Root/mm/memcontrol.c

1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES 5
62static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_MEMCG_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_MEMCG_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account 0
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84    /*
85     * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86     */
87    MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88    MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89    MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90    MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91    MEM_CGROUP_STAT_NSTATS,
92};
93
94static const char * const mem_cgroup_stat_names[] = {
95    "cache",
96    "rss",
97    "mapped_file",
98    "swap",
99};
100
101enum mem_cgroup_events_index {
102    MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103    MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104    MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105    MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106    MEM_CGROUP_EVENTS_NSTATS,
107};
108
109static const char * const mem_cgroup_events_names[] = {
110    "pgpgin",
111    "pgpgout",
112    "pgfault",
113    "pgmajfault",
114};
115
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123    MEM_CGROUP_TARGET_THRESH,
124    MEM_CGROUP_TARGET_SOFTLIMIT,
125    MEM_CGROUP_TARGET_NUMAINFO,
126    MEM_CGROUP_NTARGETS,
127};
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
131
132struct mem_cgroup_stat_cpu {
133    long count[MEM_CGROUP_STAT_NSTATS];
134    unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135    unsigned long nr_page_events;
136    unsigned long targets[MEM_CGROUP_NTARGETS];
137};
138
139struct mem_cgroup_reclaim_iter {
140    /* css_id of the last scanned hierarchy member */
141    int position;
142    /* scan generation, increased every round-trip */
143    unsigned int generation;
144};
145
146/*
147 * per-zone information in memory controller.
148 */
149struct mem_cgroup_per_zone {
150    struct lruvec lruvec;
151    unsigned long lru_size[NR_LRU_LISTS];
152
153    struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155    struct rb_node tree_node; /* RB tree node */
156    unsigned long long usage_in_excess;/* Set to the value by which */
157                        /* the soft limit is exceeded*/
158    bool on_tree;
159    struct mem_cgroup *memcg; /* Back pointer, we cannot */
160                        /* use container_of */
161};
162
163struct mem_cgroup_per_node {
164    struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168    struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177    struct rb_root rb_root;
178    spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182    struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186    struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191struct mem_cgroup_threshold {
192    struct eventfd_ctx *eventfd;
193    u64 threshold;
194};
195
196/* For threshold */
197struct mem_cgroup_threshold_ary {
198    /* An array index points to threshold just below or equal to usage. */
199    int current_threshold;
200    /* Size of entries[] */
201    unsigned int size;
202    /* Array of thresholds */
203    struct mem_cgroup_threshold entries[0];
204};
205
206struct mem_cgroup_thresholds {
207    /* Primary thresholds array */
208    struct mem_cgroup_threshold_ary *primary;
209    /*
210     * Spare threshold array.
211     * This is needed to make mem_cgroup_unregister_event() "never fail".
212     * It must be able to store at least primary->size - 1 entries.
213     */
214    struct mem_cgroup_threshold_ary *spare;
215};
216
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219    struct list_head list;
220    struct eventfd_ctx *eventfd;
221};
222
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237struct mem_cgroup {
238    struct cgroup_subsys_state css;
239    /*
240     * the counter to account for memory usage
241     */
242    struct res_counter res;
243
244    union {
245        /*
246         * the counter to account for mem+swap usage.
247         */
248        struct res_counter memsw;
249
250        /*
251         * rcu_freeing is used only when freeing struct mem_cgroup,
252         * so put it into a union to avoid wasting more memory.
253         * It must be disjoint from the css field. It could be
254         * in a union with the res field, but res plays a much
255         * larger part in mem_cgroup life than memsw, and might
256         * be of interest, even at time of free, when debugging.
257         * So share rcu_head with the less interesting memsw.
258         */
259        struct rcu_head rcu_freeing;
260        /*
261         * We also need some space for a worker in deferred freeing.
262         * By the time we call it, rcu_freeing is no longer in use.
263         */
264        struct work_struct work_freeing;
265    };
266
267    /*
268     * Per cgroup active and inactive list, similar to the
269     * per zone LRU lists.
270     */
271    struct mem_cgroup_lru_info info;
272    int last_scanned_node;
273#if MAX_NUMNODES > 1
274    nodemask_t scan_nodes;
275    atomic_t numainfo_events;
276    atomic_t numainfo_updating;
277#endif
278    /*
279     * Should the accounting and control be hierarchical, per subtree?
280     */
281    bool use_hierarchy;
282
283    bool oom_lock;
284    atomic_t under_oom;
285
286    atomic_t refcnt;
287
288    int swappiness;
289    /* OOM-Killer disable */
290    int oom_kill_disable;
291
292    /* set when res.limit == memsw.limit */
293    bool memsw_is_minimum;
294
295    /* protect arrays of thresholds */
296    struct mutex thresholds_lock;
297
298    /* thresholds for memory usage. RCU-protected */
299    struct mem_cgroup_thresholds thresholds;
300
301    /* thresholds for mem+swap usage. RCU-protected */
302    struct mem_cgroup_thresholds memsw_thresholds;
303
304    /* For oom notifier event fd */
305    struct list_head oom_notify;
306
307    /*
308     * Should we move charges of a task when a task is moved into this
309     * mem_cgroup ? And what type of charges should we move ?
310     */
311    unsigned long move_charge_at_immigrate;
312    /*
313     * set > 0 if pages under this cgroup are moving to other cgroup.
314     */
315    atomic_t moving_account;
316    /* taken only while moving_account > 0 */
317    spinlock_t move_lock;
318    /*
319     * percpu counter.
320     */
321    struct mem_cgroup_stat_cpu __percpu *stat;
322    /*
323     * used when a cpu is offlined or other synchronizations
324     * See mem_cgroup_read_stat().
325     */
326    struct mem_cgroup_stat_cpu nocpu_base;
327    spinlock_t pcp_counter_lock;
328
329#ifdef CONFIG_INET
330    struct tcp_memcontrol tcp_mem;
331#endif
332};
333
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
340    MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341    MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342    NR_MOVE_TYPE,
343};
344
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
347    spinlock_t lock; /* for from, to */
348    struct mem_cgroup *from;
349    struct mem_cgroup *to;
350    unsigned long precharge;
351    unsigned long moved_charge;
352    unsigned long moved_swap;
353    struct task_struct *moving_task; /* a task moving charges */
354    wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
356    .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357    .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
359
360static bool move_anon(void)
361{
362    return test_bit(MOVE_CHARGE_TYPE_ANON,
363                    &mc.to->move_charge_at_immigrate);
364}
365
366static bool move_file(void)
367{
368    return test_bit(MOVE_CHARGE_TYPE_FILE,
369                    &mc.to->move_charge_at_immigrate);
370}
371
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379enum charge_type {
380    MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381    MEM_CGROUP_CHARGE_TYPE_ANON,
382    MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
383    MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
384    NR_CHARGE_TYPE,
385};
386
387/* for encoding cft->private value on file */
388#define _MEM (0)
389#define _MEMSWAP (1)
390#define _OOM_TYPE (2)
391#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
392#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
393#define MEMFILE_ATTR(val) ((val) & 0xffff)
394/* Used for OOM nofiier */
395#define OOM_CONTROL (0)
396
397/*
398 * Reclaim flags for mem_cgroup_hierarchical_reclaim
399 */
400#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
401#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
403#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404
405static void mem_cgroup_get(struct mem_cgroup *memcg);
406static void mem_cgroup_put(struct mem_cgroup *memcg);
407
408static inline
409struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
410{
411    return container_of(s, struct mem_cgroup, css);
412}
413
414/* Writing them here to avoid exposing memcg's inner layout */
415#ifdef CONFIG_MEMCG_KMEM
416#include <net/sock.h>
417#include <net/ip.h>
418
419static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
420void sock_update_memcg(struct sock *sk)
421{
422    if (mem_cgroup_sockets_enabled) {
423        struct mem_cgroup *memcg;
424        struct cg_proto *cg_proto;
425
426        BUG_ON(!sk->sk_prot->proto_cgroup);
427
428        /* Socket cloning can throw us here with sk_cgrp already
429         * filled. It won't however, necessarily happen from
430         * process context. So the test for root memcg given
431         * the current task's memcg won't help us in this case.
432         *
433         * Respecting the original socket's memcg is a better
434         * decision in this case.
435         */
436        if (sk->sk_cgrp) {
437            BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
438            mem_cgroup_get(sk->sk_cgrp->memcg);
439            return;
440        }
441
442        rcu_read_lock();
443        memcg = mem_cgroup_from_task(current);
444        cg_proto = sk->sk_prot->proto_cgroup(memcg);
445        if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
446            mem_cgroup_get(memcg);
447            sk->sk_cgrp = cg_proto;
448        }
449        rcu_read_unlock();
450    }
451}
452EXPORT_SYMBOL(sock_update_memcg);
453
454void sock_release_memcg(struct sock *sk)
455{
456    if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
457        struct mem_cgroup *memcg;
458        WARN_ON(!sk->sk_cgrp->memcg);
459        memcg = sk->sk_cgrp->memcg;
460        mem_cgroup_put(memcg);
461    }
462}
463
464#ifdef CONFIG_INET
465struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
466{
467    if (!memcg || mem_cgroup_is_root(memcg))
468        return NULL;
469
470    return &memcg->tcp_mem.cg_proto;
471}
472EXPORT_SYMBOL(tcp_proto_cgroup);
473#endif /* CONFIG_INET */
474#endif /* CONFIG_MEMCG_KMEM */
475
476#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
477static void disarm_sock_keys(struct mem_cgroup *memcg)
478{
479    if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
480        return;
481    static_key_slow_dec(&memcg_socket_limit_enabled);
482}
483#else
484static void disarm_sock_keys(struct mem_cgroup *memcg)
485{
486}
487#endif
488
489static void drain_all_stock_async(struct mem_cgroup *memcg);
490
491static struct mem_cgroup_per_zone *
492mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
493{
494    return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
495}
496
497struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
498{
499    return &memcg->css;
500}
501
502static struct mem_cgroup_per_zone *
503page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
504{
505    int nid = page_to_nid(page);
506    int zid = page_zonenum(page);
507
508    return mem_cgroup_zoneinfo(memcg, nid, zid);
509}
510
511static struct mem_cgroup_tree_per_zone *
512soft_limit_tree_node_zone(int nid, int zid)
513{
514    return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
515}
516
517static struct mem_cgroup_tree_per_zone *
518soft_limit_tree_from_page(struct page *page)
519{
520    int nid = page_to_nid(page);
521    int zid = page_zonenum(page);
522
523    return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
524}
525
526static void
527__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
528                struct mem_cgroup_per_zone *mz,
529                struct mem_cgroup_tree_per_zone *mctz,
530                unsigned long long new_usage_in_excess)
531{
532    struct rb_node **p = &mctz->rb_root.rb_node;
533    struct rb_node *parent = NULL;
534    struct mem_cgroup_per_zone *mz_node;
535
536    if (mz->on_tree)
537        return;
538
539    mz->usage_in_excess = new_usage_in_excess;
540    if (!mz->usage_in_excess)
541        return;
542    while (*p) {
543        parent = *p;
544        mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
545                    tree_node);
546        if (mz->usage_in_excess < mz_node->usage_in_excess)
547            p = &(*p)->rb_left;
548        /*
549         * We can't avoid mem cgroups that are over their soft
550         * limit by the same amount
551         */
552        else if (mz->usage_in_excess >= mz_node->usage_in_excess)
553            p = &(*p)->rb_right;
554    }
555    rb_link_node(&mz->tree_node, parent, p);
556    rb_insert_color(&mz->tree_node, &mctz->rb_root);
557    mz->on_tree = true;
558}
559
560static void
561__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
562                struct mem_cgroup_per_zone *mz,
563                struct mem_cgroup_tree_per_zone *mctz)
564{
565    if (!mz->on_tree)
566        return;
567    rb_erase(&mz->tree_node, &mctz->rb_root);
568    mz->on_tree = false;
569}
570
571static void
572mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
573                struct mem_cgroup_per_zone *mz,
574                struct mem_cgroup_tree_per_zone *mctz)
575{
576    spin_lock(&mctz->lock);
577    __mem_cgroup_remove_exceeded(memcg, mz, mctz);
578    spin_unlock(&mctz->lock);
579}
580
581
582static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
583{
584    unsigned long long excess;
585    struct mem_cgroup_per_zone *mz;
586    struct mem_cgroup_tree_per_zone *mctz;
587    int nid = page_to_nid(page);
588    int zid = page_zonenum(page);
589    mctz = soft_limit_tree_from_page(page);
590
591    /*
592     * Necessary to update all ancestors when hierarchy is used.
593     * because their event counter is not touched.
594     */
595    for (; memcg; memcg = parent_mem_cgroup(memcg)) {
596        mz = mem_cgroup_zoneinfo(memcg, nid, zid);
597        excess = res_counter_soft_limit_excess(&memcg->res);
598        /*
599         * We have to update the tree if mz is on RB-tree or
600         * mem is over its softlimit.
601         */
602        if (excess || mz->on_tree) {
603            spin_lock(&mctz->lock);
604            /* if on-tree, remove it */
605            if (mz->on_tree)
606                __mem_cgroup_remove_exceeded(memcg, mz, mctz);
607            /*
608             * Insert again. mz->usage_in_excess will be updated.
609             * If excess is 0, no tree ops.
610             */
611            __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
612            spin_unlock(&mctz->lock);
613        }
614    }
615}
616
617static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
618{
619    int node, zone;
620    struct mem_cgroup_per_zone *mz;
621    struct mem_cgroup_tree_per_zone *mctz;
622
623    for_each_node(node) {
624        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
625            mz = mem_cgroup_zoneinfo(memcg, node, zone);
626            mctz = soft_limit_tree_node_zone(node, zone);
627            mem_cgroup_remove_exceeded(memcg, mz, mctz);
628        }
629    }
630}
631
632static struct mem_cgroup_per_zone *
633__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
634{
635    struct rb_node *rightmost = NULL;
636    struct mem_cgroup_per_zone *mz;
637
638retry:
639    mz = NULL;
640    rightmost = rb_last(&mctz->rb_root);
641    if (!rightmost)
642        goto done; /* Nothing to reclaim from */
643
644    mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
645    /*
646     * Remove the node now but someone else can add it back,
647     * we will to add it back at the end of reclaim to its correct
648     * position in the tree.
649     */
650    __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
651    if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
652        !css_tryget(&mz->memcg->css))
653        goto retry;
654done:
655    return mz;
656}
657
658static struct mem_cgroup_per_zone *
659mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
660{
661    struct mem_cgroup_per_zone *mz;
662
663    spin_lock(&mctz->lock);
664    mz = __mem_cgroup_largest_soft_limit_node(mctz);
665    spin_unlock(&mctz->lock);
666    return mz;
667}
668
669/*
670 * Implementation Note: reading percpu statistics for memcg.
671 *
672 * Both of vmstat[] and percpu_counter has threshold and do periodic
673 * synchronization to implement "quick" read. There are trade-off between
674 * reading cost and precision of value. Then, we may have a chance to implement
675 * a periodic synchronizion of counter in memcg's counter.
676 *
677 * But this _read() function is used for user interface now. The user accounts
678 * memory usage by memory cgroup and he _always_ requires exact value because
679 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
680 * have to visit all online cpus and make sum. So, for now, unnecessary
681 * synchronization is not implemented. (just implemented for cpu hotplug)
682 *
683 * If there are kernel internal actions which can make use of some not-exact
684 * value, and reading all cpu value can be performance bottleneck in some
685 * common workload, threashold and synchonization as vmstat[] should be
686 * implemented.
687 */
688static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689                 enum mem_cgroup_stat_index idx)
690{
691    long val = 0;
692    int cpu;
693
694    get_online_cpus();
695    for_each_online_cpu(cpu)
696        val += per_cpu(memcg->stat->count[idx], cpu);
697#ifdef CONFIG_HOTPLUG_CPU
698    spin_lock(&memcg->pcp_counter_lock);
699    val += memcg->nocpu_base.count[idx];
700    spin_unlock(&memcg->pcp_counter_lock);
701#endif
702    put_online_cpus();
703    return val;
704}
705
706static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
707                     bool charge)
708{
709    int val = (charge) ? 1 : -1;
710    this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
711}
712
713static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
714                        enum mem_cgroup_events_index idx)
715{
716    unsigned long val = 0;
717    int cpu;
718
719    for_each_online_cpu(cpu)
720        val += per_cpu(memcg->stat->events[idx], cpu);
721#ifdef CONFIG_HOTPLUG_CPU
722    spin_lock(&memcg->pcp_counter_lock);
723    val += memcg->nocpu_base.events[idx];
724    spin_unlock(&memcg->pcp_counter_lock);
725#endif
726    return val;
727}
728
729static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
730                     bool anon, int nr_pages)
731{
732    preempt_disable();
733
734    /*
735     * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
736     * counted as CACHE even if it's on ANON LRU.
