Root/mm/memblock.c

1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27    .memory.regions = memblock_memory_init_regions,
28    .memory.cnt = 1, /* empty dummy entry */
29    .memory.max = INIT_MEMBLOCK_REGIONS,
30
31    .reserved.regions = memblock_reserved_init_regions,
32    .reserved.cnt = 1, /* empty dummy entry */
33    .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35    .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36};
37
38int memblock_debug __initdata_memblock;
39static int memblock_can_resize __initdata_memblock;
40static int memblock_memory_in_slab __initdata_memblock = 0;
41static int memblock_reserved_in_slab __initdata_memblock = 0;
42
43/* inline so we don't get a warning when pr_debug is compiled out */
44static inline const char *memblock_type_name(struct memblock_type *type)
45{
46    if (type == &memblock.memory)
47        return "memory";
48    else if (type == &memblock.reserved)
49        return "reserved";
50    else
51        return "unknown";
52}
53
54/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
56{
57    return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
58}
59
60/*
61 * Address comparison utilities
62 */
63static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64                       phys_addr_t base2, phys_addr_t size2)
65{
66    return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67}
68
69static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
70                    phys_addr_t base, phys_addr_t size)
71{
72    unsigned long i;
73
74    for (i = 0; i < type->cnt; i++) {
75        phys_addr_t rgnbase = type->regions[i].base;
76        phys_addr_t rgnsize = type->regions[i].size;
77        if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
78            break;
79    }
80
81    return (i < type->cnt) ? i : -1;
82}
83
84/**
85 * memblock_find_in_range_node - find free area in given range and node
86 * @start: start of candidate range
87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88 * @size: size of free area to find
89 * @align: alignment of free area to find
90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
91 *
92 * Find @size free area aligned to @align in the specified range and node.
93 *
94 * RETURNS:
95 * Found address on success, %0 on failure.
96 */
97phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
98                    phys_addr_t end, phys_addr_t size,
99                    phys_addr_t align, int nid)
100{
101    phys_addr_t this_start, this_end, cand;
102    u64 i;
103
104    /* pump up @end */
105    if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
106        end = memblock.current_limit;
107
108    /* avoid allocating the first page */
109    start = max_t(phys_addr_t, start, PAGE_SIZE);
110    end = max(start, end);
111
112    for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
113        this_start = clamp(this_start, start, end);
114        this_end = clamp(this_end, start, end);
115
116        if (this_end < size)
117            continue;
118
119        cand = round_down(this_end - size, align);
120        if (cand >= this_start)
121            return cand;
122    }
123    return 0;
124}
125
126/**
127 * memblock_find_in_range - find free area in given range
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 *
133 * Find @size free area aligned to @align in the specified range.
134 *
135 * RETURNS:
136 * Found address on success, %0 on failure.
137 */
138phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
139                    phys_addr_t end, phys_addr_t size,
140                    phys_addr_t align)
141{
142    return memblock_find_in_range_node(start, end, size, align,
143                       MAX_NUMNODES);
144}
145
146static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
147{
148    type->total_size -= type->regions[r].size;
149    memmove(&type->regions[r], &type->regions[r + 1],
150        (type->cnt - (r + 1)) * sizeof(type->regions[r]));
151    type->cnt--;
152
153    /* Special case for empty arrays */
154    if (type->cnt == 0) {
155        WARN_ON(type->total_size != 0);
156        type->cnt = 1;
157        type->regions[0].base = 0;
158        type->regions[0].size = 0;
159        memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
160    }
161}
162
163phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
164                    phys_addr_t *addr)
165{
166    if (memblock.reserved.regions == memblock_reserved_init_regions)
167        return 0;
168
169    *addr = __pa(memblock.reserved.regions);
170
171    return PAGE_ALIGN(sizeof(struct memblock_region) *
172              memblock.reserved.max);
173}
174
175/**
176 * memblock_double_array - double the size of the memblock regions array
177 * @type: memblock type of the regions array being doubled
178 * @new_area_start: starting address of memory range to avoid overlap with
179 * @new_area_size: size of memory range to avoid overlap with
180 *
181 * Double the size of the @type regions array. If memblock is being used to
182 * allocate memory for a new reserved regions array and there is a previously
183 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
184 * waiting to be reserved, ensure the memory used by the new array does
185 * not overlap.
