |
330 | */ |
331 | static void __init_memblock memblock_insert_region(struct memblock_type *type, |
332 | int idx, phys_addr_t base, |
333 | phys_addr_t size, int nid) |
334 | { |
335 | struct memblock_region *rgn = &type->regions[idx]; |
336 | |
337 | BUG_ON(type->cnt >= type->max); |
338 | memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); |
339 | rgn->base = base; |
340 | rgn->size = size; |
341 | memblock_set_region_node(rgn, nid); |
342 | type->cnt++; |
343 | type->total_size += size; |
344 | } |
345 | |
346 | /** |
347 | * memblock_add_region - add new memblock region |
348 | * @type: memblock type to add new region into |
349 | * @base: base address of the new region |
350 | * @size: size of the new region |
351 | * @nid: nid of the new region |
352 | * |
353 | * Add new memblock region [@base,@base+@size) into @type. The new region |
354 | * is allowed to overlap with existing ones - overlaps don't affect already |
355 | * existing regions. @type is guaranteed to be minimal (all neighbouring |
356 | * compatible regions are merged) after the addition. |
357 | * |
358 | * RETURNS: |
359 | * 0 on success, -errno on failure. |
360 | */ |
361 | static int __init_memblock memblock_add_region(struct memblock_type *type, |
362 | phys_addr_t base, phys_addr_t size, int nid) |
363 | { |
364 | bool insert = false; |
365 | phys_addr_t obase = base; |
366 | phys_addr_t end = base + memblock_cap_size(base, &size); |
367 | int i, nr_new; |
368 | |
369 | if (!size) |
370 | return 0; |
371 | |
372 | /* special case for empty array */ |
373 | if (type->regions[0].size == 0) { |
374 | WARN_ON(type->cnt != 1 || type->total_size); |
375 | type->regions[0].base = base; |
376 | type->regions[0].size = size; |
377 | memblock_set_region_node(&type->regions[0], nid); |
378 | type->total_size = size; |
379 | return 0; |
380 | } |
381 | repeat: |
382 | /* |
383 | * The following is executed twice. Once with %false @insert and |
384 | * then with %true. The first counts the number of regions needed |
385 | * to accomodate the new area. The second actually inserts them. |
386 | */ |
387 | base = obase; |
388 | nr_new = 0; |
389 | |
390 | for (i = 0; i < type->cnt; i++) { |
391 | struct memblock_region *rgn = &type->regions[i]; |
392 | phys_addr_t rbase = rgn->base; |
393 | phys_addr_t rend = rbase + rgn->size; |
394 | |
395 | if (rbase >= end) |
396 | break; |
397 | if (rend <= base) |
398 | continue; |
399 | /* |
400 | * @rgn overlaps. If it separates the lower part of new |
401 | * area, insert that portion. |
402 | */ |
403 | if (rbase > base) { |
404 | nr_new++; |
405 | if (insert) |
406 | memblock_insert_region(type, i++, base, |
407 | rbase - base, nid); |
408 | } |
409 | /* area below @rend is dealt with, forget about it */ |
410 | base = min(rend, end); |
411 | } |
412 | |
413 | /* insert the remaining portion */ |
414 | if (base < end) { |
415 | nr_new++; |
416 | if (insert) |
417 | memblock_insert_region(type, i, base, end - base, nid); |
418 | } |
419 | |
420 | /* |
421 | * If this was the first round, resize array and repeat for actual |
422 | * insertions; otherwise, merge and return. |
423 | */ |
424 | if (!insert) { |
425 | while (type->cnt + nr_new > type->max) |
426 | if (memblock_double_array(type, obase, size) < 0) |
427 | return -ENOMEM; |
428 | insert = true; |
429 | goto repeat; |
430 | } else { |
431 | memblock_merge_regions(type); |
432 | return 0; |
433 | } |
434 | } |
435 | |
436 | int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
437 | int nid) |
438 | { |
439 | return memblock_add_region(&memblock.memory, base, size, nid); |
440 | } |
441 | |
442 | int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
443 | { |
444 | return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); |
445 | } |
446 | |
447 | /** |