737     */
738    if (anon)
739        __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
740                nr_pages);
741    else
742        __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
743                nr_pages);
744
745    /* pagein of a big page is an event. So, ignore page size */
746    if (nr_pages > 0)
747        __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748    else {
749        __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750        nr_pages = -nr_pages; /* for event */
751    }
752
753    __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754
755    preempt_enable();
756}
757
758unsigned long
759mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760{
761    struct mem_cgroup_per_zone *mz;
762
763    mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
764    return mz->lru_size[lru];
765}
766
767static unsigned long
768mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769            unsigned int lru_mask)
770{
771    struct mem_cgroup_per_zone *mz;
772    enum lru_list lru;
773    unsigned long ret = 0;
774
775    mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776
777    for_each_lru(lru) {
778        if (BIT(lru) & lru_mask)
779            ret += mz->lru_size[lru];
780    }
781    return ret;
782}
783
784static unsigned long
785mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786            int nid, unsigned int lru_mask)
787{
788    u64 total = 0;
789    int zid;
790
791    for (zid = 0; zid < MAX_NR_ZONES; zid++)
792        total += mem_cgroup_zone_nr_lru_pages(memcg,
793                        nid, zid, lru_mask);
794
795    return total;
796}
797
798static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799            unsigned int lru_mask)
800{
801    int nid;
802    u64 total = 0;
803
804    for_each_node_state(nid, N_HIGH_MEMORY)
805        total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806    return total;
807}
808
809static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810                       enum mem_cgroup_events_target target)
811{
812    unsigned long val, next;
813
814    val = __this_cpu_read(memcg->stat->nr_page_events);
815    next = __this_cpu_read(memcg->stat->targets[target]);
816    /* from time_after() in jiffies.h */
817    if ((long)next - (long)val < 0) {
818        switch (target) {
819        case MEM_CGROUP_TARGET_THRESH:
820            next = val + THRESHOLDS_EVENTS_TARGET;
821            break;
822        case MEM_CGROUP_TARGET_SOFTLIMIT:
823            next = val + SOFTLIMIT_EVENTS_TARGET;
824            break;
825        case MEM_CGROUP_TARGET_NUMAINFO:
826            next = val + NUMAINFO_EVENTS_TARGET;
827            break;
828        default:
829            break;
830        }
831        __this_cpu_write(memcg->stat->targets[target], next);
832        return true;
833    }
834    return false;
835}
836
837/*
838 * Check events in order.
839 *
840 */
841static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
842{
843    preempt_disable();
844    /* threshold event is triggered in finer grain than soft limit */
845    if (unlikely(mem_cgroup_event_ratelimit(memcg,
846                        MEM_CGROUP_TARGET_THRESH))) {
847        bool do_softlimit;
848        bool do_numainfo __maybe_unused;
849
850        do_softlimit = mem_cgroup_event_ratelimit(memcg,
851                        MEM_CGROUP_TARGET_SOFTLIMIT);
852#if MAX_NUMNODES > 1
853        do_numainfo = mem_cgroup_event_ratelimit(memcg,
854                        MEM_CGROUP_TARGET_NUMAINFO);
855#endif
856        preempt_enable();
857
858        mem_cgroup_threshold(memcg);
859        if (unlikely(do_softlimit))
860            mem_cgroup_update_tree(memcg, page);
861#if MAX_NUMNODES > 1
862        if (unlikely(do_numainfo))
863            atomic_inc(&memcg->numainfo_events);
864#endif
865    } else
866        preempt_enable();
867}
868
869struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
870{
871    return mem_cgroup_from_css(
872        cgroup_subsys_state(cont, mem_cgroup_subsys_id));
873}
874
875struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876{
877    /*
878     * mm_update_next_owner() may clear mm->owner to NULL
879     * if it races with swapoff, page migration, etc.
880     * So this can be called with p == NULL.
881     */
882    if (unlikely(!p))
883        return NULL;
884
885    return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
886}
887
888struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
889{
890    struct mem_cgroup *memcg = NULL;
891
892    if (!mm)
893        return NULL;
894    /*
895     * Because we have no locks, mm->owner's may be being moved to other
896     * cgroup. We use css_tryget() here even if this looks
897     * pessimistic (rather than adding locks here).
898     */
899    rcu_read_lock();
900    do {
901        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
902        if (unlikely(!memcg))
903            break;
904    } while (!css_tryget(&memcg->css));
905    rcu_read_unlock();
906    return memcg;
907}
908
909/**
910 * mem_cgroup_iter - iterate over memory cgroup hierarchy
911 * @root: hierarchy root
912 * @prev: previously returned memcg, NULL on first invocation
913 * @reclaim: cookie for shared reclaim walks, NULL for full walks
914 *
915 * Returns references to children of the hierarchy below @root, or
916 * @root itself, or %NULL after a full round-trip.
917 *
918 * Caller must pass the return value in @prev on subsequent
919 * invocations for reference counting, or use mem_cgroup_iter_break()
920 * to cancel a hierarchy walk before the round-trip is complete.
921 *
922 * Reclaimers can specify a zone and a priority level in @reclaim to
923 * divide up the memcgs in the hierarchy among all concurrent
924 * reclaimers operating on the same zone and priority.
925 */
926struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
927                   struct mem_cgroup *prev,
928                   struct mem_cgroup_reclaim_cookie *reclaim)
929{
930    struct mem_cgroup *memcg = NULL;
931    int id = 0;
932
933    if (mem_cgroup_disabled())
934        return NULL;
935
936    if (!root)
937        root = root_mem_cgroup;
938
939    if (prev && !reclaim)
940        id = css_id(&prev->css);
941
942    if (prev && prev != root)
943        css_put(&prev->css);
944
945    if (!root->use_hierarchy && root != root_mem_cgroup) {
946        if (prev)
947            return NULL;
948        return root;
949    }
950
951    while (!memcg) {
952        struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
953        struct cgroup_subsys_state *css;
954
955        if (reclaim) {
956            int nid = zone_to_nid(reclaim->zone);
957            int zid = zone_idx(reclaim->zone);
958            struct mem_cgroup_per_zone *mz;
959
960            mz = mem_cgroup_zoneinfo(root, nid, zid);
961            iter = &mz->reclaim_iter[reclaim->priority];
962            if (prev && reclaim->generation != iter->generation)
963                return NULL;
964            id = iter->position;
965        }
966
967        rcu_read_lock();
968        css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
969        if (css) {
970            if (css == &root->css || css_tryget(css))
971                memcg = mem_cgroup_from_css(css);
972        } else
973            id = 0;
974        rcu_read_unlock();
975
976        if (reclaim) {
977            iter->position = id;
978            if (!css)
979                iter->generation++;
980            else if (!prev && memcg)
981                reclaim->generation = iter->generation;
982        }
983
984        if (prev && !css)
985            return NULL;
986    }
987    return memcg;
988}
989
990/**
991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992 * @root: hierarchy root
993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 */
995void mem_cgroup_iter_break(struct mem_cgroup *root,
996               struct mem_cgroup *prev)
997{
998    if (!root)
999        root = root_mem_cgroup;
1000    if (prev && prev != root)
1001        css_put(&prev->css);
1002}
1003
1004/*
1005 * Iteration constructs for visiting all cgroups (under a tree). If
1006 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1007 * be used for reference counting.
1008 */
1009#define for_each_mem_cgroup_tree(iter, root) \
1010    for (iter = mem_cgroup_iter(root, NULL, NULL); \
1011         iter != NULL; \
1012         iter = mem_cgroup_iter(root, iter, NULL))
1013
1014#define for_each_mem_cgroup(iter) \
1015    for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1016         iter != NULL; \
1017         iter = mem_cgroup_iter(NULL, iter, NULL))
1018
1019static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1020{
1021    return (memcg == root_mem_cgroup);
1022}
1023
1024void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1025{
1026    struct mem_cgroup *memcg;
1027
1028    if (!mm)
1029        return;
1030
1031    rcu_read_lock();
1032    memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033    if (unlikely(!memcg))
1034        goto out;
1035
1036    switch (idx) {
1037    case PGFAULT:
1038        this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1039        break;
1040    case PGMAJFAULT:
1041        this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1042        break;
1043    default:
1044        BUG();
1045    }
1046out:
1047    rcu_read_unlock();
1048}
1049EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1050
1051/**
1052 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1053 * @zone: zone of the wanted lruvec
1054 * @memcg: memcg of the wanted lruvec
1055 *
1056 * Returns the lru list vector holding pages for the given @zone and
1057 * @mem. This can be the global zone lruvec, if the memory controller
1058 * is disabled.
1059 */
1060struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1061                      struct mem_cgroup *memcg)
1062{
1063    struct mem_cgroup_per_zone *mz;
1064
1065    if (mem_cgroup_disabled())
1066        return &zone->lruvec;
1067
1068    mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1069    return &mz->lruvec;
1070}
1071
1072/*
1073 * Following LRU functions are allowed to be used without PCG_LOCK.
1074 * Operations are called by routine of global LRU independently from memcg.
1075 * What we have to take care of here is validness of pc->mem_cgroup.
1076 *
1077 * Changes to pc->mem_cgroup happens when
1078 * 1. charge
1079 * 2. moving account
1080 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1081 * It is added to LRU before charge.
1082 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1083 * When moving account, the page is not on LRU. It's isolated.
1084 */
1085
1086/**
1087 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1088 * @page: the page
1089 * @zone: zone of the page
1090 */
1091struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1092{
1093    struct mem_cgroup_per_zone *mz;
1094    struct mem_cgroup *memcg;
1095    struct page_cgroup *pc;
1096
1097    if (mem_cgroup_disabled())
1098        return &zone->lruvec;
1099
1100    pc = lookup_page_cgroup(page);
1101    memcg = pc->mem_cgroup;
1102
1103    /*
1104     * Surreptitiously switch any uncharged offlist page to root:
1105     * an uncharged page off lru does nothing to secure
1106     * its former mem_cgroup from sudden removal.
1107     *
1108     * Our caller holds lru_lock, and PageCgroupUsed is updated
1109     * under page_cgroup lock: between them, they make all uses
1110     * of pc->mem_cgroup safe.
1111     */
1112    if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1113        pc->mem_cgroup = memcg = root_mem_cgroup;
1114
1115    mz = page_cgroup_zoneinfo(memcg, page);
1116    return &mz->lruvec;
1117}
1118
1119/**
1120 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1121 * @lruvec: mem_cgroup per zone lru vector
1122 * @lru: index of lru list the page is sitting on
1123 * @nr_pages: positive when adding or negative when removing
1124 *
1125 * This function must be called when a page is added to or removed from an
1126 * lru list.
1127 */
1128void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1129                int nr_pages)
1130{
1131    struct mem_cgroup_per_zone *mz;
1132    unsigned long *lru_size;
1133
1134    if (mem_cgroup_disabled())
1135        return;
1136
1137    mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1138    lru_size = mz->lru_size + lru;
1139    *lru_size += nr_pages;
1140    VM_BUG_ON((long)(*lru_size) < 0);
1141}
1142
1143/*
1144 * Checks whether given mem is same or in the root_mem_cgroup's
1145 * hierarchy subtree
1146 */
1147bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1148                  struct mem_cgroup *memcg)
1149{
1150    if (root_memcg == memcg)
1151        return true;
1152    if (!root_memcg->use_hierarchy || !memcg)
1153        return false;
1154    return css_is_ancestor(&memcg->css, &root_memcg->css);
1155}
1156
1157static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1158                       struct mem_cgroup *memcg)
1159{
1160    bool ret;
1161
1162    rcu_read_lock();
1163    ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1164    rcu_read_unlock();
1165    return ret;
1166}
1167
1168int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1169{
1170    int ret;
1171    struct mem_cgroup *curr = NULL;
1172    struct task_struct *p;
1173
1174    p = find_lock_task_mm(task);
1175    if (p) {
1176        curr = try_get_mem_cgroup_from_mm(p->mm);
1177        task_unlock(p);
1178    } else {
1179        /*
1180         * All threads may have already detached their mm's, but the oom
1181         * killer still needs to detect if they have already been oom
1182         * killed to prevent needlessly killing additional tasks.
1183         */
1184        task_lock(task);
1185        curr = mem_cgroup_from_task(task);
1186        if (curr)
1187            css_get(&curr->css);
1188        task_unlock(task);
1189    }
1190    if (!curr)
1191        return 0;
1192    /*
1193     * We should check use_hierarchy of "memcg" not "curr". Because checking
1194     * use_hierarchy of "curr" here make this function true if hierarchy is
1195     * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1196     * hierarchy(even if use_hierarchy is disabled in "memcg").
1197     */
1198    ret = mem_cgroup_same_or_subtree(memcg, curr);
1199    css_put(&curr->css);
1200    return ret;
1201}
1202
1203int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1204{
1205    unsigned long inactive_ratio;
1206    unsigned long inactive;
1207    unsigned long active;
1208    unsigned long gb;
1209
1210    inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1211    active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1212
1213    gb = (inactive + active) >> (30 - PAGE_SHIFT);
1214    if (gb)
1215        inactive_ratio = int_sqrt(10 * gb);
1216    else
1217        inactive_ratio = 1;
1218
1219    return inactive * inactive_ratio < active;
1220}
1221
1222int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1223{
1224    unsigned long active;
1225    unsigned long inactive;
1226
1227    inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1228    active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1229
1230    return (active > inactive);
1231}
1232
1233#define mem_cgroup_from_res_counter(counter, member) \
1234    container_of(counter, struct mem_cgroup, member)
1235
1236/**
1237 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1238 * @memcg: the memory cgroup
1239 *
1240 * Returns the maximum amount of memory @mem can be charged with, in
1241 * pages.
1242 */
1243static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1244{
1245    unsigned long long margin;
1246
1247    margin = res_counter_margin(&memcg->res);
1248    if (do_swap_account)
1249        margin = min(margin, res_counter_margin(&memcg->memsw));
1250    return margin >> PAGE_SHIFT;
1251}
1252
1253int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1254{
1255    struct cgroup *cgrp = memcg->css.cgroup;
1256
1257    /* root ? */
1258    if (cgrp->parent == NULL)
1259        return vm_swappiness;
1260
1261    return memcg->swappiness;
1262}
1263
1264/*
1265 * memcg->moving_account is used for checking possibility that some thread is
1266 * calling move_account(). When a thread on CPU-A starts moving pages under
1267 * a memcg, other threads should check memcg->moving_account under
1268 * rcu_read_lock(), like this:
1269 *
1270 * CPU-A CPU-B
1271 * rcu_read_lock()
1272 * memcg->moving_account+1 if (memcg->mocing_account)
1273 * take heavy locks.
1274 * synchronize_rcu() update something.
1275 * rcu_read_unlock()
1276 * start move here.
1277 */
1278
1279/* for quick checking without looking up memcg */
1280atomic_t memcg_moving __read_mostly;
1281
1282static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1283{
1284    atomic_inc(&memcg_moving);
1285    atomic_inc(&memcg->moving_account);
1286    synchronize_rcu();
1287}
1288
1289static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1290{
1291    /*
1292     * Now, mem_cgroup_clear_mc() may call this function with NULL.
1293     * We check NULL in callee rather than caller.
1294     */
1295    if (memcg) {
1296        atomic_dec(&memcg_moving);
1297        atomic_dec(&memcg->moving_account);
1298    }
1299}
1300
1301/*
1302 * 2 routines for checking "mem" is under move_account() or not.
1303 *
1304 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1305 * is used for avoiding races in accounting. If true,
1306 * pc->mem_cgroup may be overwritten.
1307 *
1308 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1309 * under hierarchy of moving cgroups. This is for
1310 * waiting at hith-memory prressure caused by "move".
1311 */
1312
1313static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1314{
1315    VM_BUG_ON(!rcu_read_lock_held());
1316    return atomic_read(&memcg->moving_account) > 0;
1317}
1318
1319static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320{
1321    struct mem_cgroup *from;
1322    struct mem_cgroup *to;
1323    bool ret = false;
1324    /*
1325     * Unlike task_move routines, we access mc.to, mc.from not under
1326     * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327     */
1328    spin_lock(&mc.lock);
1329    from = mc.from;
1330    to = mc.to;
1331    if (!from)
1332        goto unlock;
1333
1334    ret = mem_cgroup_same_or_subtree(memcg, from)
1335        || mem_cgroup_same_or_subtree(memcg, to);
1336unlock:
1337    spin_unlock(&mc.lock);
1338    return ret;
1339}
1340
1341static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342{
1343    if (mc.moving_task && current != mc.moving_task) {
1344        if (mem_cgroup_under_move(memcg)) {
1345            DEFINE_WAIT(wait);
1346            prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347            /* moving charge context might have finished. */
1348            if (mc.moving_task)
1349                schedule();
1350            finish_wait(&mc.waitq, &wait);
1351            return true;
1352        }
1353    }
1354    return false;
1355}
1356
1357/*
1358 * Take this lock when
1359 * - a code tries to modify page's memcg while it's USED.
1360 * - a code tries to modify page state accounting in a memcg.
1361 * see mem_cgroup_stolen(), too.
1362 */
1363static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1364                  unsigned long *flags)
1365{
1366    spin_lock_irqsave(&memcg->move_lock, *flags);
1367}
1368
1369static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1370                unsigned long *flags)
1371{
1372    spin_unlock_irqrestore(&memcg->move_lock, *flags);
1373}
1374
1375/**
1376 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377 * @memcg: The memory cgroup that went over limit
1378 * @p: Task that is going to be killed
1379 *
1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 * enabled
1382 */
1383void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1384{
1385    struct cgroup *task_cgrp;
1386    struct cgroup *mem_cgrp;
1387    /*
1388     * Need a buffer in BSS, can't rely on allocations. The code relies
1389     * on the assumption that OOM is serialized for memory controller.
1390     * If this assumption is broken, revisit this code.
1391     */
1392    static char memcg_name[PATH_MAX];
1393    int ret;
1394
1395    if (!memcg || !p)
1396        return;
1397
1398    rcu_read_lock();
1399
1400    mem_cgrp = memcg->css.cgroup;
1401    task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1402
1403    ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1404    if (ret < 0) {
1405        /*
1406         * Unfortunately, we are unable to convert to a useful name
1407         * But we'll still print out the usage information
1408         */
1409        rcu_read_unlock();
1410        goto done;
1411    }
1412    rcu_read_unlock();
1413
1414    printk(KERN_INFO "Task in %s killed", memcg_name);
1415
1416    rcu_read_lock();
1417    ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1418    if (ret < 0) {
1419        rcu_read_unlock();
1420        goto done;
1421    }
1422    rcu_read_unlock();
1423
1424    /*
1425     * Continues from above, so we don't need an KERN_ level
1426     */
1427    printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1428done:
1429
1430    printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1431        res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1432        res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1433        res_counter_read_u64(&memcg->res, RES_FAILCNT));
1434    printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1435        "failcnt %llu\n",
1436        res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1437        res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1438        res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1439}
1440
1441/*
1442 * This function returns the number of memcg under hierarchy tree. Returns
1443 * 1(self count) if no children.