186 *
187 * RETURNS:
188 * 0 on success, -1 on failure.
189 */
190static int __init_memblock memblock_double_array(struct memblock_type *type,
191                        phys_addr_t new_area_start,
192                        phys_addr_t new_area_size)
193{
194    struct memblock_region *new_array, *old_array;
195    phys_addr_t old_alloc_size, new_alloc_size;
196    phys_addr_t old_size, new_size, addr;
197    int use_slab = slab_is_available();
198    int *in_slab;
199
200    /* We don't allow resizing until we know about the reserved regions
201     * of memory that aren't suitable for allocation
202     */
203    if (!memblock_can_resize)
204        return -1;
205
206    /* Calculate new doubled size */
207    old_size = type->max * sizeof(struct memblock_region);
208    new_size = old_size << 1;
209    /*
210     * We need to allocated new one align to PAGE_SIZE,
211     * so we can free them completely later.
212     */
213    old_alloc_size = PAGE_ALIGN(old_size);
214    new_alloc_size = PAGE_ALIGN(new_size);
215
216    /* Retrieve the slab flag */
217    if (type == &memblock.memory)
218        in_slab = &memblock_memory_in_slab;
219    else
220        in_slab = &memblock_reserved_in_slab;
221
222    /* Try to find some space for it.
223     *
224     * WARNING: We assume that either slab_is_available() and we use it or
225     * we use MEMBLOCK for allocations. That means that this is unsafe to
226     * use when bootmem is currently active (unless bootmem itself is
227     * implemented on top of MEMBLOCK which isn't the case yet)
228     *
229     * This should however not be an issue for now, as we currently only
230     * call into MEMBLOCK while it's still active, or much later when slab
231     * is active for memory hotplug operations
232     */
233    if (use_slab) {
234        new_array = kmalloc(new_size, GFP_KERNEL);
235        addr = new_array ? __pa(new_array) : 0;
236    } else {
237        /* only exclude range when trying to double reserved.regions */
238        if (type != &memblock.reserved)
239            new_area_start = new_area_size = 0;
240
241        addr = memblock_find_in_range(new_area_start + new_area_size,
242                        memblock.current_limit,
243                        new_alloc_size, PAGE_SIZE);
244        if (!addr && new_area_size)
245            addr = memblock_find_in_range(0,
246                min(new_area_start, memblock.current_limit),
247                new_alloc_size, PAGE_SIZE);
248
249        new_array = addr ? __va(addr) : 0;
250    }
251    if (!addr) {
252        pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
253               memblock_type_name(type), type->max, type->max * 2);
254        return -1;
255    }
256
257    memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
258            memblock_type_name(type), type->max * 2, (u64)addr,
259            (u64)addr + new_size - 1);
260
261    /*
262     * Found space, we now need to move the array over before we add the
263     * reserved region since it may be our reserved array itself that is
264     * full.
265     */
266    memcpy(new_array, type->regions, old_size);
267    memset(new_array + type->max, 0, old_size);
268    old_array = type->regions;
269    type->regions = new_array;
270    type->max <<= 1;
271
272    /* Free old array. We needn't free it if the array is the static one */
273    if (*in_slab)
274        kfree(old_array);
275    else if (old_array != memblock_memory_init_regions &&
276         old_array != memblock_reserved_init_regions)
277        memblock_free(__pa(old_array), old_alloc_size);
278
279    /*
280     * Reserve the new array if that comes from the memblock. Otherwise, we
281     * needn't do it
282     */
283    if (!use_slab)
284        BUG_ON(memblock_reserve(addr, new_alloc_size));
285
286    /* Update slab flag */
287    *in_slab = use_slab;
288
289    return 0;
290}
291
292/**
293 * memblock_merge_regions - merge neighboring compatible regions
294 * @type: memblock type to scan
295 *
296 * Scan @type and merge neighboring compatible regions.