448 | * memblock_isolate_range - isolate given range into disjoint memblocks |
449 | * @type: memblock type to isolate range for |
450 | * @base: base of range to isolate |
451 | * @size: size of range to isolate |
452 | * @start_rgn: out parameter for the start of isolated region |
453 | * @end_rgn: out parameter for the end of isolated region |
454 | * |
455 | * Walk @type and ensure that regions don't cross the boundaries defined by |
456 | * [@base,@base+@size). Crossing regions are split at the boundaries, |
457 | * which may create at most two more regions. The index of the first |
458 | * region inside the range is returned in *@start_rgn and end in *@end_rgn. |
459 | * |
460 | * RETURNS: |
461 | * 0 on success, -errno on failure. |
462 | */ |
463 | static int __init_memblock memblock_isolate_range(struct memblock_type *type, |
464 | phys_addr_t base, phys_addr_t size, |
465 | int *start_rgn, int *end_rgn) |
466 | { |
467 | phys_addr_t end = base + memblock_cap_size(base, &size); |
468 | int i; |
469 | |
470 | *start_rgn = *end_rgn = 0; |
471 | |
472 | if (!size) |
473 | return 0; |
474 | |
475 | /* we'll create at most two more regions */ |
476 | while (type->cnt + 2 > type->max) |
477 | if (memblock_double_array(type, base, size) < 0) |
478 | return -ENOMEM; |
479 | |
480 | for (i = 0; i < type->cnt; i++) { |
481 | struct memblock_region *rgn = &type->regions[i]; |
482 | phys_addr_t rbase = rgn->base; |
483 | phys_addr_t rend = rbase + rgn->size; |
484 | |
485 | if (rbase >= end) |
486 | break; |
487 | if (rend <= base) |
488 | continue; |
489 | |
490 | if (rbase < base) { |
491 | /* |
492 | * @rgn intersects from below. Split and continue |
493 | * to process the next region - the new top half. |
494 | */ |
495 | rgn->base = base; |
496 | rgn->size -= base - rbase; |
497 | type->total_size -= base - rbase; |
498 | memblock_insert_region(type, i, rbase, base - rbase, |
499 | memblock_get_region_node(rgn)); |
500 | } else if (rend > end) { |
501 | /* |
502 | * @rgn intersects from above. Split and redo the |
503 | * current region - the new bottom half. |
504 | */ |
505 | rgn->base = end; |
506 | rgn->size -= end - rbase; |
507 | type->total_size -= end - rbase; |
508 | memblock_insert_region(type, i--, rbase, end - rbase, |
509 | memblock_get_region_node(rgn)); |
510 | } else { |
511 | /* @rgn is fully contained, record it */ |
512 | if (!*end_rgn) |
513 | *start_rgn = i; |
514 | *end_rgn = i + 1; |
515 | } |
516 | } |
517 | |
518 | return 0; |
519 | } |
520 | |
521 | static int __init_memblock __memblock_remove(struct memblock_type *type, |
522 | phys_addr_t base, phys_addr_t size) |
523 | { |
524 | int start_rgn, end_rgn; |
525 | int i, ret; |
526 | |
527 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
528 | if (ret) |
529 | return ret; |
530 | |
531 | for (i = end_rgn - 1; i >= start_rgn; i--) |
532 | memblock_remove_region(type, i); |
533 | return 0; |
534 | } |
535 | |
536 | int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
537 | { |
538 | return __memblock_remove(&memblock.memory, base, size); |
539 | } |
540 | |
541 | int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) |
542 | { |
543 | memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", |
544 | (unsigned long long)base, |
545 | (unsigned long long)base + size, |
546 | (void *)_RET_IP_); |
547 | |
548 | return __memblock_remove(&memblock.reserved, base, size); |
549 | } |
550 | |
551 | int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) |
552 | { |
553 | struct memblock_type *_rgn = &memblock.reserved; |
554 | |
555 | memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", |
556 | (unsigned long long)base, |
557 | (unsigned long long)base + size, |
558 | (void *)_RET_IP_); |
559 | |
560 | return memblock_add_region(_rgn, base, size, MAX_NUMNODES); |
