Root/
1 | /* memcontrol.c - Memory Controller |
2 | * |
3 | * Copyright IBM Corporation, 2007 |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
5 | * |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> |
8 | * |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation |
11 | * Author: Kirill A. Shutemov |
12 | * |
13 | * This program is free software; you can redistribute it and/or modify |
14 | * it under the terms of the GNU General Public License as published by |
15 | * the Free Software Foundation; either version 2 of the License, or |
16 | * (at your option) any later version. |
17 | * |
18 | * This program is distributed in the hope that it will be useful, |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
21 | * GNU General Public License for more details. |
22 | */ |
23 | |
24 | #include <linux/res_counter.h> |
25 | #include <linux/memcontrol.h> |
26 | #include <linux/cgroup.h> |
27 | #include <linux/mm.h> |
28 | #include <linux/hugetlb.h> |
29 | #include <linux/pagemap.h> |
30 | #include <linux/smp.h> |
31 | #include <linux/page-flags.h> |
32 | #include <linux/backing-dev.h> |
33 | #include <linux/bit_spinlock.h> |
34 | #include <linux/rcupdate.h> |
35 | #include <linux/limits.h> |
36 | #include <linux/export.h> |
37 | #include <linux/mutex.h> |
38 | #include <linux/rbtree.h> |
39 | #include <linux/slab.h> |
40 | #include <linux/swap.h> |
41 | #include <linux/swapops.h> |
42 | #include <linux/spinlock.h> |
43 | #include <linux/eventfd.h> |
44 | #include <linux/sort.h> |
45 | #include <linux/fs.h> |
46 | #include <linux/seq_file.h> |
47 | #include <linux/vmalloc.h> |
48 | #include <linux/mm_inline.h> |
49 | #include <linux/page_cgroup.h> |
50 | #include <linux/cpu.h> |
51 | #include <linux/oom.h> |
52 | #include "internal.h" |
53 | #include <net/sock.h> |
54 | #include <net/tcp_memcontrol.h> |
55 | |
56 | #include <asm/uaccess.h> |
57 | |
58 | #include <trace/events/vmscan.h> |
59 | |
60 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
61 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
62 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
63 | |
64 | #ifdef CONFIG_MEMCG_SWAP |
65 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
66 | int do_swap_account __read_mostly; |
67 | |
68 | /* for remember boot option*/ |
69 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
70 | static int really_do_swap_account __initdata = 1; |
71 | #else |
72 | static int really_do_swap_account __initdata = 0; |
73 | #endif |
74 | |
75 | #else |
76 | #define do_swap_account 0 |
77 | #endif |
78 | |
79 | |
80 | /* |
81 | * Statistics for memory cgroup. |
82 | */ |
83 | enum mem_cgroup_stat_index { |
84 | /* |
85 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. |
86 | */ |
87 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ |
88 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ |
89 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ |
90 | MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ |
91 | MEM_CGROUP_STAT_NSTATS, |
92 | }; |
93 | |
94 | static const char * const mem_cgroup_stat_names[] = { |
95 | "cache", |
96 | "rss", |
97 | "mapped_file", |
98 | "swap", |
99 | }; |
100 | |
101 | enum mem_cgroup_events_index { |
102 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ |
103 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ |
104 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
105 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ |
106 | MEM_CGROUP_EVENTS_NSTATS, |
107 | }; |
108 | |
109 | static const char * const mem_cgroup_events_names[] = { |
110 | "pgpgin", |
111 | "pgpgout", |
112 | "pgfault", |
113 | "pgmajfault", |
114 | }; |
115 | |
116 | /* |
117 | * Per memcg event counter is incremented at every pagein/pageout. With THP, |
118 | * it will be incremated by the number of pages. This counter is used for |
119 | * for trigger some periodic events. This is straightforward and better |
120 | * than using jiffies etc. to handle periodic memcg event. |
121 | */ |
122 | enum mem_cgroup_events_target { |
123 | MEM_CGROUP_TARGET_THRESH, |
124 | MEM_CGROUP_TARGET_SOFTLIMIT, |
125 | MEM_CGROUP_TARGET_NUMAINFO, |
126 | MEM_CGROUP_NTARGETS, |
127 | }; |
128 | #define THRESHOLDS_EVENTS_TARGET 128 |
129 | #define SOFTLIMIT_EVENTS_TARGET 1024 |
130 | #define NUMAINFO_EVENTS_TARGET 1024 |
131 | |
132 | struct mem_cgroup_stat_cpu { |
133 | long count[MEM_CGROUP_STAT_NSTATS]; |
134 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
135 | unsigned long nr_page_events; |
136 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
137 | }; |
138 | |
139 | struct mem_cgroup_reclaim_iter { |
140 | /* css_id of the last scanned hierarchy member */ |
141 | int position; |
142 | /* scan generation, increased every round-trip */ |
143 | unsigned int generation; |
144 | }; |
145 | |
146 | /* |
147 | * per-zone information in memory controller. |
148 | */ |
149 | struct mem_cgroup_per_zone { |
150 | struct lruvec lruvec; |
151 | unsigned long lru_size[NR_LRU_LISTS]; |
152 | |
153 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; |
154 | |
155 | struct rb_node tree_node; /* RB tree node */ |
156 | unsigned long long usage_in_excess;/* Set to the value by which */ |
157 | /* the soft limit is exceeded*/ |
158 | bool on_tree; |
159 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
160 | /* use container_of */ |
161 | }; |
162 | |
163 | struct mem_cgroup_per_node { |
164 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; |
165 | }; |
166 | |
167 | struct mem_cgroup_lru_info { |
168 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; |
169 | }; |
170 | |
171 | /* |
172 | * Cgroups above their limits are maintained in a RB-Tree, independent of |
173 | * their hierarchy representation |
174 | */ |
175 | |
176 | struct mem_cgroup_tree_per_zone { |
177 | struct rb_root rb_root; |
178 | spinlock_t lock; |
179 | }; |
180 | |
181 | struct mem_cgroup_tree_per_node { |
182 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; |
183 | }; |
184 | |
185 | struct mem_cgroup_tree { |
186 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; |
187 | }; |
188 | |
189 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; |
190 | |
191 | struct mem_cgroup_threshold { |
192 | struct eventfd_ctx *eventfd; |
193 | u64 threshold; |
194 | }; |
195 | |
196 | /* For threshold */ |
197 | struct mem_cgroup_threshold_ary { |
198 | /* An array index points to threshold just below or equal to usage. */ |
199 | int current_threshold; |
200 | /* Size of entries[] */ |
201 | unsigned int size; |
202 | /* Array of thresholds */ |
203 | struct mem_cgroup_threshold entries[0]; |
204 | }; |
205 | |
206 | struct mem_cgroup_thresholds { |
207 | /* Primary thresholds array */ |
208 | struct mem_cgroup_threshold_ary *primary; |
209 | /* |
210 | * Spare threshold array. |
211 | * This is needed to make mem_cgroup_unregister_event() "never fail". |
212 | * It must be able to store at least primary->size - 1 entries. |
213 | */ |
214 | struct mem_cgroup_threshold_ary *spare; |
215 | }; |
216 | |
217 | /* for OOM */ |
218 | struct mem_cgroup_eventfd_list { |
219 | struct list_head list; |
220 | struct eventfd_ctx *eventfd; |
221 | }; |
222 | |
223 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
224 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); |
225 | |
226 | /* |
227 | * The memory controller data structure. The memory controller controls both |
228 | * page cache and RSS per cgroup. We would eventually like to provide |
229 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, |
230 | * to help the administrator determine what knobs to tune. |
231 | * |
232 | * TODO: Add a water mark for the memory controller. Reclaim will begin when |
233 | * we hit the water mark. May be even add a low water mark, such that |
234 | * no reclaim occurs from a cgroup at it's low water mark, this is |
235 | * a feature that will be implemented much later in the future. |
236 | */ |
237 | struct mem_cgroup { |
238 | struct cgroup_subsys_state css; |
239 | /* |
240 | * the counter to account for memory usage |
241 | */ |
242 | struct res_counter res; |
243 | |
244 | union { |
245 | /* |
246 | * the counter to account for mem+swap usage. |
247 | */ |
248 | struct res_counter memsw; |
249 | |
250 | /* |
251 | * rcu_freeing is used only when freeing struct mem_cgroup, |
252 | * so put it into a union to avoid wasting more memory. |
253 | * It must be disjoint from the css field. It could be |
254 | * in a union with the res field, but res plays a much |
255 | * larger part in mem_cgroup life than memsw, and might |
256 | * be of interest, even at time of free, when debugging. |
257 | * So share rcu_head with the less interesting memsw. |
258 | */ |
259 | struct rcu_head rcu_freeing; |
260 | /* |
261 | * We also need some space for a worker in deferred freeing. |
262 | * By the time we call it, rcu_freeing is no longer in use. |
263 | */ |
264 | struct work_struct work_freeing; |
265 | }; |
266 | |
267 | /* |
268 | * Per cgroup active and inactive list, similar to the |
269 | * per zone LRU lists. |
270 | */ |
271 | struct mem_cgroup_lru_info info; |
272 | int last_scanned_node; |
273 | #if MAX_NUMNODES > 1 |
274 | nodemask_t scan_nodes; |
275 | atomic_t numainfo_events; |
276 | atomic_t numainfo_updating; |
277 | #endif |
278 | /* |
279 | * Should the accounting and control be hierarchical, per subtree? |
280 | */ |
281 | bool use_hierarchy; |
282 | |
283 | bool oom_lock; |
284 | atomic_t under_oom; |
285 | |
286 | atomic_t refcnt; |
287 | |
288 | int swappiness; |
289 | /* OOM-Killer disable */ |
290 | int oom_kill_disable; |
291 | |
292 | /* set when res.limit == memsw.limit */ |
293 | bool memsw_is_minimum; |
294 | |
295 | /* protect arrays of thresholds */ |
296 | struct mutex thresholds_lock; |
297 | |
298 | /* thresholds for memory usage. RCU-protected */ |
299 | struct mem_cgroup_thresholds thresholds; |
300 | |
301 | /* thresholds for mem+swap usage. RCU-protected */ |
302 | struct mem_cgroup_thresholds memsw_thresholds; |
303 | |
304 | /* For oom notifier event fd */ |
305 | struct list_head oom_notify; |
306 | |
307 | /* |
308 | * Should we move charges of a task when a task is moved into this |
309 | * mem_cgroup ? And what type of charges should we move ? |
310 | */ |
311 | unsigned long move_charge_at_immigrate; |
312 | /* |
313 | * set > 0 if pages under this cgroup are moving to other cgroup. |
314 | */ |
315 | atomic_t moving_account; |
316 | /* taken only while moving_account > 0 */ |
317 | spinlock_t move_lock; |
318 | /* |
319 | * percpu counter. |
320 | */ |
321 | struct mem_cgroup_stat_cpu __percpu *stat; |
322 | /* |
323 | * used when a cpu is offlined or other synchronizations |
324 | * See mem_cgroup_read_stat(). |
325 | */ |
326 | struct mem_cgroup_stat_cpu nocpu_base; |
327 | spinlock_t pcp_counter_lock; |
328 | |
329 | #ifdef CONFIG_INET |
330 | struct tcp_memcontrol tcp_mem; |
331 | #endif |
332 | }; |
333 | |
334 | /* Stuffs for move charges at task migration. */ |
335 | /* |
336 | * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a |
337 | * left-shifted bitmap of these types. |
338 | */ |
339 | enum move_type { |
340 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
341 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
342 | NR_MOVE_TYPE, |
343 | }; |
344 | |
345 | /* "mc" and its members are protected by cgroup_mutex */ |
346 | static struct move_charge_struct { |
347 | spinlock_t lock; /* for from, to */ |
348 | struct mem_cgroup *from; |
349 | struct mem_cgroup *to; |
350 | unsigned long precharge; |
351 | unsigned long moved_charge; |
352 | unsigned long moved_swap; |
353 | struct task_struct *moving_task; /* a task moving charges */ |
354 | wait_queue_head_t waitq; /* a waitq for other context */ |
355 | } mc = { |
356 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
357 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
358 | }; |
359 | |
360 | static bool move_anon(void) |
361 | { |
362 | return test_bit(MOVE_CHARGE_TYPE_ANON, |
363 | &mc.to->move_charge_at_immigrate); |
364 | } |
365 | |
366 | static bool move_file(void) |
367 | { |
368 | return test_bit(MOVE_CHARGE_TYPE_FILE, |
369 | &mc.to->move_charge_at_immigrate); |
370 | } |
371 | |
372 | /* |
373 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft |
374 | * limit reclaim to prevent infinite loops, if they ever occur. |
375 | */ |
376 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
377 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
378 | |
379 | enum charge_type { |
380 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
381 | MEM_CGROUP_CHARGE_TYPE_ANON, |
382 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
383 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
384 | NR_CHARGE_TYPE, |
385 | }; |
386 | |
387 | /* for encoding cft->private value on file */ |
388 | #define _MEM (0) |
389 | #define _MEMSWAP (1) |
390 | #define _OOM_TYPE (2) |
391 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
392 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) |
393 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
394 | /* Used for OOM nofiier */ |
395 | #define OOM_CONTROL (0) |
396 | |
397 | /* |
398 | * Reclaim flags for mem_cgroup_hierarchical_reclaim |
399 | */ |
400 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 |
401 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) |
402 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 |
403 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) |
404 | |
405 | static void mem_cgroup_get(struct mem_cgroup *memcg); |
406 | static void mem_cgroup_put(struct mem_cgroup *memcg); |
407 | |
408 | static inline |
409 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) |
410 | { |
411 | return container_of(s, struct mem_cgroup, css); |
412 | } |
413 | |
414 | /* Writing them here to avoid exposing memcg's inner layout */ |
415 | #ifdef CONFIG_MEMCG_KMEM |
416 | #include <net/sock.h> |
417 | #include <net/ip.h> |
418 | |
419 | static bool mem_cgroup_is_root(struct mem_cgroup *memcg); |
420 | void sock_update_memcg(struct sock *sk) |
421 | { |
422 | if (mem_cgroup_sockets_enabled) { |
423 | struct mem_cgroup *memcg; |
424 | struct cg_proto *cg_proto; |
425 | |
426 | BUG_ON(!sk->sk_prot->proto_cgroup); |
427 | |
428 | /* Socket cloning can throw us here with sk_cgrp already |
429 | * filled. It won't however, necessarily happen from |
430 | * process context. So the test for root memcg given |
431 | * the current task's memcg won't help us in this case. |
432 | * |
433 | * Respecting the original socket's memcg is a better |
434 | * decision in this case. |
435 | */ |
436 | if (sk->sk_cgrp) { |
437 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); |
438 | mem_cgroup_get(sk->sk_cgrp->memcg); |
439 | return; |
440 | } |
441 | |
442 | rcu_read_lock(); |
443 | memcg = mem_cgroup_from_task(current); |
444 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
445 | if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { |
446 | mem_cgroup_get(memcg); |
447 | sk->sk_cgrp = cg_proto; |
448 | } |
449 | rcu_read_unlock(); |
450 | } |
451 | } |
452 | EXPORT_SYMBOL(sock_update_memcg); |
453 | |
454 | void sock_release_memcg(struct sock *sk) |
455 | { |
456 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
457 | struct mem_cgroup *memcg; |
458 | WARN_ON(!sk->sk_cgrp->memcg); |
459 | memcg = sk->sk_cgrp->memcg; |
460 | mem_cgroup_put(memcg); |
461 | } |
462 | } |
463 | |
464 | #ifdef CONFIG_INET |
465 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) |
466 | { |
467 | if (!memcg || mem_cgroup_is_root(memcg)) |
468 | return NULL; |
469 | |
470 | return &memcg->tcp_mem.cg_proto; |
471 | } |
472 | EXPORT_SYMBOL(tcp_proto_cgroup); |
473 | #endif /* CONFIG_INET */ |
474 | #endif /* CONFIG_MEMCG_KMEM */ |
475 | |
476 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
477 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
478 | { |
479 | if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) |
480 | return; |
481 | static_key_slow_dec(&memcg_socket_limit_enabled); |
482 | } |
483 | #else |
484 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
485 | { |
486 | } |
487 | #endif |
488 | |
489 | static void drain_all_stock_async(struct mem_cgroup *memcg); |
490 | |
491 | static struct mem_cgroup_per_zone * |
492 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) |
493 | { |
494 | return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; |
495 | } |
496 | |
497 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
498 | { |
499 | return &memcg->css; |
500 | } |
501 | |
502 | static struct mem_cgroup_per_zone * |
503 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
504 | { |
505 | int nid = page_to_nid(page); |
506 | int zid = page_zonenum(page); |
507 | |
508 | return mem_cgroup_zoneinfo(memcg, nid, zid); |
509 | } |
510 | |
511 | static struct mem_cgroup_tree_per_zone * |
512 | soft_limit_tree_node_zone(int nid, int zid) |
513 | { |
514 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; |
515 | } |
516 | |
517 | static struct mem_cgroup_tree_per_zone * |
518 | soft_limit_tree_from_page(struct page *page) |
519 | { |
520 | int nid = page_to_nid(page); |
521 | int zid = page_zonenum(page); |
522 | |
523 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; |
524 | } |
525 | |
526 | static void |
527 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, |
528 | struct mem_cgroup_per_zone *mz, |
529 | struct mem_cgroup_tree_per_zone *mctz, |
530 | unsigned long long new_usage_in_excess) |
531 | { |
532 | struct rb_node **p = &mctz->rb_root.rb_node; |
533 | struct rb_node *parent = NULL; |
534 | struct mem_cgroup_per_zone *mz_node; |
535 | |
536 | if (mz->on_tree) |
537 | return; |
538 | |
539 | mz->usage_in_excess = new_usage_in_excess; |
540 | if (!mz->usage_in_excess) |
541 | return; |
542 | while (*p) { |
543 | parent = *p; |
544 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, |
545 | tree_node); |
546 | if (mz->usage_in_excess < mz_node->usage_in_excess) |
547 | p = &(*p)->rb_left; |
548 | /* |
549 | * We can't avoid mem cgroups that are over their soft |
550 | * limit by the same amount |
551 | */ |
552 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) |
553 | p = &(*p)->rb_right; |
554 | } |
555 | rb_link_node(&mz->tree_node, parent, p); |
556 | rb_insert_color(&mz->tree_node, &mctz->rb_root); |
557 | mz->on_tree = true; |
558 | } |
559 | |
560 | static void |
561 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
562 | struct mem_cgroup_per_zone *mz, |
563 | struct mem_cgroup_tree_per_zone *mctz) |
564 | { |
565 | if (!mz->on_tree) |
566 | return; |
567 | rb_erase(&mz->tree_node, &mctz->rb_root); |
568 | mz->on_tree = false; |
569 | } |
570 | |
571 | static void |
572 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
573 | struct mem_cgroup_per_zone *mz, |
574 | struct mem_cgroup_tree_per_zone *mctz) |
575 | { |
576 | spin_lock(&mctz->lock); |
577 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
578 | spin_unlock(&mctz->lock); |
579 | } |
580 | |
581 | |
582 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) |
583 | { |
584 | unsigned long long excess; |
585 | struct mem_cgroup_per_zone *mz; |
586 | struct mem_cgroup_tree_per_zone *mctz; |
587 | int nid = page_to_nid(page); |
588 | int zid = page_zonenum(page); |
589 | mctz = soft_limit_tree_from_page(page); |
590 | |
591 | /* |
592 | * Necessary to update all ancestors when hierarchy is used. |
593 | * because their event counter is not touched. |
594 | */ |
595 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
596 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
597 | excess = res_counter_soft_limit_excess(&memcg->res); |
598 | /* |
599 | * We have to update the tree if mz is on RB-tree or |
600 | * mem is over its softlimit. |
601 | */ |
602 | if (excess || mz->on_tree) { |
603 | spin_lock(&mctz->lock); |
604 | /* if on-tree, remove it */ |
605 | if (mz->on_tree) |
606 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
607 | /* |
608 | * Insert again. mz->usage_in_excess will be updated. |
609 | * If excess is 0, no tree ops. |
610 | */ |
611 | __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); |
612 | spin_unlock(&mctz->lock); |
613 | } |
614 | } |
615 | } |
616 | |
617 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) |
618 | { |
619 | int node, zone; |
620 | struct mem_cgroup_per_zone *mz; |
621 | struct mem_cgroup_tree_per_zone *mctz; |
622 | |
623 | for_each_node(node) { |
624 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
625 | mz = mem_cgroup_zoneinfo(memcg, node, zone); |
626 | mctz = soft_limit_tree_node_zone(node, zone); |
627 | mem_cgroup_remove_exceeded(memcg, mz, mctz); |
628 | } |
629 | } |
630 | } |
631 | |
632 | static struct mem_cgroup_per_zone * |
633 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) |
634 | { |
635 | struct rb_node *rightmost = NULL; |
636 | struct mem_cgroup_per_zone *mz; |
637 | |
638 | retry: |
639 | mz = NULL; |
640 | rightmost = rb_last(&mctz->rb_root); |
641 | if (!rightmost) |
642 | goto done; /* Nothing to reclaim from */ |
643 | |
644 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); |
645 | /* |
646 | * Remove the node now but someone else can add it back, |
647 | * we will to add it back at the end of reclaim to its correct |
648 | * position in the tree. |
649 | */ |
650 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
651 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || |
652 | !css_tryget(&mz->memcg->css)) |
653 | goto retry; |
654 | done: |
655 | return mz; |
656 | } |
657 | |
658 | static struct mem_cgroup_per_zone * |
659 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) |
660 | { |
661 | struct mem_cgroup_per_zone *mz; |
662 | |
663 | spin_lock(&mctz->lock); |
664 | mz = __mem_cgroup_largest_soft_limit_node(mctz); |
665 | spin_unlock(&mctz->lock); |
666 | return mz; |
667 | } |
668 | |
669 | /* |
670 | * Implementation Note: reading percpu statistics for memcg. |
671 | * |
672 | * Both of vmstat[] and percpu_counter has threshold and do periodic |
673 | * synchronization to implement "quick" read. There are trade-off between |
674 | * reading cost and precision of value. Then, we may have a chance to implement |
675 | * a periodic synchronizion of counter in memcg's counter. |
676 | * |
677 | * But this _read() function is used for user interface now. The user accounts |
678 | * memory usage by memory cgroup and he _always_ requires exact value because |
679 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always |
680 | * have to visit all online cpus and make sum. So, for now, unnecessary |
681 | * synchronization is not implemented. (just implemented for cpu hotplug) |
682 | * |
683 | * If there are kernel internal actions which can make use of some not-exact |
684 | * value, and reading all cpu value can be performance bottleneck in some |
685 | * common workload, threashold and synchonization as vmstat[] should be |
686 | * implemented. |
687 | */ |
688 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
689 | enum mem_cgroup_stat_index idx) |
690 | { |
691 | long val = 0; |
692 | int cpu; |