297 */
298static void __init_memblock memblock_merge_regions(struct memblock_type *type)
299{
300    int i = 0;
301
302    /* cnt never goes below 1 */
303    while (i < type->cnt - 1) {
304        struct memblock_region *this = &type->regions[i];
305        struct memblock_region *next = &type->regions[i + 1];
306
307        if (this->base + this->size != next->base ||
308            memblock_get_region_node(this) !=
309            memblock_get_region_node(next)) {
310            BUG_ON(this->base + this->size > next->base);
311            i++;
312            continue;
313        }
314
315        this->size += next->size;
316        memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
317        type->cnt--;
318    }
319}
320
321/**
322 * memblock_insert_region - insert new memblock region
323 * @type: memblock type to insert into
324 * @idx: index for the insertion point
325 * @base: base address of the new region
326 * @size: size of the new region
327 *
328 * Insert new memblock region [@base,@base+@size) into @type at @idx.
329 * @type must already have extra room to accomodate the new region.
330 */
331static void __init_memblock memblock_insert_region(struct memblock_type *type,
332                           int idx, phys_addr_t base,
333                           phys_addr_t size, int nid)
334{
335    struct memblock_region *rgn = &type->regions[idx];
336
337    BUG_ON(type->cnt >= type->max);
338    memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
339    rgn->base = base;
340    rgn->size = size;
341    memblock_set_region_node(rgn, nid);
342    type->cnt++;
343    type->total_size += size;
344}
345
346/**
347 * memblock_add_region - add new memblock region
348 * @type: memblock type to add new region into
349 * @base: base address of the new region
350 * @size: size of the new region
351 * @nid: nid of the new region
352 *
353 * Add new memblock region [@base,@base+@size) into @type. The new region
354 * is allowed to overlap with existing ones - overlaps don't affect already
355 * existing regions. @type is guaranteed to be minimal (all neighbouring
356 * compatible regions are merged) after the addition.
357 *
358 * RETURNS:
359 * 0 on success, -errno on failure.
360 */
361static int __init_memblock memblock_add_region(struct memblock_type *type,
362                phys_addr_t base, phys_addr_t size, int nid)
363{
364    bool insert = false;
365    phys_addr_t obase = base;
366    phys_addr_t end = base + memblock_cap_size(base, &size);
367    int i, nr_new;
368
369    if (!size)
370        return 0;
371
372    /* special case for empty array */
373    if (type->regions[0].size == 0) {
374        WARN_ON(type->cnt != 1 || type->total_size);
375        type->regions[0].base = base;
376        type->regions[0].size = size;
377        memblock_set_region_node(&type->regions[0], nid);
378        type->total_size = size;
379        return 0;
380    }
381repeat:
382    /*
383     * The following is executed twice. Once with %false @insert and
384     * then with %true. The first counts the number of regions needed
385     * to accomodate the new area. The second actually inserts them.
386     */
387    base = obase;
388    nr_new = 0;
389
390    for (i = 0; i < type->cnt; i++) {
391        struct memblock_region *rgn = &type->regions[i];
392        phys_addr_t rbase = rgn->base;
393        phys_addr_t rend = rbase + rgn->size;
394
395        if (rbase >= end)
396            break;
397        if (rend <= base)
398            continue;
399        /*
400         * @rgn overlaps. If it separates the lower part of new
401         * area, insert that portion.
402         */
403        if (rbase > base) {
404            nr_new++;
405            if (insert)
406                memblock_insert_region(type, i++, base,
407                               rbase - base, nid);
408        }
409        /* area below @rend is dealt with, forget about it */
410        base = min(rend, end);
411    }
412
413    /* insert the remaining portion */
414    if (base < end) {
415        nr_new++;
416        if (insert)
417            memblock_insert_region(type, i, base, end - base, nid);
418    }
419
420    /*
421     * If this was the first round, resize array and repeat for actual
422     * insertions; otherwise, merge and return.