561 | } |
562 | |
563 | /** |
564 | * __next_free_mem_range - next function for for_each_free_mem_range() |
565 | * @idx: pointer to u64 loop variable |
566 | * @nid: nid: node selector, %MAX_NUMNODES for all nodes |
567 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
568 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
569 | * @out_nid: ptr to int for nid of the range, can be %NULL |
570 | * |
571 | * Find the first free area from *@idx which matches @nid, fill the out |
572 | * parameters, and update *@idx for the next iteration. The lower 32bit of |
573 | * *@idx contains index into memory region and the upper 32bit indexes the |
574 | * areas before each reserved region. For example, if reserved regions |
575 | * look like the following, |
576 | * |
577 | * 0:[0-16), 1:[32-48), 2:[128-130) |
578 | * |
579 | * The upper 32bit indexes the following regions. |
580 | * |
581 | * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) |
582 | * |
583 | * As both region arrays are sorted, the function advances the two indices |
584 | * in lockstep and returns each intersection. |
585 | */ |
586 | void __init_memblock __next_free_mem_range(u64 *idx, int nid, |
587 | phys_addr_t *out_start, |
588 | phys_addr_t *out_end, int *out_nid) |
589 | { |
590 | struct memblock_type *mem = &memblock.memory; |
591 | struct memblock_type *rsv = &memblock.reserved; |
592 | int mi = *idx & 0xffffffff; |
593 | int ri = *idx >> 32; |
594 | |
595 | for ( ; mi < mem->cnt; mi++) { |
596 | struct memblock_region *m = &mem->regions[mi]; |
597 | phys_addr_t m_start = m->base; |
598 | phys_addr_t m_end = m->base + m->size; |
599 | |
600 | /* only memory regions are associated with nodes, check it */ |
601 | if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) |
602 | continue; |
603 | |
604 | /* scan areas before each reservation for intersection */ |
605 | for ( ; ri < rsv->cnt + 1; ri++) { |
606 | struct memblock_region *r = &rsv->regions[ri]; |
607 | phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; |
608 | phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; |
609 | |
610 | /* if ri advanced past mi, break out to advance mi */ |
611 | if (r_start >= m_end) |
612 | break; |
613 | /* if the two regions intersect, we're done */ |
614 | if (m_start < r_end) { |
615 | if (out_start) |
616 | *out_start = max(m_start, r_start); |
617 | if (out_end) |
618 | *out_end = min(m_end, r_end); |
619 | if (out_nid) |
620 | *out_nid = memblock_get_region_node(m); |
621 | /* |
622 | * The region which ends first is advanced |
623 | * for the next iteration. |
624 | */ |
625 | if (m_end <= r_end) |
626 | mi++; |
627 | else |
628 | ri++; |
629 | *idx = (u32)mi | (u64)ri << 32; |
630 | return; |
631 | } |
632 | } |
633 | } |
634 | |
635 | /* signal end of iteration */ |
636 | *idx = ULLONG_MAX; |
637 | } |
638 | |
639 | /** |
640 | * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() |
641 | * @idx: pointer to u64 loop variable |
642 | * @nid: nid: node selector, %MAX_NUMNODES for all nodes |
643 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
644 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
645 | * @out_nid: ptr to int for nid of the range, can be %NULL |
646 | * |
647 | * Reverse of __next_free_mem_range(). |
648 | */ |
649 | void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, |
650 | phys_addr_t *out_start, |
651 | phys_addr_t *out_end, int *out_nid) |
652 | { |
653 | struct memblock_type *mem = &memblock.memory; |
654 | struct memblock_type *rsv = &memblock.reserved; |
655 | int mi = *idx & 0xffffffff; |
656 | int ri = *idx >> 32; |
657 | |
658 | if (*idx == (u64)ULLONG_MAX) { |
659 | mi = mem->cnt - 1; |
660 | ri = rsv->cnt; |
661 | } |
662 | |
663 | for ( ; mi >= 0; mi--) { |
664 | struct memblock_region *m = &mem->regions[mi]; |