1444 */
1445static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446{
1447    int num = 0;
1448    struct mem_cgroup *iter;
1449
1450    for_each_mem_cgroup_tree(iter, memcg)
1451        num++;
1452    return num;
1453}
1454
1455/*
1456 * Return the memory (and swap, if configured) limit for a memcg.
1457 */
1458static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1459{
1460    u64 limit;
1461    u64 memsw;
1462
1463    limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1464    limit += total_swap_pages << PAGE_SHIFT;
1465
1466    memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1467    /*
1468     * If memsw is finite and limits the amount of swap space available
1469     * to this memcg, return that limit.
1470     */
1471    return min(limit, memsw);
1472}
1473
1474void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1475                  int order)
1476{
1477    struct mem_cgroup *iter;
1478    unsigned long chosen_points = 0;
1479    unsigned long totalpages;
1480    unsigned int points = 0;
1481    struct task_struct *chosen = NULL;
1482
1483    /*
1484     * If current has a pending SIGKILL, then automatically select it. The
1485     * goal is to allow it to allocate so that it may quickly exit and free
1486     * its memory.
1487     */
1488    if (fatal_signal_pending(current)) {
1489        set_thread_flag(TIF_MEMDIE);
1490        return;
1491    }
1492
1493    check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1494    totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1495    for_each_mem_cgroup_tree(iter, memcg) {
1496        struct cgroup *cgroup = iter->css.cgroup;
1497        struct cgroup_iter it;
1498        struct task_struct *task;
1499
1500        cgroup_iter_start(cgroup, &it);
1501        while ((task = cgroup_iter_next(cgroup, &it))) {
1502            switch (oom_scan_process_thread(task, totalpages, NULL,
1503                            false)) {
1504            case OOM_SCAN_SELECT:
1505                if (chosen)
1506                    put_task_struct(chosen);
1507                chosen = task;
1508                chosen_points = ULONG_MAX;
1509                get_task_struct(chosen);
1510                /* fall through */
1511            case OOM_SCAN_CONTINUE:
1512                continue;
1513            case OOM_SCAN_ABORT:
1514                cgroup_iter_end(cgroup, &it);
1515                mem_cgroup_iter_break(memcg, iter);
1516                if (chosen)
1517                    put_task_struct(chosen);
1518                return;
1519            case OOM_SCAN_OK:
1520                break;
1521            };
1522            points = oom_badness(task, memcg, NULL, totalpages);
1523            if (points > chosen_points) {
1524                if (chosen)
1525                    put_task_struct(chosen);
1526                chosen = task;
1527                chosen_points = points;
1528                get_task_struct(chosen);
1529            }
1530        }
1531        cgroup_iter_end(cgroup, &it);
1532    }
1533
1534    if (!chosen)
1535        return;
1536    points = chosen_points * 1000 / totalpages;
1537    oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1538             NULL, "Memory cgroup out of memory");
1539}
1540
1541static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1542                    gfp_t gfp_mask,
1543                    unsigned long flags)
1544{
1545    unsigned long total = 0;
1546    bool noswap = false;
1547    int loop;
1548
1549    if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1550        noswap = true;
1551    if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1552        noswap = true;
1553
1554    for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1555        if (loop)
1556            drain_all_stock_async(memcg);
1557        total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1558        /*
1559         * Allow limit shrinkers, which are triggered directly
1560         * by userspace, to catch signals and stop reclaim
1561         * after minimal progress, regardless of the margin.
1562         */
1563        if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1564            break;
1565        if (mem_cgroup_margin(memcg))
1566            break;
1567        /*
1568         * If nothing was reclaimed after two attempts, there
1569         * may be no reclaimable pages in this hierarchy.
1570         */
1571        if (loop && !total)
1572            break;
1573    }
1574    return total;
1575}
1576
1577/**
1578 * test_mem_cgroup_node_reclaimable
1579 * @memcg: the target memcg
1580 * @nid: the node ID to be checked.
1581 * @noswap : specify true here if the user wants flle only information.
1582 *
1583 * This function returns whether the specified memcg contains any
1584 * reclaimable pages on a node. Returns true if there are any reclaimable
1585 * pages in the node.
1586 */
1587static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1588        int nid, bool noswap)
1589{
1590    if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1591        return true;
1592    if (noswap || !total_swap_pages)
1593        return false;
1594    if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1595        return true;
1596    return false;
1597
1598}
1599#if MAX_NUMNODES > 1
1600
1601/*
1602 * Always updating the nodemask is not very good - even if we have an empty
1603 * list or the wrong list here, we can start from some node and traverse all
1604 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1605 *
1606 */
1607static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1608{
1609    int nid;
1610    /*
1611     * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1612     * pagein/pageout changes since the last update.
1613     */
1614    if (!atomic_read(&memcg->numainfo_events))
1615        return;
1616    if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1617        return;
1618
1619    /* make a nodemask where this memcg uses memory from */
1620    memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1621
1622    for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1623
1624        if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1625            node_clear(nid, memcg->scan_nodes);
1626    }
1627
1628    atomic_set(&memcg->numainfo_events, 0);
1629    atomic_set(&memcg->numainfo_updating, 0);
1630}
1631
1632/*
1633 * Selecting a node where we start reclaim from. Because what we need is just
1634 * reducing usage counter, start from anywhere is O,K. Considering
1635 * memory reclaim from current node, there are pros. and cons.
1636 *
1637 * Freeing memory from current node means freeing memory from a node which
1638 * we'll use or we've used. So, it may make LRU bad. And if several threads
1639 * hit limits, it will see a contention on a node. But freeing from remote
1640 * node means more costs for memory reclaim because of memory latency.
1641 *
1642 * Now, we use round-robin. Better algorithm is welcomed.
1643 */
1644int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1645{
1646    int node;
1647
1648    mem_cgroup_may_update_nodemask(memcg);
1649    node = memcg->last_scanned_node;
1650
1651    node = next_node(node, memcg->scan_nodes);
1652    if (node == MAX_NUMNODES)
1653        node = first_node(memcg->scan_nodes);
1654    /*
1655     * We call this when we hit limit, not when pages are added to LRU.
1656     * No LRU may hold pages because all pages are UNEVICTABLE or
1657     * memcg is too small and all pages are not on LRU. In that case,
1658     * we use curret node.
1659     */
1660    if (unlikely(node == MAX_NUMNODES))
1661        node = numa_node_id();
1662
1663    memcg->last_scanned_node = node;
1664    return node;
1665}
1666
1667/*
1668 * Check all nodes whether it contains reclaimable pages or not.
1669 * For quick scan, we make use of scan_nodes. This will allow us to skip
1670 * unused nodes. But scan_nodes is lazily updated and may not cotain
1671 * enough new information. We need to do double check.
1672 */
1673static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1674{
1675    int nid;
1676
1677    /*
1678     * quick check...making use of scan_node.
1679     * We can skip unused nodes.
1680     */
1681    if (!nodes_empty(memcg->scan_nodes)) {
1682        for (nid = first_node(memcg->scan_nodes);
1683             nid < MAX_NUMNODES;
1684             nid = next_node(nid, memcg->scan_nodes)) {
1685
1686            if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1687                return true;
1688        }
1689    }
1690    /*
1691     * Check rest of nodes.
1692     */
1693    for_each_node_state(nid, N_HIGH_MEMORY) {
1694        if (node_isset(nid, memcg->scan_nodes))
1695            continue;
1696        if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1697            return true;
1698    }
1699    return false;
1700}
1701
1702#else
1703int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1704{
1705    return 0;
1706}
1707
1708static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1709{
1710    return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1711}
1712#endif
1713
1714static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1715                   struct zone *zone,
1716                   gfp_t gfp_mask,
1717                   unsigned long *total_scanned)
1718{
1719    struct mem_cgroup *victim = NULL;
1720    int total = 0;
1721    int loop = 0;
1722    unsigned long excess;
1723    unsigned long nr_scanned;
1724    struct mem_cgroup_reclaim_cookie reclaim = {
1725        .zone = zone,
1726        .priority = 0,
1727    };
1728
1729    excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1730
1731    while (1) {
1732        victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733        if (!victim) {
1734            loop++;
1735            if (loop >= 2) {
1736                /*
1737                 * If we have not been able to reclaim
1738                 * anything, it might because there are
1739                 * no reclaimable pages under this hierarchy
1740                 */
1741                if (!total)
1742                    break;
1743                /*
1744                 * We want to do more targeted reclaim.
1745                 * excess >> 2 is not to excessive so as to
1746                 * reclaim too much, nor too less that we keep
1747                 * coming back to reclaim from this cgroup
1748                 */
1749                if (total >= (excess >> 2) ||
1750                    (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751                    break;
1752            }
1753            continue;
1754        }
1755        if (!mem_cgroup_reclaimable(victim, false))
1756            continue;
1757        total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1758                             zone, &nr_scanned);
1759        *total_scanned += nr_scanned;
1760        if (!res_counter_soft_limit_excess(&root_memcg->res))
1761            break;
1762    }
1763    mem_cgroup_iter_break(root_memcg, victim);
1764    return total;
1765}
1766
1767/*
1768 * Check OOM-Killer is already running under our hierarchy.
1769 * If someone is running, return false.
1770 * Has to be called with memcg_oom_lock
1771 */
1772static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1773{
1774    struct mem_cgroup *iter, *failed = NULL;
1775
1776    for_each_mem_cgroup_tree(iter, memcg) {
1777        if (iter->oom_lock) {
1778            /*
1779             * this subtree of our hierarchy is already locked
1780             * so we cannot give a lock.
1781             */
1782            failed = iter;
1783            mem_cgroup_iter_break(memcg, iter);
1784            break;
1785        } else
1786            iter->oom_lock = true;
1787    }
1788
1789    if (!failed)
1790        return true;
1791
1792    /*
1793     * OK, we failed to lock the whole subtree so we have to clean up
1794     * what we set up to the failing subtree
1795     */
1796    for_each_mem_cgroup_tree(iter, memcg) {
1797        if (iter == failed) {
1798            mem_cgroup_iter_break(memcg, iter);
1799            break;
1800        }
1801        iter->oom_lock = false;
1802    }
1803    return false;
1804}
1805
1806/*
1807 * Has to be called with memcg_oom_lock
1808 */
1809static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1810{
1811    struct mem_cgroup *iter;
1812
1813    for_each_mem_cgroup_tree(iter, memcg)
1814        iter->oom_lock = false;
1815    return 0;
1816}
1817
1818static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1819{
1820    struct mem_cgroup *iter;
1821
1822    for_each_mem_cgroup_tree(iter, memcg)
1823        atomic_inc(&iter->under_oom);
1824}
1825
1826static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1827{
1828    struct mem_cgroup *iter;
1829
1830    /*
1831     * When a new child is created while the hierarchy is under oom,
1832     * mem_cgroup_oom_lock() may not be called. We have to use
1833     * atomic_add_unless() here.
1834     */
1835    for_each_mem_cgroup_tree(iter, memcg)
1836        atomic_add_unless(&iter->under_oom, -1, 0);
1837}
1838
1839static DEFINE_SPINLOCK(memcg_oom_lock);
1840static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1841
1842struct oom_wait_info {
1843    struct mem_cgroup *memcg;
1844    wait_queue_t wait;
1845};
1846
1847static int memcg_oom_wake_function(wait_queue_t *wait,
1848    unsigned mode, int sync, void *arg)
1849{
1850    struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1851    struct mem_cgroup *oom_wait_memcg;
1852    struct oom_wait_info *oom_wait_info;
1853
1854    oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1855    oom_wait_memcg = oom_wait_info->memcg;
1856
1857    /*
1858     * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1859     * Then we can use css_is_ancestor without taking care of RCU.
1860     */
1861    if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1862        && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1863        return 0;
1864    return autoremove_wake_function(wait, mode, sync, arg);
1865}
1866
1867static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1868{
1869    /* for filtering, pass "memcg" as argument. */
1870    __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1871}
1872
1873static void memcg_oom_recover(struct mem_cgroup *memcg)
1874{
1875    if (memcg && atomic_read(&memcg->under_oom))
1876        memcg_wakeup_oom(memcg);
1877}
1878
1879/*
1880 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1881 */
1882static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1883                  int order)
1884{
1885    struct oom_wait_info owait;
1886    bool locked, need_to_kill;
1887
1888    owait.memcg = memcg;
1889    owait.wait.flags = 0;
1890    owait.wait.func = memcg_oom_wake_function;
1891    owait.wait.private = current;
1892    INIT_LIST_HEAD(&owait.wait.task_list);
1893    need_to_kill = true;
1894    mem_cgroup_mark_under_oom(memcg);
1895
1896    /* At first, try to OOM lock hierarchy under memcg.*/
1897    spin_lock(&memcg_oom_lock);
1898    locked = mem_cgroup_oom_lock(memcg);
1899    /*
1900     * Even if signal_pending(), we can't quit charge() loop without
1901     * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902     * under OOM is always welcomed, use TASK_KILLABLE here.
1903     */
1904    prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905    if (!locked || memcg->oom_kill_disable)
1906        need_to_kill = false;
1907    if (locked)
1908        mem_cgroup_oom_notify(memcg);
1909    spin_unlock(&memcg_oom_lock);
1910
1911    if (need_to_kill) {
1912        finish_wait(&memcg_oom_waitq, &owait.wait);
1913        mem_cgroup_out_of_memory(memcg, mask, order);
1914    } else {
1915        schedule();
1916        finish_wait(&memcg_oom_waitq, &owait.wait);
1917    }
1918    spin_lock(&memcg_oom_lock);
1919    if (locked)
1920        mem_cgroup_oom_unlock(memcg);
1921    memcg_wakeup_oom(memcg);
1922    spin_unlock(&memcg_oom_lock);
1923
1924    mem_cgroup_unmark_under_oom(memcg);
1925
1926    if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1927        return false;
1928    /* Give chance to dying process */
1929    schedule_timeout_uninterruptible(1);
1930    return true;
1931}
1932
1933/*
1934 * Currently used to update mapped file statistics, but the routine can be
1935 * generalized to update other statistics as well.
1936 *
1937 * Notes: Race condition
1938 *
1939 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1940 * it tends to be costly. But considering some conditions, we doesn't need
1941 * to do so _always_.
1942 *
1943 * Considering "charge", lock_page_cgroup() is not required because all
1944 * file-stat operations happen after a page is attached to radix-tree. There
1945 * are no race with "charge".
1946 *
1947 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1948 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1949 * if there are race with "uncharge". Statistics itself is properly handled
1950 * by flags.
1951 *
1952 * Considering "move", this is an only case we see a race. To make the race
1953 * small, we check mm->moving_account and detect there are possibility of race
1954 * If there is, we take a lock.
1955 */
1956
1957void __mem_cgroup_begin_update_page_stat(struct page *page,
1958                bool *locked, unsigned long *flags)
1959{
1960    struct mem_cgroup *memcg;
1961    struct page_cgroup *pc;
1962
1963    pc = lookup_page_cgroup(page);
1964again:
1965    memcg = pc->mem_cgroup;
1966    if (unlikely(!memcg || !PageCgroupUsed(pc)))
1967        return;
1968    /*
1969     * If this memory cgroup is not under account moving, we don't
1970     * need to take move_lock_mem_cgroup(). Because we already hold
1971     * rcu_read_lock(), any calls to move_account will be delayed until
1972     * rcu_read_unlock() if mem_cgroup_stolen() == true.
1973     */
1974    if (!mem_cgroup_stolen(memcg))
1975        return;
1976
1977    move_lock_mem_cgroup(memcg, flags);
1978    if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1979        move_unlock_mem_cgroup(memcg, flags);
1980        goto again;
1981    }
1982    *locked = true;
1983}
1984
1985void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1986{
1987    struct page_cgroup *pc = lookup_page_cgroup(page);
1988
1989    /*
1990     * It's guaranteed that pc->mem_cgroup never changes while
1991     * lock is held because a routine modifies pc->mem_cgroup
1992     * should take move_lock_mem_cgroup().
1993     */
1994    move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1995}
1996
1997void mem_cgroup_update_page_stat(struct page *page,
1998                 enum mem_cgroup_page_stat_item idx, int val)
1999{
2000    struct mem_cgroup *memcg;
2001    struct page_cgroup *pc = lookup_page_cgroup(page);
2002    unsigned long uninitialized_var(flags);
2003
2004    if (mem_cgroup_disabled())
2005        return;
2006
2007    memcg = pc->mem_cgroup;
2008    if (unlikely(!memcg || !PageCgroupUsed(pc)))
2009        return;
2010
2011    switch (idx) {
2012    case MEMCG_NR_FILE_MAPPED:
2013        idx = MEM_CGROUP_STAT_FILE_MAPPED;
2014        break;
2015    default:
2016        BUG();
2017    }
2018
2019    this_cpu_add(memcg->stat->count[idx], val);
2020}
2021
2022/*
2023 * size of first charge trial. "32" comes from vmscan.c's magic value.
2024 * TODO: maybe necessary to use big numbers in big irons.
2025 */
2026#define CHARGE_BATCH 32U
2027struct memcg_stock_pcp {
2028    struct mem_cgroup *cached; /* this never be root cgroup */
2029    unsigned int nr_pages;
2030    struct work_struct work;
2031    unsigned long flags;
2032#define FLUSHING_CACHED_CHARGE 0
2033};
2034static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2035static DEFINE_MUTEX(percpu_charge_mutex);
2036
2037/*
2038 * Try to consume stocked charge on this cpu. If success, one page is consumed
2039 * from local stock and true is returned. If the stock is 0 or charges from a
2040 * cgroup which is not current target, returns false. This stock will be
2041 * refilled.