423     */
424    if (!insert) {
425        while (type->cnt + nr_new > type->max)
426            if (memblock_double_array(type, obase, size) < 0)
427                return -ENOMEM;
428        insert = true;
429        goto repeat;
430    } else {
431        memblock_merge_regions(type);
432        return 0;
433    }
434}
435
436int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
437                       int nid)
438{
439    return memblock_add_region(&memblock.memory, base, size, nid);
440}
441
442int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
443{
444    return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
445}
446
447/**
448 * memblock_isolate_range - isolate given range into disjoint memblocks
449 * @type: memblock type to isolate range for
450 * @base: base of range to isolate
451 * @size: size of range to isolate
452 * @start_rgn: out parameter for the start of isolated region
453 * @end_rgn: out parameter for the end of isolated region
454 *
455 * Walk @type and ensure that regions don't cross the boundaries defined by
456 * [@base,@base+@size). Crossing regions are split at the boundaries,
457 * which may create at most two more regions. The index of the first
458 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
459 *
460 * RETURNS:
461 * 0 on success, -errno on failure.
462 */
463static int __init_memblock memblock_isolate_range(struct memblock_type *type,
464                    phys_addr_t base, phys_addr_t size,
465                    int *start_rgn, int *end_rgn)
466{
467    phys_addr_t end = base + memblock_cap_size(base, &size);
468    int i;
469
470    *start_rgn = *end_rgn = 0;
471
472    if (!size)
473        return 0;
474
475    /* we'll create at most two more regions */
476    while (type->cnt + 2 > type->max)
477        if (memblock_double_array(type, base, size) < 0)
478            return -ENOMEM;
479
480    for (i = 0; i < type->cnt; i++) {
481        struct memblock_region *rgn = &type->regions[i];
482        phys_addr_t rbase = rgn->base;
483        phys_addr_t rend = rbase + rgn->size;
484
485        if (rbase >= end)
486            break;
487        if (rend <= base)
488            continue;
489
490        if (rbase < base) {
491            /*
492             * @rgn intersects from below. Split and continue
493             * to process the next region - the new top half.
494             */
495            rgn->base = base;
496            rgn->size -= base - rbase;
497            type->total_size -= base - rbase;
498            memblock_insert_region(type, i, rbase, base - rbase,
499                           memblock_get_region_node(rgn));
500        } else if (rend > end) {
501            /*
502             * @rgn intersects from above. Split and redo the
503             * current region - the new bottom half.
504             */
505            rgn->base = end;
506            rgn->size -= end - rbase;
507            type->total_size -= end - rbase;
508            memblock_insert_region(type, i--, rbase, end - rbase,
509                           memblock_get_region_node(rgn));
510        } else {
511            /* @rgn is fully contained, record it */
512            if (!*end_rgn)
513                *start_rgn = i;
514            *end_rgn = i + 1;
515        }
516    }
517
518    return 0;
519}
520
521static int __init_memblock __memblock_remove(struct memblock_type *type,
522                         phys_addr_t base, phys_addr_t size)
523{
524    int start_rgn, end_rgn;
525    int i, ret;
526
527    ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
528    if (ret)
529        return ret;
530
531    for (i = end_rgn - 1; i >= start_rgn; i--)
532        memblock_remove_region(type, i);
533    return 0;
534}
535
536int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
537{
538    return __memblock_remove(&memblock.memory, base, size);
539}
540
541int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
542{
543    memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
544             (unsigned long long)base,
545             (unsigned long long)base + size,
546             (void *)_RET_IP_);
547
548    return __memblock_remove(&memblock.reserved, base, size);
549}
550
551int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
552{
553    struct memblock_type *_rgn = &memblock.reserved;
554
555    memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
556             (unsigned long long)base,
557             (unsigned long long)base + size,
558             (void *)_RET_IP_);
559
560    return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
561}
562
563/**
564 * __next_free_mem_range - next function for for_each_free_mem_range()
565 * @idx: pointer to u64 loop variable
566 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
567 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
568 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
569 * @out_nid: ptr to int for nid of the range, can be %NULL
570 *
571 * Find the first free area from *@idx which matches @nid, fill the out
572 * parameters, and update *@idx for the next iteration. The lower 32bit of
573 * *@idx contains index into memory region and the upper 32bit indexes the
574 * areas before each reserved region. For example, if reserved regions
575 * look like the following,
576 *
577 * 0:[0-16), 1:[32-48), 2:[128-130)
578 *
579 * The upper 32bit indexes the following regions.