665 | phys_addr_t m_start = m->base; |
666 | phys_addr_t m_end = m->base + m->size; |
667 | |
668 | /* only memory regions are associated with nodes, check it */ |
669 | if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) |
670 | continue; |
671 | |
672 | /* scan areas before each reservation for intersection */ |
673 | for ( ; ri >= 0; ri--) { |
674 | struct memblock_region *r = &rsv->regions[ri]; |
675 | phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; |
676 | phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; |
677 | |
678 | /* if ri advanced past mi, break out to advance mi */ |
679 | if (r_end <= m_start) |
680 | break; |
681 | /* if the two regions intersect, we're done */ |
682 | if (m_end > r_start) { |
683 | if (out_start) |
684 | *out_start = max(m_start, r_start); |
685 | if (out_end) |
686 | *out_end = min(m_end, r_end); |
687 | if (out_nid) |
688 | *out_nid = memblock_get_region_node(m); |
689 | |
690 | if (m_start >= r_start) |
691 | mi--; |
692 | else |
693 | ri--; |
694 | *idx = (u32)mi | (u64)ri << 32; |
695 | return; |
696 | } |
697 | } |
698 | } |
699 | |
700 | *idx = ULLONG_MAX; |
701 | } |
702 | |
703 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
704 | /* |
705 | * Common iterator interface used to define for_each_mem_range(). |
706 | */ |
707 | void __init_memblock __next_mem_pfn_range(int *idx, int nid, |
708 | unsigned long *out_start_pfn, |
709 | unsigned long *out_end_pfn, int *out_nid) |
710 | { |
711 | struct memblock_type *type = &memblock.memory; |
712 | struct memblock_region *r; |
713 | |
714 | while (++*idx < type->cnt) { |
715 | r = &type->regions[*idx]; |
716 | |
717 | if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) |
718 | continue; |
719 | if (nid == MAX_NUMNODES || nid == r->nid) |
720 | break; |
721 | } |
722 | if (*idx >= type->cnt) { |
723 | *idx = -1; |
724 | return; |
725 | } |
726 | |
727 | if (out_start_pfn) |
728 | *out_start_pfn = PFN_UP(r->base); |
729 | if (out_end_pfn) |
730 | *out_end_pfn = PFN_DOWN(r->base + r->size); |
731 | if (out_nid) |
732 | *out_nid = r->nid; |
733 | } |
734 | |
735 | /** |
736 | * memblock_set_node - set node ID on memblock regions |
737 | * @base: base of area to set node ID for |
738 | * @size: size of area to set node ID for |
739 | * @nid: node ID to set |
740 | * |
741 | * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. |
742 | * Regions which cross the area boundaries are split as necessary. |
743 | * |
744 | * RETURNS: |
745 | * 0 on success, -errno on failure. |
746 | */ |
747 | int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, |
748 | int nid) |
749 | { |
750 | struct memblock_type *type = &memblock.memory; |
751 | int start_rgn, end_rgn; |
752 | int i, ret; |
753 | |
754 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
755 | if (ret) |
756 | return ret; |
757 | |
758 | for (i = start_rgn; i < end_rgn; i++) |
759 | type->regions[i].nid = nid; |
760 | |
761 | memblock_merge_regions(type); |
762 | return 0; |
763 | } |
764 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
765 | |
766 | static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, |
767 | phys_addr_t align, phys_addr_t max_addr, |
768 | int nid) |
769 | { |
770 | phys_addr_t found; |
771 | |
772 | /* align @size to avoid excessive fragmentation on reserved array */ |
773 | size = round_up(size, align); |
774 | |
775 | found = memblock_find_in_range_node(0, max_addr, size, align, nid); |
776 | if (found && !memblock_reserve(found, size)) |
777 | return found; |
778 | |
779 | return 0; |
780 | } |
781 | |
782 | phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) |
783 | { |
784 | return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); |
785 | } |
786 | |
787 | phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
788 | { |