693 | |
694 | get_online_cpus(); |
695 | for_each_online_cpu(cpu) |
696 | val += per_cpu(memcg->stat->count[idx], cpu); |
697 | #ifdef CONFIG_HOTPLUG_CPU |
698 | spin_lock(&memcg->pcp_counter_lock); |
699 | val += memcg->nocpu_base.count[idx]; |
700 | spin_unlock(&memcg->pcp_counter_lock); |
701 | #endif |
702 | put_online_cpus(); |
703 | return val; |
704 | } |
705 | |
706 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
707 | bool charge) |
708 | { |
709 | int val = (charge) ? 1 : -1; |
710 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); |
711 | } |
712 | |
713 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
714 | enum mem_cgroup_events_index idx) |
715 | { |
716 | unsigned long val = 0; |
717 | int cpu; |
718 | |
719 | for_each_online_cpu(cpu) |
720 | val += per_cpu(memcg->stat->events[idx], cpu); |
721 | #ifdef CONFIG_HOTPLUG_CPU |
722 | spin_lock(&memcg->pcp_counter_lock); |
723 | val += memcg->nocpu_base.events[idx]; |
724 | spin_unlock(&memcg->pcp_counter_lock); |
725 | #endif |
726 | return val; |
727 | } |
728 | |
729 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
730 | bool anon, int nr_pages) |
731 | { |
732 | preempt_disable(); |
733 | |
734 | /* |
735 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is |
736 | * counted as CACHE even if it's on ANON LRU. |
737 | */ |
738 | if (anon) |
739 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], |
740 | nr_pages); |
741 | else |
742 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
743 | nr_pages); |
744 | |
745 | /* pagein of a big page is an event. So, ignore page size */ |
746 | if (nr_pages > 0) |
747 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
748 | else { |
749 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
750 | nr_pages = -nr_pages; /* for event */ |
751 | } |
752 | |
753 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
754 | |
755 | preempt_enable(); |
756 | } |
757 | |
758 | unsigned long |
759 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
760 | { |
761 | struct mem_cgroup_per_zone *mz; |
762 | |
763 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
764 | return mz->lru_size[lru]; |
765 | } |
766 | |
767 | static unsigned long |
768 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, |
769 | unsigned int lru_mask) |
770 | { |
771 | struct mem_cgroup_per_zone *mz; |
772 | enum lru_list lru; |
773 | unsigned long ret = 0; |
774 | |
775 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
776 | |
777 | for_each_lru(lru) { |
778 | if (BIT(lru) & lru_mask) |
779 | ret += mz->lru_size[lru]; |
780 | } |
781 | return ret; |
782 | } |
783 | |
784 | static unsigned long |
785 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
786 | int nid, unsigned int lru_mask) |
787 | { |
788 | u64 total = 0; |
789 | int zid; |
790 | |
791 | for (zid = 0; zid < MAX_NR_ZONES; zid++) |
792 | total += mem_cgroup_zone_nr_lru_pages(memcg, |
793 | nid, zid, lru_mask); |
794 | |
795 | return total; |
796 | } |
797 | |
798 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
799 | unsigned int lru_mask) |
800 | { |
801 | int nid; |
802 | u64 total = 0; |
803 | |
804 | for_each_node_state(nid, N_HIGH_MEMORY) |
805 | total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
806 | return total; |
807 | } |
808 | |
809 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
810 | enum mem_cgroup_events_target target) |
811 | { |
812 | unsigned long val, next; |
813 | |
814 | val = __this_cpu_read(memcg->stat->nr_page_events); |
815 | next = __this_cpu_read(memcg->stat->targets[target]); |
816 | /* from time_after() in jiffies.h */ |
817 | if ((long)next - (long)val < 0) { |
818 | switch (target) { |
819 | case MEM_CGROUP_TARGET_THRESH: |
820 | next = val + THRESHOLDS_EVENTS_TARGET; |
821 | break; |
822 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
823 | next = val + SOFTLIMIT_EVENTS_TARGET; |
824 | break; |
825 | case MEM_CGROUP_TARGET_NUMAINFO: |
826 | next = val + NUMAINFO_EVENTS_TARGET; |
827 | break; |
828 | default: |
829 | break; |
830 | } |
831 | __this_cpu_write(memcg->stat->targets[target], next); |
832 | return true; |
833 | } |
834 | return false; |
835 | } |
836 | |
837 | /* |
838 | * Check events in order. |
839 | * |
840 | */ |
841 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
842 | { |
843 | preempt_disable(); |
844 | /* threshold event is triggered in finer grain than soft limit */ |
845 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
846 | MEM_CGROUP_TARGET_THRESH))) { |
847 | bool do_softlimit; |
848 | bool do_numainfo __maybe_unused; |
849 | |
850 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
851 | MEM_CGROUP_TARGET_SOFTLIMIT); |
852 | #if MAX_NUMNODES > 1 |
853 | do_numainfo = mem_cgroup_event_ratelimit(memcg, |
854 | MEM_CGROUP_TARGET_NUMAINFO); |
855 | #endif |
856 | preempt_enable(); |
857 | |
858 | mem_cgroup_threshold(memcg); |
859 | if (unlikely(do_softlimit)) |
860 | mem_cgroup_update_tree(memcg, page); |
861 | #if MAX_NUMNODES > 1 |
862 | if (unlikely(do_numainfo)) |
863 | atomic_inc(&memcg->numainfo_events); |
864 | #endif |
865 | } else |
866 | preempt_enable(); |
867 | } |
868 | |
869 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
870 | { |
871 | return mem_cgroup_from_css( |
872 | cgroup_subsys_state(cont, mem_cgroup_subsys_id)); |
873 | } |
874 | |
875 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
876 | { |
877 | /* |
878 | * mm_update_next_owner() may clear mm->owner to NULL |
879 | * if it races with swapoff, page migration, etc. |
880 | * So this can be called with p == NULL. |
881 | */ |
882 | if (unlikely(!p)) |
883 | return NULL; |
884 | |
885 | return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); |
886 | } |
887 | |
888 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
889 | { |
890 | struct mem_cgroup *memcg = NULL; |
891 | |
892 | if (!mm) |
893 | return NULL; |
894 | /* |
895 | * Because we have no locks, mm->owner's may be being moved to other |
896 | * cgroup. We use css_tryget() here even if this looks |
897 | * pessimistic (rather than adding locks here). |
898 | */ |
899 | rcu_read_lock(); |
900 | do { |
901 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
902 | if (unlikely(!memcg)) |
903 | break; |
904 | } while (!css_tryget(&memcg->css)); |
905 | rcu_read_unlock(); |
906 | return memcg; |
907 | } |
908 | |
909 | /** |
910 | * mem_cgroup_iter - iterate over memory cgroup hierarchy |
911 | * @root: hierarchy root |
912 | * @prev: previously returned memcg, NULL on first invocation |
913 | * @reclaim: cookie for shared reclaim walks, NULL for full walks |
914 | * |
915 | * Returns references to children of the hierarchy below @root, or |
916 | * @root itself, or %NULL after a full round-trip. |
917 | * |
918 | * Caller must pass the return value in @prev on subsequent |
919 | * invocations for reference counting, or use mem_cgroup_iter_break() |
920 | * to cancel a hierarchy walk before the round-trip is complete. |
921 | * |
922 | * Reclaimers can specify a zone and a priority level in @reclaim to |
923 | * divide up the memcgs in the hierarchy among all concurrent |
924 | * reclaimers operating on the same zone and priority. |
925 | */ |
926 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
927 | struct mem_cgroup *prev, |
928 | struct mem_cgroup_reclaim_cookie *reclaim) |
929 | { |
930 | struct mem_cgroup *memcg = NULL; |
931 | int id = 0; |
932 | |
933 | if (mem_cgroup_disabled()) |
934 | return NULL; |
935 | |
936 | if (!root) |
937 | root = root_mem_cgroup; |
938 | |
939 | if (prev && !reclaim) |
940 | id = css_id(&prev->css); |
941 | |
942 | if (prev && prev != root) |
943 | css_put(&prev->css); |
944 | |
945 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
946 | if (prev) |
947 | return NULL; |
948 | return root; |
949 | } |
950 | |
951 | while (!memcg) { |
952 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
953 | struct cgroup_subsys_state *css; |
954 | |
955 | if (reclaim) { |
956 | int nid = zone_to_nid(reclaim->zone); |
957 | int zid = zone_idx(reclaim->zone); |
958 | struct mem_cgroup_per_zone *mz; |
959 | |
960 | mz = mem_cgroup_zoneinfo(root, nid, zid); |
961 | iter = &mz->reclaim_iter[reclaim->priority]; |
962 | if (prev && reclaim->generation != iter->generation) |
963 | return NULL; |
964 | id = iter->position; |
965 | } |
966 | |
967 | rcu_read_lock(); |
968 | css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); |
969 | if (css) { |
970 | if (css == &root->css || css_tryget(css)) |
971 | memcg = mem_cgroup_from_css(css); |
972 | } else |
973 | id = 0; |
974 | rcu_read_unlock(); |
975 | |
976 | if (reclaim) { |
977 | iter->position = id; |
978 | if (!css) |
979 | iter->generation++; |
980 | else if (!prev && memcg) |
981 | reclaim->generation = iter->generation; |
982 | } |
983 | |
984 | if (prev && !css) |
985 | return NULL; |
986 | } |
987 | return memcg; |
988 | } |
989 | |
990 | /** |
991 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely |
992 | * @root: hierarchy root |
993 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() |
994 | */ |
995 | void mem_cgroup_iter_break(struct mem_cgroup *root, |
996 | struct mem_cgroup *prev) |
997 | { |
998 | if (!root) |
999 | root = root_mem_cgroup; |
1000 | if (prev && prev != root) |
1001 | css_put(&prev->css); |
1002 | } |
1003 | |
1004 | /* |
1005 | * Iteration constructs for visiting all cgroups (under a tree). If |
1006 | * loops are exited prematurely (break), mem_cgroup_iter_break() must |
1007 | * be used for reference counting. |
1008 | */ |
1009 | #define for_each_mem_cgroup_tree(iter, root) \ |
1010 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
1011 | iter != NULL; \ |
1012 | iter = mem_cgroup_iter(root, iter, NULL)) |
1013 | |
1014 | #define for_each_mem_cgroup(iter) \ |
1015 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
1016 | iter != NULL; \ |
1017 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
1018 | |
1019 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
1020 | { |
1021 | return (memcg == root_mem_cgroup); |
1022 | } |
1023 | |
1024 | void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
1025 | { |
1026 | struct mem_cgroup *memcg; |
1027 | |
1028 | if (!mm) |
1029 | return; |
1030 | |
1031 | rcu_read_lock(); |
1032 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1033 | if (unlikely(!memcg)) |
1034 | goto out; |
1035 | |
1036 | switch (idx) { |
1037 | case PGFAULT: |
1038 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1039 | break; |
1040 | case PGMAJFAULT: |
1041 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); |
1042 | break; |
1043 | default: |
1044 | BUG(); |
1045 | } |
1046 | out: |
1047 | rcu_read_unlock(); |
1048 | } |
1049 | EXPORT_SYMBOL(mem_cgroup_count_vm_event); |
1050 | |
1051 | /** |
1052 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg |
1053 | * @zone: zone of the wanted lruvec |
1054 | * @memcg: memcg of the wanted lruvec |
1055 | * |
1056 | * Returns the lru list vector holding pages for the given @zone and |
1057 | * @mem. This can be the global zone lruvec, if the memory controller |
1058 | * is disabled. |
1059 | */ |
1060 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, |
1061 | struct mem_cgroup *memcg) |
1062 | { |
1063 | struct mem_cgroup_per_zone *mz; |
1064 | |
1065 | if (mem_cgroup_disabled()) |
1066 | return &zone->lruvec; |
1067 | |
1068 | mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); |
1069 | return &mz->lruvec; |
1070 | } |
1071 | |
1072 | /* |
1073 | * Following LRU functions are allowed to be used without PCG_LOCK. |
1074 | * Operations are called by routine of global LRU independently from memcg. |
1075 | * What we have to take care of here is validness of pc->mem_cgroup. |
1076 | * |
1077 | * Changes to pc->mem_cgroup happens when |
1078 | * 1. charge |
1079 | * 2. moving account |
1080 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. |
1081 | * It is added to LRU before charge. |
1082 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. |
1083 | * When moving account, the page is not on LRU. It's isolated. |
1084 | */ |
1085 | |
1086 | /** |
1087 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page |
1088 | * @page: the page |
1089 | * @zone: zone of the page |
1090 | */ |
1091 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
1092 | { |
1093 | struct mem_cgroup_per_zone *mz; |
1094 | struct mem_cgroup *memcg; |
1095 | struct page_cgroup *pc; |
1096 | |
1097 | if (mem_cgroup_disabled()) |
1098 | return &zone->lruvec; |
1099 | |
1100 | pc = lookup_page_cgroup(page); |
1101 | memcg = pc->mem_cgroup; |
1102 | |
1103 | /* |
1104 | * Surreptitiously switch any uncharged offlist page to root: |
1105 | * an uncharged page off lru does nothing to secure |
1106 | * its former mem_cgroup from sudden removal. |
1107 | * |
1108 | * Our caller holds lru_lock, and PageCgroupUsed is updated |
1109 | * under page_cgroup lock: between them, they make all uses |
1110 | * of pc->mem_cgroup safe. |
1111 | */ |
1112 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) |
1113 | pc->mem_cgroup = memcg = root_mem_cgroup; |
1114 | |
1115 | mz = page_cgroup_zoneinfo(memcg, page); |
1116 | return &mz->lruvec; |
1117 | } |
1118 | |
1119 | /** |
1120 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1121 | * @lruvec: mem_cgroup per zone lru vector |
1122 | * @lru: index of lru list the page is sitting on |
1123 | * @nr_pages: positive when adding or negative when removing |
1124 | * |
1125 | * This function must be called when a page is added to or removed from an |
1126 | * lru list. |
1127 | */ |
1128 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1129 | int nr_pages) |
1130 | { |
1131 | struct mem_cgroup_per_zone *mz; |
1132 | unsigned long *lru_size; |
1133 | |
1134 | if (mem_cgroup_disabled()) |
1135 | return; |
1136 | |
1137 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1138 | lru_size = mz->lru_size + lru; |
1139 | *lru_size += nr_pages; |
1140 | VM_BUG_ON((long)(*lru_size) < 0); |
1141 | } |
1142 | |
1143 | /* |
1144 | * Checks whether given mem is same or in the root_mem_cgroup's |
1145 | * hierarchy subtree |
1146 | */ |
1147 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1148 | struct mem_cgroup *memcg) |
1149 | { |
1150 | if (root_memcg == memcg) |
1151 | return true; |
1152 | if (!root_memcg->use_hierarchy || !memcg) |
1153 | return false; |
1154 | return css_is_ancestor(&memcg->css, &root_memcg->css); |
1155 | } |
1156 | |
1157 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1158 | struct mem_cgroup *memcg) |
1159 | { |
1160 | bool ret; |
1161 | |
1162 | rcu_read_lock(); |
1163 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); |
1164 | rcu_read_unlock(); |
1165 | return ret; |
1166 | } |
1167 | |
1168 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) |
1169 | { |
1170 | int ret; |
1171 | struct mem_cgroup *curr = NULL; |
1172 | struct task_struct *p; |
1173 | |
1174 | p = find_lock_task_mm(task); |
1175 | if (p) { |
1176 | curr = try_get_mem_cgroup_from_mm(p->mm); |
1177 | task_unlock(p); |
1178 | } else { |
1179 | /* |
1180 | * All threads may have already detached their mm's, but the oom |
1181 | * killer still needs to detect if they have already been oom |
1182 | * killed to prevent needlessly killing additional tasks. |
1183 | */ |
1184 | task_lock(task); |
1185 | curr = mem_cgroup_from_task(task); |
1186 | if (curr) |
1187 | css_get(&curr->css); |
1188 | task_unlock(task); |
1189 | } |
1190 | if (!curr) |
1191 | return 0; |
1192 | /* |
1193 | * We should check use_hierarchy of "memcg" not "curr". Because checking |
1194 | * use_hierarchy of "curr" here make this function true if hierarchy is |
1195 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* |
1196 | * hierarchy(even if use_hierarchy is disabled in "memcg"). |
1197 | */ |
1198 | ret = mem_cgroup_same_or_subtree(memcg, curr); |
1199 | css_put(&curr->css); |
1200 | return ret; |
1201 | } |
1202 | |
1203 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
1204 | { |
1205 | unsigned long inactive_ratio; |
1206 | unsigned long inactive; |
1207 | unsigned long active; |
1208 | unsigned long gb; |
1209 | |
1210 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1211 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); |
1212 | |
1213 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1214 | if (gb) |
1215 | inactive_ratio = int_sqrt(10 * gb); |
1216 | else |
1217 | inactive_ratio = 1; |
1218 | |
1219 | return inactive * inactive_ratio < active; |
1220 | } |
1221 | |
1222 | int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) |
1223 | { |
1224 | unsigned long active; |
1225 | unsigned long inactive; |
1226 | |
1227 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); |
1228 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); |
1229 | |
1230 | return (active > inactive); |
1231 | } |
1232 | |
1233 | #define mem_cgroup_from_res_counter(counter, member) \ |
1234 | container_of(counter, struct mem_cgroup, member) |
1235 | |
1236 | /** |
1237 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
1238 | * @memcg: the memory cgroup |
1239 | * |
1240 | * Returns the maximum amount of memory @mem can be charged with, in |
1241 | * pages. |
1242 | */ |
1243 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
1244 | { |
1245 | unsigned long long margin; |
1246 | |
1247 | margin = res_counter_margin(&memcg->res); |
1248 | if (do_swap_account) |
1249 | margin = min(margin, res_counter_margin(&memcg->memsw)); |
1250 | return margin >> PAGE_SHIFT; |
1251 | } |
1252 | |
1253 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
1254 | { |
1255 | struct cgroup *cgrp = memcg->css.cgroup; |
1256 | |
1257 | /* root ? */ |
1258 | if (cgrp->parent == NULL) |
1259 | return vm_swappiness; |
1260 | |
1261 | return memcg->swappiness; |
1262 | } |
1263 | |
1264 | /* |
1265 | * memcg->moving_account is used for checking possibility that some thread is |
1266 | * calling move_account(). When a thread on CPU-A starts moving pages under |
1267 | * a memcg, other threads should check memcg->moving_account under |
1268 | * rcu_read_lock(), like this: |
1269 | * |
1270 | * CPU-A CPU-B |
1271 | * rcu_read_lock() |
1272 | * memcg->moving_account+1 if (memcg->mocing_account) |
1273 | * take heavy locks. |
1274 | * synchronize_rcu() update something. |
1275 | * rcu_read_unlock() |
1276 | * start move here. |
1277 | */ |
1278 | |
1279 | /* for quick checking without looking up memcg */ |
1280 | atomic_t memcg_moving __read_mostly; |
1281 | |
1282 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) |
1283 | { |
1284 | atomic_inc(&memcg_moving); |
1285 | atomic_inc(&memcg->moving_account); |
1286 | synchronize_rcu(); |
1287 | } |
1288 | |
1289 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) |
1290 | { |
1291 | /* |
1292 | * Now, mem_cgroup_clear_mc() may call this function with NULL. |
1293 | * We check NULL in callee rather than caller. |
1294 | */ |
1295 | if (memcg) { |
1296 | atomic_dec(&memcg_moving); |
1297 | atomic_dec(&memcg->moving_account); |
1298 | } |
1299 | } |
1300 | |
1301 | /* |
1302 | * 2 routines for checking "mem" is under move_account() or not. |
1303 | * |
1304 | * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This |
1305 | * is used for avoiding races in accounting. If true, |
1306 | * pc->mem_cgroup may be overwritten. |
1307 | * |
1308 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or |
1309 | * under hierarchy of moving cgroups. This is for |
1310 | * waiting at hith-memory prressure caused by "move". |
1311 | */ |
1312 | |
1313 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) |
1314 | { |
1315 | VM_BUG_ON(!rcu_read_lock_held()); |
1316 | return atomic_read(&memcg->moving_account) > 0; |
1317 | } |
1318 | |
1319 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
1320 | { |
1321 | struct mem_cgroup *from; |
1322 | struct mem_cgroup *to; |
1323 | bool ret = false; |
1324 | /* |
1325 | * Unlike task_move routines, we access mc.to, mc.from not under |
1326 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. |
1327 | */ |
1328 | spin_lock(&mc.lock); |
1329 | from = mc.from; |
1330 | to = mc.to; |
1331 | if (!from) |
1332 | goto unlock; |
1333 | |
1334 | ret = mem_cgroup_same_or_subtree(memcg, from) |
1335 | || mem_cgroup_same_or_subtree(memcg, to); |
1336 | unlock: |
1337 | spin_unlock(&mc.lock); |
1338 | return ret; |
1339 | } |
1340 | |
1341 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
1342 | { |
1343 | if (mc.moving_task && current != mc.moving_task) { |
1344 | if (mem_cgroup_under_move(memcg)) { |
1345 | DEFINE_WAIT(wait); |
1346 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); |
1347 | /* moving charge context might have finished. */ |
1348 | if (mc.moving_task) |
1349 | schedule(); |
1350 | finish_wait(&mc.waitq, &wait); |
1351 | return true; |
1352 | } |
1353 | } |
1354 | return false; |
1355 | } |
1356 | |
1357 | /* |
1358 | * Take this lock when |
1359 | * - a code tries to modify page's memcg while it's USED. |
1360 | * - a code tries to modify page state accounting in a memcg. |
1361 | * see mem_cgroup_stolen(), too. |
1362 | */ |
1363 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, |
1364 | unsigned long *flags) |
1365 | { |
1366 | spin_lock_irqsave(&memcg->move_lock, *flags); |
1367 | } |
1368 | |
1369 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, |
1370 | unsigned long *flags) |
1371 | { |
1372 | spin_unlock_irqrestore(&memcg->move_lock, *flags); |
1373 | } |
1374 | |
1375 | /** |
1376 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. |
1377 | * @memcg: The memory cgroup that went over limit |
1378 | * @p: Task that is going to be killed |
1379 | * |
1380 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is |
1381 | * enabled |
1382 | */ |
1383 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) |
1384 | { |
1385 | struct cgroup *task_cgrp; |
1386 | struct cgroup *mem_cgrp; |
1387 | /* |
1388 | * Need a buffer in BSS, can't rely on allocations. The code relies |
1389 | * on the assumption that OOM is serialized for memory controller. |
1390 | * If this assumption is broken, revisit this code. |
1391 | */ |
1392 | static char memcg_name[PATH_MAX]; |
1393 | int ret; |
1394 | |
1395 | if (!memcg || !p) |
1396 | return; |
1397 | |
1398 | rcu_read_lock(); |
1399 | |
1400 | mem_cgrp = memcg->css.cgroup; |
1401 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); |
1402 | |
1403 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); |
1404 | if (ret < 0) { |
1405 | /* |
1406 | * Unfortunately, we are unable to convert to a useful name |
1407 | * But we'll still print out the usage information |
1408 | */ |
1409 | rcu_read_unlock(); |
1410 | goto done; |
1411 | } |
1412 | rcu_read_unlock(); |
1413 | |
1414 | printk(KERN_INFO "Task in %s killed", memcg_name); |
1415 | |
1416 | rcu_read_lock(); |
1417 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); |
1418 | if (ret < 0) { |
1419 | rcu_read_unlock(); |
1420 | goto done; |
1421 | } |
1422 | rcu_read_unlock(); |
1423 | |
1424 | /* |
1425 | * Continues from above, so we don't need an KERN_ level |
1426 | */ |
1427 | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); |