580 *
581 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
582 *
583 * As both region arrays are sorted, the function advances the two indices
584 * in lockstep and returns each intersection.
585 */
586void __init_memblock __next_free_mem_range(u64 *idx, int nid,
587                       phys_addr_t *out_start,
588                       phys_addr_t *out_end, int *out_nid)
589{
590    struct memblock_type *mem = &memblock.memory;
591    struct memblock_type *rsv = &memblock.reserved;
592    int mi = *idx & 0xffffffff;
593    int ri = *idx >> 32;
594
595    for ( ; mi < mem->cnt; mi++) {
596        struct memblock_region *m = &mem->regions[mi];
597        phys_addr_t m_start = m->base;
598        phys_addr_t m_end = m->base + m->size;
599
600        /* only memory regions are associated with nodes, check it */
601        if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
602            continue;
603
604        /* scan areas before each reservation for intersection */
605        for ( ; ri < rsv->cnt + 1; ri++) {
606            struct memblock_region *r = &rsv->regions[ri];
607            phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
608            phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
609
610            /* if ri advanced past mi, break out to advance mi */
611            if (r_start >= m_end)
612                break;
613            /* if the two regions intersect, we're done */
614            if (m_start < r_end) {
615                if (out_start)
616                    *out_start = max(m_start, r_start);
617                if (out_end)
618                    *out_end = min(m_end, r_end);
619                if (out_nid)
620                    *out_nid = memblock_get_region_node(m);
621                /*
622                 * The region which ends first is advanced
623                 * for the next iteration.
624                 */
625                if (m_end <= r_end)
626                    mi++;
627                else
628                    ri++;
629                *idx = (u32)mi | (u64)ri << 32;
630                return;
631            }
632        }
633    }
634
635    /* signal end of iteration */
636    *idx = ULLONG_MAX;
637}
638
639/**
640 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
641 * @idx: pointer to u64 loop variable
642 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
643 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
644 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
645 * @out_nid: ptr to int for nid of the range, can be %NULL
646 *
647 * Reverse of __next_free_mem_range().
648 */
649void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
650                       phys_addr_t *out_start,
651                       phys_addr_t *out_end, int *out_nid)
652{
653    struct memblock_type *mem = &memblock.memory;
654    struct memblock_type *rsv = &memblock.reserved;
655    int mi = *idx & 0xffffffff;
656    int ri = *idx >> 32;
657
658    if (*idx == (u64)ULLONG_MAX) {
659        mi = mem->cnt - 1;
660        ri = rsv->cnt;
661    }
662
663    for ( ; mi >= 0; mi--) {
664        struct memblock_region *m = &mem->regions[mi];
665        phys_addr_t m_start = m->base;
666        phys_addr_t m_end = m->base + m->size;
667
668        /* only memory regions are associated with nodes, check it */
669        if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
670            continue;
671
672        /* scan areas before each reservation for intersection */
673        for ( ; ri >= 0; ri--) {
674            struct memblock_region *r = &rsv->regions[ri];
675            phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
676            phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
677
678            /* if ri advanced past mi, break out to advance mi */
679            if (r_end <= m_start)
680                break;
681            /* if the two regions intersect, we're done */
682            if (m_end > r_start) {
683                if (out_start)
684                    *out_start = max(m_start, r_start);
685                if (out_end)
686                    *out_end = min(m_end, r_end);
687                if (out_nid)
688                    *out_nid = memblock_get_region_node(m);
689
690                if (m_start >= r_start)
691                    mi--;
692                else
693                    ri--;
694                *idx = (u32)mi | (u64)ri << 32;
695                return;
696            }
697        }
698    }
699
700    *idx = ULLONG_MAX;
701}
702
703#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
704/*
705 * Common iterator interface used to define for_each_mem_range().