789 | return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); |
790 | } |
791 | |
792 | phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
793 | { |
794 | phys_addr_t alloc; |
795 | |
796 | alloc = __memblock_alloc_base(size, align, max_addr); |
797 | |
798 | if (alloc == 0) |
799 | panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", |
800 | (unsigned long long) size, (unsigned long long) max_addr); |
801 | |
802 | return alloc; |
803 | } |
804 | |
805 | phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) |
806 | { |
807 | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
808 | } |
809 | |
810 | phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
811 | { |
812 | phys_addr_t res = memblock_alloc_nid(size, align, nid); |
813 | |
814 | if (res) |
815 | return res; |
816 | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
817 | } |
818 | |
819 | |
820 | /* |
821 | * Remaining API functions |
822 | */ |
823 | |
824 | phys_addr_t __init memblock_phys_mem_size(void) |
825 | { |
826 | return memblock.memory.total_size; |
827 | } |
828 | |
829 | /* lowest address */ |
830 | phys_addr_t __init_memblock memblock_start_of_DRAM(void) |
831 | { |
832 | return memblock.memory.regions[0].base; |
833 | } |
834 | |
835 | phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
836 | { |
837 | int idx = memblock.memory.cnt - 1; |
838 | |
839 | return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
840 | } |
841 | |
842 | void __init memblock_enforce_memory_limit(phys_addr_t limit) |
843 | { |
844 | unsigned long i; |
845 | phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; |
846 | |
847 | if (!limit) |
848 | return; |
849 | |
850 | /* find out max address */ |
851 | for (i = 0; i < memblock.memory.cnt; i++) { |
852 | struct memblock_region *r = &memblock.memory.regions[i]; |
853 | |
854 | if (limit <= r->size) { |
855 | max_addr = r->base + limit; |
856 | break; |
857 | } |
858 | limit -= r->size; |
859 | } |
860 | |
861 | /* truncate both memory and reserved regions */ |
862 | __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); |
863 | __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); |
864 | } |
865 | |
866 | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
867 | { |
868 | unsigned int left = 0, right = type->cnt; |
869 | |
870 | do { |
871 | unsigned int mid = (right + left) / 2; |
872 | |
873 | if (addr < type->regions[mid].base) |
874 | right = mid; |
875 | else if (addr >= (type->regions[mid].base + |
876 | type->regions[mid].size)) |
877 | left = mid + 1; |
878 | else |
879 | return mid; |
880 | } while (left < right); |
881 | return -1; |
882 | } |
883 | |
884 | int __init memblock_is_reserved(phys_addr_t addr) |
885 | { |
886 | return memblock_search(&memblock.reserved, addr) != -1; |
887 | } |
888 | |
889 | int __init_memblock memblock_is_memory(phys_addr_t addr) |
890 | { |
891 | return memblock_search(&memblock.memory, addr) != -1; |
892 | } |
893 | |
894 | /** |
895 | * memblock_is_region_memory - check if a region is a subset of memory |
896 | * @base: base of region to check |
897 | * @size: size of region to check |
898 | * |
899 | * Check if the region [@base, @base+@size) is a subset of a memory block. |
900 | * |
901 | * RETURNS: |
902 | * 0 if false, non-zero if true |
903 | */ |
904 | int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
905 | { |
906 | int idx = memblock_search(&memblock.memory, base); |
907 | phys_addr_t end = base + memblock_cap_size(base, &size); |
908 | |
909 | if (idx == -1) |
910 | return 0; |
911 | return memblock.memory.regions[idx].base <= base && |
912 | (memblock.memory.regions[idx].base + |
913 | memblock.memory.regions[idx].size) >= end; |
914 | } |
915 | |
916 | /** |
917 | * memblock_is_region_reserved - check if a region intersects reserved memory |