2042 */
2043static bool consume_stock(struct mem_cgroup *memcg)
2044{
2045    struct memcg_stock_pcp *stock;
2046    bool ret = true;
2047
2048    stock = &get_cpu_var(memcg_stock);
2049    if (memcg == stock->cached && stock->nr_pages)
2050        stock->nr_pages--;
2051    else /* need to call res_counter_charge */
2052        ret = false;
2053    put_cpu_var(memcg_stock);
2054    return ret;
2055}
2056
2057/*
2058 * Returns stocks cached in percpu to res_counter and reset cached information.
2059 */
2060static void drain_stock(struct memcg_stock_pcp *stock)
2061{
2062    struct mem_cgroup *old = stock->cached;
2063
2064    if (stock->nr_pages) {
2065        unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2066
2067        res_counter_uncharge(&old->res, bytes);
2068        if (do_swap_account)
2069            res_counter_uncharge(&old->memsw, bytes);
2070        stock->nr_pages = 0;
2071    }
2072    stock->cached = NULL;
2073}
2074
2075/*
2076 * This must be called under preempt disabled or must be called by
2077 * a thread which is pinned to local cpu.
2078 */
2079static void drain_local_stock(struct work_struct *dummy)
2080{
2081    struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2082    drain_stock(stock);
2083    clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2084}
2085
2086/*
2087 * Cache charges(val) which is from res_counter, to local per_cpu area.
2088 * This will be consumed by consume_stock() function, later.
2089 */
2090static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2091{
2092    struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2093
2094    if (stock->cached != memcg) { /* reset if necessary */
2095        drain_stock(stock);
2096        stock->cached = memcg;
2097    }
2098    stock->nr_pages += nr_pages;
2099    put_cpu_var(memcg_stock);
2100}
2101
2102/*
2103 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2104 * of the hierarchy under it. sync flag says whether we should block
2105 * until the work is done.
2106 */
2107static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2108{
2109    int cpu, curcpu;
2110
2111    /* Notify other cpus that system-wide "drain" is running */
2112    get_online_cpus();
2113    curcpu = get_cpu();
2114    for_each_online_cpu(cpu) {
2115        struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2116        struct mem_cgroup *memcg;
2117
2118        memcg = stock->cached;
2119        if (!memcg || !stock->nr_pages)
2120            continue;
2121        if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2122            continue;
2123        if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2124            if (cpu == curcpu)
2125                drain_local_stock(&stock->work);
2126            else
2127                schedule_work_on(cpu, &stock->work);
2128        }
2129    }
2130    put_cpu();
2131
2132    if (!sync)
2133        goto out;
2134
2135    for_each_online_cpu(cpu) {
2136        struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2137        if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2138            flush_work(&stock->work);
2139    }
2140out:
2141     put_online_cpus();
2142}
2143
2144/*
2145 * Tries to drain stocked charges in other cpus. This function is asynchronous
2146 * and just put a work per cpu for draining localy on each cpu. Caller can
2147 * expects some charges will be back to res_counter later but cannot wait for
2148 * it.
2149 */
2150static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2151{
2152    /*
2153     * If someone calls draining, avoid adding more kworker runs.
2154     */
2155    if (!mutex_trylock(&percpu_charge_mutex))
2156        return;
2157    drain_all_stock(root_memcg, false);
2158    mutex_unlock(&percpu_charge_mutex);
2159}
2160
2161/* This is a synchronous drain interface. */
2162static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2163{
2164    /* called when force_empty is called */
2165    mutex_lock(&percpu_charge_mutex);
2166    drain_all_stock(root_memcg, true);
2167    mutex_unlock(&percpu_charge_mutex);
2168}
2169
2170/*
2171 * This function drains percpu counter value from DEAD cpu and
2172 * move it to local cpu. Note that this function can be preempted.
2173 */
2174static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2175{
2176    int i;
2177
2178    spin_lock(&memcg->pcp_counter_lock);
2179    for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2180        long x = per_cpu(memcg->stat->count[i], cpu);
2181
2182        per_cpu(memcg->stat->count[i], cpu) = 0;
2183        memcg->nocpu_base.count[i] += x;
2184    }
2185    for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2186        unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2187
2188        per_cpu(memcg->stat->events[i], cpu) = 0;
2189        memcg->nocpu_base.events[i] += x;
2190    }
2191    spin_unlock(&memcg->pcp_counter_lock);
2192}
2193
2194static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2195                    unsigned long action,
2196                    void *hcpu)
2197{
2198    int cpu = (unsigned long)hcpu;
2199    struct memcg_stock_pcp *stock;
2200    struct mem_cgroup *iter;
2201
2202    if (action == CPU_ONLINE)
2203        return NOTIFY_OK;
2204
2205    if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2206        return NOTIFY_OK;
2207
2208    for_each_mem_cgroup(iter)
2209        mem_cgroup_drain_pcp_counter(iter, cpu);
2210
2211    stock = &per_cpu(memcg_stock, cpu);
2212    drain_stock(stock);
2213    return NOTIFY_OK;
2214}
2215
2216
2217/* See __mem_cgroup_try_charge() for details */
2218enum {
2219    CHARGE_OK, /* success */
2220    CHARGE_RETRY, /* need to retry but retry is not bad */
2221    CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2222    CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2223    CHARGE_OOM_DIE, /* the current is killed because of OOM */
2224};
2225
2226static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2227                unsigned int nr_pages, bool oom_check)
2228{
2229    unsigned long csize = nr_pages * PAGE_SIZE;
2230    struct mem_cgroup *mem_over_limit;
2231    struct res_counter *fail_res;
2232    unsigned long flags = 0;
2233    int ret;
2234
2235    ret = res_counter_charge(&memcg->res, csize, &fail_res);
2236
2237    if (likely(!ret)) {
2238        if (!do_swap_account)
2239            return CHARGE_OK;
2240        ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2241        if (likely(!ret))
2242            return CHARGE_OK;
2243
2244        res_counter_uncharge(&memcg->res, csize);
2245        mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2246        flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2247    } else
2248        mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2249    /*
2250     * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2251     * of regular pages (CHARGE_BATCH), or a single regular page (1).
2252     *
2253     * Never reclaim on behalf of optional batching, retry with a
2254     * single page instead.
2255     */
2256    if (nr_pages == CHARGE_BATCH)
2257        return CHARGE_RETRY;
2258
2259    if (!(gfp_mask & __GFP_WAIT))
2260        return CHARGE_WOULDBLOCK;
2261
2262    ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2263    if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2264        return CHARGE_RETRY;
2265    /*
2266     * Even though the limit is exceeded at this point, reclaim
2267     * may have been able to free some pages. Retry the charge
2268     * before killing the task.
2269     *
2270     * Only for regular pages, though: huge pages are rather
2271     * unlikely to succeed so close to the limit, and we fall back
2272     * to regular pages anyway in case of failure.
2273     */
2274    if (nr_pages == 1 && ret)
2275        return CHARGE_RETRY;
2276
2277    /*
2278     * At task move, charge accounts can be doubly counted. So, it's
2279     * better to wait until the end of task_move if something is going on.
2280     */
2281    if (mem_cgroup_wait_acct_move(mem_over_limit))
2282        return CHARGE_RETRY;
2283
2284    /* If we don't need to call oom-killer at el, return immediately */
2285    if (!oom_check)
2286        return CHARGE_NOMEM;
2287    /* check OOM */
2288    if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2289        return CHARGE_OOM_DIE;
2290
2291    return CHARGE_RETRY;
2292}
2293
2294/*
2295 * __mem_cgroup_try_charge() does
2296 * 1. detect memcg to be charged against from passed *mm and *ptr,
2297 * 2. update res_counter
2298 * 3. call memory reclaim if necessary.
2299 *
2300 * In some special case, if the task is fatal, fatal_signal_pending() or
2301 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2302 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2303 * as possible without any hazards. 2: all pages should have a valid
2304 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2305 * pointer, that is treated as a charge to root_mem_cgroup.
2306 *
2307 * So __mem_cgroup_try_charge() will return
2308 * 0 ... on success, filling *ptr with a valid memcg pointer.
2309 * -ENOMEM ... charge failure because of resource limits.
2310 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2311 *
2312 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2313 * the oom-killer can be invoked.
2314 */
2315static int __mem_cgroup_try_charge(struct mm_struct *mm,
2316                   gfp_t gfp_mask,
2317                   unsigned int nr_pages,
2318                   struct mem_cgroup **ptr,
2319                   bool oom)
2320{
2321    unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322    int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323    struct mem_cgroup *memcg = NULL;
2324    int ret;
2325
2326    /*
2327     * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2328     * in system level. So, allow to go ahead dying process in addition to
2329     * MEMDIE process.
2330     */
2331    if (unlikely(test_thread_flag(TIF_MEMDIE)
2332             || fatal_signal_pending(current)))
2333        goto bypass;
2334
2335    /*
2336     * We always charge the cgroup the mm_struct belongs to.
2337     * The mm_struct's mem_cgroup changes on task migration if the
2338     * thread group leader migrates. It's possible that mm is not
2339     * set, if so charge the root memcg (happens for pagecache usage).
2340     */
2341    if (!*ptr && !mm)
2342        *ptr = root_mem_cgroup;
2343again:
2344    if (*ptr) { /* css should be a valid one */
2345        memcg = *ptr;
2346        VM_BUG_ON(css_is_removed(&memcg->css));
2347        if (mem_cgroup_is_root(memcg))
2348            goto done;
2349        if (nr_pages == 1 && consume_stock(memcg))
2350            goto done;
2351        css_get(&memcg->css);
2352    } else {
2353        struct task_struct *p;
2354
2355        rcu_read_lock();
2356        p = rcu_dereference(mm->owner);
2357        /*
2358         * Because we don't have task_lock(), "p" can exit.
2359         * In that case, "memcg" can point to root or p can be NULL with
2360         * race with swapoff. Then, we have small risk of mis-accouning.
2361         * But such kind of mis-account by race always happens because
2362         * we don't have cgroup_mutex(). It's overkill and we allo that
2363         * small race, here.
2364         * (*) swapoff at el will charge against mm-struct not against
2365         * task-struct. So, mm->owner can be NULL.
2366         */
2367        memcg = mem_cgroup_from_task(p);
2368        if (!memcg)
2369            memcg = root_mem_cgroup;
2370        if (mem_cgroup_is_root(memcg)) {
2371            rcu_read_unlock();
2372            goto done;
2373        }
2374        if (nr_pages == 1 && consume_stock(memcg)) {
2375            /*
2376             * It seems dagerous to access memcg without css_get().
2377             * But considering how consume_stok works, it's not
2378             * necessary. If consume_stock success, some charges
2379             * from this memcg are cached on this cpu. So, we
2380             * don't need to call css_get()/css_tryget() before
2381             * calling consume_stock().
2382             */
2383            rcu_read_unlock();
2384            goto done;
2385        }
2386        /* after here, we may be blocked. we need to get refcnt */
2387        if (!css_tryget(&memcg->css)) {
2388            rcu_read_unlock();
2389            goto again;
2390        }
2391        rcu_read_unlock();
2392    }
2393
2394    do {
2395        bool oom_check;
2396
2397        /* If killed, bypass charge */
2398        if (fatal_signal_pending(current)) {
2399            css_put(&memcg->css);
2400            goto bypass;
2401        }
2402
2403        oom_check = false;
2404        if (oom && !nr_oom_retries) {
2405            oom_check = true;
2406            nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2407        }
2408
2409        ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2410        switch (ret) {
2411        case CHARGE_OK:
2412            break;
2413        case CHARGE_RETRY: /* not in OOM situation but retry */
2414            batch = nr_pages;
2415            css_put(&memcg->css);
2416            memcg = NULL;
2417            goto again;
2418        case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2419            css_put(&memcg->css);
2420            goto nomem;
2421        case CHARGE_NOMEM: /* OOM routine works */
2422            if (!oom) {
2423                css_put(&memcg->css);
2424                goto nomem;
2425            }
2426            /* If oom, we never return -ENOMEM */
2427            nr_oom_retries--;
2428            break;
2429        case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2430            css_put(&memcg->css);
2431            goto bypass;
2432        }
2433    } while (ret != CHARGE_OK);
2434
2435    if (batch > nr_pages)
2436        refill_stock(memcg, batch - nr_pages);
2437    css_put(&memcg->css);
2438done:
2439    *ptr = memcg;
2440    return 0;
2441nomem:
2442    *ptr = NULL;
2443    return -ENOMEM;
2444bypass:
2445    *ptr = root_mem_cgroup;
2446    return -EINTR;
2447}
2448
2449/*
2450 * Somemtimes we have to undo a charge we got by try_charge().
2451 * This function is for that and do uncharge, put css's refcnt.
2452 * gotten by try_charge().
2453 */
2454static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2455                       unsigned int nr_pages)
2456{
2457    if (!mem_cgroup_is_root(memcg)) {
2458        unsigned long bytes = nr_pages * PAGE_SIZE;
2459
2460        res_counter_uncharge(&memcg->res, bytes);
2461        if (do_swap_account)
2462            res_counter_uncharge(&memcg->memsw, bytes);
2463    }
2464}
2465
2466/*
2467 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2468 * This is useful when moving usage to parent cgroup.
2469 */
2470static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2471                    unsigned int nr_pages)
2472{
2473    unsigned long bytes = nr_pages * PAGE_SIZE;
2474
2475    if (mem_cgroup_is_root(memcg))
2476        return;
2477
2478    res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2479    if (do_swap_account)
2480        res_counter_uncharge_until(&memcg->memsw,
2481                        memcg->memsw.parent, bytes);
2482}
2483
2484/*
2485 * A helper function to get mem_cgroup from ID. must be called under
2486 * rcu_read_lock(). The caller must check css_is_removed() or some if
2487 * it's concern. (dropping refcnt from swap can be called against removed
2488 * memcg.)
2489 */
2490static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2491{
2492    struct cgroup_subsys_state *css;
2493
2494    /* ID 0 is unused ID */
2495    if (!id)
2496        return NULL;
2497    css = css_lookup(&mem_cgroup_subsys, id);
2498    if (!css)
2499        return NULL;
2500    return mem_cgroup_from_css(css);
2501}
2502
2503struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2504{
2505    struct mem_cgroup *memcg = NULL;
2506    struct page_cgroup *pc;
2507    unsigned short id;
2508    swp_entry_t ent;
2509
2510    VM_BUG_ON(!PageLocked(page));
2511
2512    pc = lookup_page_cgroup(page);
2513    lock_page_cgroup(pc);
2514    if (PageCgroupUsed(pc)) {
2515        memcg = pc->mem_cgroup;
2516        if (memcg && !css_tryget(&memcg->css))
2517            memcg = NULL;
2518    } else if (PageSwapCache(page)) {
2519        ent.val = page_private(page);
2520        id = lookup_swap_cgroup_id(ent);
2521        rcu_read_lock();
2522        memcg = mem_cgroup_lookup(id);
2523        if (memcg && !css_tryget(&memcg->css))
2524            memcg = NULL;
2525        rcu_read_unlock();
2526    }
2527    unlock_page_cgroup(pc);
2528    return memcg;
2529}
2530
2531static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2532                       struct page *page,
2533                       unsigned int nr_pages,
2534                       enum charge_type ctype,
2535                       bool lrucare)
2536{
2537    struct page_cgroup *pc = lookup_page_cgroup(page);
2538    struct zone *uninitialized_var(zone);
2539    struct lruvec *lruvec;
2540    bool was_on_lru = false;
2541    bool anon;
2542
2543    lock_page_cgroup(pc);
2544    VM_BUG_ON(PageCgroupUsed(pc));
2545    /*
2546     * we don't need page_cgroup_lock about tail pages, becase they are not
2547     * accessed by any other context at this point.
2548     */
2549
2550    /*
2551     * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2552     * may already be on some other mem_cgroup's LRU. Take care of it.
2553     */
2554    if (lrucare) {
2555        zone = page_zone(page);
2556        spin_lock_irq(&zone->lru_lock);
2557        if (PageLRU(page)) {
2558            lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2559            ClearPageLRU(page);
2560            del_page_from_lru_list(page, lruvec, page_lru(page));
2561            was_on_lru = true;
2562        }
2563    }
2564
2565    pc->mem_cgroup = memcg;
2566    /*
2567     * We access a page_cgroup asynchronously without lock_page_cgroup().
2568     * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2569     * is accessed after testing USED bit. To make pc->mem_cgroup visible
2570     * before USED bit, we need memory barrier here.
2571     * See mem_cgroup_add_lru_list(), etc.
2572      */
2573    smp_wmb();
2574    SetPageCgroupUsed(pc);
2575
2576    if (lrucare) {
2577        if (was_on_lru) {
2578            lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2579            VM_BUG_ON(PageLRU(page));
2580            SetPageLRU(page);
2581            add_page_to_lru_list(page, lruvec, page_lru(page));
2582        }
2583        spin_unlock_irq(&zone->lru_lock);
2584    }
2585
2586    if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2587        anon = true;
2588    else
2589        anon = false;
2590
2591    mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2592    unlock_page_cgroup(pc);
2593
2594    /*
2595     * "charge_statistics" updated event counter. Then, check it.
2596     * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2597     * if they exceeds softlimit.
2598     */
2599    memcg_check_events(memcg, page);
2600}
2601
2602#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2603
2604#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2605/*
2606 * Because tail pages are not marked as "used", set it. We're under
2607 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2608 * charge/uncharge will be never happen and move_account() is done under
2609 * compound_lock(), so we don't have to take care of races.