706 */
707void __init_memblock __next_mem_pfn_range(int *idx, int nid,
708                unsigned long *out_start_pfn,
709                unsigned long *out_end_pfn, int *out_nid)
710{
711    struct memblock_type *type = &memblock.memory;
712    struct memblock_region *r;
713
714    while (++*idx < type->cnt) {
715        r = &type->regions[*idx];
716
717        if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
718            continue;
719        if (nid == MAX_NUMNODES || nid == r->nid)
720            break;
721    }
722    if (*idx >= type->cnt) {
723        *idx = -1;
724        return;
725    }
726
727    if (out_start_pfn)
728        *out_start_pfn = PFN_UP(r->base);
729    if (out_end_pfn)
730        *out_end_pfn = PFN_DOWN(r->base + r->size);
731    if (out_nid)
732        *out_nid = r->nid;
733}
734
735/**
736 * memblock_set_node - set node ID on memblock regions
737 * @base: base of area to set node ID for
738 * @size: size of area to set node ID for
739 * @nid: node ID to set
740 *
741 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
742 * Regions which cross the area boundaries are split as necessary.
743 *
744 * RETURNS:
745 * 0 on success, -errno on failure.
746 */
747int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
748                      int nid)
749{
750    struct memblock_type *type = &memblock.memory;
751    int start_rgn, end_rgn;
752    int i, ret;
753
754    ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
755    if (ret)
756        return ret;
757
758    for (i = start_rgn; i < end_rgn; i++)
759        type->regions[i].nid = nid;
760
761    memblock_merge_regions(type);
762    return 0;
763}
764#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
765
766static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
767                    phys_addr_t align, phys_addr_t max_addr,
768                    int nid)
769{
770    phys_addr_t found;
771
772    /* align @size to avoid excessive fragmentation on reserved array */
773    size = round_up(size, align);
774
775    found = memblock_find_in_range_node(0, max_addr, size, align, nid);
776    if (found && !memblock_reserve(found, size))
777        return found;
778
779    return 0;
780}
781
782phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
783{
784    return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
785}
786
787phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
788{
789    return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
790}
791
792phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
793{
794    phys_addr_t alloc;
795
796    alloc = __memblock_alloc_base(size, align, max_addr);
797
798    if (alloc == 0)
799        panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
800              (unsigned long long) size, (unsigned long long) max_addr);
801
802    return alloc;
803}
804
805phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
806{
807    return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
808}
809
810phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
811{
812    phys_addr_t res = memblock_alloc_nid(size, align, nid);
813
814    if (res)
815        return res;
816    return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
817}
818
819
820/*
821 * Remaining API functions
822 */
823
824phys_addr_t __init memblock_phys_mem_size(void)
825{
826    return memblock.memory.total_size;
827}
828
829/* lowest address */
830phys_addr_t __init_memblock memblock_start_of_DRAM(void)
831{
832    return memblock.memory.regions[0].base;
833}
834
835phys_addr_t __init_memblock memblock_end_of_DRAM(void)
836{
837    int idx = memblock.memory.cnt - 1;
838
839    return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
840}
841
842void __init memblock_enforce_memory_limit(phys_addr_t limit)
843{
844    unsigned long i;
845    phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
846
847    if (!limit)
848        return;
849
850    /* find out max address */
851    for (i = 0; i < memblock.memory.cnt; i++) {
852        struct memblock_region *r = &memblock.memory.regions[i];
853
854        if (limit <= r->size) {
855            max_addr = r->base + limit;
856            break;
857        }
858        limit -= r->size;
859    }
860
861    /* truncate both memory and reserved regions */
862    __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
863    __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
864}
865
866static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
867{
868    unsigned int left = 0, right = type->cnt;
869
870    do {
871        unsigned int mid = (right + left) / 2;
872
873        if (addr < type->regions[mid].base)
874            right = mid;
875        else if (addr >= (type->regions[mid].base +
876                  type->regions[mid].size))
877            left = mid + 1;
878        else
879            return mid;
880    } while (left < right);
881    return -1;
882}
883
884int __init memblock_is_reserved(phys_addr_t addr)
885{
886    return memblock_search(&memblock.reserved, addr) != -1;
887}
888
889int __init_memblock memblock_is_memory(phys_addr_t addr)
890{
891    return memblock_search(&memblock.memory, addr) != -1;
892}
893
894/**
895 * memblock_is_region_memory - check if a region is a subset of memory
896 * @base: base of region to check
897 * @size: size of region to check
898 *
899 * Check if the region [@base, @base+@size) is a subset of a memory block.