1428 | done: |
1429 | |
1430 | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", |
1431 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
1432 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, |
1433 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); |
1434 | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " |
1435 | "failcnt %llu\n", |
1436 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, |
1437 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, |
1438 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); |
1439 | } |
1440 | |
1441 | /* |
1442 | * This function returns the number of memcg under hierarchy tree. Returns |
1443 | * 1(self count) if no children. |
1444 | */ |
1445 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
1446 | { |
1447 | int num = 0; |
1448 | struct mem_cgroup *iter; |
1449 | |
1450 | for_each_mem_cgroup_tree(iter, memcg) |
1451 | num++; |
1452 | return num; |
1453 | } |
1454 | |
1455 | /* |
1456 | * Return the memory (and swap, if configured) limit for a memcg. |
1457 | */ |
1458 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) |
1459 | { |
1460 | u64 limit; |
1461 | u64 memsw; |
1462 | |
1463 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
1464 | limit += total_swap_pages << PAGE_SHIFT; |
1465 | |
1466 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
1467 | /* |
1468 | * If memsw is finite and limits the amount of swap space available |
1469 | * to this memcg, return that limit. |
1470 | */ |
1471 | return min(limit, memsw); |
1472 | } |
1473 | |
1474 | void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1475 | int order) |
1476 | { |
1477 | struct mem_cgroup *iter; |
1478 | unsigned long chosen_points = 0; |
1479 | unsigned long totalpages; |
1480 | unsigned int points = 0; |
1481 | struct task_struct *chosen = NULL; |
1482 | |
1483 | /* |
1484 | * If current has a pending SIGKILL, then automatically select it. The |
1485 | * goal is to allow it to allocate so that it may quickly exit and free |
1486 | * its memory. |
1487 | */ |
1488 | if (fatal_signal_pending(current)) { |
1489 | set_thread_flag(TIF_MEMDIE); |
1490 | return; |
1491 | } |
1492 | |
1493 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); |
1494 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; |
1495 | for_each_mem_cgroup_tree(iter, memcg) { |
1496 | struct cgroup *cgroup = iter->css.cgroup; |
1497 | struct cgroup_iter it; |
1498 | struct task_struct *task; |
1499 | |
1500 | cgroup_iter_start(cgroup, &it); |
1501 | while ((task = cgroup_iter_next(cgroup, &it))) { |
1502 | switch (oom_scan_process_thread(task, totalpages, NULL, |
1503 | false)) { |
1504 | case OOM_SCAN_SELECT: |
1505 | if (chosen) |
1506 | put_task_struct(chosen); |
1507 | chosen = task; |
1508 | chosen_points = ULONG_MAX; |
1509 | get_task_struct(chosen); |
1510 | /* fall through */ |
1511 | case OOM_SCAN_CONTINUE: |
1512 | continue; |
1513 | case OOM_SCAN_ABORT: |
1514 | cgroup_iter_end(cgroup, &it); |
1515 | mem_cgroup_iter_break(memcg, iter); |
1516 | if (chosen) |
1517 | put_task_struct(chosen); |
1518 | return; |
1519 | case OOM_SCAN_OK: |
1520 | break; |
1521 | }; |
1522 | points = oom_badness(task, memcg, NULL, totalpages); |
1523 | if (points > chosen_points) { |
1524 | if (chosen) |
1525 | put_task_struct(chosen); |
1526 | chosen = task; |
1527 | chosen_points = points; |
1528 | get_task_struct(chosen); |
1529 | } |
1530 | } |
1531 | cgroup_iter_end(cgroup, &it); |
1532 | } |
1533 | |
1534 | if (!chosen) |
1535 | return; |
1536 | points = chosen_points * 1000 / totalpages; |
1537 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1538 | NULL, "Memory cgroup out of memory"); |
1539 | } |
1540 | |
1541 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, |
1542 | gfp_t gfp_mask, |
1543 | unsigned long flags) |
1544 | { |
1545 | unsigned long total = 0; |
1546 | bool noswap = false; |
1547 | int loop; |
1548 | |
1549 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) |
1550 | noswap = true; |
1551 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) |
1552 | noswap = true; |
1553 | |
1554 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { |
1555 | if (loop) |
1556 | drain_all_stock_async(memcg); |
1557 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); |
1558 | /* |
1559 | * Allow limit shrinkers, which are triggered directly |
1560 | * by userspace, to catch signals and stop reclaim |
1561 | * after minimal progress, regardless of the margin. |
1562 | */ |
1563 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) |
1564 | break; |
1565 | if (mem_cgroup_margin(memcg)) |
1566 | break; |
1567 | /* |
1568 | * If nothing was reclaimed after two attempts, there |
1569 | * may be no reclaimable pages in this hierarchy. |
1570 | */ |
1571 | if (loop && !total) |
1572 | break; |
1573 | } |
1574 | return total; |
1575 | } |
1576 | |
1577 | /** |
1578 | * test_mem_cgroup_node_reclaimable |
1579 | * @memcg: the target memcg |
1580 | * @nid: the node ID to be checked. |
1581 | * @noswap : specify true here if the user wants flle only information. |
1582 | * |
1583 | * This function returns whether the specified memcg contains any |
1584 | * reclaimable pages on a node. Returns true if there are any reclaimable |
1585 | * pages in the node. |
1586 | */ |
1587 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
1588 | int nid, bool noswap) |
1589 | { |
1590 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
1591 | return true; |
1592 | if (noswap || !total_swap_pages) |
1593 | return false; |
1594 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
1595 | return true; |
1596 | return false; |
1597 | |
1598 | } |
1599 | #if MAX_NUMNODES > 1 |
1600 | |
1601 | /* |
1602 | * Always updating the nodemask is not very good - even if we have an empty |
1603 | * list or the wrong list here, we can start from some node and traverse all |
1604 | * nodes based on the zonelist. So update the list loosely once per 10 secs. |
1605 | * |
1606 | */ |
1607 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
1608 | { |
1609 | int nid; |
1610 | /* |
1611 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET |
1612 | * pagein/pageout changes since the last update. |
1613 | */ |
1614 | if (!atomic_read(&memcg->numainfo_events)) |
1615 | return; |
1616 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
1617 | return; |
1618 | |
1619 | /* make a nodemask where this memcg uses memory from */ |
1620 | memcg->scan_nodes = node_states[N_HIGH_MEMORY]; |
1621 | |
1622 | for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { |
1623 | |
1624 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1625 | node_clear(nid, memcg->scan_nodes); |
1626 | } |
1627 | |
1628 | atomic_set(&memcg->numainfo_events, 0); |
1629 | atomic_set(&memcg->numainfo_updating, 0); |
1630 | } |
1631 | |
1632 | /* |
1633 | * Selecting a node where we start reclaim from. Because what we need is just |
1634 | * reducing usage counter, start from anywhere is O,K. Considering |
1635 | * memory reclaim from current node, there are pros. and cons. |
1636 | * |
1637 | * Freeing memory from current node means freeing memory from a node which |
1638 | * we'll use or we've used. So, it may make LRU bad. And if several threads |
1639 | * hit limits, it will see a contention on a node. But freeing from remote |
1640 | * node means more costs for memory reclaim because of memory latency. |
1641 | * |
1642 | * Now, we use round-robin. Better algorithm is welcomed. |
1643 | */ |
1644 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
1645 | { |
1646 | int node; |
1647 | |
1648 | mem_cgroup_may_update_nodemask(memcg); |
1649 | node = memcg->last_scanned_node; |
1650 | |
1651 | node = next_node(node, memcg->scan_nodes); |
1652 | if (node == MAX_NUMNODES) |
1653 | node = first_node(memcg->scan_nodes); |
1654 | /* |
1655 | * We call this when we hit limit, not when pages are added to LRU. |
1656 | * No LRU may hold pages because all pages are UNEVICTABLE or |
1657 | * memcg is too small and all pages are not on LRU. In that case, |
1658 | * we use curret node. |
1659 | */ |
1660 | if (unlikely(node == MAX_NUMNODES)) |
1661 | node = numa_node_id(); |
1662 | |
1663 | memcg->last_scanned_node = node; |
1664 | return node; |
1665 | } |
1666 | |
1667 | /* |
1668 | * Check all nodes whether it contains reclaimable pages or not. |
1669 | * For quick scan, we make use of scan_nodes. This will allow us to skip |
1670 | * unused nodes. But scan_nodes is lazily updated and may not cotain |
1671 | * enough new information. We need to do double check. |
1672 | */ |
1673 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1674 | { |
1675 | int nid; |
1676 | |
1677 | /* |
1678 | * quick check...making use of scan_node. |
1679 | * We can skip unused nodes. |
1680 | */ |
1681 | if (!nodes_empty(memcg->scan_nodes)) { |
1682 | for (nid = first_node(memcg->scan_nodes); |
1683 | nid < MAX_NUMNODES; |
1684 | nid = next_node(nid, memcg->scan_nodes)) { |
1685 | |
1686 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
1687 | return true; |
1688 | } |
1689 | } |
1690 | /* |
1691 | * Check rest of nodes. |
1692 | */ |
1693 | for_each_node_state(nid, N_HIGH_MEMORY) { |
1694 | if (node_isset(nid, memcg->scan_nodes)) |
1695 | continue; |
1696 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
1697 | return true; |
1698 | } |
1699 | return false; |
1700 | } |
1701 | |
1702 | #else |
1703 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
1704 | { |
1705 | return 0; |
1706 | } |
1707 | |
1708 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1709 | { |
1710 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); |
1711 | } |
1712 | #endif |
1713 | |
1714 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1715 | struct zone *zone, |
1716 | gfp_t gfp_mask, |
1717 | unsigned long *total_scanned) |
1718 | { |
1719 | struct mem_cgroup *victim = NULL; |
1720 | int total = 0; |
1721 | int loop = 0; |
1722 | unsigned long excess; |
1723 | unsigned long nr_scanned; |
1724 | struct mem_cgroup_reclaim_cookie reclaim = { |
1725 | .zone = zone, |
1726 | .priority = 0, |
1727 | }; |
1728 | |
1729 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; |
1730 | |
1731 | while (1) { |
1732 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); |
1733 | if (!victim) { |
1734 | loop++; |
1735 | if (loop >= 2) { |
1736 | /* |
1737 | * If we have not been able to reclaim |
1738 | * anything, it might because there are |
1739 | * no reclaimable pages under this hierarchy |
1740 | */ |
1741 | if (!total) |
1742 | break; |
1743 | /* |
1744 | * We want to do more targeted reclaim. |
1745 | * excess >> 2 is not to excessive so as to |
1746 | * reclaim too much, nor too less that we keep |
1747 | * coming back to reclaim from this cgroup |
1748 | */ |
1749 | if (total >= (excess >> 2) || |
1750 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
1751 | break; |
1752 | } |
1753 | continue; |
1754 | } |
1755 | if (!mem_cgroup_reclaimable(victim, false)) |
1756 | continue; |
1757 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, |
1758 | zone, &nr_scanned); |
1759 | *total_scanned += nr_scanned; |
1760 | if (!res_counter_soft_limit_excess(&root_memcg->res)) |
1761 | break; |
1762 | } |
1763 | mem_cgroup_iter_break(root_memcg, victim); |
1764 | return total; |
1765 | } |
1766 | |
1767 | /* |
1768 | * Check OOM-Killer is already running under our hierarchy. |
1769 | * If someone is running, return false. |
1770 | * Has to be called with memcg_oom_lock |
1771 | */ |
1772 | static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) |
1773 | { |
1774 | struct mem_cgroup *iter, *failed = NULL; |
1775 | |
1776 | for_each_mem_cgroup_tree(iter, memcg) { |
1777 | if (iter->oom_lock) { |
1778 | /* |
1779 | * this subtree of our hierarchy is already locked |
1780 | * so we cannot give a lock. |
1781 | */ |
1782 | failed = iter; |
1783 | mem_cgroup_iter_break(memcg, iter); |
1784 | break; |
1785 | } else |
1786 | iter->oom_lock = true; |
1787 | } |
1788 | |
1789 | if (!failed) |
1790 | return true; |
1791 | |
1792 | /* |
1793 | * OK, we failed to lock the whole subtree so we have to clean up |
1794 | * what we set up to the failing subtree |
1795 | */ |
1796 | for_each_mem_cgroup_tree(iter, memcg) { |
1797 | if (iter == failed) { |
1798 | mem_cgroup_iter_break(memcg, iter); |
1799 | break; |
1800 | } |
1801 | iter->oom_lock = false; |
1802 | } |
1803 | return false; |
1804 | } |
1805 | |
1806 | /* |
1807 | * Has to be called with memcg_oom_lock |
1808 | */ |
1809 | static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
1810 | { |
1811 | struct mem_cgroup *iter; |
1812 | |
1813 | for_each_mem_cgroup_tree(iter, memcg) |
1814 | iter->oom_lock = false; |
1815 | return 0; |
1816 | } |
1817 | |
1818 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
1819 | { |
1820 | struct mem_cgroup *iter; |
1821 | |
1822 | for_each_mem_cgroup_tree(iter, memcg) |
1823 | atomic_inc(&iter->under_oom); |
1824 | } |
1825 | |
1826 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
1827 | { |
1828 | struct mem_cgroup *iter; |
1829 | |
1830 | /* |
1831 | * When a new child is created while the hierarchy is under oom, |
1832 | * mem_cgroup_oom_lock() may not be called. We have to use |
1833 | * atomic_add_unless() here. |
1834 | */ |
1835 | for_each_mem_cgroup_tree(iter, memcg) |
1836 | atomic_add_unless(&iter->under_oom, -1, 0); |
1837 | } |
1838 | |
1839 | static DEFINE_SPINLOCK(memcg_oom_lock); |
1840 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
1841 | |
1842 | struct oom_wait_info { |
1843 | struct mem_cgroup *memcg; |
1844 | wait_queue_t wait; |
1845 | }; |
1846 | |
1847 | static int memcg_oom_wake_function(wait_queue_t *wait, |
1848 | unsigned mode, int sync, void *arg) |
1849 | { |
1850 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
1851 | struct mem_cgroup *oom_wait_memcg; |
1852 | struct oom_wait_info *oom_wait_info; |
1853 | |
1854 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); |
1855 | oom_wait_memcg = oom_wait_info->memcg; |
1856 | |
1857 | /* |
1858 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. |
1859 | * Then we can use css_is_ancestor without taking care of RCU. |
1860 | */ |
1861 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) |
1862 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) |
1863 | return 0; |
1864 | return autoremove_wake_function(wait, mode, sync, arg); |
1865 | } |
1866 | |
1867 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
1868 | { |
1869 | /* for filtering, pass "memcg" as argument. */ |
1870 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); |
1871 | } |
1872 | |
1873 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
1874 | { |
1875 | if (memcg && atomic_read(&memcg->under_oom)) |
1876 | memcg_wakeup_oom(memcg); |
1877 | } |
1878 | |
1879 | /* |
1880 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. |
1881 | */ |
1882 | static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, |
1883 | int order) |
1884 | { |
1885 | struct oom_wait_info owait; |
1886 | bool locked, need_to_kill; |
1887 | |
1888 | owait.memcg = memcg; |
1889 | owait.wait.flags = 0; |
1890 | owait.wait.func = memcg_oom_wake_function; |
1891 | owait.wait.private = current; |
1892 | INIT_LIST_HEAD(&owait.wait.task_list); |
1893 | need_to_kill = true; |
1894 | mem_cgroup_mark_under_oom(memcg); |
1895 | |
1896 | /* At first, try to OOM lock hierarchy under memcg.*/ |
1897 | spin_lock(&memcg_oom_lock); |
1898 | locked = mem_cgroup_oom_lock(memcg); |
1899 | /* |
1900 | * Even if signal_pending(), we can't quit charge() loop without |
1901 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL |
1902 | * under OOM is always welcomed, use TASK_KILLABLE here. |
1903 | */ |
1904 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
1905 | if (!locked || memcg->oom_kill_disable) |
1906 | need_to_kill = false; |
1907 | if (locked) |
1908 | mem_cgroup_oom_notify(memcg); |
1909 | spin_unlock(&memcg_oom_lock); |
1910 | |
1911 | if (need_to_kill) { |
1912 | finish_wait(&memcg_oom_waitq, &owait.wait); |
1913 | mem_cgroup_out_of_memory(memcg, mask, order); |
1914 | } else { |
1915 | schedule(); |
1916 | finish_wait(&memcg_oom_waitq, &owait.wait); |
1917 | } |
1918 | spin_lock(&memcg_oom_lock); |
1919 | if (locked) |
1920 | mem_cgroup_oom_unlock(memcg); |
1921 | memcg_wakeup_oom(memcg); |
1922 | spin_unlock(&memcg_oom_lock); |
1923 | |
1924 | mem_cgroup_unmark_under_oom(memcg); |
1925 | |
1926 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) |
1927 | return false; |
1928 | /* Give chance to dying process */ |
1929 | schedule_timeout_uninterruptible(1); |
1930 | return true; |
1931 | } |
1932 | |
1933 | /* |
1934 | * Currently used to update mapped file statistics, but the routine can be |
1935 | * generalized to update other statistics as well. |
1936 | * |
1937 | * Notes: Race condition |
1938 | * |
1939 | * We usually use page_cgroup_lock() for accessing page_cgroup member but |
1940 | * it tends to be costly. But considering some conditions, we doesn't need |
1941 | * to do so _always_. |
1942 | * |
1943 | * Considering "charge", lock_page_cgroup() is not required because all |
1944 | * file-stat operations happen after a page is attached to radix-tree. There |
1945 | * are no race with "charge". |
1946 | * |
1947 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup |
1948 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even |
1949 | * if there are race with "uncharge". Statistics itself is properly handled |
1950 | * by flags. |
1951 | * |
1952 | * Considering "move", this is an only case we see a race. To make the race |
1953 | * small, we check mm->moving_account and detect there are possibility of race |
1954 | * If there is, we take a lock. |
1955 | */ |
1956 | |
1957 | void __mem_cgroup_begin_update_page_stat(struct page *page, |
1958 | bool *locked, unsigned long *flags) |
1959 | { |
1960 | struct mem_cgroup *memcg; |
1961 | struct page_cgroup *pc; |
1962 | |
1963 | pc = lookup_page_cgroup(page); |
1964 | again: |
1965 | memcg = pc->mem_cgroup; |
1966 | if (unlikely(!memcg || !PageCgroupUsed(pc))) |
1967 | return; |
1968 | /* |
1969 | * If this memory cgroup is not under account moving, we don't |
1970 | * need to take move_lock_mem_cgroup(). Because we already hold |
1971 | * rcu_read_lock(), any calls to move_account will be delayed until |
1972 | * rcu_read_unlock() if mem_cgroup_stolen() == true. |
1973 | */ |
1974 | if (!mem_cgroup_stolen(memcg)) |
1975 | return; |
1976 | |
1977 | move_lock_mem_cgroup(memcg, flags); |
1978 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { |
1979 | move_unlock_mem_cgroup(memcg, flags); |
1980 | goto again; |
1981 | } |
1982 | *locked = true; |
1983 | } |
1984 | |
1985 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) |
1986 | { |
1987 | struct page_cgroup *pc = lookup_page_cgroup(page); |
1988 | |
1989 | /* |
1990 | * It's guaranteed that pc->mem_cgroup never changes while |
1991 | * lock is held because a routine modifies pc->mem_cgroup |
1992 | * should take move_lock_mem_cgroup(). |
1993 | */ |
1994 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); |
1995 | } |
1996 | |
1997 | void mem_cgroup_update_page_stat(struct page *page, |
1998 | enum mem_cgroup_page_stat_item idx, int val) |
1999 | { |
2000 | struct mem_cgroup *memcg; |
2001 | struct page_cgroup *pc = lookup_page_cgroup(page); |
2002 | unsigned long uninitialized_var(flags); |
2003 | |
2004 | if (mem_cgroup_disabled()) |
2005 | return; |
2006 | |
2007 | memcg = pc->mem_cgroup; |
2008 | if (unlikely(!memcg || !PageCgroupUsed(pc))) |
2009 | return; |
2010 | |
2011 | switch (idx) { |
2012 | case MEMCG_NR_FILE_MAPPED: |
2013 | idx = MEM_CGROUP_STAT_FILE_MAPPED; |
2014 | break; |
2015 | default: |
2016 | BUG(); |
2017 | } |
2018 | |
2019 | this_cpu_add(memcg->stat->count[idx], val); |
2020 | } |
2021 | |
2022 | /* |
2023 | * size of first charge trial. "32" comes from vmscan.c's magic value. |
2024 | * TODO: maybe necessary to use big numbers in big irons. |
2025 | */ |
2026 | #define CHARGE_BATCH 32U |
2027 | struct memcg_stock_pcp { |
2028 | struct mem_cgroup *cached; /* this never be root cgroup */ |
2029 | unsigned int nr_pages; |
2030 | struct work_struct work; |
2031 | unsigned long flags; |
2032 | #define FLUSHING_CACHED_CHARGE 0 |
2033 | }; |
2034 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); |
2035 | static DEFINE_MUTEX(percpu_charge_mutex); |
2036 | |
2037 | /* |
2038 | * Try to consume stocked charge on this cpu. If success, one page is consumed |
2039 | * from local stock and true is returned. If the stock is 0 or charges from a |
2040 | * cgroup which is not current target, returns false. This stock will be |
2041 | * refilled. |
2042 | */ |
2043 | static bool consume_stock(struct mem_cgroup *memcg) |
2044 | { |
2045 | struct memcg_stock_pcp *stock; |
2046 | bool ret = true; |
2047 | |
2048 | stock = &get_cpu_var(memcg_stock); |
2049 | if (memcg == stock->cached && stock->nr_pages) |
2050 | stock->nr_pages--; |
2051 | else /* need to call res_counter_charge */ |
2052 | ret = false; |
2053 | put_cpu_var(memcg_stock); |
2054 | return ret; |
2055 | } |
2056 | |
2057 | /* |
2058 | * Returns stocks cached in percpu to res_counter and reset cached information. |
2059 | */ |
2060 | static void drain_stock(struct memcg_stock_pcp *stock) |
2061 | { |
2062 | struct mem_cgroup *old = stock->cached; |
2063 | |
2064 | if (stock->nr_pages) { |
2065 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; |
2066 | |
2067 | res_counter_uncharge(&old->res, bytes); |
2068 | if (do_swap_account) |
2069 | res_counter_uncharge(&old->memsw, bytes); |
2070 | stock->nr_pages = 0; |
2071 | } |
2072 | stock->cached = NULL; |
2073 | } |
2074 | |
2075 | /* |
2076 | * This must be called under preempt disabled or must be called by |
2077 | * a thread which is pinned to local cpu. |
2078 | */ |
2079 | static void drain_local_stock(struct work_struct *dummy) |
2080 | { |
2081 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); |
2082 | drain_stock(stock); |
2083 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
2084 | } |
2085 | |
2086 | /* |
2087 | * Cache charges(val) which is from res_counter, to local per_cpu area. |
2088 | * This will be consumed by consume_stock() function, later. |
2089 | */ |
2090 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2091 | { |
2092 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); |
2093 | |
2094 | if (stock->cached != memcg) { /* reset if necessary */ |
2095 | drain_stock(stock); |
2096 | stock->cached = memcg; |
2097 | } |
2098 | stock->nr_pages += nr_pages; |
2099 | put_cpu_var(memcg_stock); |
2100 | } |
2101 | |
2102 | /* |
2103 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
2104 | * of the hierarchy under it. sync flag says whether we should block |
2105 | * until the work is done. |
2106 | */ |
2107 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) |
2108 | { |
2109 | int cpu, curcpu; |
2110 | |
2111 | /* Notify other cpus that system-wide "drain" is running */ |
2112 | get_online_cpus(); |
2113 | curcpu = get_cpu(); |
2114 | for_each_online_cpu(cpu) { |