2610 */
2611void mem_cgroup_split_huge_fixup(struct page *head)
2612{
2613    struct page_cgroup *head_pc = lookup_page_cgroup(head);
2614    struct page_cgroup *pc;
2615    int i;
2616
2617    if (mem_cgroup_disabled())
2618        return;
2619    for (i = 1; i < HPAGE_PMD_NR; i++) {
2620        pc = head_pc + i;
2621        pc->mem_cgroup = head_pc->mem_cgroup;
2622        smp_wmb();/* see __commit_charge() */
2623        pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2624    }
2625}
2626#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2627
2628/**
2629 * mem_cgroup_move_account - move account of the page
2630 * @page: the page
2631 * @nr_pages: number of regular pages (>1 for huge pages)
2632 * @pc: page_cgroup of the page.
2633 * @from: mem_cgroup which the page is moved from.
2634 * @to: mem_cgroup which the page is moved to. @from != @to.
2635 *
2636 * The caller must confirm following.
2637 * - page is not on LRU (isolate_page() is useful.)
2638 * - compound_lock is held when nr_pages > 1
2639 *
2640 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2641 * from old cgroup.
2642 */
2643static int mem_cgroup_move_account(struct page *page,
2644                   unsigned int nr_pages,
2645                   struct page_cgroup *pc,
2646                   struct mem_cgroup *from,
2647                   struct mem_cgroup *to)
2648{
2649    unsigned long flags;
2650    int ret;
2651    bool anon = PageAnon(page);
2652
2653    VM_BUG_ON(from == to);
2654    VM_BUG_ON(PageLRU(page));
2655    /*
2656     * The page is isolated from LRU. So, collapse function
2657     * will not handle this page. But page splitting can happen.
2658     * Do this check under compound_page_lock(). The caller should
2659     * hold it.
2660     */
2661    ret = -EBUSY;
2662    if (nr_pages > 1 && !PageTransHuge(page))
2663        goto out;
2664
2665    lock_page_cgroup(pc);
2666
2667    ret = -EINVAL;
2668    if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2669        goto unlock;
2670
2671    move_lock_mem_cgroup(from, &flags);
2672
2673    if (!anon && page_mapped(page)) {
2674        /* Update mapped_file data for mem_cgroup */
2675        preempt_disable();
2676        __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2677        __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2678        preempt_enable();
2679    }
2680    mem_cgroup_charge_statistics(from, anon, -nr_pages);
2681
2682    /* caller should have done css_get */
2683    pc->mem_cgroup = to;
2684    mem_cgroup_charge_statistics(to, anon, nr_pages);
2685    /*
2686     * We charges against "to" which may not have any tasks. Then, "to"
2687     * can be under rmdir(). But in current implementation, caller of
2688     * this function is just force_empty() and move charge, so it's
2689     * guaranteed that "to" is never removed. So, we don't check rmdir
2690     * status here.
2691     */
2692    move_unlock_mem_cgroup(from, &flags);
2693    ret = 0;
2694unlock:
2695    unlock_page_cgroup(pc);
2696    /*
2697     * check events
2698     */
2699    memcg_check_events(to, page);
2700    memcg_check_events(from, page);
2701out:
2702    return ret;
2703}
2704
2705/*
2706 * move charges to its parent.
2707 */
2708
2709static int mem_cgroup_move_parent(struct page *page,
2710                  struct page_cgroup *pc,
2711                  struct mem_cgroup *child)
2712{
2713    struct mem_cgroup *parent;
2714    unsigned int nr_pages;
2715    unsigned long uninitialized_var(flags);
2716    int ret;
2717
2718    /* Is ROOT ? */
2719    if (mem_cgroup_is_root(child))
2720        return -EINVAL;
2721
2722    ret = -EBUSY;
2723    if (!get_page_unless_zero(page))
2724        goto out;
2725    if (isolate_lru_page(page))
2726        goto put;
2727
2728    nr_pages = hpage_nr_pages(page);
2729
2730    parent = parent_mem_cgroup(child);
2731    /*
2732     * If no parent, move charges to root cgroup.
2733     */
2734    if (!parent)
2735        parent = root_mem_cgroup;
2736
2737    if (nr_pages > 1)
2738        flags = compound_lock_irqsave(page);
2739
2740    ret = mem_cgroup_move_account(page, nr_pages,
2741                pc, child, parent);
2742    if (!ret)
2743        __mem_cgroup_cancel_local_charge(child, nr_pages);
2744
2745    if (nr_pages > 1)
2746        compound_unlock_irqrestore(page, flags);
2747    putback_lru_page(page);
2748put:
2749    put_page(page);
2750out:
2751    return ret;
2752}
2753
2754/*
2755 * Charge the memory controller for page usage.
2756 * Return
2757 * 0 if the charge was successful
2758 * < 0 if the cgroup is over its limit
2759 */
2760static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2761                gfp_t gfp_mask, enum charge_type ctype)
2762{
2763    struct mem_cgroup *memcg = NULL;
2764    unsigned int nr_pages = 1;
2765    bool oom = true;
2766    int ret;
2767
2768    if (PageTransHuge(page)) {
2769        nr_pages <<= compound_order(page);
2770        VM_BUG_ON(!PageTransHuge(page));
2771        /*
2772         * Never OOM-kill a process for a huge page. The
2773         * fault handler will fall back to regular pages.
2774         */
2775        oom = false;
2776    }
2777
2778    ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2779    if (ret == -ENOMEM)
2780        return ret;
2781    __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2782    return 0;
2783}
2784
2785int mem_cgroup_newpage_charge(struct page *page,
2786                  struct mm_struct *mm, gfp_t gfp_mask)
2787{
2788    if (mem_cgroup_disabled())
2789        return 0;
2790    VM_BUG_ON(page_mapped(page));
2791    VM_BUG_ON(page->mapping && !PageAnon(page));
2792    VM_BUG_ON(!mm);
2793    return mem_cgroup_charge_common(page, mm, gfp_mask,
2794                    MEM_CGROUP_CHARGE_TYPE_ANON);
2795}
2796
2797/*
2798 * While swap-in, try_charge -> commit or cancel, the page is locked.
2799 * And when try_charge() successfully returns, one refcnt to memcg without
2800 * struct page_cgroup is acquired. This refcnt will be consumed by
2801 * "commit()" or removed by "cancel()"
2802 */
2803static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2804                      struct page *page,
2805                      gfp_t mask,
2806                      struct mem_cgroup **memcgp)
2807{
2808    struct mem_cgroup *memcg;
2809    struct page_cgroup *pc;
2810    int ret;
2811
2812    pc = lookup_page_cgroup(page);
2813    /*
2814     * Every swap fault against a single page tries to charge the
2815     * page, bail as early as possible. shmem_unuse() encounters
2816     * already charged pages, too. The USED bit is protected by
2817     * the page lock, which serializes swap cache removal, which
2818     * in turn serializes uncharging.
2819     */
2820    if (PageCgroupUsed(pc))
2821        return 0;
2822    if (!do_swap_account)
2823        goto charge_cur_mm;
2824    memcg = try_get_mem_cgroup_from_page(page);
2825    if (!memcg)
2826        goto charge_cur_mm;
2827    *memcgp = memcg;
2828    ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2829    css_put(&memcg->css);
2830    if (ret == -EINTR)
2831        ret = 0;
2832    return ret;
2833charge_cur_mm:
2834    ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2835    if (ret == -EINTR)
2836        ret = 0;
2837    return ret;
2838}
2839
2840int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2841                 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2842{
2843    *memcgp = NULL;
2844    if (mem_cgroup_disabled())
2845        return 0;
2846    /*
2847     * A racing thread's fault, or swapoff, may have already
2848     * updated the pte, and even removed page from swap cache: in
2849     * those cases unuse_pte()'s pte_same() test will fail; but
2850     * there's also a KSM case which does need to charge the page.
2851     */
2852    if (!PageSwapCache(page)) {
2853        int ret;
2854
2855        ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2856        if (ret == -EINTR)
2857            ret = 0;
2858        return ret;
2859    }
2860    return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2861}
2862
2863void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2864{
2865    if (mem_cgroup_disabled())
2866        return;
2867    if (!memcg)
2868        return;
2869    __mem_cgroup_cancel_charge(memcg, 1);
2870}
2871
2872static void
2873__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2874                    enum charge_type ctype)
2875{
2876    if (mem_cgroup_disabled())
2877        return;
2878    if (!memcg)
2879        return;
2880    cgroup_exclude_rmdir(&memcg->css);
2881
2882    __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2883    /*
2884     * Now swap is on-memory. This means this page may be
2885     * counted both as mem and swap....double count.
2886     * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2887     * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2888     * may call delete_from_swap_cache() before reach here.
2889     */
2890    if (do_swap_account && PageSwapCache(page)) {
2891        swp_entry_t ent = {.val = page_private(page)};
2892        mem_cgroup_uncharge_swap(ent);
2893    }
2894    /*
2895     * At swapin, we may charge account against cgroup which has no tasks.
2896     * So, rmdir()->pre_destroy() can be called while we do this charge.
2897     * In that case, we need to call pre_destroy() again. check it here.
2898     */
2899    cgroup_release_and_wakeup_rmdir(&memcg->css);
2900}
2901
2902void mem_cgroup_commit_charge_swapin(struct page *page,
2903                     struct mem_cgroup *memcg)
2904{
2905    __mem_cgroup_commit_charge_swapin(page, memcg,
2906                      MEM_CGROUP_CHARGE_TYPE_ANON);
2907}
2908
2909int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2910                gfp_t gfp_mask)
2911{
2912    struct mem_cgroup *memcg = NULL;
2913    enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2914    int ret;
2915
2916    if (mem_cgroup_disabled())
2917        return 0;
2918    if (PageCompound(page))
2919        return 0;
2920
2921    if (!PageSwapCache(page))
2922        ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2923    else { /* page is swapcache/shmem */
2924        ret = __mem_cgroup_try_charge_swapin(mm, page,
2925                             gfp_mask, &memcg);
2926        if (!ret)
2927            __mem_cgroup_commit_charge_swapin(page, memcg, type);
2928    }
2929    return ret;
2930}
2931
2932static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2933                   unsigned int nr_pages,
2934                   const enum charge_type ctype)
2935{
2936    struct memcg_batch_info *batch = NULL;
2937    bool uncharge_memsw = true;
2938
2939    /* If swapout, usage of swap doesn't decrease */
2940    if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2941        uncharge_memsw = false;
2942
2943    batch = &current->memcg_batch;
2944    /*
2945     * In usual, we do css_get() when we remember memcg pointer.
2946     * But in this case, we keep res->usage until end of a series of
2947     * uncharges. Then, it's ok to ignore memcg's refcnt.
2948     */
2949    if (!batch->memcg)
2950        batch->memcg = memcg;
2951    /*
2952     * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2953     * In those cases, all pages freed continuously can be expected to be in
2954     * the same cgroup and we have chance to coalesce uncharges.
2955     * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2956     * because we want to do uncharge as soon as possible.
2957     */
2958
2959    if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2960        goto direct_uncharge;
2961
2962    if (nr_pages > 1)
2963        goto direct_uncharge;
2964
2965    /*
2966     * In typical case, batch->memcg == mem. This means we can
2967     * merge a series of uncharges to an uncharge of res_counter.
2968     * If not, we uncharge res_counter ony by one.
2969     */
2970    if (batch->memcg != memcg)
2971        goto direct_uncharge;
2972    /* remember freed charge and uncharge it later */
2973    batch->nr_pages++;
2974    if (uncharge_memsw)
2975        batch->memsw_nr_pages++;
2976    return;
2977direct_uncharge:
2978    res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2979    if (uncharge_memsw)
2980        res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2981    if (unlikely(batch->memcg != memcg))
2982        memcg_oom_recover(memcg);
2983}
2984
2985/*
2986 * uncharge if !page_mapped(page)
2987 */
2988static struct mem_cgroup *
2989__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2990                 bool end_migration)
2991{
2992    struct mem_cgroup *memcg = NULL;
2993    unsigned int nr_pages = 1;
2994    struct page_cgroup *pc;
2995    bool anon;
2996
2997    if (mem_cgroup_disabled())
2998        return NULL;
2999
3000    VM_BUG_ON(PageSwapCache(page));
3001
3002    if (PageTransHuge(page)) {
3003        nr_pages <<= compound_order(page);
3004        VM_BUG_ON(!PageTransHuge(page));
3005    }
3006    /*
3007     * Check if our page_cgroup is valid
3008     */
3009    pc = lookup_page_cgroup(page);
3010    if (unlikely(!PageCgroupUsed(pc)))
3011        return NULL;
3012
3013    lock_page_cgroup(pc);
3014
3015    memcg = pc->mem_cgroup;
3016
3017    if (!PageCgroupUsed(pc))
3018        goto unlock_out;
3019
3020    anon = PageAnon(page);
3021
3022    switch (ctype) {
3023    case MEM_CGROUP_CHARGE_TYPE_ANON:
3024        /*
3025         * Generally PageAnon tells if it's the anon statistics to be
3026         * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3027         * used before page reached the stage of being marked PageAnon.
3028         */
3029        anon = true;
3030        /* fallthrough */
3031    case MEM_CGROUP_CHARGE_TYPE_DROP:
3032        /* See mem_cgroup_prepare_migration() */
3033        if (page_mapped(page))
3034            goto unlock_out;
3035        /*
3036         * Pages under migration may not be uncharged. But
3037         * end_migration() /must/ be the one uncharging the
3038         * unused post-migration page and so it has to call
3039         * here with the migration bit still set. See the
3040         * res_counter handling below.
3041         */
3042        if (!end_migration && PageCgroupMigration(pc))
3043            goto unlock_out;
3044        break;
3045    case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3046        if (!PageAnon(page)) { /* Shared memory */
3047            if (page->mapping && !page_is_file_cache(page))
3048                goto unlock_out;
3049        } else if (page_mapped(page)) /* Anon */
3050                goto unlock_out;
3051        break;
3052    default:
3053        break;
3054    }
3055
3056    mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3057
3058    ClearPageCgroupUsed(pc);
3059    /*
3060     * pc->mem_cgroup is not cleared here. It will be accessed when it's
3061     * freed from LRU. This is safe because uncharged page is expected not
3062     * to be reused (freed soon). Exception is SwapCache, it's handled by
3063     * special functions.
3064     */
3065
3066    unlock_page_cgroup(pc);
3067    /*
3068     * even after unlock, we have memcg->res.usage here and this memcg
3069     * will never be freed.
3070     */
3071    memcg_check_events(memcg, page);
3072    if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3073        mem_cgroup_swap_statistics(memcg, true);
3074        mem_cgroup_get(memcg);
3075    }
3076    /*
3077     * Migration does not charge the res_counter for the
3078     * replacement page, so leave it alone when phasing out the
3079     * page that is unused after the migration.
3080     */
3081    if (!end_migration && !mem_cgroup_is_root(memcg))
3082        mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3083
3084    return memcg;
3085
3086unlock_out:
3087    unlock_page_cgroup(pc);
3088    return NULL;
3089}
3090
3091void mem_cgroup_uncharge_page(struct page *page)
3092{
3093    /* early check. */
3094    if (page_mapped(page))
3095        return;
3096    VM_BUG_ON(page->mapping && !PageAnon(page));
3097    if (PageSwapCache(page))
3098        return;
3099    __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3100}
3101
3102void mem_cgroup_uncharge_cache_page(struct page *page)
3103{
3104    VM_BUG_ON(page_mapped(page));
3105    VM_BUG_ON(page->mapping);
3106    __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3107}
3108
3109/*
3110 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3111 * In that cases, pages are freed continuously and we can expect pages
3112 * are in the same memcg. All these calls itself limits the number of
3113 * pages freed at once, then uncharge_start/end() is called properly.
3114 * This may be called prural(2) times in a context,
3115 */
3116
3117void mem_cgroup_uncharge_start(void)
3118{
3119    current->memcg_batch.do_batch++;
3120    /* We can do nest. */
3121    if (current->memcg_batch.do_batch == 1) {
3122        current->memcg_batch.memcg = NULL;
3123        current->memcg_batch.nr_pages = 0;
3124        current->memcg_batch.memsw_nr_pages = 0;
3125    }
3126}
3127
3128void mem_cgroup_uncharge_end(void)
3129{
3130    struct memcg_batch_info *batch = &current->memcg_batch;
3131
3132    if (!batch->do_batch)
3133        return;
3134
3135    batch->do_batch--;
3136    if (batch->do_batch) /* If stacked, do nothing. */
3137        return;
3138
3139    if (!batch->memcg)
3140        return;
3141    /*
3142     * This "batch->memcg" is valid without any css_get/put etc...
3143     * bacause we hide charges behind us.
3144     */
3145    if (batch->nr_pages)
3146        res_counter_uncharge(&batch->memcg->res,
3147                     batch->nr_pages * PAGE_SIZE);
3148    if (batch->memsw_nr_pages)
3149        res_counter_uncharge(&batch->memcg->memsw,
3150                     batch->memsw_nr_pages * PAGE_SIZE);
3151    memcg_oom_recover(batch->memcg);
3152    /* forget this pointer (for sanity check) */
3153    batch->memcg = NULL;
3154}
3155
3156#ifdef CONFIG_SWAP
3157/*
3158 * called after __delete_from_swap_cache() and drop "page" account.
3159 * memcg information is recorded to swap_cgroup of "ent"
3160 */
3161void
3162mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3163{
3164    struct mem_cgroup *memcg;
3165    int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3166
3167    if (!swapout) /* this was a swap cache but the swap is unused ! */
3168        ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3169
3170    memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3171
3172    /*
3173     * record memcg information, if swapout && memcg != NULL,
3174     * mem_cgroup_get() was called in uncharge().
3175     */
3176    if (do_swap_account && swapout && memcg)
3177        swap_cgroup_record(ent, css_id(&memcg->css));
3178}
3179#endif
3180
3181#ifdef CONFIG_MEMCG_SWAP
3182/*
3183 * called from swap_entry_free(). remove record in swap_cgroup and
3184 * uncharge "memsw" account.