918 | * @base: base of region to check |
919 | * @size: size of region to check |
920 | * |
921 | * Check if the region [@base, @base+@size) intersects a reserved memory block. |
922 | * |
923 | * RETURNS: |
924 | * 0 if false, non-zero if true |
925 | */ |
926 | int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
927 | { |
928 | memblock_cap_size(base, &size); |
929 | return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; |
930 | } |
931 | |
932 | |
933 | void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
934 | { |
935 | memblock.current_limit = limit; |
936 | } |
937 | |
938 | static void __init_memblock memblock_dump(struct memblock_type *type, char *name) |
939 | { |
940 | unsigned long long base, size; |
941 | int i; |
942 | |
943 | pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); |
944 | |
945 | for (i = 0; i < type->cnt; i++) { |
946 | struct memblock_region *rgn = &type->regions[i]; |
947 | char nid_buf[32] = ""; |
948 | |
949 | base = rgn->base; |
950 | size = rgn->size; |
951 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
952 | if (memblock_get_region_node(rgn) != MAX_NUMNODES) |
953 | snprintf(nid_buf, sizeof(nid_buf), " on node %d", |
954 | memblock_get_region_node(rgn)); |
955 | #endif |
956 | pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", |
957 | name, i, base, base + size - 1, size, nid_buf); |
958 | } |
959 | } |
960 | |
961 | void __init_memblock __memblock_dump_all(void) |
962 | { |
963 | pr_info("MEMBLOCK configuration:\n"); |
964 | pr_info(" memory size = %#llx reserved size = %#llx\n", |
965 | (unsigned long long)memblock.memory.total_size, |
966 | (unsigned long long)memblock.reserved.total_size); |
967 | |
968 | memblock_dump(&memblock.memory, "memory"); |
969 | memblock_dump(&memblock.reserved, "reserved"); |
970 | } |
971 | |
972 | void __init memblock_allow_resize(void) |
973 | { |
974 | memblock_can_resize = 1; |
975 | } |
976 | |
977 | static int __init early_memblock(char *p) |
978 | { |
979 | if (p && strstr(p, "debug")) |
980 | memblock_debug = 1; |
981 | return 0; |
982 | } |
983 | early_param("memblock", early_memblock); |
984 | |
985 | #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) |
986 | |
987 | static int memblock_debug_show(struct seq_file *m, void *private) |
988 | { |
989 | struct memblock_type *type = m->private; |
990 | struct memblock_region *reg; |
991 | int i; |
992 | |
993 | for (i = 0; i < type->cnt; i++) { |
994 | reg = &type->regions[i]; |
995 | seq_printf(m, "%4d: ", i); |
996 | if (sizeof(phys_addr_t) == 4) |
997 | seq_printf(m, "0x%08lx..0x%08lx\n", |
998 | (unsigned long)reg->base, |
999 | (unsigned long)(reg->base + reg->size - 1)); |
1000 | else |
1001 | seq_printf(m, "0x%016llx..0x%016llx\n", |
1002 | (unsigned long long)reg->base, |
1003 | (unsigned long long)(reg->base + reg->size - 1)); |
1004 | |
1005 | } |
1006 | return 0; |
1007 | } |
1008 | |
1009 | static int memblock_debug_open(struct inode *inode, struct file *file) |
1010 | { |
1011 | return single_open(file, memblock_debug_show, inode->i_private); |
1012 | } |
1013 | |
1014 | static const struct file_operations memblock_debug_fops = { |
1015 | .open = memblock_debug_open, |
1016 | .read = seq_read, |
1017 | .llseek = seq_lseek, |
1018 | .release = single_release, |
1019 | }; |
1020 | |
1021 | static int __init memblock_init_debugfs(void) |
1022 | { |
1023 | struct dentry *root = debugfs_create_dir("memblock", NULL); |
1024 | if (!root) |
1025 | return -ENXIO; |
1026 | debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); |
1027 | debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); |
1028 | |
1029 | return 0; |
1030 | } |
1031 | __initcall(memblock_init_debugfs); |
1032 | |
1033 | #endif /* CONFIG_DEBUG_FS */ |
1034 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9