2115 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2116 | struct mem_cgroup *memcg; |
2117 | |
2118 | memcg = stock->cached; |
2119 | if (!memcg || !stock->nr_pages) |
2120 | continue; |
2121 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) |
2122 | continue; |
2123 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2124 | if (cpu == curcpu) |
2125 | drain_local_stock(&stock->work); |
2126 | else |
2127 | schedule_work_on(cpu, &stock->work); |
2128 | } |
2129 | } |
2130 | put_cpu(); |
2131 | |
2132 | if (!sync) |
2133 | goto out; |
2134 | |
2135 | for_each_online_cpu(cpu) { |
2136 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2137 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) |
2138 | flush_work(&stock->work); |
2139 | } |
2140 | out: |
2141 | put_online_cpus(); |
2142 | } |
2143 | |
2144 | /* |
2145 | * Tries to drain stocked charges in other cpus. This function is asynchronous |
2146 | * and just put a work per cpu for draining localy on each cpu. Caller can |
2147 | * expects some charges will be back to res_counter later but cannot wait for |
2148 | * it. |
2149 | */ |
2150 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) |
2151 | { |
2152 | /* |
2153 | * If someone calls draining, avoid adding more kworker runs. |
2154 | */ |
2155 | if (!mutex_trylock(&percpu_charge_mutex)) |
2156 | return; |
2157 | drain_all_stock(root_memcg, false); |
2158 | mutex_unlock(&percpu_charge_mutex); |
2159 | } |
2160 | |
2161 | /* This is a synchronous drain interface. */ |
2162 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) |
2163 | { |
2164 | /* called when force_empty is called */ |
2165 | mutex_lock(&percpu_charge_mutex); |
2166 | drain_all_stock(root_memcg, true); |
2167 | mutex_unlock(&percpu_charge_mutex); |
2168 | } |
2169 | |
2170 | /* |
2171 | * This function drains percpu counter value from DEAD cpu and |
2172 | * move it to local cpu. Note that this function can be preempted. |
2173 | */ |
2174 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
2175 | { |
2176 | int i; |
2177 | |
2178 | spin_lock(&memcg->pcp_counter_lock); |
2179 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
2180 | long x = per_cpu(memcg->stat->count[i], cpu); |
2181 | |
2182 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2183 | memcg->nocpu_base.count[i] += x; |
2184 | } |
2185 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
2186 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
2187 | |
2188 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2189 | memcg->nocpu_base.events[i] += x; |
2190 | } |
2191 | spin_unlock(&memcg->pcp_counter_lock); |
2192 | } |
2193 | |
2194 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, |
2195 | unsigned long action, |
2196 | void *hcpu) |
2197 | { |
2198 | int cpu = (unsigned long)hcpu; |
2199 | struct memcg_stock_pcp *stock; |
2200 | struct mem_cgroup *iter; |
2201 | |
2202 | if (action == CPU_ONLINE) |
2203 | return NOTIFY_OK; |
2204 | |
2205 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
2206 | return NOTIFY_OK; |
2207 | |
2208 | for_each_mem_cgroup(iter) |
2209 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2210 | |
2211 | stock = &per_cpu(memcg_stock, cpu); |
2212 | drain_stock(stock); |
2213 | return NOTIFY_OK; |
2214 | } |
2215 | |
2216 | |
2217 | /* See __mem_cgroup_try_charge() for details */ |
2218 | enum { |
2219 | CHARGE_OK, /* success */ |
2220 | CHARGE_RETRY, /* need to retry but retry is not bad */ |
2221 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ |
2222 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ |
2223 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ |
2224 | }; |
2225 | |
2226 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2227 | unsigned int nr_pages, bool oom_check) |
2228 | { |
2229 | unsigned long csize = nr_pages * PAGE_SIZE; |
2230 | struct mem_cgroup *mem_over_limit; |
2231 | struct res_counter *fail_res; |
2232 | unsigned long flags = 0; |
2233 | int ret; |
2234 | |
2235 | ret = res_counter_charge(&memcg->res, csize, &fail_res); |
2236 | |
2237 | if (likely(!ret)) { |
2238 | if (!do_swap_account) |
2239 | return CHARGE_OK; |
2240 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); |
2241 | if (likely(!ret)) |
2242 | return CHARGE_OK; |
2243 | |
2244 | res_counter_uncharge(&memcg->res, csize); |
2245 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
2246 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; |
2247 | } else |
2248 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); |
2249 | /* |
2250 | * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch |
2251 | * of regular pages (CHARGE_BATCH), or a single regular page (1). |
2252 | * |
2253 | * Never reclaim on behalf of optional batching, retry with a |
2254 | * single page instead. |
2255 | */ |
2256 | if (nr_pages == CHARGE_BATCH) |
2257 | return CHARGE_RETRY; |
2258 | |
2259 | if (!(gfp_mask & __GFP_WAIT)) |
2260 | return CHARGE_WOULDBLOCK; |
2261 | |
2262 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); |
2263 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
2264 | return CHARGE_RETRY; |
2265 | /* |
2266 | * Even though the limit is exceeded at this point, reclaim |
2267 | * may have been able to free some pages. Retry the charge |
2268 | * before killing the task. |
2269 | * |
2270 | * Only for regular pages, though: huge pages are rather |
2271 | * unlikely to succeed so close to the limit, and we fall back |
2272 | * to regular pages anyway in case of failure. |
2273 | */ |
2274 | if (nr_pages == 1 && ret) |
2275 | return CHARGE_RETRY; |
2276 | |
2277 | /* |
2278 | * At task move, charge accounts can be doubly counted. So, it's |
2279 | * better to wait until the end of task_move if something is going on. |
2280 | */ |
2281 | if (mem_cgroup_wait_acct_move(mem_over_limit)) |
2282 | return CHARGE_RETRY; |
2283 | |
2284 | /* If we don't need to call oom-killer at el, return immediately */ |
2285 | if (!oom_check) |
2286 | return CHARGE_NOMEM; |
2287 | /* check OOM */ |
2288 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) |
2289 | return CHARGE_OOM_DIE; |
2290 | |
2291 | return CHARGE_RETRY; |
2292 | } |
2293 | |
2294 | /* |
2295 | * __mem_cgroup_try_charge() does |
2296 | * 1. detect memcg to be charged against from passed *mm and *ptr, |
2297 | * 2. update res_counter |
2298 | * 3. call memory reclaim if necessary. |
2299 | * |
2300 | * In some special case, if the task is fatal, fatal_signal_pending() or |
2301 | * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup |
2302 | * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon |
2303 | * as possible without any hazards. 2: all pages should have a valid |
2304 | * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg |
2305 | * pointer, that is treated as a charge to root_mem_cgroup. |
2306 | * |
2307 | * So __mem_cgroup_try_charge() will return |
2308 | * 0 ... on success, filling *ptr with a valid memcg pointer. |
2309 | * -ENOMEM ... charge failure because of resource limits. |
2310 | * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. |
2311 | * |
2312 | * Unlike the exported interface, an "oom" parameter is added. if oom==true, |
2313 | * the oom-killer can be invoked. |
2314 | */ |
2315 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
2316 | gfp_t gfp_mask, |
2317 | unsigned int nr_pages, |
2318 | struct mem_cgroup **ptr, |
2319 | bool oom) |
2320 | { |
2321 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
2322 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
2323 | struct mem_cgroup *memcg = NULL; |
2324 | int ret; |
2325 | |
2326 | /* |
2327 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage |
2328 | * in system level. So, allow to go ahead dying process in addition to |
2329 | * MEMDIE process. |
2330 | */ |
2331 | if (unlikely(test_thread_flag(TIF_MEMDIE) |
2332 | || fatal_signal_pending(current))) |
2333 | goto bypass; |
2334 | |
2335 | /* |
2336 | * We always charge the cgroup the mm_struct belongs to. |
2337 | * The mm_struct's mem_cgroup changes on task migration if the |
2338 | * thread group leader migrates. It's possible that mm is not |
2339 | * set, if so charge the root memcg (happens for pagecache usage). |
2340 | */ |
2341 | if (!*ptr && !mm) |
2342 | *ptr = root_mem_cgroup; |
2343 | again: |
2344 | if (*ptr) { /* css should be a valid one */ |
2345 | memcg = *ptr; |
2346 | VM_BUG_ON(css_is_removed(&memcg->css)); |
2347 | if (mem_cgroup_is_root(memcg)) |
2348 | goto done; |
2349 | if (nr_pages == 1 && consume_stock(memcg)) |
2350 | goto done; |
2351 | css_get(&memcg->css); |
2352 | } else { |
2353 | struct task_struct *p; |
2354 | |
2355 | rcu_read_lock(); |
2356 | p = rcu_dereference(mm->owner); |
2357 | /* |
2358 | * Because we don't have task_lock(), "p" can exit. |
2359 | * In that case, "memcg" can point to root or p can be NULL with |
2360 | * race with swapoff. Then, we have small risk of mis-accouning. |
2361 | * But such kind of mis-account by race always happens because |
2362 | * we don't have cgroup_mutex(). It's overkill and we allo that |
2363 | * small race, here. |
2364 | * (*) swapoff at el will charge against mm-struct not against |
2365 | * task-struct. So, mm->owner can be NULL. |
2366 | */ |
2367 | memcg = mem_cgroup_from_task(p); |
2368 | if (!memcg) |
2369 | memcg = root_mem_cgroup; |
2370 | if (mem_cgroup_is_root(memcg)) { |
2371 | rcu_read_unlock(); |
2372 | goto done; |
2373 | } |
2374 | if (nr_pages == 1 && consume_stock(memcg)) { |
2375 | /* |
2376 | * It seems dagerous to access memcg without css_get(). |
2377 | * But considering how consume_stok works, it's not |
2378 | * necessary. If consume_stock success, some charges |
2379 | * from this memcg are cached on this cpu. So, we |
2380 | * don't need to call css_get()/css_tryget() before |
2381 | * calling consume_stock(). |
2382 | */ |
2383 | rcu_read_unlock(); |
2384 | goto done; |
2385 | } |
2386 | /* after here, we may be blocked. we need to get refcnt */ |
2387 | if (!css_tryget(&memcg->css)) { |
2388 | rcu_read_unlock(); |
2389 | goto again; |
2390 | } |
2391 | rcu_read_unlock(); |
2392 | } |
2393 | |
2394 | do { |
2395 | bool oom_check; |
2396 | |
2397 | /* If killed, bypass charge */ |
2398 | if (fatal_signal_pending(current)) { |
2399 | css_put(&memcg->css); |
2400 | goto bypass; |
2401 | } |
2402 | |
2403 | oom_check = false; |
2404 | if (oom && !nr_oom_retries) { |
2405 | oom_check = true; |
2406 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
2407 | } |
2408 | |
2409 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); |
2410 | switch (ret) { |
2411 | case CHARGE_OK: |
2412 | break; |
2413 | case CHARGE_RETRY: /* not in OOM situation but retry */ |
2414 | batch = nr_pages; |
2415 | css_put(&memcg->css); |
2416 | memcg = NULL; |
2417 | goto again; |
2418 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
2419 | css_put(&memcg->css); |
2420 | goto nomem; |
2421 | case CHARGE_NOMEM: /* OOM routine works */ |
2422 | if (!oom) { |
2423 | css_put(&memcg->css); |
2424 | goto nomem; |
2425 | } |
2426 | /* If oom, we never return -ENOMEM */ |
2427 | nr_oom_retries--; |
2428 | break; |
2429 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ |
2430 | css_put(&memcg->css); |
2431 | goto bypass; |
2432 | } |
2433 | } while (ret != CHARGE_OK); |
2434 | |
2435 | if (batch > nr_pages) |
2436 | refill_stock(memcg, batch - nr_pages); |
2437 | css_put(&memcg->css); |
2438 | done: |
2439 | *ptr = memcg; |
2440 | return 0; |
2441 | nomem: |
2442 | *ptr = NULL; |
2443 | return -ENOMEM; |
2444 | bypass: |
2445 | *ptr = root_mem_cgroup; |
2446 | return -EINTR; |
2447 | } |
2448 | |
2449 | /* |
2450 | * Somemtimes we have to undo a charge we got by try_charge(). |
2451 | * This function is for that and do uncharge, put css's refcnt. |
2452 | * gotten by try_charge(). |
2453 | */ |
2454 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, |
2455 | unsigned int nr_pages) |
2456 | { |
2457 | if (!mem_cgroup_is_root(memcg)) { |
2458 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2459 | |
2460 | res_counter_uncharge(&memcg->res, bytes); |
2461 | if (do_swap_account) |
2462 | res_counter_uncharge(&memcg->memsw, bytes); |
2463 | } |
2464 | } |
2465 | |
2466 | /* |
2467 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. |
2468 | * This is useful when moving usage to parent cgroup. |
2469 | */ |
2470 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, |
2471 | unsigned int nr_pages) |
2472 | { |
2473 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2474 | |
2475 | if (mem_cgroup_is_root(memcg)) |
2476 | return; |
2477 | |
2478 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); |
2479 | if (do_swap_account) |
2480 | res_counter_uncharge_until(&memcg->memsw, |
2481 | memcg->memsw.parent, bytes); |
2482 | } |
2483 | |
2484 | /* |
2485 | * A helper function to get mem_cgroup from ID. must be called under |
2486 | * rcu_read_lock(). The caller must check css_is_removed() or some if |
2487 | * it's concern. (dropping refcnt from swap can be called against removed |
2488 | * memcg.) |
2489 | */ |
2490 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) |
2491 | { |
2492 | struct cgroup_subsys_state *css; |
2493 | |
2494 | /* ID 0 is unused ID */ |
2495 | if (!id) |
2496 | return NULL; |
2497 | css = css_lookup(&mem_cgroup_subsys, id); |
2498 | if (!css) |
2499 | return NULL; |
2500 | return mem_cgroup_from_css(css); |
2501 | } |
2502 | |
2503 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
2504 | { |
2505 | struct mem_cgroup *memcg = NULL; |
2506 | struct page_cgroup *pc; |
2507 | unsigned short id; |
2508 | swp_entry_t ent; |
2509 | |
2510 | VM_BUG_ON(!PageLocked(page)); |
2511 | |
2512 | pc = lookup_page_cgroup(page); |
2513 | lock_page_cgroup(pc); |
2514 | if (PageCgroupUsed(pc)) { |
2515 | memcg = pc->mem_cgroup; |
2516 | if (memcg && !css_tryget(&memcg->css)) |
2517 | memcg = NULL; |
2518 | } else if (PageSwapCache(page)) { |
2519 | ent.val = page_private(page); |
2520 | id = lookup_swap_cgroup_id(ent); |
2521 | rcu_read_lock(); |
2522 | memcg = mem_cgroup_lookup(id); |
2523 | if (memcg && !css_tryget(&memcg->css)) |
2524 | memcg = NULL; |
2525 | rcu_read_unlock(); |
2526 | } |
2527 | unlock_page_cgroup(pc); |
2528 | return memcg; |
2529 | } |
2530 | |
2531 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, |
2532 | struct page *page, |
2533 | unsigned int nr_pages, |
2534 | enum charge_type ctype, |
2535 | bool lrucare) |
2536 | { |
2537 | struct page_cgroup *pc = lookup_page_cgroup(page); |
2538 | struct zone *uninitialized_var(zone); |
2539 | struct lruvec *lruvec; |
2540 | bool was_on_lru = false; |
2541 | bool anon; |
2542 | |
2543 | lock_page_cgroup(pc); |
2544 | VM_BUG_ON(PageCgroupUsed(pc)); |
2545 | /* |
2546 | * we don't need page_cgroup_lock about tail pages, becase they are not |
2547 | * accessed by any other context at this point. |
2548 | */ |
2549 | |
2550 | /* |
2551 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page |
2552 | * may already be on some other mem_cgroup's LRU. Take care of it. |
2553 | */ |
2554 | if (lrucare) { |
2555 | zone = page_zone(page); |
2556 | spin_lock_irq(&zone->lru_lock); |
2557 | if (PageLRU(page)) { |
2558 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
2559 | ClearPageLRU(page); |
2560 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
2561 | was_on_lru = true; |
2562 | } |
2563 | } |
2564 | |
2565 | pc->mem_cgroup = memcg; |
2566 | /* |
2567 | * We access a page_cgroup asynchronously without lock_page_cgroup(). |
2568 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup |
2569 | * is accessed after testing USED bit. To make pc->mem_cgroup visible |
2570 | * before USED bit, we need memory barrier here. |
2571 | * See mem_cgroup_add_lru_list(), etc. |
2572 | */ |
2573 | smp_wmb(); |
2574 | SetPageCgroupUsed(pc); |
2575 | |
2576 | if (lrucare) { |
2577 | if (was_on_lru) { |
2578 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
2579 | VM_BUG_ON(PageLRU(page)); |
2580 | SetPageLRU(page); |
2581 | add_page_to_lru_list(page, lruvec, page_lru(page)); |
2582 | } |
2583 | spin_unlock_irq(&zone->lru_lock); |
2584 | } |
2585 | |
2586 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) |
2587 | anon = true; |
2588 | else |
2589 | anon = false; |
2590 | |
2591 | mem_cgroup_charge_statistics(memcg, anon, nr_pages); |
2592 | unlock_page_cgroup(pc); |
2593 | |
2594 | /* |
2595 | * "charge_statistics" updated event counter. Then, check it. |
2596 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. |
2597 | * if they exceeds softlimit. |
2598 | */ |
2599 | memcg_check_events(memcg, page); |
2600 | } |
2601 | |
2602 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2603 | |
2604 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) |
2605 | /* |
2606 | * Because tail pages are not marked as "used", set it. We're under |
2607 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
2608 | * charge/uncharge will be never happen and move_account() is done under |
2609 | * compound_lock(), so we don't have to take care of races. |
2610 | */ |
2611 | void mem_cgroup_split_huge_fixup(struct page *head) |
2612 | { |
2613 | struct page_cgroup *head_pc = lookup_page_cgroup(head); |
2614 | struct page_cgroup *pc; |
2615 | int i; |
2616 | |
2617 | if (mem_cgroup_disabled()) |
2618 | return; |
2619 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
2620 | pc = head_pc + i; |
2621 | pc->mem_cgroup = head_pc->mem_cgroup; |
2622 | smp_wmb();/* see __commit_charge() */ |
2623 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
2624 | } |
2625 | } |
2626 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
2627 | |
2628 | /** |
2629 | * mem_cgroup_move_account - move account of the page |
2630 | * @page: the page |
2631 | * @nr_pages: number of regular pages (>1 for huge pages) |
2632 | * @pc: page_cgroup of the page. |
2633 | * @from: mem_cgroup which the page is moved from. |
2634 | * @to: mem_cgroup which the page is moved to. @from != @to. |
2635 | * |
2636 | * The caller must confirm following. |
2637 | * - page is not on LRU (isolate_page() is useful.) |
2638 | * - compound_lock is held when nr_pages > 1 |
2639 | * |
2640 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
2641 | * from old cgroup. |
2642 | */ |
2643 | static int mem_cgroup_move_account(struct page *page, |
2644 | unsigned int nr_pages, |
2645 | struct page_cgroup *pc, |
2646 | struct mem_cgroup *from, |
2647 | struct mem_cgroup *to) |
2648 | { |
2649 | unsigned long flags; |
2650 | int ret; |
2651 | bool anon = PageAnon(page); |
2652 | |
2653 | VM_BUG_ON(from == to); |
2654 | VM_BUG_ON(PageLRU(page)); |
2655 | /* |
2656 | * The page is isolated from LRU. So, collapse function |
2657 | * will not handle this page. But page splitting can happen. |
2658 | * Do this check under compound_page_lock(). The caller should |
2659 | * hold it. |
2660 | */ |
2661 | ret = -EBUSY; |
2662 | if (nr_pages > 1 && !PageTransHuge(page)) |
2663 | goto out; |
2664 | |
2665 | lock_page_cgroup(pc); |
2666 | |
2667 | ret = -EINVAL; |
2668 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) |
2669 | goto unlock; |
2670 | |
2671 | move_lock_mem_cgroup(from, &flags); |
2672 | |
2673 | if (!anon && page_mapped(page)) { |
2674 | /* Update mapped_file data for mem_cgroup */ |
2675 | preempt_disable(); |
2676 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); |
2677 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); |
2678 | preempt_enable(); |
2679 | } |
2680 | mem_cgroup_charge_statistics(from, anon, -nr_pages); |
2681 | |
2682 | /* caller should have done css_get */ |
2683 | pc->mem_cgroup = to; |
2684 | mem_cgroup_charge_statistics(to, anon, nr_pages); |
2685 | /* |
2686 | * We charges against "to" which may not have any tasks. Then, "to" |
2687 | * can be under rmdir(). But in current implementation, caller of |
2688 | * this function is just force_empty() and move charge, so it's |
2689 | * guaranteed that "to" is never removed. So, we don't check rmdir |
2690 | * status here. |
2691 | */ |
2692 | move_unlock_mem_cgroup(from, &flags); |
2693 | ret = 0; |
2694 | unlock: |
2695 | unlock_page_cgroup(pc); |
2696 | /* |
2697 | * check events |
2698 | */ |
2699 | memcg_check_events(to, page); |
2700 | memcg_check_events(from, page); |
2701 | out: |
2702 | return ret; |
2703 | } |
2704 | |
2705 | /* |
2706 | * move charges to its parent. |
2707 | */ |
2708 | |
2709 | static int mem_cgroup_move_parent(struct page *page, |
2710 | struct page_cgroup *pc, |
2711 | struct mem_cgroup *child) |
2712 | { |
2713 | struct mem_cgroup *parent; |
2714 | unsigned int nr_pages; |
2715 | unsigned long uninitialized_var(flags); |
2716 | int ret; |
2717 | |
2718 | /* Is ROOT ? */ |
2719 | if (mem_cgroup_is_root(child)) |
2720 | return -EINVAL; |
2721 | |
2722 | ret = -EBUSY; |
2723 | if (!get_page_unless_zero(page)) |
2724 | goto out; |
2725 | if (isolate_lru_page(page)) |
2726 | goto put; |
2727 | |
2728 | nr_pages = hpage_nr_pages(page); |
2729 | |
2730 | parent = parent_mem_cgroup(child); |
2731 | /* |
2732 | * If no parent, move charges to root cgroup. |
2733 | */ |
2734 | if (!parent) |
2735 | parent = root_mem_cgroup; |
2736 | |
2737 | if (nr_pages > 1) |
2738 | flags = compound_lock_irqsave(page); |
2739 | |
2740 | ret = mem_cgroup_move_account(page, nr_pages, |
2741 | pc, child, parent); |
2742 | if (!ret) |
2743 | __mem_cgroup_cancel_local_charge(child, nr_pages); |
2744 | |
2745 | if (nr_pages > 1) |
2746 | compound_unlock_irqrestore(page, flags); |
2747 | putback_lru_page(page); |
2748 | put: |
2749 | put_page(page); |
2750 | out: |
2751 | return ret; |
2752 | } |
2753 | |
2754 | /* |
2755 | * Charge the memory controller for page usage. |
2756 | * Return |
2757 | * 0 if the charge was successful |
2758 | * < 0 if the cgroup is over its limit |
2759 | */ |
2760 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
2761 | gfp_t gfp_mask, enum charge_type ctype) |
2762 | { |
2763 | struct mem_cgroup *memcg = NULL; |
2764 | unsigned int nr_pages = 1; |
2765 | bool oom = true; |
2766 | int ret; |
2767 | |
2768 | if (PageTransHuge(page)) { |
2769 | nr_pages <<= compound_order(page); |
2770 | VM_BUG_ON(!PageTransHuge(page)); |
2771 | /* |
2772 | * Never OOM-kill a process for a huge page. The |
2773 | * fault handler will fall back to regular pages. |
2774 | */ |
2775 | oom = false; |
2776 | } |
2777 | |
2778 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); |
2779 | if (ret == -ENOMEM) |
2780 | return ret; |
2781 | __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); |
2782 | return 0; |
2783 | } |
2784 | |
2785 | int mem_cgroup_newpage_charge(struct page *page, |
2786 | struct mm_struct *mm, gfp_t gfp_mask) |
2787 | { |
2788 | if (mem_cgroup_disabled()) |
2789 | return 0; |
2790 | VM_BUG_ON(page_mapped(page)); |
2791 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
2792 | VM_BUG_ON(!mm); |
2793 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
2794 | MEM_CGROUP_CHARGE_TYPE_ANON); |
2795 | } |
2796 | |
2797 | /* |
2798 | * While swap-in, try_charge -> commit or cancel, the page is locked. |
2799 | * And when try_charge() successfully returns, one refcnt to memcg without |