3185 */
3186void mem_cgroup_uncharge_swap(swp_entry_t ent)
3187{
3188    struct mem_cgroup *memcg;
3189    unsigned short id;
3190
3191    if (!do_swap_account)
3192        return;
3193
3194    id = swap_cgroup_record(ent, 0);
3195    rcu_read_lock();
3196    memcg = mem_cgroup_lookup(id);
3197    if (memcg) {
3198        /*
3199         * We uncharge this because swap is freed.
3200         * This memcg can be obsolete one. We avoid calling css_tryget
3201         */
3202        if (!mem_cgroup_is_root(memcg))
3203            res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3204        mem_cgroup_swap_statistics(memcg, false);
3205        mem_cgroup_put(memcg);
3206    }
3207    rcu_read_unlock();
3208}
3209
3210/**
3211 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3212 * @entry: swap entry to be moved
3213 * @from: mem_cgroup which the entry is moved from
3214 * @to: mem_cgroup which the entry is moved to
3215 *
3216 * It succeeds only when the swap_cgroup's record for this entry is the same
3217 * as the mem_cgroup's id of @from.
3218 *
3219 * Returns 0 on success, -EINVAL on failure.
3220 *
3221 * The caller must have charged to @to, IOW, called res_counter_charge() about
3222 * both res and memsw, and called css_get().
3223 */
3224static int mem_cgroup_move_swap_account(swp_entry_t entry,
3225                struct mem_cgroup *from, struct mem_cgroup *to)
3226{
3227    unsigned short old_id, new_id;
3228
3229    old_id = css_id(&from->css);
3230    new_id = css_id(&to->css);
3231
3232    if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3233        mem_cgroup_swap_statistics(from, false);
3234        mem_cgroup_swap_statistics(to, true);
3235        /*
3236         * This function is only called from task migration context now.
3237         * It postpones res_counter and refcount handling till the end
3238         * of task migration(mem_cgroup_clear_mc()) for performance
3239         * improvement. But we cannot postpone mem_cgroup_get(to)
3240         * because if the process that has been moved to @to does
3241         * swap-in, the refcount of @to might be decreased to 0.
3242         */
3243        mem_cgroup_get(to);
3244        return 0;
3245    }
3246    return -EINVAL;
3247}
3248#else
3249static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250                struct mem_cgroup *from, struct mem_cgroup *to)
3251{
3252    return -EINVAL;
3253}
3254#endif
3255
3256/*
3257 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3258 * page belongs to.
3259 */
3260void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3261                  struct mem_cgroup **memcgp)
3262{
3263    struct mem_cgroup *memcg = NULL;
3264    struct page_cgroup *pc;
3265    enum charge_type ctype;
3266
3267    *memcgp = NULL;
3268
3269    VM_BUG_ON(PageTransHuge(page));
3270    if (mem_cgroup_disabled())
3271        return;
3272
3273    pc = lookup_page_cgroup(page);
3274    lock_page_cgroup(pc);
3275    if (PageCgroupUsed(pc)) {
3276        memcg = pc->mem_cgroup;
3277        css_get(&memcg->css);
3278        /*
3279         * At migrating an anonymous page, its mapcount goes down
3280         * to 0 and uncharge() will be called. But, even if it's fully
3281         * unmapped, migration may fail and this page has to be
3282         * charged again. We set MIGRATION flag here and delay uncharge
3283         * until end_migration() is called
3284         *
3285         * Corner Case Thinking
3286         * A)
3287         * When the old page was mapped as Anon and it's unmap-and-freed
3288         * while migration was ongoing.
3289         * If unmap finds the old page, uncharge() of it will be delayed
3290         * until end_migration(). If unmap finds a new page, it's
3291         * uncharged when it make mapcount to be 1->0. If unmap code
3292         * finds swap_migration_entry, the new page will not be mapped
3293         * and end_migration() will find it(mapcount==0).
3294         *
3295         * B)
3296         * When the old page was mapped but migraion fails, the kernel
3297         * remaps it. A charge for it is kept by MIGRATION flag even
3298         * if mapcount goes down to 0. We can do remap successfully
3299         * without charging it again.
3300         *
3301         * C)
3302         * The "old" page is under lock_page() until the end of
3303         * migration, so, the old page itself will not be swapped-out.
3304         * If the new page is swapped out before end_migraton, our
3305         * hook to usual swap-out path will catch the event.
3306         */
3307        if (PageAnon(page))
3308            SetPageCgroupMigration(pc);
3309    }
3310    unlock_page_cgroup(pc);
3311    /*
3312     * If the page is not charged at this point,
3313     * we return here.
3314     */
3315    if (!memcg)
3316        return;
3317
3318    *memcgp = memcg;
3319    /*
3320     * We charge new page before it's used/mapped. So, even if unlock_page()
3321     * is called before end_migration, we can catch all events on this new
3322     * page. In the case new page is migrated but not remapped, new page's
3323     * mapcount will be finally 0 and we call uncharge in end_migration().
3324     */
3325    if (PageAnon(page))
3326        ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3327    else
3328        ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3329    /*
3330     * The page is committed to the memcg, but it's not actually
3331     * charged to the res_counter since we plan on replacing the
3332     * old one and only one page is going to be left afterwards.
3333     */
3334    __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3335}
3336
3337/* remove redundant charge if migration failed*/
3338void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3339    struct page *oldpage, struct page *newpage, bool migration_ok)
3340{
3341    struct page *used, *unused;
3342    struct page_cgroup *pc;
3343    bool anon;
3344
3345    if (!memcg)
3346        return;
3347    /* blocks rmdir() */
3348    cgroup_exclude_rmdir(&memcg->css);
3349    if (!migration_ok) {
3350        used = oldpage;
3351        unused = newpage;
3352    } else {
3353        used = newpage;
3354        unused = oldpage;
3355    }
3356    anon = PageAnon(used);
3357    __mem_cgroup_uncharge_common(unused,
3358                     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3359                     : MEM_CGROUP_CHARGE_TYPE_CACHE,
3360                     true);
3361    css_put(&memcg->css);
3362    /*
3363     * We disallowed uncharge of pages under migration because mapcount
3364     * of the page goes down to zero, temporarly.
3365     * Clear the flag and check the page should be charged.
3366     */
3367    pc = lookup_page_cgroup(oldpage);
3368    lock_page_cgroup(pc);
3369    ClearPageCgroupMigration(pc);
3370    unlock_page_cgroup(pc);
3371
3372    /*
3373     * If a page is a file cache, radix-tree replacement is very atomic
3374     * and we can skip this check. When it was an Anon page, its mapcount
3375     * goes down to 0. But because we added MIGRATION flage, it's not
3376     * uncharged yet. There are several case but page->mapcount check
3377     * and USED bit check in mem_cgroup_uncharge_page() will do enough
3378     * check. (see prepare_charge() also)
3379     */
3380    if (anon)
3381        mem_cgroup_uncharge_page(used);
3382    /*
3383     * At migration, we may charge account against cgroup which has no
3384     * tasks.
3385     * So, rmdir()->pre_destroy() can be called while we do this charge.
3386     * In that case, we need to call pre_destroy() again. check it here.
3387     */
3388    cgroup_release_and_wakeup_rmdir(&memcg->css);
3389}
3390
3391/*
3392 * At replace page cache, newpage is not under any memcg but it's on
3393 * LRU. So, this function doesn't touch res_counter but handles LRU
3394 * in correct way. Both pages are locked so we cannot race with uncharge.
3395 */
3396void mem_cgroup_replace_page_cache(struct page *oldpage,
3397                  struct page *newpage)
3398{
3399    struct mem_cgroup *memcg = NULL;
3400    struct page_cgroup *pc;
3401    enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3402
3403    if (mem_cgroup_disabled())
3404        return;
3405
3406    pc = lookup_page_cgroup(oldpage);
3407    /* fix accounting on old pages */
3408    lock_page_cgroup(pc);
3409    if (PageCgroupUsed(pc)) {
3410        memcg = pc->mem_cgroup;
3411        mem_cgroup_charge_statistics(memcg, false, -1);
3412        ClearPageCgroupUsed(pc);
3413    }
3414    unlock_page_cgroup(pc);
3415
3416    /*
3417     * When called from shmem_replace_page(), in some cases the
3418     * oldpage has already been charged, and in some cases not.
3419     */
3420    if (!memcg)
3421        return;
3422    /*
3423     * Even if newpage->mapping was NULL before starting replacement,
3424     * the newpage may be on LRU(or pagevec for LRU) already. We lock
3425     * LRU while we overwrite pc->mem_cgroup.
3426     */
3427    __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3428}
3429
3430#ifdef CONFIG_DEBUG_VM
3431static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3432{
3433    struct page_cgroup *pc;
3434
3435    pc = lookup_page_cgroup(page);
3436    /*
3437     * Can be NULL while feeding pages into the page allocator for
3438     * the first time, i.e. during boot or memory hotplug;
3439     * or when mem_cgroup_disabled().
3440     */
3441    if (likely(pc) && PageCgroupUsed(pc))
3442        return pc;
3443    return NULL;
3444}
3445
3446bool mem_cgroup_bad_page_check(struct page *page)
3447{
3448    if (mem_cgroup_disabled())
3449        return false;
3450
3451    return lookup_page_cgroup_used(page) != NULL;
3452}
3453
3454void mem_cgroup_print_bad_page(struct page *page)
3455{
3456    struct page_cgroup *pc;
3457
3458    pc = lookup_page_cgroup_used(page);
3459    if (pc) {
3460        printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3461               pc, pc->flags, pc->mem_cgroup);
3462    }
3463}
3464#endif
3465
3466static DEFINE_MUTEX(set_limit_mutex);
3467
3468static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3469                unsigned long long val)
3470{
3471    int retry_count;
3472    u64 memswlimit, memlimit;
3473    int ret = 0;
3474    int children = mem_cgroup_count_children(memcg);
3475    u64 curusage, oldusage;
3476    int enlarge;
3477
3478    /*
3479     * For keeping hierarchical_reclaim simple, how long we should retry
3480     * is depends on callers. We set our retry-count to be function
3481     * of # of children which we should visit in this loop.
3482     */
3483    retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3484
3485    oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3486
3487    enlarge = 0;
3488    while (retry_count) {
3489        if (signal_pending(current)) {
3490            ret = -EINTR;
3491            break;
3492        }
3493        /*
3494         * Rather than hide all in some function, I do this in
3495         * open coded manner. You see what this really does.
3496         * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3497         */
3498        mutex_lock(&set_limit_mutex);
3499        memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3500        if (memswlimit < val) {
3501            ret = -EINVAL;
3502            mutex_unlock(&set_limit_mutex);
3503            break;
3504        }
3505
3506        memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3507        if (memlimit < val)
3508            enlarge = 1;
3509
3510        ret = res_counter_set_limit(&memcg->res, val);
3511        if (!ret) {
3512            if (memswlimit == val)
3513                memcg->memsw_is_minimum = true;
3514            else
3515                memcg->memsw_is_minimum = false;
3516        }
3517        mutex_unlock(&set_limit_mutex);
3518
3519        if (!ret)
3520            break;
3521
3522        mem_cgroup_reclaim(memcg, GFP_KERNEL,
3523                   MEM_CGROUP_RECLAIM_SHRINK);
3524        curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3525        /* Usage is reduced ? */
3526          if (curusage >= oldusage)
3527            retry_count--;
3528        else
3529            oldusage = curusage;
3530    }
3531    if (!ret && enlarge)
3532        memcg_oom_recover(memcg);
3533
3534    return ret;
3535}
3536
3537static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3538                    unsigned long long val)
3539{
3540    int retry_count;
3541    u64 memlimit, memswlimit, oldusage, curusage;
3542    int children = mem_cgroup_count_children(memcg);
3543    int ret = -EBUSY;
3544    int enlarge = 0;
3545
3546    /* see mem_cgroup_resize_res_limit */
3547     retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3548    oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3549    while (retry_count) {
3550        if (signal_pending(current)) {
3551            ret = -EINTR;
3552            break;
3553        }
3554        /*
3555         * Rather than hide all in some function, I do this in
3556         * open coded manner. You see what this really does.
3557         * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3558         */
3559        mutex_lock(&set_limit_mutex);
3560        memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3561        if (memlimit > val) {
3562            ret = -EINVAL;
3563            mutex_unlock(&set_limit_mutex);
3564            break;
3565        }
3566        memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3567        if (memswlimit < val)
3568            enlarge = 1;
3569        ret = res_counter_set_limit(&memcg->memsw, val);
3570        if (!ret) {
3571            if (memlimit == val)
3572                memcg->memsw_is_minimum = true;
3573            else
3574                memcg->memsw_is_minimum = false;
3575        }
3576        mutex_unlock(&set_limit_mutex);
3577
3578        if (!ret)
3579            break;
3580
3581        mem_cgroup_reclaim(memcg, GFP_KERNEL,
3582                   MEM_CGROUP_RECLAIM_NOSWAP |
3583                   MEM_CGROUP_RECLAIM_SHRINK);
3584        curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3585        /* Usage is reduced ? */
3586        if (curusage >= oldusage)
3587            retry_count--;
3588        else
3589            oldusage = curusage;
3590    }
3591    if (!ret && enlarge)
3592        memcg_oom_recover(memcg);
3593    return ret;
3594}
3595
3596unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3597                        gfp_t gfp_mask,
3598                        unsigned long *total_scanned)
3599{
3600    unsigned long nr_reclaimed = 0;
3601    struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3602    unsigned long reclaimed;
3603    int loop = 0;
3604    struct mem_cgroup_tree_per_zone *mctz;
3605    unsigned long long excess;
3606    unsigned long nr_scanned;
3607
3608    if (order > 0)
3609        return 0;
3610
3611    mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3612    /*
3613     * This loop can run a while, specially if mem_cgroup's continuously
3614     * keep exceeding their soft limit and putting the system under
3615     * pressure
3616     */
3617    do {
3618        if (next_mz)
3619            mz = next_mz;
3620        else
3621            mz = mem_cgroup_largest_soft_limit_node(mctz);
3622        if (!mz)
3623            break;
3624
3625        nr_scanned = 0;
3626        reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3627                            gfp_mask, &nr_scanned);
3628        nr_reclaimed += reclaimed;
3629        *total_scanned += nr_scanned;
3630        spin_lock(&mctz->lock);
3631
3632        /*
3633         * If we failed to reclaim anything from this memory cgroup
3634         * it is time to move on to the next cgroup
3635         */
3636        next_mz = NULL;
3637        if (!reclaimed) {
3638            do {
3639                /*
3640                 * Loop until we find yet another one.
3641                 *
3642                 * By the time we get the soft_limit lock
3643                 * again, someone might have aded the
3644                 * group back on the RB tree. Iterate to
3645                 * make sure we get a different mem.
3646                 * mem_cgroup_largest_soft_limit_node returns
3647                 * NULL if no other cgroup is present on
3648                 * the tree
3649                 */
3650                next_mz =
3651                __mem_cgroup_largest_soft_limit_node(mctz);
3652                if (next_mz == mz)
3653                    css_put(&next_mz->memcg->css);
3654                else /* next_mz == NULL or other memcg */
3655                    break;
3656            } while (1);
3657        }
3658        __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3659        excess = res_counter_soft_limit_excess(&mz->memcg->res);
3660        /*
3661         * One school of thought says that we should not add
3662         * back the node to the tree if reclaim returns 0.
3663         * But our reclaim could return 0, simply because due
3664         * to priority we are exposing a smaller subset of
3665         * memory to reclaim from. Consider this as a longer
3666         * term TODO.
3667         */
3668        /* If excess == 0, no tree ops */
3669        __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3670        spin_unlock(&mctz->lock);
3671        css_put(&mz->memcg->css);
3672        loop++;
3673        /*
3674         * Could not reclaim anything and there are no more
3675         * mem cgroups to try or we seem to be looping without
3676         * reclaiming anything.
3677         */
3678        if (!nr_reclaimed &&
3679            (next_mz == NULL ||
3680            loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3681            break;
3682    } while (!nr_reclaimed);
3683    if (next_mz)
3684        css_put(&next_mz->memcg->css);
3685    return nr_reclaimed;
3686}
3687
3688/*
3689 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3690 * reclaim the pages page themselves - it just removes the page_cgroups.
3691 * Returns true if some page_cgroups were not freed, indicating that the caller
3692 * must retry this operation.
3693 */
3694static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3695                int node, int zid, enum lru_list lru)
3696{
3697    struct mem_cgroup_per_zone *mz;
3698    unsigned long flags, loop;
3699    struct list_head *list;
3700    struct page *busy;
3701    struct zone *zone;
3702
3703    zone = &NODE_DATA(node)->node_zones[zid];
3704    mz = mem_cgroup_zoneinfo(memcg, node, zid);
3705    list = &mz->lruvec.lists[lru];
3706
3707    loop = mz->lru_size[lru];
3708    /* give some margin against EBUSY etc...*/
3709    loop += 256;
3710    busy = NULL;
3711    while (loop--) {
3712        struct page_cgroup *pc;
3713        struct page *page;
3714
3715        spin_lock_irqsave(&zone->lru_lock, flags);
3716        if (list_empty(list)) {
3717            spin_unlock_irqrestore(&zone->lru_lock, flags);
3718            break;
3719        }
3720        page = list_entry(list->prev, struct page, lru);
3721        if (busy == page) {
3722            list_move(&page->lru, list);
3723            busy = NULL;
3724            spin_unlock_irqrestore(&zone->lru_lock, flags);
3725            continue;
3726        }
3727        spin_unlock_irqrestore(&zone->lru_lock, flags);
3728
3729        pc = lookup_page_cgroup(page);
3730
3731        if (mem_cgroup_move_parent(page, pc, memcg)) {
3732            /* found lock contention or "pc" is obsolete. */
3733            busy = page;
3734            cond_resched();
3735        } else
3736            busy = NULL;
3737    }
3738    return !list_empty(list);
3739}
3740
3741/*
3742 * make mem_cgroup's charge to be 0 if there is no task.