900 *
901 * RETURNS:
902 * 0 if false, non-zero if true
903 */
904int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
905{
906    int idx = memblock_search(&memblock.memory, base);
907    phys_addr_t end = base + memblock_cap_size(base, &size);
908
909    if (idx == -1)
910        return 0;
911    return memblock.memory.regions[idx].base <= base &&
912        (memblock.memory.regions[idx].base +
913         memblock.memory.regions[idx].size) >= end;
914}
915
916/**
917 * memblock_is_region_reserved - check if a region intersects reserved memory
918 * @base: base of region to check
919 * @size: size of region to check
920 *
921 * Check if the region [@base, @base+@size) intersects a reserved memory block.
922 *
923 * RETURNS:
924 * 0 if false, non-zero if true
925 */
926int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
927{
928    memblock_cap_size(base, &size);
929    return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
930}
931
932
933void __init_memblock memblock_set_current_limit(phys_addr_t limit)
934{
935    memblock.current_limit = limit;
936}
937
938static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
939{
940    unsigned long long base, size;
941    int i;
942
943    pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
944
945    for (i = 0; i < type->cnt; i++) {
946        struct memblock_region *rgn = &type->regions[i];
947        char nid_buf[32] = "";
948
949        base = rgn->base;
950        size = rgn->size;
951#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
952        if (memblock_get_region_node(rgn) != MAX_NUMNODES)
953            snprintf(nid_buf, sizeof(nid_buf), " on node %d",
954                 memblock_get_region_node(rgn));
955#endif
956        pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
957            name, i, base, base + size - 1, size, nid_buf);
958    }
959}
960
961void __init_memblock __memblock_dump_all(void)
962{
963    pr_info("MEMBLOCK configuration:\n");
964    pr_info(" memory size = %#llx reserved size = %#llx\n",
965        (unsigned long long)memblock.memory.total_size,
966        (unsigned long long)memblock.reserved.total_size);
967
968    memblock_dump(&memblock.memory, "memory");
969    memblock_dump(&memblock.reserved, "reserved");
970}
971
972void __init memblock_allow_resize(void)
973{
974    memblock_can_resize = 1;
975}
976
977static int __init early_memblock(char *p)
978{
979    if (p && strstr(p, "debug"))
980        memblock_debug = 1;
981    return 0;
982}
983early_param("memblock", early_memblock);
984
985#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
986
987static int memblock_debug_show(struct seq_file *m, void *private)
988{
989    struct memblock_type *type = m->private;
990    struct memblock_region *reg;
991    int i;
992
993    for (i = 0; i < type->cnt; i++) {
994        reg = &type->regions[i];
995        seq_printf(m, "%4d: ", i);
996        if (sizeof(phys_addr_t) == 4)
997            seq_printf(m, "0x%08lx..0x%08lx\n",
998                   (unsigned long)reg->base,
999                   (unsigned long)(reg->base + reg->size - 1));
1000        else
1001            seq_printf(m, "0x%016llx..0x%016llx\n",
1002                   (unsigned long long)reg->base,
1003                   (unsigned long long)(reg->base + reg->size - 1));
1004
1005    }
1006    return 0;
1007}
1008
1009static int memblock_debug_open(struct inode *inode, struct file *file)
1010{
1011    return single_open(file, memblock_debug_show, inode->i_private);
1012}
1013
1014static const struct file_operations memblock_debug_fops = {
1015    .open = memblock_debug_open,
1016    .read = seq_read,
1017    .llseek = seq_lseek,
1018    .release = single_release,
1019};
1020
1021static int __init memblock_init_debugfs(void)
1022{
1023    struct dentry *root = debugfs_create_dir("memblock", NULL);
1024    if (!root)
1025        return -ENXIO;
1026    debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1027    debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1028
1029    return 0;
1030}
1031__initcall(memblock_init_debugfs);
1032
1033#endif /* CONFIG_DEBUG_FS */
1034

Archive Download this file



interactive