2800 | * struct page_cgroup is acquired. This refcnt will be consumed by |
2801 | * "commit()" or removed by "cancel()" |
2802 | */ |
2803 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
2804 | struct page *page, |
2805 | gfp_t mask, |
2806 | struct mem_cgroup **memcgp) |
2807 | { |
2808 | struct mem_cgroup *memcg; |
2809 | struct page_cgroup *pc; |
2810 | int ret; |
2811 | |
2812 | pc = lookup_page_cgroup(page); |
2813 | /* |
2814 | * Every swap fault against a single page tries to charge the |
2815 | * page, bail as early as possible. shmem_unuse() encounters |
2816 | * already charged pages, too. The USED bit is protected by |
2817 | * the page lock, which serializes swap cache removal, which |
2818 | * in turn serializes uncharging. |
2819 | */ |
2820 | if (PageCgroupUsed(pc)) |
2821 | return 0; |
2822 | if (!do_swap_account) |
2823 | goto charge_cur_mm; |
2824 | memcg = try_get_mem_cgroup_from_page(page); |
2825 | if (!memcg) |
2826 | goto charge_cur_mm; |
2827 | *memcgp = memcg; |
2828 | ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); |
2829 | css_put(&memcg->css); |
2830 | if (ret == -EINTR) |
2831 | ret = 0; |
2832 | return ret; |
2833 | charge_cur_mm: |
2834 | ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); |
2835 | if (ret == -EINTR) |
2836 | ret = 0; |
2837 | return ret; |
2838 | } |
2839 | |
2840 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, |
2841 | gfp_t gfp_mask, struct mem_cgroup **memcgp) |
2842 | { |
2843 | *memcgp = NULL; |
2844 | if (mem_cgroup_disabled()) |
2845 | return 0; |
2846 | /* |
2847 | * A racing thread's fault, or swapoff, may have already |
2848 | * updated the pte, and even removed page from swap cache: in |
2849 | * those cases unuse_pte()'s pte_same() test will fail; but |
2850 | * there's also a KSM case which does need to charge the page. |
2851 | */ |
2852 | if (!PageSwapCache(page)) { |
2853 | int ret; |
2854 | |
2855 | ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); |
2856 | if (ret == -EINTR) |
2857 | ret = 0; |
2858 | return ret; |
2859 | } |
2860 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); |
2861 | } |
2862 | |
2863 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) |
2864 | { |
2865 | if (mem_cgroup_disabled()) |
2866 | return; |
2867 | if (!memcg) |
2868 | return; |
2869 | __mem_cgroup_cancel_charge(memcg, 1); |
2870 | } |
2871 | |
2872 | static void |
2873 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, |
2874 | enum charge_type ctype) |
2875 | { |
2876 | if (mem_cgroup_disabled()) |
2877 | return; |
2878 | if (!memcg) |
2879 | return; |
2880 | cgroup_exclude_rmdir(&memcg->css); |
2881 | |
2882 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); |
2883 | /* |
2884 | * Now swap is on-memory. This means this page may be |
2885 | * counted both as mem and swap....double count. |
2886 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
2887 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() |
2888 | * may call delete_from_swap_cache() before reach here. |
2889 | */ |
2890 | if (do_swap_account && PageSwapCache(page)) { |
2891 | swp_entry_t ent = {.val = page_private(page)}; |
2892 | mem_cgroup_uncharge_swap(ent); |
2893 | } |
2894 | /* |
2895 | * At swapin, we may charge account against cgroup which has no tasks. |
2896 | * So, rmdir()->pre_destroy() can be called while we do this charge. |
2897 | * In that case, we need to call pre_destroy() again. check it here. |
2898 | */ |
2899 | cgroup_release_and_wakeup_rmdir(&memcg->css); |
2900 | } |
2901 | |
2902 | void mem_cgroup_commit_charge_swapin(struct page *page, |
2903 | struct mem_cgroup *memcg) |
2904 | { |
2905 | __mem_cgroup_commit_charge_swapin(page, memcg, |
2906 | MEM_CGROUP_CHARGE_TYPE_ANON); |
2907 | } |
2908 | |
2909 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
2910 | gfp_t gfp_mask) |
2911 | { |
2912 | struct mem_cgroup *memcg = NULL; |
2913 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
2914 | int ret; |
2915 | |
2916 | if (mem_cgroup_disabled()) |
2917 | return 0; |
2918 | if (PageCompound(page)) |
2919 | return 0; |
2920 | |
2921 | if (!PageSwapCache(page)) |
2922 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); |
2923 | else { /* page is swapcache/shmem */ |
2924 | ret = __mem_cgroup_try_charge_swapin(mm, page, |
2925 | gfp_mask, &memcg); |
2926 | if (!ret) |
2927 | __mem_cgroup_commit_charge_swapin(page, memcg, type); |
2928 | } |
2929 | return ret; |
2930 | } |
2931 | |
2932 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, |
2933 | unsigned int nr_pages, |
2934 | const enum charge_type ctype) |
2935 | { |
2936 | struct memcg_batch_info *batch = NULL; |
2937 | bool uncharge_memsw = true; |
2938 | |
2939 | /* If swapout, usage of swap doesn't decrease */ |
2940 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) |
2941 | uncharge_memsw = false; |
2942 | |
2943 | batch = ¤t->memcg_batch; |
2944 | /* |
2945 | * In usual, we do css_get() when we remember memcg pointer. |
2946 | * But in this case, we keep res->usage until end of a series of |
2947 | * uncharges. Then, it's ok to ignore memcg's refcnt. |
2948 | */ |
2949 | if (!batch->memcg) |
2950 | batch->memcg = memcg; |
2951 | /* |
2952 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. |
2953 | * In those cases, all pages freed continuously can be expected to be in |
2954 | * the same cgroup and we have chance to coalesce uncharges. |
2955 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) |
2956 | * because we want to do uncharge as soon as possible. |
2957 | */ |
2958 | |
2959 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) |
2960 | goto direct_uncharge; |
2961 | |
2962 | if (nr_pages > 1) |
2963 | goto direct_uncharge; |
2964 | |
2965 | /* |
2966 | * In typical case, batch->memcg == mem. This means we can |
2967 | * merge a series of uncharges to an uncharge of res_counter. |
2968 | * If not, we uncharge res_counter ony by one. |
2969 | */ |
2970 | if (batch->memcg != memcg) |
2971 | goto direct_uncharge; |
2972 | /* remember freed charge and uncharge it later */ |
2973 | batch->nr_pages++; |
2974 | if (uncharge_memsw) |
2975 | batch->memsw_nr_pages++; |
2976 | return; |
2977 | direct_uncharge: |
2978 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); |
2979 | if (uncharge_memsw) |
2980 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); |
2981 | if (unlikely(batch->memcg != memcg)) |
2982 | memcg_oom_recover(memcg); |
2983 | } |
2984 | |
2985 | /* |
2986 | * uncharge if !page_mapped(page) |
2987 | */ |
2988 | static struct mem_cgroup * |
2989 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, |
2990 | bool end_migration) |
2991 | { |
2992 | struct mem_cgroup *memcg = NULL; |
2993 | unsigned int nr_pages = 1; |
2994 | struct page_cgroup *pc; |
2995 | bool anon; |
2996 | |
2997 | if (mem_cgroup_disabled()) |
2998 | return NULL; |
2999 | |
3000 | VM_BUG_ON(PageSwapCache(page)); |
3001 | |
3002 | if (PageTransHuge(page)) { |
3003 | nr_pages <<= compound_order(page); |
3004 | VM_BUG_ON(!PageTransHuge(page)); |
3005 | } |
3006 | /* |
3007 | * Check if our page_cgroup is valid |
3008 | */ |
3009 | pc = lookup_page_cgroup(page); |
3010 | if (unlikely(!PageCgroupUsed(pc))) |
3011 | return NULL; |
3012 | |
3013 | lock_page_cgroup(pc); |
3014 | |
3015 | memcg = pc->mem_cgroup; |
3016 | |
3017 | if (!PageCgroupUsed(pc)) |
3018 | goto unlock_out; |
3019 | |
3020 | anon = PageAnon(page); |
3021 | |
3022 | switch (ctype) { |
3023 | case MEM_CGROUP_CHARGE_TYPE_ANON: |
3024 | /* |
3025 | * Generally PageAnon tells if it's the anon statistics to be |
3026 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is |
3027 | * used before page reached the stage of being marked PageAnon. |
3028 | */ |
3029 | anon = true; |
3030 | /* fallthrough */ |
3031 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
3032 | /* See mem_cgroup_prepare_migration() */ |
3033 | if (page_mapped(page)) |
3034 | goto unlock_out; |
3035 | /* |
3036 | * Pages under migration may not be uncharged. But |
3037 | * end_migration() /must/ be the one uncharging the |
3038 | * unused post-migration page and so it has to call |
3039 | * here with the migration bit still set. See the |
3040 | * res_counter handling below. |
3041 | */ |
3042 | if (!end_migration && PageCgroupMigration(pc)) |
3043 | goto unlock_out; |
3044 | break; |
3045 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: |
3046 | if (!PageAnon(page)) { /* Shared memory */ |
3047 | if (page->mapping && !page_is_file_cache(page)) |
3048 | goto unlock_out; |
3049 | } else if (page_mapped(page)) /* Anon */ |
3050 | goto unlock_out; |
3051 | break; |
3052 | default: |
3053 | break; |
3054 | } |
3055 | |
3056 | mem_cgroup_charge_statistics(memcg, anon, -nr_pages); |
3057 | |
3058 | ClearPageCgroupUsed(pc); |
3059 | /* |
3060 | * pc->mem_cgroup is not cleared here. It will be accessed when it's |
3061 | * freed from LRU. This is safe because uncharged page is expected not |
3062 | * to be reused (freed soon). Exception is SwapCache, it's handled by |
3063 | * special functions. |
3064 | */ |
3065 | |
3066 | unlock_page_cgroup(pc); |
3067 | /* |
3068 | * even after unlock, we have memcg->res.usage here and this memcg |
3069 | * will never be freed. |
3070 | */ |
3071 | memcg_check_events(memcg, page); |
3072 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
3073 | mem_cgroup_swap_statistics(memcg, true); |
3074 | mem_cgroup_get(memcg); |
3075 | } |
3076 | /* |
3077 | * Migration does not charge the res_counter for the |
3078 | * replacement page, so leave it alone when phasing out the |
3079 | * page that is unused after the migration. |
3080 | */ |
3081 | if (!end_migration && !mem_cgroup_is_root(memcg)) |
3082 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); |
3083 | |
3084 | return memcg; |
3085 | |
3086 | unlock_out: |
3087 | unlock_page_cgroup(pc); |
3088 | return NULL; |
3089 | } |
3090 | |
3091 | void mem_cgroup_uncharge_page(struct page *page) |
3092 | { |
3093 | /* early check. */ |
3094 | if (page_mapped(page)) |
3095 | return; |
3096 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
3097 | if (PageSwapCache(page)) |
3098 | return; |
3099 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); |
3100 | } |
3101 | |
3102 | void mem_cgroup_uncharge_cache_page(struct page *page) |
3103 | { |
3104 | VM_BUG_ON(page_mapped(page)); |
3105 | VM_BUG_ON(page->mapping); |
3106 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); |
3107 | } |
3108 | |
3109 | /* |
3110 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. |
3111 | * In that cases, pages are freed continuously and we can expect pages |
3112 | * are in the same memcg. All these calls itself limits the number of |
3113 | * pages freed at once, then uncharge_start/end() is called properly. |
3114 | * This may be called prural(2) times in a context, |
3115 | */ |
3116 | |
3117 | void mem_cgroup_uncharge_start(void) |
3118 | { |
3119 | current->memcg_batch.do_batch++; |
3120 | /* We can do nest. */ |
3121 | if (current->memcg_batch.do_batch == 1) { |
3122 | current->memcg_batch.memcg = NULL; |
3123 | current->memcg_batch.nr_pages = 0; |
3124 | current->memcg_batch.memsw_nr_pages = 0; |
3125 | } |
3126 | } |
3127 | |
3128 | void mem_cgroup_uncharge_end(void) |
3129 | { |
3130 | struct memcg_batch_info *batch = ¤t->memcg_batch; |
3131 | |
3132 | if (!batch->do_batch) |
3133 | return; |
3134 | |
3135 | batch->do_batch--; |
3136 | if (batch->do_batch) /* If stacked, do nothing. */ |
3137 | return; |
3138 | |
3139 | if (!batch->memcg) |
3140 | return; |
3141 | /* |
3142 | * This "batch->memcg" is valid without any css_get/put etc... |
3143 | * bacause we hide charges behind us. |
3144 | */ |
3145 | if (batch->nr_pages) |
3146 | res_counter_uncharge(&batch->memcg->res, |
3147 | batch->nr_pages * PAGE_SIZE); |
3148 | if (batch->memsw_nr_pages) |
3149 | res_counter_uncharge(&batch->memcg->memsw, |
3150 | batch->memsw_nr_pages * PAGE_SIZE); |
3151 | memcg_oom_recover(batch->memcg); |
3152 | /* forget this pointer (for sanity check) */ |
3153 | batch->memcg = NULL; |
3154 | } |
3155 | |
3156 | #ifdef CONFIG_SWAP |
3157 | /* |
3158 | * called after __delete_from_swap_cache() and drop "page" account. |
3159 | * memcg information is recorded to swap_cgroup of "ent" |
3160 | */ |
3161 | void |
3162 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) |
3163 | { |
3164 | struct mem_cgroup *memcg; |
3165 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
3166 | |
3167 | if (!swapout) /* this was a swap cache but the swap is unused ! */ |
3168 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; |
3169 | |
3170 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); |
3171 | |
3172 | /* |
3173 | * record memcg information, if swapout && memcg != NULL, |
3174 | * mem_cgroup_get() was called in uncharge(). |
3175 | */ |
3176 | if (do_swap_account && swapout && memcg) |
3177 | swap_cgroup_record(ent, css_id(&memcg->css)); |
3178 | } |
3179 | #endif |
3180 | |
3181 | #ifdef CONFIG_MEMCG_SWAP |
3182 | /* |
3183 | * called from swap_entry_free(). remove record in swap_cgroup and |
3184 | * uncharge "memsw" account. |
3185 | */ |
3186 | void mem_cgroup_uncharge_swap(swp_entry_t ent) |
3187 | { |
3188 | struct mem_cgroup *memcg; |
3189 | unsigned short id; |
3190 | |
3191 | if (!do_swap_account) |
3192 | return; |
3193 | |
3194 | id = swap_cgroup_record(ent, 0); |
3195 | rcu_read_lock(); |
3196 | memcg = mem_cgroup_lookup(id); |
3197 | if (memcg) { |
3198 | /* |
3199 | * We uncharge this because swap is freed. |
3200 | * This memcg can be obsolete one. We avoid calling css_tryget |
3201 | */ |
3202 | if (!mem_cgroup_is_root(memcg)) |
3203 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
3204 | mem_cgroup_swap_statistics(memcg, false); |
3205 | mem_cgroup_put(memcg); |
3206 | } |
3207 | rcu_read_unlock(); |
3208 | } |
3209 | |
3210 | /** |
3211 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. |
3212 | * @entry: swap entry to be moved |
3213 | * @from: mem_cgroup which the entry is moved from |
3214 | * @to: mem_cgroup which the entry is moved to |
3215 | * |
3216 | * It succeeds only when the swap_cgroup's record for this entry is the same |
3217 | * as the mem_cgroup's id of @from. |
3218 | * |
3219 | * Returns 0 on success, -EINVAL on failure. |
3220 | * |
3221 | * The caller must have charged to @to, IOW, called res_counter_charge() about |
3222 | * both res and memsw, and called css_get(). |
3223 | */ |
3224 | static int mem_cgroup_move_swap_account(swp_entry_t entry, |
3225 | struct mem_cgroup *from, struct mem_cgroup *to) |
3226 | { |
3227 | unsigned short old_id, new_id; |
3228 | |
3229 | old_id = css_id(&from->css); |
3230 | new_id = css_id(&to->css); |
3231 | |
3232 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { |
3233 | mem_cgroup_swap_statistics(from, false); |
3234 | mem_cgroup_swap_statistics(to, true); |
3235 | /* |
3236 | * This function is only called from task migration context now. |
3237 | * It postpones res_counter and refcount handling till the end |
3238 | * of task migration(mem_cgroup_clear_mc()) for performance |
3239 | * improvement. But we cannot postpone mem_cgroup_get(to) |
3240 | * because if the process that has been moved to @to does |
3241 | * swap-in, the refcount of @to might be decreased to 0. |
3242 | */ |
3243 | mem_cgroup_get(to); |
3244 | return 0; |
3245 | } |
3246 | return -EINVAL; |
3247 | } |
3248 | #else |
3249 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, |
3250 | struct mem_cgroup *from, struct mem_cgroup *to) |
3251 | { |
3252 | return -EINVAL; |
3253 | } |
3254 | #endif |
3255 | |
3256 | /* |
3257 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
3258 | * page belongs to. |
3259 | */ |
3260 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, |
3261 | struct mem_cgroup **memcgp) |
3262 | { |
3263 | struct mem_cgroup *memcg = NULL; |
3264 | struct page_cgroup *pc; |
3265 | enum charge_type ctype; |
3266 | |
3267 | *memcgp = NULL; |
3268 | |
3269 | VM_BUG_ON(PageTransHuge(page)); |
3270 | if (mem_cgroup_disabled()) |
3271 | return; |
3272 | |
3273 | pc = lookup_page_cgroup(page); |
3274 | lock_page_cgroup(pc); |
3275 | if (PageCgroupUsed(pc)) { |
3276 | memcg = pc->mem_cgroup; |
3277 | css_get(&memcg->css); |
3278 | /* |
3279 | * At migrating an anonymous page, its mapcount goes down |
3280 | * to 0 and uncharge() will be called. But, even if it's fully |
3281 | * unmapped, migration may fail and this page has to be |
3282 | * charged again. We set MIGRATION flag here and delay uncharge |
3283 | * until end_migration() is called |
3284 | * |
3285 | * Corner Case Thinking |
3286 | * A) |
3287 | * When the old page was mapped as Anon and it's unmap-and-freed |
3288 | * while migration was ongoing. |
3289 | * If unmap finds the old page, uncharge() of it will be delayed |
3290 | * until end_migration(). If unmap finds a new page, it's |
3291 | * uncharged when it make mapcount to be 1->0. If unmap code |
3292 | * finds swap_migration_entry, the new page will not be mapped |
3293 | * and end_migration() will find it(mapcount==0). |
3294 | * |
3295 | * B) |
3296 | * When the old page was mapped but migraion fails, the kernel |
3297 | * remaps it. A charge for it is kept by MIGRATION flag even |
3298 | * if mapcount goes down to 0. We can do remap successfully |
3299 | * without charging it again. |
3300 | * |
3301 | * C) |
3302 | * The "old" page is under lock_page() until the end of |
3303 | * migration, so, the old page itself will not be swapped-out. |
3304 | * If the new page is swapped out before end_migraton, our |
3305 | * hook to usual swap-out path will catch the event. |
3306 | */ |
3307 | if (PageAnon(page)) |
3308 | SetPageCgroupMigration(pc); |
3309 | } |
3310 | unlock_page_cgroup(pc); |
3311 | /* |
3312 | * If the page is not charged at this point, |
3313 | * we return here. |
3314 | */ |
3315 | if (!memcg) |
3316 | return; |
3317 | |
3318 | *memcgp = memcg; |
3319 | /* |
3320 | * We charge new page before it's used/mapped. So, even if unlock_page() |
3321 | * is called before end_migration, we can catch all events on this new |
3322 | * page. In the case new page is migrated but not remapped, new page's |
3323 | * mapcount will be finally 0 and we call uncharge in end_migration(). |
3324 | */ |
3325 | if (PageAnon(page)) |
3326 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; |
3327 | else |
3328 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
3329 | /* |
3330 | * The page is committed to the memcg, but it's not actually |
3331 | * charged to the res_counter since we plan on replacing the |
3332 | * old one and only one page is going to be left afterwards. |
3333 | */ |
3334 | __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); |
3335 | } |
3336 | |
3337 | /* remove redundant charge if migration failed*/ |
3338 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, |
3339 | struct page *oldpage, struct page *newpage, bool migration_ok) |
3340 | { |
3341 | struct page *used, *unused; |
3342 | struct page_cgroup *pc; |
3343 | bool anon; |
3344 | |
3345 | if (!memcg) |
3346 | return; |
3347 | /* blocks rmdir() */ |
3348 | cgroup_exclude_rmdir(&memcg->css); |
3349 | if (!migration_ok) { |
3350 | used = oldpage; |
3351 | unused = newpage; |
3352 | } else { |
3353 | used = newpage; |
3354 | unused = oldpage; |
3355 | } |
3356 | anon = PageAnon(used); |
3357 | __mem_cgroup_uncharge_common(unused, |
3358 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON |
3359 | : MEM_CGROUP_CHARGE_TYPE_CACHE, |
3360 | true); |
3361 | css_put(&memcg->css); |
3362 | /* |
3363 | * We disallowed uncharge of pages under migration because mapcount |
3364 | * of the page goes down to zero, temporarly. |
3365 | * Clear the flag and check the page should be charged. |
3366 | */ |
3367 | pc = lookup_page_cgroup(oldpage); |
3368 | lock_page_cgroup(pc); |
3369 | ClearPageCgroupMigration(pc); |
3370 | unlock_page_cgroup(pc); |
3371 | |
3372 | /* |
3373 | * If a page is a file cache, radix-tree replacement is very atomic |
3374 | * and we can skip this check. When it was an Anon page, its mapcount |
3375 | * goes down to 0. But because we added MIGRATION flage, it's not |
3376 | * uncharged yet. There are several case but page->mapcount check |
3377 | * and USED bit check in mem_cgroup_uncharge_page() will do enough |
3378 | * check. (see prepare_charge() also) |
3379 | */ |
3380 | if (anon) |
3381 | mem_cgroup_uncharge_page(used); |
3382 | /* |
3383 | * At migration, we may charge account against cgroup which has no |
3384 | * tasks. |
3385 | * So, rmdir()->pre_destroy() can be called while we do this charge. |
3386 | * In that case, we need to call pre_destroy() again. check it here. |
3387 | */ |
3388 | cgroup_release_and_wakeup_rmdir(&memcg->css); |
3389 | } |
3390 | |
3391 | /* |
3392 | * At replace page cache, newpage is not under any memcg but it's on |
3393 | * LRU. So, this function doesn't touch res_counter but handles LRU |
3394 | * in correct way. Both pages are locked so we cannot race with uncharge. |
3395 | */ |
3396 | void mem_cgroup_replace_page_cache(struct page *oldpage, |
3397 | struct page *newpage) |
3398 | { |
3399 | struct mem_cgroup *memcg = NULL; |
3400 | struct page_cgroup *pc; |
3401 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
3402 | |
3403 | if (mem_cgroup_disabled()) |
3404 | return; |
3405 | |
3406 | pc = lookup_page_cgroup(oldpage); |
3407 | /* fix accounting on old pages */ |
3408 | lock_page_cgroup(pc); |
3409 | if (PageCgroupUsed(pc)) { |
3410 | memcg = pc->mem_cgroup; |
3411 | mem_cgroup_charge_statistics(memcg, false, -1); |
3412 | ClearPageCgroupUsed(pc); |
3413 | } |
3414 | unlock_page_cgroup(pc); |
3415 | |
3416 | /* |
3417 | * When called from shmem_replace_page(), in some cases the |
3418 | * oldpage has already been charged, and in some cases not. |
3419 | */ |
3420 | if (!memcg) |
3421 | return; |
3422 | /* |
3423 | * Even if newpage->mapping was NULL before starting replacement, |
3424 | * the newpage may be on LRU(or pagevec for LRU) already. We lock |
3425 | * LRU while we overwrite pc->mem_cgroup. |
3426 | */ |
3427 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); |
3428 | } |
3429 | |
3430 | #ifdef CONFIG_DEBUG_VM |
3431 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) |
3432 | { |
3433 | struct page_cgroup *pc; |
3434 | |
3435 | pc = lookup_page_cgroup(page); |
3436 | /* |
3437 | * Can be NULL while feeding pages into the page allocator for |
3438 | * the first time, i.e. during boot or memory hotplug; |
3439 | * or when mem_cgroup_disabled(). |
3440 | */ |
3441 | if (likely(pc) && PageCgroupUsed(pc)) |
3442 | return pc; |
3443 | return NULL; |
3444 | } |
3445 | |
3446 | bool mem_cgroup_bad_page_check(struct page *page) |
3447 | { |
3448 | if (mem_cgroup_disabled()) |
3449 | return false; |
3450 | |
3451 | return lookup_page_cgroup_used(page) != NULL; |
3452 | } |
3453 | |
3454 | void mem_cgroup_print_bad_page(struct page *page) |
3455 | { |
3456 | struct page_cgroup *pc; |
3457 | |
3458 | pc = lookup_page_cgroup_used(page); |
3459 | if (pc) { |
3460 | printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", |