3743 * This enables deleting this mem_cgroup.
3744 */
3745static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3746{
3747    int ret;
3748    int node, zid, shrink;
3749    int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3750    struct cgroup *cgrp = memcg->css.cgroup;
3751
3752    css_get(&memcg->css);
3753
3754    shrink = 0;
3755    /* should free all ? */
3756    if (free_all)
3757        goto try_to_free;
3758move_account:
3759    do {
3760        ret = -EBUSY;
3761        if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3762            goto out;
3763        /* This is for making all *used* pages to be on LRU. */
3764        lru_add_drain_all();
3765        drain_all_stock_sync(memcg);
3766        ret = 0;
3767        mem_cgroup_start_move(memcg);
3768        for_each_node_state(node, N_HIGH_MEMORY) {
3769            for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3770                enum lru_list lru;
3771                for_each_lru(lru) {
3772                    ret = mem_cgroup_force_empty_list(memcg,
3773                            node, zid, lru);
3774                    if (ret)
3775                        break;
3776                }
3777            }
3778            if (ret)
3779                break;
3780        }
3781        mem_cgroup_end_move(memcg);
3782        memcg_oom_recover(memcg);
3783        cond_resched();
3784    /* "ret" should also be checked to ensure all lists are empty. */
3785    } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3786out:
3787    css_put(&memcg->css);
3788    return ret;
3789
3790try_to_free:
3791    /* returns EBUSY if there is a task or if we come here twice. */
3792    if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3793        ret = -EBUSY;
3794        goto out;
3795    }
3796    /* we call try-to-free pages for make this cgroup empty */
3797    lru_add_drain_all();
3798    /* try to free all pages in this cgroup */
3799    shrink = 1;
3800    while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3801        int progress;
3802
3803        if (signal_pending(current)) {
3804            ret = -EINTR;
3805            goto out;
3806        }
3807        progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3808                        false);
3809        if (!progress) {
3810            nr_retries--;
3811            /* maybe some writeback is necessary */
3812            congestion_wait(BLK_RW_ASYNC, HZ/10);
3813        }
3814
3815    }
3816    lru_add_drain();
3817    /* try move_account...there may be some *locked* pages. */
3818    goto move_account;
3819}
3820
3821static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3822{
3823    return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3824}
3825
3826
3827static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3828{
3829    return mem_cgroup_from_cont(cont)->use_hierarchy;
3830}
3831
3832static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3833                    u64 val)
3834{
3835    int retval = 0;
3836    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3837    struct cgroup *parent = cont->parent;
3838    struct mem_cgroup *parent_memcg = NULL;
3839
3840    if (parent)
3841        parent_memcg = mem_cgroup_from_cont(parent);
3842
3843    cgroup_lock();
3844
3845    if (memcg->use_hierarchy == val)
3846        goto out;
3847
3848    /*
3849     * If parent's use_hierarchy is set, we can't make any modifications
3850     * in the child subtrees. If it is unset, then the change can
3851     * occur, provided the current cgroup has no children.
3852     *
3853     * For the root cgroup, parent_mem is NULL, we allow value to be
3854     * set if there are no children.
3855     */
3856    if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3857                (val == 1 || val == 0)) {
3858        if (list_empty(&cont->children))
3859            memcg->use_hierarchy = val;
3860        else
3861            retval = -EBUSY;
3862    } else
3863        retval = -EINVAL;
3864
3865out:
3866    cgroup_unlock();
3867
3868    return retval;
3869}
3870
3871
3872static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3873                           enum mem_cgroup_stat_index idx)
3874{
3875    struct mem_cgroup *iter;
3876    long val = 0;
3877
3878    /* Per-cpu values can be negative, use a signed accumulator */
3879    for_each_mem_cgroup_tree(iter, memcg)
3880        val += mem_cgroup_read_stat(iter, idx);
3881
3882    if (val < 0) /* race ? */
3883        val = 0;
3884    return val;
3885}
3886
3887static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3888{
3889    u64 val;
3890
3891    if (!mem_cgroup_is_root(memcg)) {
3892        if (!swap)
3893            return res_counter_read_u64(&memcg->res, RES_USAGE);
3894        else
3895            return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3896    }
3897
3898    val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3899    val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3900
3901    if (swap)
3902        val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3903
3904    return val << PAGE_SHIFT;
3905}
3906
3907static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3908                   struct file *file, char __user *buf,
3909                   size_t nbytes, loff_t *ppos)
3910{
3911    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3912    char str[64];
3913    u64 val;
3914    int type, name, len;
3915
3916    type = MEMFILE_TYPE(cft->private);
3917    name = MEMFILE_ATTR(cft->private);
3918
3919    if (!do_swap_account && type == _MEMSWAP)
3920        return -EOPNOTSUPP;
3921
3922    switch (type) {
3923    case _MEM:
3924        if (name == RES_USAGE)
3925            val = mem_cgroup_usage(memcg, false);
3926        else
3927            val = res_counter_read_u64(&memcg->res, name);
3928        break;
3929    case _MEMSWAP:
3930        if (name == RES_USAGE)
3931            val = mem_cgroup_usage(memcg, true);
3932        else
3933            val = res_counter_read_u64(&memcg->memsw, name);
3934        break;
3935    default:
3936        BUG();
3937    }
3938
3939    len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3940    return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3941}
3942/*
3943 * The user of this function is...
3944 * RES_LIMIT.
3945 */
3946static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3947                const char *buffer)
3948{
3949    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3950    int type, name;
3951    unsigned long long val;
3952    int ret;
3953
3954    type = MEMFILE_TYPE(cft->private);
3955    name = MEMFILE_ATTR(cft->private);
3956
3957    if (!do_swap_account && type == _MEMSWAP)
3958        return -EOPNOTSUPP;
3959
3960    switch (name) {
3961    case RES_LIMIT:
3962        if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3963            ret = -EINVAL;
3964            break;
3965        }
3966        /* This function does all necessary parse...reuse it */
3967        ret = res_counter_memparse_write_strategy(buffer, &val);
3968        if (ret)
3969            break;
3970        if (type == _MEM)
3971            ret = mem_cgroup_resize_limit(memcg, val);
3972        else
3973            ret = mem_cgroup_resize_memsw_limit(memcg, val);
3974        break;
3975    case RES_SOFT_LIMIT:
3976        ret = res_counter_memparse_write_strategy(buffer, &val);
3977        if (ret)
3978            break;
3979        /*
3980         * For memsw, soft limits are hard to implement in terms
3981         * of semantics, for now, we support soft limits for
3982         * control without swap
3983         */
3984        if (type == _MEM)
3985            ret = res_counter_set_soft_limit(&memcg->res, val);
3986        else
3987            ret = -EINVAL;
3988        break;
3989    default:
3990        ret = -EINVAL; /* should be BUG() ? */
3991        break;
3992    }
3993    return ret;
3994}
3995
3996static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3997        unsigned long long *mem_limit, unsigned long long *memsw_limit)
3998{
3999    struct cgroup *cgroup;
4000    unsigned long long min_limit, min_memsw_limit, tmp;
4001
4002    min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4003    min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4004    cgroup = memcg->css.cgroup;
4005    if (!memcg->use_hierarchy)
4006        goto out;
4007
4008    while (cgroup->parent) {
4009        cgroup = cgroup->parent;
4010        memcg = mem_cgroup_from_cont(cgroup);
4011        if (!memcg->use_hierarchy)
4012            break;
4013        tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4014        min_limit = min(min_limit, tmp);
4015        tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4016        min_memsw_limit = min(min_memsw_limit, tmp);
4017    }
4018out:
4019    *mem_limit = min_limit;
4020    *memsw_limit = min_memsw_limit;
4021}
4022
4023static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4024{
4025    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4026    int type, name;
4027
4028    type = MEMFILE_TYPE(event);
4029    name = MEMFILE_ATTR(event);
4030
4031    if (!do_swap_account && type == _MEMSWAP)
4032        return -EOPNOTSUPP;
4033
4034    switch (name) {
4035    case RES_MAX_USAGE:
4036        if (type == _MEM)
4037            res_counter_reset_max(&memcg->res);
4038        else
4039            res_counter_reset_max(&memcg->memsw);
4040        break;
4041    case RES_FAILCNT:
4042        if (type == _MEM)
4043            res_counter_reset_failcnt(&memcg->res);
4044        else
4045            res_counter_reset_failcnt(&memcg->memsw);
4046        break;
4047    }
4048
4049    return 0;
4050}
4051
4052static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4053                    struct cftype *cft)
4054{
4055    return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4056}
4057
4058#ifdef CONFIG_MMU
4059static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4060                    struct cftype *cft, u64 val)
4061{
4062    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4063
4064    if (val >= (1 << NR_MOVE_TYPE))
4065        return -EINVAL;
4066    /*
4067     * We check this value several times in both in can_attach() and
4068     * attach(), so we need cgroup lock to prevent this value from being
4069     * inconsistent.
4070     */
4071    cgroup_lock();
4072    memcg->move_charge_at_immigrate = val;
4073    cgroup_unlock();
4074
4075    return 0;
4076}
4077#else
4078static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4079                    struct cftype *cft, u64 val)
4080{
4081    return -ENOSYS;
4082}
4083#endif
4084
4085#ifdef CONFIG_NUMA
4086static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4087                      struct seq_file *m)
4088{
4089    int nid;
4090    unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4091    unsigned long node_nr;
4092    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4093
4094    total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4095    seq_printf(m, "total=%lu", total_nr);
4096    for_each_node_state(nid, N_HIGH_MEMORY) {
4097        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4098        seq_printf(m, " N%d=%lu", nid, node_nr);
4099    }
4100    seq_putc(m, '\n');
4101
4102    file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4103    seq_printf(m, "file=%lu", file_nr);
4104    for_each_node_state(nid, N_HIGH_MEMORY) {
4105        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4106                LRU_ALL_FILE);
4107        seq_printf(m, " N%d=%lu", nid, node_nr);
4108    }
4109    seq_putc(m, '\n');
4110
4111    anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4112    seq_printf(m, "anon=%lu", anon_nr);
4113    for_each_node_state(nid, N_HIGH_MEMORY) {
4114        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4115                LRU_ALL_ANON);
4116        seq_printf(m, " N%d=%lu", nid, node_nr);
4117    }
4118    seq_putc(m, '\n');
4119
4120    unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4121    seq_printf(m, "unevictable=%lu", unevictable_nr);
4122    for_each_node_state(nid, N_HIGH_MEMORY) {
4123        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4124                BIT(LRU_UNEVICTABLE));
4125        seq_printf(m, " N%d=%lu", nid, node_nr);
4126    }
4127    seq_putc(m, '\n');
4128    return 0;
4129}
4130#endif /* CONFIG_NUMA */
4131
4132static const char * const mem_cgroup_lru_names[] = {
4133    "inactive_anon",
4134    "active_anon",
4135    "inactive_file",
4136    "active_file",
4137    "unevictable",
4138};
4139
4140static inline void mem_cgroup_lru_names_not_uptodate(void)
4141{
4142    BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4143}
4144
4145static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4146                 struct seq_file *m)
4147{
4148    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4149    struct mem_cgroup *mi;
4150    unsigned int i;
4151
4152    for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4153        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4154            continue;
4155        seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4156               mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4157    }
4158
4159    for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4160        seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4161               mem_cgroup_read_events(memcg, i));
4162
4163    for (i = 0; i < NR_LRU_LISTS; i++)
4164        seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4165               mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4166
4167    /* Hierarchical information */
4168    {
4169        unsigned long long limit, memsw_limit;
4170        memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4171        seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4172        if (do_swap_account)
4173            seq_printf(m, "hierarchical_memsw_limit %llu\n",
4174                   memsw_limit);
4175    }
4176
4177    for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4178        long long val = 0;
4179
4180        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4181            continue;
4182        for_each_mem_cgroup_tree(mi, memcg)
4183            val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4184        seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4185    }
4186
4187    for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4188        unsigned long long val = 0;
4189
4190        for_each_mem_cgroup_tree(mi, memcg)
4191            val += mem_cgroup_read_events(mi, i);
4192        seq_printf(m, "total_%s %llu\n",
4193               mem_cgroup_events_names[i], val);
4194    }
4195
4196    for (i = 0; i < NR_LRU_LISTS; i++) {
4197        unsigned long long val = 0;
4198
4199        for_each_mem_cgroup_tree(mi, memcg)
4200            val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4201        seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4202    }
4203
4204#ifdef CONFIG_DEBUG_VM
4205    {
4206        int nid, zid;
4207        struct mem_cgroup_per_zone *mz;
4208        struct zone_reclaim_stat *rstat;
4209        unsigned long recent_rotated[2] = {0, 0};
4210        unsigned long recent_scanned[2] = {0, 0};
4211
4212        for_each_online_node(nid)
4213            for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4214                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4215                rstat = &mz->lruvec.reclaim_stat;
4216
4217                recent_rotated[0] += rstat->recent_rotated[0];
4218                recent_rotated[1] += rstat->recent_rotated[1];
4219                recent_scanned[0] += rstat->recent_scanned[0];
4220                recent_scanned[1] += rstat->recent_scanned[1];
4221            }
4222        seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4223        seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4224        seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4225        seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4226    }
4227#endif
4228
4229    return 0;
4230}
4231
4232static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4233{
4234    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4235
4236    return mem_cgroup_swappiness(memcg);
4237}
4238
4239static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4240                       u64 val)
4241{
4242    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4243    struct mem_cgroup *parent;
4244
4245    if (val > 100)
4246        return -EINVAL;
4247
4248    if (cgrp->parent == NULL)
4249        return -EINVAL;
4250
4251    parent = mem_cgroup_from_cont(cgrp->parent);
4252
4253    cgroup_lock();
4254
4255    /* If under hierarchy, only empty-root can set this value */
4256    if ((parent->use_hierarchy) ||
4257        (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4258        cgroup_unlock();
4259        return -EINVAL;
4260    }
4261
4262    memcg->swappiness = val;
4263
4264    cgroup_unlock();
4265
4266    return 0;
4267}
4268
4269static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4270{
4271    struct mem_cgroup_threshold_ary *t;
4272    u64 usage;
4273    int i;
4274
4275    rcu_read_lock();
4276    if (!swap)
4277        t = rcu_dereference(memcg->thresholds.primary);
4278    else
4279        t = rcu_dereference(memcg->memsw_thresholds.primary);
4280
4281    if (!t)
4282        goto unlock;
4283
4284    usage = mem_cgroup_usage(memcg, swap);
4285
4286    /*
4287     * current_threshold points to threshold just below or equal to usage.
4288     * If it's not true, a threshold was crossed after last
4289     * call of __mem_cgroup_threshold().
4290     */
4291    i = t->current_threshold;
4292
4293    /*
4294     * Iterate backward over array of thresholds starting from
4295     * current_threshold and check if a threshold is crossed.
4296     * If none of thresholds below usage is crossed, we read
4297     * only one element of the array here.
4298     */
4299    for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4300        eventfd_signal(t->entries[i].eventfd, 1);
4301
4302    /* i = current_threshold + 1 */
4303    i++;
4304
4305    /*
4306     * Iterate forward over array of thresholds starting from
4307     * current_threshold+1 and check if a threshold is crossed.
4308     * If none of thresholds above usage is crossed, we read
4309     * only one element of the array here.
4310     */
4311    for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4312        eventfd_signal(t->entries[i].eventfd, 1);
4313
4314    /* Update current_threshold */
4315    t->current_threshold = i - 1;
4316unlock:
4317    rcu_read_unlock();
4318}
4319
4320static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4321{
4322    while (memcg) {
4323        __mem_cgroup_threshold(memcg, false);
4324        if (do_swap_account)
4325            __mem_cgroup_threshold(memcg, true);
4326
4327        memcg = parent_mem_cgroup(memcg);
4328    }
4329}
4330
4331static int compare_thresholds(const void *a, const void *b)
4332{
4333    const struct mem_cgroup_threshold *_a = a;
4334    const struct mem_cgroup_threshold *_b = b;
4335
4336    return _a->threshold - _b->threshold;
4337}
4338
4339static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4340{
4341    struct mem_cgroup_eventfd_list *ev;
4342
4343    list_for_each_entry(ev, &memcg->oom_notify, list)
4344        eventfd_signal(ev->eventfd, 1);
4345    return 0;
4346}
4347
4348static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4349{
4350    struct mem_cgroup *iter;
4351
4352    for_each_mem_cgroup_tree(iter, memcg)
4353        mem_cgroup_oom_notify_cb(iter);
4354}
4355
4356static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4357    struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4358{
4359    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360    struct mem_cgroup_thresholds *thresholds;
4361    struct mem_cgroup_threshold_ary *new;
4362    int type = MEMFILE_TYPE(cft->private);
4363    u64 threshold, usage;
4364    int i, size, ret;
4365
4366    ret = res_counter_memparse_write_strategy(args, &threshold);
4367    if (ret)
4368        return ret;
4369
4370    mutex_lock(&memcg->thresholds_lock);
4371
4372    if (type == _MEM)
4373        thresholds = &memcg->thresholds;
4374    else if (type == _MEMSWAP)
4375        thresholds = &memcg->memsw_thresholds;
4376    else
4377        BUG();
4378
4379    usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4380
4381    /* Check if a threshold crossed before adding a new one */
4382    if (thresholds->primary)
4383        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4384
4385    size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4386
4387    /* Allocate memory for new array of thresholds */
4388    new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4389            GFP_KERNEL);
4390    if (!new) {
4391        ret = -ENOMEM;
4392        goto unlock;
4393    }
4394    new->size = size;
4395
4396    /* Copy thresholds (if any) to new array */
4397    if (thresholds->primary) {
4398        memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4399                sizeof(struct mem_cgroup_threshold));
4400    }
4401
4402    /* Add new threshold */
4403    new->entries[size - 1].eventfd = eventfd;
4404    new->entries[size - 1].threshold = threshold;
4405
4406    /* Sort thresholds. Registering of new threshold isn't time-critical */
4407    sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4408            compare_thresholds, NULL);
4409
4410    /* Find current threshold */
4411    new->current_threshold = -1;
4412    for (i = 0; i < size; i++) {
4413        if (new->entries[i].threshold <= usage) {
4414            /*
4415             * new->current_threshold will not be used until
4416             * rcu_assign_pointer(), so it's safe to increment
4417             * it here.