3461 | pc, pc->flags, pc->mem_cgroup); |
3462 | } |
3463 | } |
3464 | #endif |
3465 | |
3466 | static DEFINE_MUTEX(set_limit_mutex); |
3467 | |
3468 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
3469 | unsigned long long val) |
3470 | { |
3471 | int retry_count; |
3472 | u64 memswlimit, memlimit; |
3473 | int ret = 0; |
3474 | int children = mem_cgroup_count_children(memcg); |
3475 | u64 curusage, oldusage; |
3476 | int enlarge; |
3477 | |
3478 | /* |
3479 | * For keeping hierarchical_reclaim simple, how long we should retry |
3480 | * is depends on callers. We set our retry-count to be function |
3481 | * of # of children which we should visit in this loop. |
3482 | */ |
3483 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; |
3484 | |
3485 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
3486 | |
3487 | enlarge = 0; |
3488 | while (retry_count) { |
3489 | if (signal_pending(current)) { |
3490 | ret = -EINTR; |
3491 | break; |
3492 | } |
3493 | /* |
3494 | * Rather than hide all in some function, I do this in |
3495 | * open coded manner. You see what this really does. |
3496 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
3497 | */ |
3498 | mutex_lock(&set_limit_mutex); |
3499 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3500 | if (memswlimit < val) { |
3501 | ret = -EINVAL; |
3502 | mutex_unlock(&set_limit_mutex); |
3503 | break; |
3504 | } |
3505 | |
3506 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
3507 | if (memlimit < val) |
3508 | enlarge = 1; |
3509 | |
3510 | ret = res_counter_set_limit(&memcg->res, val); |
3511 | if (!ret) { |
3512 | if (memswlimit == val) |
3513 | memcg->memsw_is_minimum = true; |
3514 | else |
3515 | memcg->memsw_is_minimum = false; |
3516 | } |
3517 | mutex_unlock(&set_limit_mutex); |
3518 | |
3519 | if (!ret) |
3520 | break; |
3521 | |
3522 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
3523 | MEM_CGROUP_RECLAIM_SHRINK); |
3524 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
3525 | /* Usage is reduced ? */ |
3526 | if (curusage >= oldusage) |
3527 | retry_count--; |
3528 | else |
3529 | oldusage = curusage; |
3530 | } |
3531 | if (!ret && enlarge) |
3532 | memcg_oom_recover(memcg); |
3533 | |
3534 | return ret; |
3535 | } |
3536 | |
3537 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
3538 | unsigned long long val) |
3539 | { |
3540 | int retry_count; |
3541 | u64 memlimit, memswlimit, oldusage, curusage; |
3542 | int children = mem_cgroup_count_children(memcg); |
3543 | int ret = -EBUSY; |
3544 | int enlarge = 0; |
3545 | |
3546 | /* see mem_cgroup_resize_res_limit */ |
3547 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; |
3548 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
3549 | while (retry_count) { |
3550 | if (signal_pending(current)) { |
3551 | ret = -EINTR; |
3552 | break; |
3553 | } |
3554 | /* |
3555 | * Rather than hide all in some function, I do this in |
3556 | * open coded manner. You see what this really does. |
3557 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
3558 | */ |
3559 | mutex_lock(&set_limit_mutex); |
3560 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
3561 | if (memlimit > val) { |
3562 | ret = -EINVAL; |
3563 | mutex_unlock(&set_limit_mutex); |
3564 | break; |
3565 | } |
3566 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3567 | if (memswlimit < val) |
3568 | enlarge = 1; |
3569 | ret = res_counter_set_limit(&memcg->memsw, val); |
3570 | if (!ret) { |
3571 | if (memlimit == val) |
3572 | memcg->memsw_is_minimum = true; |
3573 | else |
3574 | memcg->memsw_is_minimum = false; |
3575 | } |
3576 | mutex_unlock(&set_limit_mutex); |
3577 | |
3578 | if (!ret) |
3579 | break; |
3580 | |
3581 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
3582 | MEM_CGROUP_RECLAIM_NOSWAP | |
3583 | MEM_CGROUP_RECLAIM_SHRINK); |
3584 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
3585 | /* Usage is reduced ? */ |
3586 | if (curusage >= oldusage) |
3587 | retry_count--; |
3588 | else |
3589 | oldusage = curusage; |
3590 | } |
3591 | if (!ret && enlarge) |
3592 | memcg_oom_recover(memcg); |
3593 | return ret; |
3594 | } |
3595 | |
3596 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
3597 | gfp_t gfp_mask, |
3598 | unsigned long *total_scanned) |
3599 | { |
3600 | unsigned long nr_reclaimed = 0; |
3601 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; |
3602 | unsigned long reclaimed; |
3603 | int loop = 0; |
3604 | struct mem_cgroup_tree_per_zone *mctz; |
3605 | unsigned long long excess; |
3606 | unsigned long nr_scanned; |
3607 | |
3608 | if (order > 0) |
3609 | return 0; |
3610 | |
3611 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
3612 | /* |
3613 | * This loop can run a while, specially if mem_cgroup's continuously |
3614 | * keep exceeding their soft limit and putting the system under |
3615 | * pressure |
3616 | */ |
3617 | do { |
3618 | if (next_mz) |
3619 | mz = next_mz; |
3620 | else |
3621 | mz = mem_cgroup_largest_soft_limit_node(mctz); |
3622 | if (!mz) |
3623 | break; |
3624 | |
3625 | nr_scanned = 0; |
3626 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, |
3627 | gfp_mask, &nr_scanned); |
3628 | nr_reclaimed += reclaimed; |
3629 | *total_scanned += nr_scanned; |
3630 | spin_lock(&mctz->lock); |
3631 | |
3632 | /* |
3633 | * If we failed to reclaim anything from this memory cgroup |
3634 | * it is time to move on to the next cgroup |
3635 | */ |
3636 | next_mz = NULL; |
3637 | if (!reclaimed) { |
3638 | do { |
3639 | /* |
3640 | * Loop until we find yet another one. |
3641 | * |
3642 | * By the time we get the soft_limit lock |
3643 | * again, someone might have aded the |
3644 | * group back on the RB tree. Iterate to |
3645 | * make sure we get a different mem. |
3646 | * mem_cgroup_largest_soft_limit_node returns |
3647 | * NULL if no other cgroup is present on |
3648 | * the tree |
3649 | */ |
3650 | next_mz = |
3651 | __mem_cgroup_largest_soft_limit_node(mctz); |
3652 | if (next_mz == mz) |
3653 | css_put(&next_mz->memcg->css); |
3654 | else /* next_mz == NULL or other memcg */ |
3655 | break; |
3656 | } while (1); |
3657 | } |
3658 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
3659 | excess = res_counter_soft_limit_excess(&mz->memcg->res); |
3660 | /* |
3661 | * One school of thought says that we should not add |
3662 | * back the node to the tree if reclaim returns 0. |
3663 | * But our reclaim could return 0, simply because due |
3664 | * to priority we are exposing a smaller subset of |
3665 | * memory to reclaim from. Consider this as a longer |
3666 | * term TODO. |
3667 | */ |
3668 | /* If excess == 0, no tree ops */ |
3669 | __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); |
3670 | spin_unlock(&mctz->lock); |
3671 | css_put(&mz->memcg->css); |
3672 | loop++; |
3673 | /* |
3674 | * Could not reclaim anything and there are no more |
3675 | * mem cgroups to try or we seem to be looping without |
3676 | * reclaiming anything. |
3677 | */ |
3678 | if (!nr_reclaimed && |
3679 | (next_mz == NULL || |
3680 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) |
3681 | break; |
3682 | } while (!nr_reclaimed); |
3683 | if (next_mz) |
3684 | css_put(&next_mz->memcg->css); |
3685 | return nr_reclaimed; |
3686 | } |
3687 | |
3688 | /* |
3689 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't |
3690 | * reclaim the pages page themselves - it just removes the page_cgroups. |
3691 | * Returns true if some page_cgroups were not freed, indicating that the caller |
3692 | * must retry this operation. |
3693 | */ |
3694 | static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, |
3695 | int node, int zid, enum lru_list lru) |
3696 | { |
3697 | struct mem_cgroup_per_zone *mz; |
3698 | unsigned long flags, loop; |
3699 | struct list_head *list; |
3700 | struct page *busy; |
3701 | struct zone *zone; |
3702 | |
3703 | zone = &NODE_DATA(node)->node_zones[zid]; |
3704 | mz = mem_cgroup_zoneinfo(memcg, node, zid); |
3705 | list = &mz->lruvec.lists[lru]; |
3706 | |
3707 | loop = mz->lru_size[lru]; |
3708 | /* give some margin against EBUSY etc...*/ |
3709 | loop += 256; |
3710 | busy = NULL; |
3711 | while (loop--) { |
3712 | struct page_cgroup *pc; |
3713 | struct page *page; |
3714 | |
3715 | spin_lock_irqsave(&zone->lru_lock, flags); |
3716 | if (list_empty(list)) { |
3717 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3718 | break; |
3719 | } |
3720 | page = list_entry(list->prev, struct page, lru); |
3721 | if (busy == page) { |
3722 | list_move(&page->lru, list); |
3723 | busy = NULL; |
3724 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3725 | continue; |
3726 | } |
3727 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
3728 | |
3729 | pc = lookup_page_cgroup(page); |
3730 | |
3731 | if (mem_cgroup_move_parent(page, pc, memcg)) { |
3732 | /* found lock contention or "pc" is obsolete. */ |
3733 | busy = page; |
3734 | cond_resched(); |
3735 | } else |
3736 | busy = NULL; |
3737 | } |
3738 | return !list_empty(list); |
3739 | } |
3740 | |
3741 | /* |
3742 | * make mem_cgroup's charge to be 0 if there is no task. |
3743 | * This enables deleting this mem_cgroup. |
3744 | */ |
3745 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) |
3746 | { |
3747 | int ret; |
3748 | int node, zid, shrink; |
3749 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
3750 | struct cgroup *cgrp = memcg->css.cgroup; |
3751 | |
3752 | css_get(&memcg->css); |
3753 | |
3754 | shrink = 0; |
3755 | /* should free all ? */ |
3756 | if (free_all) |
3757 | goto try_to_free; |
3758 | move_account: |
3759 | do { |
3760 | ret = -EBUSY; |
3761 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
3762 | goto out; |
3763 | /* This is for making all *used* pages to be on LRU. */ |
3764 | lru_add_drain_all(); |
3765 | drain_all_stock_sync(memcg); |
3766 | ret = 0; |
3767 | mem_cgroup_start_move(memcg); |
3768 | for_each_node_state(node, N_HIGH_MEMORY) { |
3769 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
3770 | enum lru_list lru; |
3771 | for_each_lru(lru) { |
3772 | ret = mem_cgroup_force_empty_list(memcg, |
3773 | node, zid, lru); |
3774 | if (ret) |
3775 | break; |
3776 | } |
3777 | } |
3778 | if (ret) |
3779 | break; |
3780 | } |
3781 | mem_cgroup_end_move(memcg); |
3782 | memcg_oom_recover(memcg); |
3783 | cond_resched(); |
3784 | /* "ret" should also be checked to ensure all lists are empty. */ |
3785 | } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); |
3786 | out: |
3787 | css_put(&memcg->css); |
3788 | return ret; |
3789 | |
3790 | try_to_free: |
3791 | /* returns EBUSY if there is a task or if we come here twice. */ |
3792 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { |
3793 | ret = -EBUSY; |
3794 | goto out; |
3795 | } |
3796 | /* we call try-to-free pages for make this cgroup empty */ |
3797 | lru_add_drain_all(); |
3798 | /* try to free all pages in this cgroup */ |
3799 | shrink = 1; |
3800 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { |
3801 | int progress; |
3802 | |
3803 | if (signal_pending(current)) { |
3804 | ret = -EINTR; |
3805 | goto out; |
3806 | } |
3807 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, |
3808 | false); |
3809 | if (!progress) { |
3810 | nr_retries--; |
3811 | /* maybe some writeback is necessary */ |
3812 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
3813 | } |
3814 | |
3815 | } |
3816 | lru_add_drain(); |
3817 | /* try move_account...there may be some *locked* pages. */ |
3818 | goto move_account; |
3819 | } |
3820 | |
3821 | static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
3822 | { |
3823 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); |
3824 | } |
3825 | |
3826 | |
3827 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
3828 | { |
3829 | return mem_cgroup_from_cont(cont)->use_hierarchy; |
3830 | } |
3831 | |
3832 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, |
3833 | u64 val) |
3834 | { |
3835 | int retval = 0; |
3836 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
3837 | struct cgroup *parent = cont->parent; |
3838 | struct mem_cgroup *parent_memcg = NULL; |
3839 | |
3840 | if (parent) |
3841 | parent_memcg = mem_cgroup_from_cont(parent); |
3842 | |
3843 | cgroup_lock(); |
3844 | |
3845 | if (memcg->use_hierarchy == val) |
3846 | goto out; |
3847 | |
3848 | /* |
3849 | * If parent's use_hierarchy is set, we can't make any modifications |
3850 | * in the child subtrees. If it is unset, then the change can |
3851 | * occur, provided the current cgroup has no children. |
3852 | * |
3853 | * For the root cgroup, parent_mem is NULL, we allow value to be |
3854 | * set if there are no children. |
3855 | */ |
3856 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
3857 | (val == 1 || val == 0)) { |
3858 | if (list_empty(&cont->children)) |
3859 | memcg->use_hierarchy = val; |
3860 | else |
3861 | retval = -EBUSY; |
3862 | } else |
3863 | retval = -EINVAL; |
3864 | |
3865 | out: |
3866 | cgroup_unlock(); |
3867 | |
3868 | return retval; |
3869 | } |
3870 | |
3871 | |
3872 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, |
3873 | enum mem_cgroup_stat_index idx) |
3874 | { |
3875 | struct mem_cgroup *iter; |
3876 | long val = 0; |
3877 | |
3878 | /* Per-cpu values can be negative, use a signed accumulator */ |
3879 | for_each_mem_cgroup_tree(iter, memcg) |
3880 | val += mem_cgroup_read_stat(iter, idx); |
3881 | |
3882 | if (val < 0) /* race ? */ |
3883 | val = 0; |
3884 | return val; |
3885 | } |
3886 | |
3887 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
3888 | { |
3889 | u64 val; |
3890 | |
3891 | if (!mem_cgroup_is_root(memcg)) { |
3892 | if (!swap) |
3893 | return res_counter_read_u64(&memcg->res, RES_USAGE); |
3894 | else |
3895 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); |
3896 | } |
3897 | |
3898 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); |
3899 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); |
3900 | |
3901 | if (swap) |
3902 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); |
3903 | |
3904 | return val << PAGE_SHIFT; |
3905 | } |
3906 | |
3907 | static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, |
3908 | struct file *file, char __user *buf, |
3909 | size_t nbytes, loff_t *ppos) |
3910 | { |
3911 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
3912 | char str[64]; |
3913 | u64 val; |
3914 | int type, name, len; |
3915 | |
3916 | type = MEMFILE_TYPE(cft->private); |
3917 | name = MEMFILE_ATTR(cft->private); |
3918 | |
3919 | if (!do_swap_account && type == _MEMSWAP) |
3920 | return -EOPNOTSUPP; |
3921 | |
3922 | switch (type) { |
3923 | case _MEM: |
3924 | if (name == RES_USAGE) |
3925 | val = mem_cgroup_usage(memcg, false); |
3926 | else |
3927 | val = res_counter_read_u64(&memcg->res, name); |
3928 | break; |
3929 | case _MEMSWAP: |
3930 | if (name == RES_USAGE) |
3931 | val = mem_cgroup_usage(memcg, true); |
3932 | else |
3933 | val = res_counter_read_u64(&memcg->memsw, name); |
3934 | break; |
3935 | default: |
3936 | BUG(); |
3937 | } |
3938 | |
3939 | len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); |
3940 | return simple_read_from_buffer(buf, nbytes, ppos, str, len); |
3941 | } |
3942 | /* |
3943 | * The user of this function is... |
3944 | * RES_LIMIT. |
3945 | */ |
3946 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
3947 | const char *buffer) |
3948 | { |
3949 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
3950 | int type, name; |
3951 | unsigned long long val; |
3952 | int ret; |
3953 | |
3954 | type = MEMFILE_TYPE(cft->private); |
3955 | name = MEMFILE_ATTR(cft->private); |
3956 | |
3957 | if (!do_swap_account && type == _MEMSWAP) |
3958 | return -EOPNOTSUPP; |
3959 | |
3960 | switch (name) { |
3961 | case RES_LIMIT: |
3962 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
3963 | ret = -EINVAL; |
3964 | break; |
3965 | } |
3966 | /* This function does all necessary parse...reuse it */ |
3967 | ret = res_counter_memparse_write_strategy(buffer, &val); |
3968 | if (ret) |
3969 | break; |
3970 | if (type == _MEM) |
3971 | ret = mem_cgroup_resize_limit(memcg, val); |
3972 | else |
3973 | ret = mem_cgroup_resize_memsw_limit(memcg, val); |
3974 | break; |
3975 | case RES_SOFT_LIMIT: |
3976 | ret = res_counter_memparse_write_strategy(buffer, &val); |
3977 | if (ret) |
3978 | break; |
3979 | /* |
3980 | * For memsw, soft limits are hard to implement in terms |
3981 | * of semantics, for now, we support soft limits for |
3982 | * control without swap |
3983 | */ |
3984 | if (type == _MEM) |
3985 | ret = res_counter_set_soft_limit(&memcg->res, val); |
3986 | else |
3987 | ret = -EINVAL; |
3988 | break; |
3989 | default: |
3990 | ret = -EINVAL; /* should be BUG() ? */ |
3991 | break; |
3992 | } |
3993 | return ret; |
3994 | } |
3995 | |
3996 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
3997 | unsigned long long *mem_limit, unsigned long long *memsw_limit) |
3998 | { |
3999 | struct cgroup *cgroup; |
4000 | unsigned long long min_limit, min_memsw_limit, tmp; |
4001 | |
4002 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
4003 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4004 | cgroup = memcg->css.cgroup; |
4005 | if (!memcg->use_hierarchy) |
4006 | goto out; |
4007 | |
4008 | while (cgroup->parent) { |
4009 | cgroup = cgroup->parent; |
4010 | memcg = mem_cgroup_from_cont(cgroup); |
4011 | if (!memcg->use_hierarchy) |
4012 | break; |
4013 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); |
4014 | min_limit = min(min_limit, tmp); |
4015 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4016 | min_memsw_limit = min(min_memsw_limit, tmp); |
4017 | } |
4018 | out: |
4019 | *mem_limit = min_limit; |
4020 | *memsw_limit = min_memsw_limit; |
4021 | } |
4022 | |
4023 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
4024 | { |
4025 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4026 | int type, name; |
4027 | |
4028 | type = MEMFILE_TYPE(event); |
4029 | name = MEMFILE_ATTR(event); |
4030 | |
4031 | if (!do_swap_account && type == _MEMSWAP) |
4032 | return -EOPNOTSUPP; |
4033 | |
4034 | switch (name) { |
4035 | case RES_MAX_USAGE: |
4036 | if (type == _MEM) |
4037 | res_counter_reset_max(&memcg->res); |
4038 | else |
4039 | res_counter_reset_max(&memcg->memsw); |
4040 | break; |
4041 | case RES_FAILCNT: |
4042 | if (type == _MEM) |
4043 | res_counter_reset_failcnt(&memcg->res); |
4044 | else |
4045 | res_counter_reset_failcnt(&memcg->memsw); |
4046 | break; |
4047 | } |
4048 | |
4049 | return 0; |
4050 | } |
4051 | |
4052 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, |
4053 | struct cftype *cft) |
4054 | { |
4055 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; |
4056 | } |
4057 | |
4058 | #ifdef CONFIG_MMU |
4059 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
4060 | struct cftype *cft, u64 val) |
4061 | { |
4062 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4063 | |
4064 | if (val >= (1 << NR_MOVE_TYPE)) |
4065 | return -EINVAL; |
4066 | /* |
4067 | * We check this value several times in both in can_attach() and |
4068 | * attach(), so we need cgroup lock to prevent this value from being |
4069 | * inconsistent. |
4070 | */ |
4071 | cgroup_lock(); |
4072 | memcg->move_charge_at_immigrate = val; |
4073 | cgroup_unlock(); |
4074 | |
4075 | return 0; |
4076 | } |
4077 | #else |
4078 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
4079 | struct cftype *cft, u64 val) |
4080 | { |
4081 | return -ENOSYS; |
4082 | } |
4083 | #endif |
4084 | |
4085 | #ifdef CONFIG_NUMA |
4086 | static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, |
4087 | struct seq_file *m) |
4088 | { |
4089 | int nid; |
4090 | unsigned long total_nr, file_nr, anon_nr, unevictable_nr; |
4091 | unsigned long node_nr; |
4092 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4093 | |
4094 | total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); |
4095 | seq_printf(m, "total=%lu", total_nr); |
4096 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4097 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); |
4098 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4099 | } |
4100 | seq_putc(m, '\n'); |
4101 | |
4102 | file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); |
4103 | seq_printf(m, "file=%lu", file_nr); |
4104 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4105 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
4106 | LRU_ALL_FILE); |
4107 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4108 | } |
4109 | seq_putc(m, '\n'); |
4110 | |
4111 | anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); |
4112 | seq_printf(m, "anon=%lu", anon_nr); |
4113 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4114 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
4115 | LRU_ALL_ANON); |
4116 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4117 | } |
4118 | seq_putc(m, '\n'); |
4119 | |
4120 | unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); |
4121 | seq_printf(m, "unevictable=%lu", unevictable_nr); |
4122 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4123 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
4124 | BIT(LRU_UNEVICTABLE)); |
4125 | seq_printf(m, " N%d=%lu", nid, node_nr); |
4126 | } |
4127 | seq_putc(m, '\n'); |
4128 | return 0; |
4129 | } |
4130 | #endif /* CONFIG_NUMA */ |
4131 | |
4132 | static const char * const mem_cgroup_lru_names[] = { |
4133 | "inactive_anon", |
4134 | "active_anon", |
4135 | "inactive_file", |
4136 | "active_file", |
4137 | "unevictable", |
4138 | }; |
4139 | |
4140 | static inline void mem_cgroup_lru_names_not_uptodate(void) |
4141 | { |
4142 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); |
4143 | } |
4144 | |
4145 | static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, |
4146 | struct seq_file *m) |
4147 | { |
4148 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4149 | struct mem_cgroup *mi; |
4150 | unsigned int i; |
4151 | |
4152 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
4153 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
4154 | continue; |
4155 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
4156 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); |
4157 | } |
4158 | |
4159 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
4160 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], |
4161 | mem_cgroup_read_events(memcg, i)); |
4162 | |
4163 | for (i = 0; i < NR_LRU_LISTS; i++) |
4164 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], |
4165 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); |
4166 | |
4167 | /* Hierarchical information */ |
4168 | { |
4169 | unsigned long long limit, memsw_limit; |
4170 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); |
4171 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); |
4172 | if (do_swap_account) |
4173 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
4174 | memsw_limit); |
4175 | } |
4176 | |
4177 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
4178 | long long val = 0; |
4179 | |
4180 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
4181 | continue; |
4182 | for_each_mem_cgroup_tree(mi, memcg) |
4183 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; |
4184 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); |
4185 | } |
4186 | |
4187 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
4188 | unsigned long long val = 0; |
4189 | |
4190 | for_each_mem_cgroup_tree(mi, memcg) |
4191 | val += mem_cgroup_read_events(mi, i); |
4192 | seq_printf(m, "total_%s %llu\n", |
4193 | mem_cgroup_events_names[i], val); |
4194 | } |
4195 | |
4196 | for (i = 0; i < NR_LRU_LISTS; i++) { |
4197 | unsigned long long val = 0; |
4198 | |
4199 | for_each_mem_cgroup_tree(mi, memcg) |
4200 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; |
4201 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); |
4202 | } |
4203 | |
4204 | #ifdef CONFIG_DEBUG_VM |
4205 | { |
4206 | int nid, zid; |
4207 | struct mem_cgroup_per_zone *mz; |
4208 | struct zone_reclaim_stat *rstat; |
4209 | unsigned long recent_rotated[2] = {0, 0}; |
4210 | unsigned long recent_scanned[2] = {0, 0}; |
4211 | |
4212 | for_each_online_node(nid) |
4213 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
4214 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
4215 | rstat = &mz->lruvec.reclaim_stat; |
4216 | |
4217 | recent_rotated[0] += rstat->recent_rotated[0]; |
4218 | recent_rotated[1] += rstat->recent_rotated[1]; |
4219 | recent_scanned[0] += rstat->recent_scanned[0]; |
4220 | recent_scanned[1] += rstat->recent_scanned[1]; |
4221 | } |
4222 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
4223 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); |
4224 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); |
4225 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); |
4226 | } |
4227 | #endif |
4228 | |
4229 | return 0; |
4230 | } |
4231 | |
4232 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
4233 | { |
4234 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4235 | |
4236 | return mem_cgroup_swappiness(memcg); |
4237 | } |
4238 | |
4239 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, |
4240 | u64 val) |
4241 | { |
4242 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4243 | struct mem_cgroup *parent; |
4244 | |
4245 | if (val > 100) |
4246 | return -EINVAL; |
4247 | |
4248 | if (cgrp->parent == NULL) |
4249 | return -EINVAL; |
4250 | |
4251 | parent = mem_cgroup_from_cont(cgrp->parent); |
4252 | |
4253 | cgroup_lock(); |
4254 | |
4255 | /* If under hierarchy, only empty-root can set this value */ |
4256 | if ((parent->use_hierarchy) || |
4257 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { |
4258 | cgroup_unlock(); |
4259 | return -EINVAL; |
4260 | } |
4261 | |
4262 | memcg->swappiness = val; |
4263 | |
4264 | cgroup_unlock(); |
4265 | |
4266 | return 0; |
4267 | } |
4268 | |
4269 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
4270 | { |
4271 | struct mem_cgroup_threshold_ary *t; |
4272 | u64 usage; |
4273 | int i; |
4274 | |
4275 | rcu_read_lock(); |
4276 | if (!swap) |
4277 | t = rcu_dereference(memcg->thresholds.primary); |
4278 | else |
4279 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
4280 | |
4281 | if (!t) |
4282 | goto unlock; |
4283 | |
4284 | usage = mem_cgroup_usage(memcg, swap); |
4285 | |
4286 | /* |
4287 | * current_threshold points to threshold just below or equal to usage. |
4288 | * If it's not true, a threshold was crossed after last |
4289 | * call of __mem_cgroup_threshold(). |
4290 | */ |
4291 | i = t->current_threshold; |
4292 | |
4293 | /* |
4294 | * Iterate backward over array of thresholds starting from |
4295 | * current_threshold and check if a threshold is crossed. |
4296 | * If none of thresholds below usage is crossed, we read |
4297 | * only one element of the array here. |
4298 | */ |
4299 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) |
4300 | eventfd_signal(t->entries[i].eventfd, 1); |
4301 | |
4302 | /* i = current_threshold + 1 */ |
4303 | i++; |
4304 | |
4305 | /* |
4306 | * Iterate forward over array of thresholds starting from |
4307 | * current_threshold+1 and check if a threshold is crossed. |
4308 | * If none of thresholds above usage is crossed, we read |
4309 | * only one element of the array here. |
4310 | */ |
4311 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) |
4312 | eventfd_signal(t->entries[i].eventfd, 1); |
4313 | |
4314 | /* Update current_threshold */ |
4315 | t->current_threshold = i - 1; |
4316 | unlock: |
4317 | rcu_read_unlock(); |
4318 | } |
4319 | |
4320 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) |
4321 | { |
4322 | while (memcg) { |
4323 | __mem_cgroup_threshold(memcg, false); |
4324 | if (do_swap_account) |
4325 | __mem_cgroup_threshold(memcg, true); |
4326 | |
4327 | memcg = parent_mem_cgroup(memcg); |
4328 | } |
4329 | } |
4330 | |
4331 | static int compare_thresholds(const void *a, const void *b) |
4332 | { |
4333 | const struct mem_cgroup_threshold *_a = a; |
4334 | const struct mem_cgroup_threshold *_b = b; |
4335 | |
4336 | return _a->threshold - _b->threshold; |
4337 | } |
4338 | |
4339 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
4340 | { |
4341 | struct mem_cgroup_eventfd_list *ev; |
4342 | |
4343 | list_for_each_entry(ev, &memcg->oom_notify, list) |
4344 | eventfd_signal(ev->eventfd, 1); |
4345 | return 0; |
4346 | } |
4347 | |
4348 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
4349 | { |
4350 | struct mem_cgroup *iter; |
4351 | |
4352 | for_each_mem_cgroup_tree(iter, memcg) |
4353 | mem_cgroup_oom_notify_cb(iter); |
4354 | } |
4355 | |
4356 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, |
4357 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) |
4358 | { |
4359 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4360 | struct mem_cgroup_thresholds *thresholds; |
4361 | struct mem_cgroup_threshold_ary *new; |
4362 | int type = MEMFILE_TYPE(cft->private); |
4363 | u64 threshold, usage; |
4364 | int i, size, ret; |
4365 | |
4366 | ret = res_counter_memparse_write_strategy(args, &threshold); |
4367 | if (ret) |
4368 | return ret; |
4369 | |
4370 | mutex_lock(&memcg->thresholds_lock); |
4371 | |
4372 | if (type == _MEM) |
4373 | thresholds = &memcg->thresholds; |
4374 | else if (type == _MEMSWAP) |
4375 | thresholds = &memcg->memsw_thresholds; |
4376 | else |
4377 | BUG(); |
4378 | |
4379 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
4380 | |
4381 | /* Check if a threshold crossed before adding a new one */ |
4382 | if (thresholds->primary) |
4383 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
4384 | |
4385 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
4386 | |
4387 | /* Allocate memory for new array of thresholds */ |
4388 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
4389 | GFP_KERNEL); |
4390 | if (!new) { |
4391 | ret = -ENOMEM; |
4392 | goto unlock; |
4393 | } |
4394 | new->size = size; |
4395 | |
4396 | /* Copy thresholds (if any) to new array */ |
4397 | if (thresholds->primary) { |
4398 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * |
4399 | sizeof(struct mem_cgroup_threshold)); |
4400 | } |
4401 | |
4402 | /* Add new threshold */ |
4403 | new->entries[size - 1].eventfd = eventfd; |
4404 | new->entries[size - 1].threshold = threshold; |
4405 | |
4406 | /* Sort thresholds. Registering of new threshold isn't time-critical */ |
4407 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
4408 | compare_thresholds, NULL); |
4409 | |
4410 | /* Find current threshold */ |
4411 | new->current_threshold = -1; |
4412 | for (i = 0; i < size; i++) { |
4413 | if (new->entries[i].threshold <= usage) { |
4414 | /* |
4415 | * new->current_threshold will not be used until |
4416 | * rcu_assign_pointer(), so it's safe to increment |
4417 | * it here. |
4418 | */ |
4419 | ++new->current_threshold; |
4420 | } else |
4421 | break; |
4422 | } |
4423 | |
4424 | /* Free old spare buffer and save old primary buffer as spare */ |
4425 | kfree(thresholds->spare); |
4426 | thresholds->spare = thresholds->primary; |
4427 | |
4428 | rcu_assign_pointer(thresholds->primary, new); |
4429 | |
4430 | /* To be sure that nobody uses thresholds */ |
4431 | synchronize_rcu(); |
4432 | |
4433 | unlock: |
4434 | mutex_unlock(&memcg->thresholds_lock); |
4435 | |
4436 | return ret; |
4437 | } |
4438 | |
4439 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, |
4440 | struct cftype *cft, struct eventfd_ctx *eventfd) |
4441 | { |
4442 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4443 | struct mem_cgroup_thresholds *thresholds; |
4444 | struct mem_cgroup_threshold_ary *new; |
4445 | int type = MEMFILE_TYPE(cft->private); |
4446 | u64 usage; |
4447 | int i, j, size; |
4448 | |
4449 | mutex_lock(&memcg->thresholds_lock); |
4450 | if (type == _MEM) |
4451 | thresholds = &memcg->thresholds; |
4452 | else if (type == _MEMSWAP) |
4453 | thresholds = &memcg->memsw_thresholds; |
4454 | else |
4455 | BUG(); |
4456 | |
4457 | if (!thresholds->primary) |
4458 | goto unlock; |
4459 | |
4460 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
4461 | |
4462 | /* Check if a threshold crossed before removing */ |
4463 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
4464 | |
4465 | /* Calculate new number of threshold */ |
4466 | size = 0; |
4467 | for (i = 0; i < thresholds->primary->size; i++) { |
4468 | if (thresholds->primary->entries[i].eventfd != eventfd) |
4469 | size++; |
4470 | } |
4471 | |
4472 | new = thresholds->spare; |
4473 | |
4474 | /* Set thresholds array to NULL if we don't have thresholds */ |
4475 | if (!size) { |
4476 | kfree(new); |
4477 | new = NULL; |
4478 | goto swap_buffers; |
4479 | } |
4480 | |
4481 | new->size = size; |
4482 | |
4483 | /* Copy thresholds and find current threshold */ |
4484 | new->current_threshold = -1; |
4485 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { |
4486 | if (thresholds->primary->entries[i].eventfd == eventfd) |
4487 | continue; |
4488 | |
4489 | new->entries[j] = thresholds->primary->entries[i]; |
4490 | if (new->entries[j].threshold <= usage) { |
4491 | /* |
4492 | * new->current_threshold will not be used |
4493 | * until rcu_assign_pointer(), so it's safe to increment |
4494 | * it here. |
4495 | */ |
4496 | ++new->current_threshold; |
4497 | } |
4498 | j++; |
4499 | } |
4500 | |
4501 | swap_buffers: |
4502 | /* Swap primary and spare array */ |
4503 | thresholds->spare = thresholds->primary; |
4504 | /* If all events are unregistered, free the spare array */ |
4505 | if (!new) { |
4506 | kfree(thresholds->spare); |
4507 | thresholds->spare = NULL; |
4508 | } |
4509 | |
4510 | rcu_assign_pointer(thresholds->primary, new); |
4511 | |
4512 | /* To be sure that nobody uses thresholds */ |
4513 | synchronize_rcu(); |
4514 | unlock: |
4515 | mutex_unlock(&memcg->thresholds_lock); |
4516 | } |
4517 | |
4518 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, |
4519 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) |
4520 | { |
4521 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4522 | struct mem_cgroup_eventfd_list *event; |
4523 | int type = MEMFILE_TYPE(cft->private); |
4524 | |
4525 | BUG_ON(type != _OOM_TYPE); |
4526 | event = kmalloc(sizeof(*event), GFP_KERNEL); |
4527 | if (!event) |
4528 | return -ENOMEM; |
4529 | |
4530 | spin_lock(&memcg_oom_lock); |
4531 | |
4532 | event->eventfd = eventfd; |
4533 | list_add(&event->list, &memcg->oom_notify); |
4534 | |
4535 | /* already in OOM ? */ |
4536 | if (atomic_read(&memcg->under_oom)) |
4537 | eventfd_signal(eventfd, 1); |
4538 | spin_unlock(&memcg_oom_lock); |
4539 | |
4540 | return 0; |
4541 | } |
4542 | |
4543 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, |
4544 | struct cftype *cft, struct eventfd_ctx *eventfd) |
4545 | { |
4546 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4547 | struct mem_cgroup_eventfd_list *ev, *tmp; |
4548 | int type = MEMFILE_TYPE(cft->private); |
4549 | |
4550 | BUG_ON(type != _OOM_TYPE); |
4551 | |
4552 | spin_lock(&memcg_oom_lock); |
4553 | |
4554 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
4555 | if (ev->eventfd == eventfd) { |
4556 | list_del(&ev->list); |
4557 | kfree(ev); |
4558 | } |
4559 | } |
4560 | |
4561 | spin_unlock(&memcg_oom_lock); |
4562 | } |
4563 | |
4564 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, |
4565 | struct cftype *cft, struct cgroup_map_cb *cb) |
4566 | { |
4567 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4568 | |
4569 | cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); |
4570 | |
4571 | if (atomic_read(&memcg->under_oom)) |
4572 | cb->fill(cb, "under_oom", 1); |
4573 | else |
4574 | cb->fill(cb, "under_oom", 0); |
4575 | return 0; |
4576 | } |
4577 | |
4578 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
4579 | struct cftype *cft, u64 val) |
4580 | { |
4581 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
4582 | struct mem_cgroup *parent; |
4583 | |
4584 | /* cannot set to root cgroup and only 0 and 1 are allowed */ |
4585 | if (!cgrp->parent || !((val == 0) || (val == 1))) |
4586 | return -EINVAL; |
4587 | |
4588 | parent = mem_cgroup_from_cont(cgrp->parent); |
4589 | |
4590 | cgroup_lock(); |
4591 | /* oom-kill-disable is a flag for subhierarchy. */ |
4592 | if ((parent->use_hierarchy) || |
4593 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { |
4594 | cgroup_unlock(); |
4595 | return -EINVAL; |
4596 | } |
4597 | memcg->oom_kill_disable = val; |
4598 | if (!val) |
4599 | memcg_oom_recover(memcg); |
4600 | cgroup_unlock(); |
4601 | return 0; |
4602 | } |
4603 | |
4604 | #ifdef CONFIG_MEMCG_KMEM |
4605 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
4606 | { |
4607 | return mem_cgroup_sockets_init(memcg, ss); |
4608 | }; |
4609 | |
4610 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
4611 | { |
4612 | mem_cgroup_sockets_destroy(memcg); |
4613 | } |
4614 | #else |
4615 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
4616 | { |
4617 | return 0; |
4618 | } |
4619 | |
4620 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
4621 | { |
4622 | } |
4623 | #endif |
4624 | |
4625 | static struct cftype mem_cgroup_files[] = { |
4626 | { |
4627 | .name = "usage_in_bytes", |
4628 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
4629 | .read = mem_cgroup_read, |
4630 | .register_event = mem_cgroup_usage_register_event, |
4631 | .unregister_event = mem_cgroup_usage_unregister_event, |
4632 | }, |
4633 | { |
4634 | .name = "max_usage_in_bytes", |
4635 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
4636 | .trigger = mem_cgroup_reset, |
4637 | .read = mem_cgroup_read, |
4638 | }, |
4639 | { |
4640 | .name = "limit_in_bytes", |
4641 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
4642 | .write_string = mem_cgroup_write, |
4643 | .read = mem_cgroup_read, |
4644 | }, |
4645 | { |
4646 | .name = "soft_limit_in_bytes", |
4647 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), |
4648 | .write_string = mem_cgroup_write, |
4649 | .read = mem_cgroup_read, |
4650 | }, |
4651 | { |
4652 | .name = "failcnt", |
4653 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
4654 | .trigger = mem_cgroup_reset, |
4655 | .read = mem_cgroup_read, |
4656 | }, |
4657 | { |
4658 | .name = "stat", |
4659 | .read_seq_string = memcg_stat_show, |
4660 | }, |
4661 | { |
4662 | .name = "force_empty", |
4663 | .trigger = mem_cgroup_force_empty_write, |
4664 | }, |
4665 | { |
4666 | .name = "use_hierarchy", |
4667 | .write_u64 = mem_cgroup_hierarchy_write, |
4668 | .read_u64 = mem_cgroup_hierarchy_read, |
4669 | }, |
4670 | { |
4671 | .name = "swappiness", |
4672 | .read_u64 = mem_cgroup_swappiness_read, |
4673 | .write_u64 = mem_cgroup_swappiness_write, |
4674 | }, |
4675 | { |
4676 | .name = "move_charge_at_immigrate", |
4677 | .read_u64 = mem_cgroup_move_charge_read, |
4678 | .write_u64 = mem_cgroup_move_charge_write, |
4679 | }, |
4680 | { |
4681 | .name = "oom_control", |
4682 | .read_map = mem_cgroup_oom_control_read, |
4683 | .write_u64 = mem_cgroup_oom_control_write, |
4684 | .register_event = mem_cgroup_oom_register_event, |
4685 | .unregister_event = mem_cgroup_oom_unregister_event, |
4686 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), |
4687 | }, |
4688 | #ifdef CONFIG_NUMA |
4689 | { |
4690 | .name = "numa_stat", |
4691 | .read_seq_string = memcg_numa_stat_show, |
4692 | }, |
4693 | #endif |
4694 | #ifdef CONFIG_MEMCG_SWAP |
4695 | { |
4696 | .name = "memsw.usage_in_bytes", |
4697 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), |
4698 | .read = mem_cgroup_read, |
4699 | .register_event = mem_cgroup_usage_register_event, |
4700 | .unregister_event = mem_cgroup_usage_unregister_event, |
4701 | }, |
4702 | { |
4703 | .name = "memsw.max_usage_in_bytes", |
4704 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), |
4705 | .trigger = mem_cgroup_reset, |
4706 | .read = mem_cgroup_read, |
4707 | }, |
4708 | { |
4709 | .name = "memsw.limit_in_bytes", |
4710 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), |
4711 | .write_string = mem_cgroup_write, |
4712 | .read = mem_cgroup_read, |
4713 | }, |
4714 | { |
4715 | .name = "memsw.failcnt", |
4716 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), |
4717 | .trigger = mem_cgroup_reset, |
4718 | .read = mem_cgroup_read, |
4719 | }, |
4720 | #endif |
4721 | { }, /* terminate */ |
4722 | }; |
4723 | |
4724 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
4725 | { |
4726 | struct mem_cgroup_per_node *pn; |
4727 | struct mem_cgroup_per_zone *mz; |
4728 | int zone, tmp = node; |
4729 | /* |
4730 | * This routine is called against possible nodes. |
4731 | * But it's BUG to call kmalloc() against offline node. |
4732 | * |
4733 | * TODO: this routine can waste much memory for nodes which will |
4734 | * never be onlined. It's better to use memory hotplug callback |
4735 | * function. |
4736 | */ |
4737 | if (!node_state(node, N_NORMAL_MEMORY)) |
4738 | tmp = -1; |
4739 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
4740 | if (!pn) |
4741 | return 1; |
4742 | |
4743 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4744 | mz = &pn->zoneinfo[zone]; |
4745 | lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); |
4746 | mz->usage_in_excess = 0; |
4747 | mz->on_tree = false; |
4748 | mz->memcg = memcg; |
4749 | } |
4750 | memcg->info.nodeinfo[node] = pn; |
4751 | return 0; |
4752 | } |
4753 | |
4754 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
4755 | { |
4756 | kfree(memcg->info.nodeinfo[node]); |
4757 | } |
4758 | |
4759 | static struct mem_cgroup *mem_cgroup_alloc(void) |
4760 | { |
4761 | struct mem_cgroup *memcg; |
4762 | int size = sizeof(struct mem_cgroup); |
4763 | |
4764 | /* Can be very big if MAX_NUMNODES is very big */ |
4765 | if (size < PAGE_SIZE) |
4766 | memcg = kzalloc(size, GFP_KERNEL); |
4767 | else |
4768 | memcg = vzalloc(size); |
4769 | |
4770 | if (!memcg) |
4771 | return NULL; |
4772 | |
4773 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
4774 | if (!memcg->stat) |
4775 | goto out_free; |
4776 | spin_lock_init(&memcg->pcp_counter_lock); |
4777 | return memcg; |
4778 | |
4779 | out_free: |
4780 | if (size < PAGE_SIZE) |
4781 | kfree(memcg); |
4782 | else |
4783 | vfree(memcg); |
4784 | return NULL; |
4785 | } |
4786 | |
4787 | /* |
4788 | * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, |
4789 | * but in process context. The work_freeing structure is overlaid |
4790 | * on the rcu_freeing structure, which itself is overlaid on memsw. |
4791 | */ |
4792 | static void free_work(struct work_struct *work) |
4793 | { |
4794 | struct mem_cgroup *memcg; |
4795 | int size = sizeof(struct mem_cgroup); |
4796 | |
4797 | memcg = container_of(work, struct mem_cgroup, work_freeing); |
4798 | /* |
4799 | * We need to make sure that (at least for now), the jump label |
4800 | * destruction code runs outside of the cgroup lock. This is because |
4801 | * get_online_cpus(), which is called from the static_branch update, |
4802 | * can't be called inside the cgroup_lock. cpusets are the ones |
4803 | * enforcing this dependency, so if they ever change, we might as well. |
4804 | * |
4805 | * schedule_work() will guarantee this happens. Be careful if you need |
4806 | * to move this code around, and make sure it is outside |
4807 | * the cgroup_lock. |
4808 | */ |
4809 | disarm_sock_keys(memcg); |
4810 | if (size < PAGE_SIZE) |
4811 | kfree(memcg); |
4812 | else |
4813 | vfree(memcg); |
4814 | } |
4815 | |
4816 | static void free_rcu(struct rcu_head *rcu_head) |
4817 | { |
4818 | struct mem_cgroup *memcg; |
4819 | |
4820 | memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); |
4821 | INIT_WORK(&memcg->work_freeing, free_work); |
4822 | schedule_work(&memcg->work_freeing); |
4823 | } |
4824 | |
4825 | /* |
4826 | * At destroying mem_cgroup, references from swap_cgroup can remain. |
4827 | * (scanning all at force_empty is too costly...) |
4828 | * |
4829 | * Instead of clearing all references at force_empty, we remember |
4830 | * the number of reference from swap_cgroup and free mem_cgroup when |
4831 | * it goes down to 0. |
4832 | * |
4833 | * Removal of cgroup itself succeeds regardless of refs from swap. |
4834 | */ |
4835 | |
4836 | static void __mem_cgroup_free(struct mem_cgroup *memcg) |
4837 | { |
4838 | int node; |
4839 | |
4840 | mem_cgroup_remove_from_trees(memcg); |
4841 | free_css_id(&mem_cgroup_subsys, &memcg->css); |
4842 | |
4843 | for_each_node(node) |
4844 | free_mem_cgroup_per_zone_info(memcg, node); |
4845 | |
4846 | free_percpu(memcg->stat); |
4847 | call_rcu(&memcg->rcu_freeing, free_rcu); |
4848 | } |
4849 | |
4850 | static void mem_cgroup_get(struct mem_cgroup *memcg) |
4851 | { |
4852 | atomic_inc(&memcg->refcnt); |
4853 | } |
4854 | |
4855 | static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) |
4856 | { |
4857 | if (atomic_sub_and_test(count, &memcg->refcnt)) { |
4858 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
4859 | __mem_cgroup_free(memcg); |
4860 | if (parent) |
4861 | mem_cgroup_put(parent); |
4862 | } |
4863 | } |
4864 | |
4865 | static void mem_cgroup_put(struct mem_cgroup *memcg) |
4866 | { |
4867 | __mem_cgroup_put(memcg, 1); |
4868 | } |
4869 | |
4870 | /* |
4871 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. |
4872 | */ |
4873 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) |
4874 | { |
4875 | if (!memcg->res.parent) |
4876 | return NULL; |
4877 | return mem_cgroup_from_res_counter(memcg->res.parent, res); |
4878 | } |
4879 | EXPORT_SYMBOL(parent_mem_cgroup); |
4880 | |
4881 | #ifdef CONFIG_MEMCG_SWAP |
4882 | static void __init enable_swap_cgroup(void) |
4883 | { |
4884 | if (!mem_cgroup_disabled() && really_do_swap_account) |
4885 | do_swap_account = 1; |
4886 | } |
4887 | #else |
4888 | static void __init enable_swap_cgroup(void) |
4889 | { |
4890 | } |
4891 | #endif |
4892 | |
4893 | static int mem_cgroup_soft_limit_tree_init(void) |
4894 | { |
4895 | struct mem_cgroup_tree_per_node *rtpn; |
4896 | struct mem_cgroup_tree_per_zone *rtpz; |
4897 | int tmp, node, zone; |
4898 | |
4899 | for_each_node(node) { |
4900 | tmp = node; |
4901 | if (!node_state(node, N_NORMAL_MEMORY)) |
4902 | tmp = -1; |
4903 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); |
4904 | if (!rtpn) |
4905 | goto err_cleanup; |
4906 | |
4907 | soft_limit_tree.rb_tree_per_node[node] = rtpn; |
4908 | |
4909 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4910 | rtpz = &rtpn->rb_tree_per_zone[zone]; |
4911 | rtpz->rb_root = RB_ROOT; |
4912 | spin_lock_init(&rtpz->lock); |
4913 | } |
4914 | } |
4915 | return 0; |
4916 | |
4917 | err_cleanup: |
4918 | for_each_node(node) { |
4919 | if (!soft_limit_tree.rb_tree_per_node[node]) |
4920 | break; |
4921 | kfree(soft_limit_tree.rb_tree_per_node[node]); |
4922 | soft_limit_tree.rb_tree_per_node[node] = NULL; |
4923 | } |
4924 | return 1; |
4925 | |
4926 | } |
4927 | |
4928 | static struct cgroup_subsys_state * __ref |
4929 | mem_cgroup_create(struct cgroup *cont) |
4930 | { |
4931 | struct mem_cgroup *memcg, *parent; |
4932 | long error = -ENOMEM; |
4933 | int node; |
4934 | |
4935 | memcg = mem_cgroup_alloc(); |
4936 | if (!memcg) |
4937 | return ERR_PTR(error); |
4938 | |
4939 | for_each_node(node) |
4940 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) |
4941 | goto free_out; |
4942 | |
4943 | /* root ? */ |
4944 | if (cont->parent == NULL) { |
4945 | int cpu; |
4946 | enable_swap_cgroup(); |
4947 | parent = NULL; |
4948 | if (mem_cgroup_soft_limit_tree_init()) |
4949 | goto free_out; |
4950 | root_mem_cgroup = memcg; |
4951 | for_each_possible_cpu(cpu) { |
4952 | struct memcg_stock_pcp *stock = |
4953 | &per_cpu(memcg_stock, cpu); |
4954 | INIT_WORK(&stock->work, drain_local_stock); |
4955 | } |
4956 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); |
4957 | } else { |
4958 | parent = mem_cgroup_from_cont(cont->parent); |
4959 | memcg->use_hierarchy = parent->use_hierarchy; |
4960 | memcg->oom_kill_disable = parent->oom_kill_disable; |
4961 | } |
4962 | |
4963 | if (parent && parent->use_hierarchy) { |
4964 | res_counter_init(&memcg->res, &parent->res); |
4965 | res_counter_init(&memcg->memsw, &parent->memsw); |
4966 | /* |
4967 | * We increment refcnt of the parent to ensure that we can |
4968 | * safely access it on res_counter_charge/uncharge. |
4969 | * This refcnt will be decremented when freeing this |
4970 | * mem_cgroup(see mem_cgroup_put). |
4971 | */ |
4972 | mem_cgroup_get(parent); |
4973 | } else { |
4974 | res_counter_init(&memcg->res, NULL); |
4975 | res_counter_init(&memcg->memsw, NULL); |
4976 | } |
4977 | memcg->last_scanned_node = MAX_NUMNODES; |
4978 | INIT_LIST_HEAD(&memcg->oom_notify); |
4979 | |
4980 | if (parent) |
4981 | memcg->swappiness = mem_cgroup_swappiness(parent); |
4982 | atomic_set(&memcg->refcnt, 1); |
4983 | memcg->move_charge_at_immigrate = 0; |
4984 | mutex_init(&memcg->thresholds_lock); |
4985 | spin_lock_init(&memcg->move_lock); |
4986 | |
4987 | error = memcg_init_kmem(memcg, &mem_cgroup_subsys); |
4988 | if (error) { |
4989 | /* |
4990 | * We call put now because our (and parent's) refcnts |
4991 | * are already in place. mem_cgroup_put() will internally |
4992 | * call __mem_cgroup_free, so return directly |
4993 | */ |
4994 | mem_cgroup_put(memcg); |
4995 | return ERR_PTR(error); |
4996 | } |
4997 | return &memcg->css; |
4998 | free_out: |
4999 | __mem_cgroup_free(memcg); |
5000 | return ERR_PTR(error); |
5001 | } |
5002 | |
5003 | static int mem_cgroup_pre_destroy(struct cgroup *cont) |
5004 | { |
5005 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
5006 | |
5007 | return mem_cgroup_force_empty(memcg, false); |
5008 | } |
5009 | |
5010 | static void mem_cgroup_destroy(struct cgroup *cont) |
5011 | { |
5012 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
5013 | |
5014 | kmem_cgroup_destroy(memcg); |
5015 | |
5016 | mem_cgroup_put(memcg); |
5017 | } |
5018 | |
5019 | #ifdef CONFIG_MMU |
5020 | /* Handlers for move charge at task migration. */ |
5021 | #define PRECHARGE_COUNT_AT_ONCE 256 |
5022 | static int mem_cgroup_do_precharge(unsigned long count) |
5023 | { |
5024 | int ret = 0; |
5025 | int batch_count = PRECHARGE_COUNT_AT_ONCE; |
5026 | struct mem_cgroup *memcg = mc.to; |
5027 | |
5028 | if (mem_cgroup_is_root(memcg)) { |
5029 | mc.precharge += count; |
5030 | /* we don't need css_get for root */ |
5031 | return ret; |
5032 | } |
5033 | /* try to charge at once */ |
5034 | if (count > 1) { |
5035 | struct res_counter *dummy; |
5036 | /* |
5037 | * "memcg" cannot be under rmdir() because we've already checked |
5038 | * by cgroup_lock_live_cgroup() that it is not removed and we |
5039 | * are still under the same cgroup_mutex. So we can postpone |
5040 | * css_get(). |
5041 | */ |
5042 | if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) |
5043 | goto one_by_one; |
5044 | if (do_swap_account && res_counter_charge(&memcg->memsw, |
5045 | PAGE_SIZE * count, &dummy)) { |
5046 | res_counter_uncharge(&memcg->res, PAGE_SIZE * count); |
5047 | goto one_by_one; |
5048 | } |
5049 | mc.precharge += count; |
5050 | return ret; |
5051 | } |
5052 | one_by_one: |
5053 | /* fall back to one by one charge */ |
5054 | while (count--) { |
5055 | if (signal_pending(current)) { |
5056 | ret = -EINTR; |
5057 | break; |
5058 | } |
5059 | if (!batch_count--) { |
5060 | batch_count = PRECHARGE_COUNT_AT_ONCE; |
5061 | cond_resched(); |
5062 | } |
5063 | ret = __mem_cgroup_try_charge(NULL, |
5064 | GFP_KERNEL, 1, &memcg, false); |
5065 | if (ret) |
5066 | /* mem_cgroup_clear_mc() will do uncharge later */ |
5067 | return ret; |
5068 | mc.precharge++; |
5069 | } |
5070 | return ret; |
5071 | } |
5072 | |
5073 | /** |
5074 | * get_mctgt_type - get target type of moving charge |
5075 | * @vma: the vma the pte to be checked belongs |
5076 | * @addr: the address corresponding to the pte to be checked |
5077 | * @ptent: the pte to be checked |
5078 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
5079 | * |
5080 | * Returns |
5081 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. |
5082 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for |
5083 | * move charge. if @target is not NULL, the page is stored in target->page |
5084 | * with extra refcnt got(Callers should handle it). |
5085 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
5086 | * target for charge migration. if @target is not NULL, the entry is stored |
5087 | * in target->ent. |
5088 | * |
5089 | * Called with pte lock held. |
5090 | */ |
5091 | union mc_target { |
5092 | struct page *page; |
5093 | swp_entry_t ent; |
5094 | }; |
5095 | |
5096 | enum mc_target_type { |
5097 | MC_TARGET_NONE = 0, |
5098 | MC_TARGET_PAGE, |
5099 | MC_TARGET_SWAP, |
5100 | }; |
5101 | |
5102 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
5103 | unsigned long addr, pte_t ptent) |
5104 | { |
5105 | struct page *page = vm_normal_page(vma, addr, ptent); |
5106 | |
5107 | if (!page || !page_mapped(page)) |
5108 | return NULL; |
5109 | if (PageAnon(page)) { |
5110 | /* we don't move shared anon */ |
5111 | if (!move_anon()) |
5112 | return NULL; |
5113 | } else if (!move_file()) |
5114 | /* we ignore mapcount for file pages */ |
5115 | return NULL; |
5116 | if (!get_page_unless_zero(page)) |
5117 | return NULL; |
5118 | |
5119 | return page; |
5120 | } |
5121 | |
5122 | #ifdef CONFIG_SWAP |
5123 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
5124 | unsigned long addr, pte_t ptent, swp_entry_t *entry) |
5125 | { |
5126 | struct page *page = NULL; |
5127 | swp_entry_t ent = pte_to_swp_entry(ptent); |
5128 | |
5129 | if (!move_anon() || non_swap_entry(ent)) |
5130 | return NULL; |
5131 | /* |
5132 | * Because lookup_swap_cache() updates some statistics counter, |
5133 | * we call find_get_page() with swapper_space directly. |
5134 | */ |
5135 | page = find_get_page(&swapper_space, ent.val); |
5136 | if (do_swap_account) |
5137 | entry->val = ent.val; |
5138 | |
5139 | return page; |
5140 | } |
5141 | #else |
5142 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
5143 | unsigned long addr, pte_t ptent, swp_entry_t *entry) |
5144 | { |
5145 | return NULL; |
5146 | } |
5147 | #endif |
5148 | |
5149 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
5150 | unsigned long addr, pte_t ptent, swp_entry_t *entry) |
5151 | { |
5152 | struct page *page = NULL; |
5153 | struct address_space *mapping; |
5154 | pgoff_t pgoff; |
5155 | |
5156 | if (!vma->vm_file) /* anonymous vma */ |
5157 | return NULL; |
5158 | if (!move_file()) |
5159 | return NULL; |
5160 | |
5161 | mapping = vma->vm_file->f_mapping; |
5162 | if (pte_none(ptent)) |
5163 | pgoff = linear_page_index(vma, addr); |
5164 | else /* pte_file(ptent) is true */ |
5165 | pgoff = pte_to_pgoff(ptent); |
5166 | |
5167 | /* page is moved even if it's not RSS of this task(page-faulted). */ |
5168 | page = find_get_page(mapping, pgoff); |
5169 | |
5170 | #ifdef CONFIG_SWAP |
5171 | /* shmem/tmpfs may report page out on swap: account for that too. */ |
5172 | if (radix_tree_exceptional_entry(page)) { |
5173 | swp_entry_t swap = radix_to_swp_entry(page); |
5174 | if (do_swap_account) |
5175 | *entry = swap; |
5176 | page = find_get_page(&swapper_space, swap.val); |
5177 | } |
5178 | #endif |
5179 | return page; |
5180 | } |
5181 | |
5182 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
5183 | unsigned long addr, pte_t ptent, union mc_target *target) |
5184 | { |
5185 | struct page *page = NULL; |
5186 | struct page_cgroup *pc; |
5187 | enum mc_target_type ret = MC_TARGET_NONE; |
5188 | swp_entry_t ent = { .val = 0 }; |
5189 | |
5190 | if (pte_present(ptent)) |
5191 | page = mc_handle_present_pte(vma, addr, ptent); |
5192 | else if (is_swap_pte(ptent)) |
5193 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); |
5194 | else if (pte_none(ptent) || pte_file(ptent)) |
5195 | page = mc_handle_file_pte(vma, addr, ptent, &ent); |
5196 | |
5197 | if (!page && !ent.val) |
5198 | return ret; |
5199 | if (page) { |
5200 | pc = lookup_page_cgroup(page); |
5201 | /* |
5202 | * Do only loose check w/o page_cgroup lock. |
5203 | * mem_cgroup_move_account() checks the pc is valid or not under |
5204 | * the lock. |
5205 | */ |
5206 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { |
5207 | ret = MC_TARGET_PAGE; |
5208 | if (target) |
5209 | target->page = page; |
5210 | } |
5211 | if (!ret || !target) |
5212 | put_page(page); |
5213 | } |
5214 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
5215 | if (ent.val && !ret && |
5216 | css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { |
5217 | ret = MC_TARGET_SWAP; |
5218 | if (target) |
5219 | target->ent = ent; |
5220 | } |
5221 | return ret; |
5222 | } |
5223 | |
5224 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
5225 | /* |
5226 | * We don't consider swapping or file mapped pages because THP does not |
5227 | * support them for now. |
5228 | * Caller should make sure that pmd_trans_huge(pmd) is true. |
5229 | */ |
5230 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
5231 | unsigned long addr, pmd_t pmd, union mc_target *target) |
5232 | { |
5233 | struct page *page = NULL; |
5234 | struct page_cgroup *pc; |
5235 | enum mc_target_type ret = MC_TARGET_NONE; |
5236 | |
5237 | page = pmd_page(pmd); |
5238 | VM_BUG_ON(!page || !PageHead(page)); |
5239 | if (!move_anon()) |
5240 | return ret; |
5241 | pc = lookup_page_cgroup(page); |
5242 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { |
5243 | ret = MC_TARGET_PAGE; |
5244 | if (target) { |
5245 | get_page(page); |
5246 | target->page = page; |
5247 | } |
5248 | } |
5249 | return ret; |
5250 | } |
5251 | #else |
5252 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
5253 | unsigned long addr, pmd_t pmd, union mc_target *target) |
5254 | { |
5255 | return MC_TARGET_NONE; |
5256 | } |
5257 | #endif |
5258 | |
5259 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
5260 | unsigned long addr, unsigned long end, |
5261 | struct mm_walk *walk) |
5262 | { |
5263 | struct vm_area_struct *vma = walk->private; |
5264 | pte_t *pte; |
5265 | spinlock_t *ptl; |
5266 | |
5267 | if (pmd_trans_huge_lock(pmd, vma) == 1) { |
5268 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) |
5269 | mc.precharge += HPAGE_PMD_NR; |
5270 | spin_unlock(&vma->vm_mm->page_table_lock); |
5271 | return 0; |
5272 | } |
5273 | |
5274 | if (pmd_trans_unstable(pmd)) |
5275 | return 0; |
5276 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
5277 | for (; addr != end; pte++, addr += PAGE_SIZE) |
5278 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
5279 | mc.precharge++; /* increment precharge temporarily */ |
5280 | pte_unmap_unlock(pte - 1, ptl); |
5281 | cond_resched(); |
5282 | |
5283 | return 0; |
5284 | } |
5285 | |
5286 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
5287 | { |
5288 | unsigned long precharge; |
5289 | struct vm_area_struct *vma; |
5290 | |
5291 | down_read(&mm->mmap_sem); |
5292 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5293 | struct mm_walk mem_cgroup_count_precharge_walk = { |
5294 | .pmd_entry = mem_cgroup_count_precharge_pte_range, |
5295 | .mm = mm, |
5296 | .private = vma, |
5297 | }; |
5298 | if (is_vm_hugetlb_page(vma)) |
5299 | continue; |
5300 | walk_page_range(vma->vm_start, vma->vm_end, |
5301 | &mem_cgroup_count_precharge_walk); |
5302 | } |
5303 | up_read(&mm->mmap_sem); |
5304 | |
5305 | precharge = mc.precharge; |
5306 | mc.precharge = 0; |
5307 | |
5308 | return precharge; |
5309 | } |
5310 | |
5311 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
5312 | { |
5313 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
5314 | |
5315 | VM_BUG_ON(mc.moving_task); |
5316 | mc.moving_task = current; |
5317 | return mem_cgroup_do_precharge(precharge); |
5318 | } |
5319 | |
5320 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
5321 | static void __mem_cgroup_clear_mc(void) |
5322 | { |
5323 | struct mem_cgroup *from = mc.from; |
5324 | struct mem_cgroup *to = mc.to; |
5325 | |
5326 | /* we must uncharge all the leftover precharges from mc.to */ |
5327 | if (mc.precharge) { |
5328 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); |
5329 | mc.precharge = 0; |
5330 | } |
5331 | /* |
5332 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
5333 | * we must uncharge here. |
5334 | */ |
5335 | if (mc.moved_charge) { |
5336 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); |
5337 | mc.moved_charge = 0; |
5338 | } |
5339 | /* we must fixup refcnts and charges */ |
5340 | if (mc.moved_swap) { |
5341 | /* uncharge swap account from the old cgroup */ |
5342 | if (!mem_cgroup_is_root(mc.from)) |
5343 | res_counter_uncharge(&mc.from->memsw, |
5344 | PAGE_SIZE * mc.moved_swap); |
5345 | __mem_cgroup_put(mc.from, mc.moved_swap); |
5346 | |
5347 | if (!mem_cgroup_is_root(mc.to)) { |
5348 | /* |
5349 | * we charged both to->res and to->memsw, so we should |
5350 | * uncharge to->res. |
5351 | */ |
5352 | res_counter_uncharge(&mc.to->res, |
5353 | PAGE_SIZE * mc.moved_swap); |
5354 | } |
5355 | /* we've already done mem_cgroup_get(mc.to) */ |
5356 | mc.moved_swap = 0; |
5357 | } |
5358 | memcg_oom_recover(from); |
5359 | memcg_oom_recover(to); |
5360 | wake_up_all(&mc.waitq); |
5361 | } |
5362 | |
5363 | static void mem_cgroup_clear_mc(void) |
5364 | { |
5365 | struct mem_cgroup *from = mc.from; |
5366 | |
5367 | /* |
5368 | * we must clear moving_task before waking up waiters at the end of |
5369 | * task migration. |
5370 | */ |
5371 | mc.moving_task = NULL; |
5372 | __mem_cgroup_clear_mc(); |
5373 | spin_lock(&mc.lock); |
5374 | mc.from = NULL; |
5375 | mc.to = NULL; |
5376 | spin_unlock(&mc.lock); |
5377 | mem_cgroup_end_move(from); |
5378 | } |
5379 | |
5380 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
5381 | struct cgroup_taskset *tset) |
5382 | { |
5383 | struct task_struct *p = cgroup_taskset_first(tset); |
5384 | int ret = 0; |
5385 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); |
5386 | |
5387 | if (memcg->move_charge_at_immigrate) { |
5388 | struct mm_struct *mm; |
5389 | struct mem_cgroup *from = mem_cgroup_from_task(p); |
5390 | |
5391 | VM_BUG_ON(from == memcg); |
5392 | |
5393 | mm = get_task_mm(p); |
5394 | if (!mm) |
5395 | return 0; |
5396 | /* We move charges only when we move a owner of the mm */ |
5397 | if (mm->owner == p) { |
5398 | VM_BUG_ON(mc.from); |
5399 | VM_BUG_ON(mc.to); |
5400 | VM_BUG_ON(mc.precharge); |
5401 | VM_BUG_ON(mc.moved_charge); |
5402 | VM_BUG_ON(mc.moved_swap); |
5403 | mem_cgroup_start_move(from); |
5404 | spin_lock(&mc.lock); |
5405 | mc.from = from; |
5406 | mc.to = memcg; |
5407 | spin_unlock(&mc.lock); |
5408 | /* We set mc.moving_task later */ |
5409 | |
5410 | ret = mem_cgroup_precharge_mc(mm); |
5411 | if (ret) |
5412 | mem_cgroup_clear_mc(); |
5413 | } |
5414 | mmput(mm); |
5415 | } |
5416 | return ret; |
5417 | } |
5418 | |
5419 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
5420 | struct cgroup_taskset *tset) |
5421 | { |
5422 | mem_cgroup_clear_mc(); |
5423 | } |
5424 | |
5425 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
5426 | unsigned long addr, unsigned long end, |
5427 | struct mm_walk *walk) |
5428 | { |
5429 | int ret = 0; |
5430 | struct vm_area_struct *vma = walk->private; |
5431 | pte_t *pte; |
5432 | spinlock_t *ptl; |
5433 | enum mc_target_type target_type; |
5434 | union mc_target target; |
5435 | struct page *page; |
5436 | struct page_cgroup *pc; |
5437 | |
5438 | /* |
5439 | * We don't take compound_lock() here but no race with splitting thp |
5440 | * happens because: |
5441 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not |
5442 | * under splitting, which means there's no concurrent thp split, |
5443 | * - if another thread runs into split_huge_page() just after we |
5444 | * entered this if-block, the thread must wait for page table lock |
5445 | * to be unlocked in __split_huge_page_splitting(), where the main |
5446 | * part of thp split is not executed yet. |
5447 | */ |
5448 | if (pmd_trans_huge_lock(pmd, vma) == 1) { |
5449 | if (mc.precharge < HPAGE_PMD_NR) { |
5450 | spin_unlock(&vma->vm_mm->page_table_lock); |
5451 | return 0; |
5452 | } |
5453 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); |
5454 | if (target_type == MC_TARGET_PAGE) { |
5455 | page = target.page; |
5456 | if (!isolate_lru_page(page)) { |
5457 | pc = lookup_page_cgroup(page); |
5458 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, |
5459 | pc, mc.from, mc.to)) { |
5460 | mc.precharge -= HPAGE_PMD_NR; |
5461 | mc.moved_charge += HPAGE_PMD_NR; |
5462 | } |
5463 | putback_lru_page(page); |
5464 | } |
5465 | put_page(page); |
5466 | } |
5467 | spin_unlock(&vma->vm_mm->page_table_lock); |
5468 | return 0; |
5469 | } |
5470 | |
5471 | if (pmd_trans_unstable(pmd)) |
5472 | return 0; |
5473 | retry: |
5474 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
5475 | for (; addr != end; addr += PAGE_SIZE) { |
5476 | pte_t ptent = *(pte++); |
5477 | swp_entry_t ent; |
5478 | |
5479 | if (!mc.precharge) |
5480 | break; |
5481 | |
5482 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
5483 | case MC_TARGET_PAGE: |
5484 | page = target.page; |
5485 | if (isolate_lru_page(page)) |
5486 | goto put; |
5487 | pc = lookup_page_cgroup(page); |
5488 | if (!mem_cgroup_move_account(page, 1, pc, |
5489 | mc.from, mc.to)) { |
5490 | mc.precharge--; |
5491 | /* we uncharge from mc.from later. */ |
5492 | mc.moved_charge++; |
5493 | } |
5494 | putback_lru_page(page); |
5495 | put: /* get_mctgt_type() gets the page */ |
5496 | put_page(page); |
5497 | break; |
5498 | case MC_TARGET_SWAP: |
5499 | ent = target.ent; |
5500 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
5501 | mc.precharge--; |
5502 | /* we fixup refcnts and charges later. */ |
5503 | mc.moved_swap++; |
5504 | } |
5505 | break; |
5506 | default: |
5507 | break; |
5508 | } |
5509 | } |
5510 | pte_unmap_unlock(pte - 1, ptl); |
5511 | cond_resched(); |
5512 | |
5513 | if (addr != end) { |
5514 | /* |
5515 | * We have consumed all precharges we got in can_attach(). |
5516 | * We try charge one by one, but don't do any additional |
5517 | * charges to mc.to if we have failed in charge once in attach() |
5518 | * phase. |
5519 | */ |
5520 | ret = mem_cgroup_do_precharge(1); |
5521 | if (!ret) |
5522 | goto retry; |
5523 | } |
5524 | |
5525 | return ret; |
5526 | } |
5527 | |
5528 | static void mem_cgroup_move_charge(struct mm_struct *mm) |
5529 | { |
5530 | struct vm_area_struct *vma; |
5531 | |
5532 | lru_add_drain_all(); |
5533 | retry: |
5534 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { |
5535 | /* |
5536 | * Someone who are holding the mmap_sem might be waiting in |
5537 | * waitq. So we cancel all extra charges, wake up all waiters, |
5538 | * and retry. Because we cancel precharges, we might not be able |
5539 | * to move enough charges, but moving charge is a best-effort |
5540 | * feature anyway, so it wouldn't be a big problem. |
5541 | */ |
5542 | __mem_cgroup_clear_mc(); |
5543 | cond_resched(); |
5544 | goto retry; |
5545 | } |
5546 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5547 | int ret; |
5548 | struct mm_walk mem_cgroup_move_charge_walk = { |
5549 | .pmd_entry = mem_cgroup_move_charge_pte_range, |
5550 | .mm = mm, |
5551 | .private = vma, |
5552 | }; |
5553 | if (is_vm_hugetlb_page(vma)) |
5554 | continue; |
5555 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
5556 | &mem_cgroup_move_charge_walk); |
5557 | if (ret) |
5558 | /* |
5559 | * means we have consumed all precharges and failed in |
5560 | * doing additional charge. Just abandon here. |
5561 | */ |
5562 | break; |
5563 | } |
5564 | up_read(&mm->mmap_sem); |
5565 | } |
5566 | |
5567 | static void mem_cgroup_move_task(struct cgroup *cont, |
5568 | struct cgroup_taskset *tset) |
5569 | { |
5570 | struct task_struct *p = cgroup_taskset_first(tset); |
5571 | struct mm_struct *mm = get_task_mm(p); |
5572 | |
5573 | if (mm) { |
5574 | if (mc.to) |
5575 | mem_cgroup_move_charge(mm); |
5576 | mmput(mm); |
5577 | } |
5578 | if (mc.to) |
5579 | mem_cgroup_clear_mc(); |
5580 | } |
5581 | #else /* !CONFIG_MMU */ |
5582 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
5583 | struct cgroup_taskset *tset) |
5584 | { |
5585 | return 0; |
5586 | } |
5587 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
5588 | struct cgroup_taskset *tset) |
5589 | { |
5590 | } |
5591 | static void mem_cgroup_move_task(struct cgroup *cont, |
5592 | struct cgroup_taskset *tset) |
5593 | { |
5594 | } |
5595 | #endif |
5596 | |
5597 | struct cgroup_subsys mem_cgroup_subsys = { |
5598 | .name = "memory", |
5599 | .subsys_id = mem_cgroup_subsys_id, |
5600 | .create = mem_cgroup_create, |
5601 | .pre_destroy = mem_cgroup_pre_destroy, |
5602 | .destroy = mem_cgroup_destroy, |
5603 | .can_attach = mem_cgroup_can_attach, |
5604 | .cancel_attach = mem_cgroup_cancel_attach, |
5605 | .attach = mem_cgroup_move_task, |
5606 | .base_cftypes = mem_cgroup_files, |
5607 | .early_init = 0, |
5608 | .use_id = 1, |
5609 | .__DEPRECATED_clear_css_refs = true, |
5610 | }; |
5611 | |
5612 | #ifdef CONFIG_MEMCG_SWAP |
5613 | static int __init enable_swap_account(char *s) |
5614 | { |
5615 | /* consider enabled if no parameter or 1 is given */ |
5616 | if (!strcmp(s, "1")) |
5617 | really_do_swap_account = 1; |
5618 | else if (!strcmp(s, "0")) |
5619 | really_do_swap_account = 0; |
5620 | return 1; |
5621 | } |
5622 | __setup("swapaccount=", enable_swap_account); |
5623 | |
5624 | #endif |
5625 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9