4418             */
4419            ++new->current_threshold;
4420        } else
4421            break;
4422    }
4423
4424    /* Free old spare buffer and save old primary buffer as spare */
4425    kfree(thresholds->spare);
4426    thresholds->spare = thresholds->primary;
4427
4428    rcu_assign_pointer(thresholds->primary, new);
4429
4430    /* To be sure that nobody uses thresholds */
4431    synchronize_rcu();
4432
4433unlock:
4434    mutex_unlock(&memcg->thresholds_lock);
4435
4436    return ret;
4437}
4438
4439static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4440    struct cftype *cft, struct eventfd_ctx *eventfd)
4441{
4442    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4443    struct mem_cgroup_thresholds *thresholds;
4444    struct mem_cgroup_threshold_ary *new;
4445    int type = MEMFILE_TYPE(cft->private);
4446    u64 usage;
4447    int i, j, size;
4448
4449    mutex_lock(&memcg->thresholds_lock);
4450    if (type == _MEM)
4451        thresholds = &memcg->thresholds;
4452    else if (type == _MEMSWAP)
4453        thresholds = &memcg->memsw_thresholds;
4454    else
4455        BUG();
4456
4457    if (!thresholds->primary)
4458        goto unlock;
4459
4460    usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4461
4462    /* Check if a threshold crossed before removing */
4463    __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4464
4465    /* Calculate new number of threshold */
4466    size = 0;
4467    for (i = 0; i < thresholds->primary->size; i++) {
4468        if (thresholds->primary->entries[i].eventfd != eventfd)
4469            size++;
4470    }
4471
4472    new = thresholds->spare;
4473
4474    /* Set thresholds array to NULL if we don't have thresholds */
4475    if (!size) {
4476        kfree(new);
4477        new = NULL;
4478        goto swap_buffers;
4479    }
4480
4481    new->size = size;
4482
4483    /* Copy thresholds and find current threshold */
4484    new->current_threshold = -1;
4485    for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4486        if (thresholds->primary->entries[i].eventfd == eventfd)
4487            continue;
4488
4489        new->entries[j] = thresholds->primary->entries[i];
4490        if (new->entries[j].threshold <= usage) {
4491            /*
4492             * new->current_threshold will not be used
4493             * until rcu_assign_pointer(), so it's safe to increment
4494             * it here.
4495             */
4496            ++new->current_threshold;
4497        }
4498        j++;
4499    }
4500
4501swap_buffers:
4502    /* Swap primary and spare array */
4503    thresholds->spare = thresholds->primary;
4504    /* If all events are unregistered, free the spare array */
4505    if (!new) {
4506        kfree(thresholds->spare);
4507        thresholds->spare = NULL;
4508    }
4509
4510    rcu_assign_pointer(thresholds->primary, new);
4511
4512    /* To be sure that nobody uses thresholds */
4513    synchronize_rcu();
4514unlock:
4515    mutex_unlock(&memcg->thresholds_lock);
4516}
4517
4518static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4519    struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4520{
4521    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4522    struct mem_cgroup_eventfd_list *event;
4523    int type = MEMFILE_TYPE(cft->private);
4524
4525    BUG_ON(type != _OOM_TYPE);
4526    event = kmalloc(sizeof(*event), GFP_KERNEL);
4527    if (!event)
4528        return -ENOMEM;
4529
4530    spin_lock(&memcg_oom_lock);
4531
4532    event->eventfd = eventfd;
4533    list_add(&event->list, &memcg->oom_notify);
4534
4535    /* already in OOM ? */
4536    if (atomic_read(&memcg->under_oom))
4537        eventfd_signal(eventfd, 1);
4538    spin_unlock(&memcg_oom_lock);
4539
4540    return 0;
4541}
4542
4543static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4544    struct cftype *cft, struct eventfd_ctx *eventfd)
4545{
4546    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4547    struct mem_cgroup_eventfd_list *ev, *tmp;
4548    int type = MEMFILE_TYPE(cft->private);
4549
4550    BUG_ON(type != _OOM_TYPE);
4551
4552    spin_lock(&memcg_oom_lock);
4553
4554    list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4555        if (ev->eventfd == eventfd) {
4556            list_del(&ev->list);
4557            kfree(ev);
4558        }
4559    }
4560
4561    spin_unlock(&memcg_oom_lock);
4562}
4563
4564static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4565    struct cftype *cft, struct cgroup_map_cb *cb)
4566{
4567    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4568
4569    cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4570
4571    if (atomic_read(&memcg->under_oom))
4572        cb->fill(cb, "under_oom", 1);
4573    else
4574        cb->fill(cb, "under_oom", 0);
4575    return 0;
4576}
4577
4578static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4579    struct cftype *cft, u64 val)
4580{
4581    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4582    struct mem_cgroup *parent;
4583
4584    /* cannot set to root cgroup and only 0 and 1 are allowed */
4585    if (!cgrp->parent || !((val == 0) || (val == 1)))
4586        return -EINVAL;
4587
4588    parent = mem_cgroup_from_cont(cgrp->parent);
4589
4590    cgroup_lock();
4591    /* oom-kill-disable is a flag for subhierarchy. */
4592    if ((parent->use_hierarchy) ||
4593        (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4594        cgroup_unlock();
4595        return -EINVAL;
4596    }
4597    memcg->oom_kill_disable = val;
4598    if (!val)
4599        memcg_oom_recover(memcg);
4600    cgroup_unlock();
4601    return 0;
4602}
4603
4604#ifdef CONFIG_MEMCG_KMEM
4605static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4606{
4607    return mem_cgroup_sockets_init(memcg, ss);
4608};
4609
4610static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4611{
4612    mem_cgroup_sockets_destroy(memcg);
4613}
4614#else
4615static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4616{
4617    return 0;
4618}
4619
4620static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4621{
4622}
4623#endif
4624
4625static struct cftype mem_cgroup_files[] = {
4626    {
4627        .name = "usage_in_bytes",
4628        .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4629        .read = mem_cgroup_read,
4630        .register_event = mem_cgroup_usage_register_event,
4631        .unregister_event = mem_cgroup_usage_unregister_event,
4632    },
4633    {
4634        .name = "max_usage_in_bytes",
4635        .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4636        .trigger = mem_cgroup_reset,
4637        .read = mem_cgroup_read,
4638    },
4639    {
4640        .name = "limit_in_bytes",
4641        .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4642        .write_string = mem_cgroup_write,
4643        .read = mem_cgroup_read,
4644    },
4645    {
4646        .name = "soft_limit_in_bytes",
4647        .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4648        .write_string = mem_cgroup_write,
4649        .read = mem_cgroup_read,
4650    },
4651    {
4652        .name = "failcnt",
4653        .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4654        .trigger = mem_cgroup_reset,
4655        .read = mem_cgroup_read,
4656    },
4657    {
4658        .name = "stat",
4659        .read_seq_string = memcg_stat_show,
4660    },
4661    {
4662        .name = "force_empty",
4663        .trigger = mem_cgroup_force_empty_write,
4664    },
4665    {
4666        .name = "use_hierarchy",
4667        .write_u64 = mem_cgroup_hierarchy_write,
4668        .read_u64 = mem_cgroup_hierarchy_read,
4669    },
4670    {
4671        .name = "swappiness",
4672        .read_u64 = mem_cgroup_swappiness_read,
4673        .write_u64 = mem_cgroup_swappiness_write,
4674    },
4675    {
4676        .name = "move_charge_at_immigrate",
4677        .read_u64 = mem_cgroup_move_charge_read,
4678        .write_u64 = mem_cgroup_move_charge_write,
4679    },
4680    {
4681        .name = "oom_control",
4682        .read_map = mem_cgroup_oom_control_read,
4683        .write_u64 = mem_cgroup_oom_control_write,
4684        .register_event = mem_cgroup_oom_register_event,
4685        .unregister_event = mem_cgroup_oom_unregister_event,
4686        .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4687    },
4688#ifdef CONFIG_NUMA
4689    {
4690        .name = "numa_stat",
4691        .read_seq_string = memcg_numa_stat_show,
4692    },
4693#endif
4694#ifdef CONFIG_MEMCG_SWAP
4695    {
4696        .name = "memsw.usage_in_bytes",
4697        .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4698        .read = mem_cgroup_read,
4699        .register_event = mem_cgroup_usage_register_event,
4700        .unregister_event = mem_cgroup_usage_unregister_event,
4701    },
4702    {
4703        .name = "memsw.max_usage_in_bytes",
4704        .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4705        .trigger = mem_cgroup_reset,
4706        .read = mem_cgroup_read,
4707    },
4708    {
4709        .name = "memsw.limit_in_bytes",
4710        .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4711        .write_string = mem_cgroup_write,
4712        .read = mem_cgroup_read,
4713    },
4714    {
4715        .name = "memsw.failcnt",
4716        .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4717        .trigger = mem_cgroup_reset,
4718        .read = mem_cgroup_read,
4719    },
4720#endif
4721    { }, /* terminate */
4722};
4723
4724static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4725{
4726    struct mem_cgroup_per_node *pn;
4727    struct mem_cgroup_per_zone *mz;
4728    int zone, tmp = node;
4729    /*
4730     * This routine is called against possible nodes.
4731     * But it's BUG to call kmalloc() against offline node.
4732     *
4733     * TODO: this routine can waste much memory for nodes which will
4734     * never be onlined. It's better to use memory hotplug callback
4735     * function.
4736     */
4737    if (!node_state(node, N_NORMAL_MEMORY))
4738        tmp = -1;
4739    pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4740    if (!pn)
4741        return 1;
4742
4743    for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4744        mz = &pn->zoneinfo[zone];
4745        lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4746        mz->usage_in_excess = 0;
4747        mz->on_tree = false;
4748        mz->memcg = memcg;
4749    }
4750    memcg->info.nodeinfo[node] = pn;
4751    return 0;
4752}
4753
4754static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4755{
4756    kfree(memcg->info.nodeinfo[node]);
4757}
4758
4759static struct mem_cgroup *mem_cgroup_alloc(void)
4760{
4761    struct mem_cgroup *memcg;
4762    int size = sizeof(struct mem_cgroup);
4763
4764    /* Can be very big if MAX_NUMNODES is very big */
4765    if (size < PAGE_SIZE)
4766        memcg = kzalloc(size, GFP_KERNEL);
4767    else
4768        memcg = vzalloc(size);
4769
4770    if (!memcg)
4771        return NULL;
4772
4773    memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4774    if (!memcg->stat)
4775        goto out_free;
4776    spin_lock_init(&memcg->pcp_counter_lock);
4777    return memcg;
4778
4779out_free:
4780    if (size < PAGE_SIZE)
4781        kfree(memcg);
4782    else
4783        vfree(memcg);
4784    return NULL;
4785}
4786
4787/*
4788 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4789 * but in process context. The work_freeing structure is overlaid
4790 * on the rcu_freeing structure, which itself is overlaid on memsw.
4791 */
4792static void free_work(struct work_struct *work)
4793{
4794    struct mem_cgroup *memcg;
4795    int size = sizeof(struct mem_cgroup);
4796
4797    memcg = container_of(work, struct mem_cgroup, work_freeing);
4798    /*
4799     * We need to make sure that (at least for now), the jump label
4800     * destruction code runs outside of the cgroup lock. This is because
4801     * get_online_cpus(), which is called from the static_branch update,
4802     * can't be called inside the cgroup_lock. cpusets are the ones
4803     * enforcing this dependency, so if they ever change, we might as well.
4804     *
4805     * schedule_work() will guarantee this happens. Be careful if you need
4806     * to move this code around, and make sure it is outside
4807     * the cgroup_lock.
4808     */
4809    disarm_sock_keys(memcg);
4810    if (size < PAGE_SIZE)
4811        kfree(memcg);
4812    else
4813        vfree(memcg);
4814}
4815
4816static void free_rcu(struct rcu_head *rcu_head)
4817{
4818    struct mem_cgroup *memcg;
4819
4820    memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4821    INIT_WORK(&memcg->work_freeing, free_work);
4822    schedule_work(&memcg->work_freeing);
4823}
4824
4825/*
4826 * At destroying mem_cgroup, references from swap_cgroup can remain.
4827 * (scanning all at force_empty is too costly...)
4828 *
4829 * Instead of clearing all references at force_empty, we remember
4830 * the number of reference from swap_cgroup and free mem_cgroup when
4831 * it goes down to 0.
4832 *
4833 * Removal of cgroup itself succeeds regardless of refs from swap.
4834 */
4835
4836static void __mem_cgroup_free(struct mem_cgroup *memcg)
4837{
4838    int node;
4839
4840    mem_cgroup_remove_from_trees(memcg);
4841    free_css_id(&mem_cgroup_subsys, &memcg->css);
4842
4843    for_each_node(node)
4844        free_mem_cgroup_per_zone_info(memcg, node);
4845
4846    free_percpu(memcg->stat);
4847    call_rcu(&memcg->rcu_freeing, free_rcu);
4848}
4849
4850static void mem_cgroup_get(struct mem_cgroup *memcg)
4851{
4852    atomic_inc(&memcg->refcnt);
4853}
4854
4855static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4856{
4857    if (atomic_sub_and_test(count, &memcg->refcnt)) {
4858        struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4859        __mem_cgroup_free(memcg);
4860        if (parent)
4861            mem_cgroup_put(parent);
4862    }
4863}
4864
4865static void mem_cgroup_put(struct mem_cgroup *memcg)
4866{
4867    __mem_cgroup_put(memcg, 1);
4868}
4869
4870/*
4871 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4872 */
4873struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4874{
4875    if (!memcg->res.parent)
4876        return NULL;
4877    return mem_cgroup_from_res_counter(memcg->res.parent, res);
4878}
4879EXPORT_SYMBOL(parent_mem_cgroup);
4880
4881#ifdef CONFIG_MEMCG_SWAP
4882static void __init enable_swap_cgroup(void)
4883{
4884    if (!mem_cgroup_disabled() && really_do_swap_account)
4885        do_swap_account = 1;
4886}
4887#else
4888static void __init enable_swap_cgroup(void)
4889{
4890}
4891#endif
4892
4893static int mem_cgroup_soft_limit_tree_init(void)
4894{
4895    struct mem_cgroup_tree_per_node *rtpn;
4896    struct mem_cgroup_tree_per_zone *rtpz;
4897    int tmp, node, zone;
4898
4899    for_each_node(node) {
4900        tmp = node;
4901        if (!node_state(node, N_NORMAL_MEMORY))
4902            tmp = -1;
4903        rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4904        if (!rtpn)
4905            goto err_cleanup;
4906
4907        soft_limit_tree.rb_tree_per_node[node] = rtpn;
4908
4909        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4910            rtpz = &rtpn->rb_tree_per_zone[zone];
4911            rtpz->rb_root = RB_ROOT;
4912            spin_lock_init(&rtpz->lock);
4913        }
4914    }
4915    return 0;
4916
4917err_cleanup:
4918    for_each_node(node) {
4919        if (!soft_limit_tree.rb_tree_per_node[node])
4920            break;
4921        kfree(soft_limit_tree.rb_tree_per_node[node]);
4922        soft_limit_tree.rb_tree_per_node[node] = NULL;
4923    }
4924    return 1;
4925
4926}
4927
4928static struct cgroup_subsys_state * __ref
4929mem_cgroup_create(struct cgroup *cont)
4930{
4931    struct mem_cgroup *memcg, *parent;
4932    long error = -ENOMEM;
4933    int node;
4934
4935    memcg = mem_cgroup_alloc();
4936    if (!memcg)
4937        return ERR_PTR(error);
4938
4939    for_each_node(node)
4940        if (alloc_mem_cgroup_per_zone_info(memcg, node))
4941            goto free_out;
4942
4943    /* root ? */
4944    if (cont->parent == NULL) {
4945        int cpu;
4946        enable_swap_cgroup();
4947        parent = NULL;
4948        if (mem_cgroup_soft_limit_tree_init())
4949            goto free_out;
4950        root_mem_cgroup = memcg;
4951        for_each_possible_cpu(cpu) {
4952            struct memcg_stock_pcp *stock =
4953                        &per_cpu(memcg_stock, cpu);
4954            INIT_WORK(&stock->work, drain_local_stock);
4955        }
4956        hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4957    } else {
4958        parent = mem_cgroup_from_cont(cont->parent);
4959        memcg->use_hierarchy = parent->use_hierarchy;
4960        memcg->oom_kill_disable = parent->oom_kill_disable;
4961    }
4962
4963    if (parent && parent->use_hierarchy) {
4964        res_counter_init(&memcg->res, &parent->res);
4965        res_counter_init(&memcg->memsw, &parent->memsw);
4966        /*
4967         * We increment refcnt of the parent to ensure that we can
4968         * safely access it on res_counter_charge/uncharge.
4969         * This refcnt will be decremented when freeing this
4970         * mem_cgroup(see mem_cgroup_put).
4971         */
4972        mem_cgroup_get(parent);
4973    } else {
4974        res_counter_init(&memcg->res, NULL);
4975        res_counter_init(&memcg->memsw, NULL);
4976    }
4977    memcg->last_scanned_node = MAX_NUMNODES;
4978    INIT_LIST_HEAD(&memcg->oom_notify);
4979
4980    if (parent)
4981        memcg->swappiness = mem_cgroup_swappiness(parent);
4982    atomic_set(&memcg->refcnt, 1);
4983    memcg->move_charge_at_immigrate = 0;
4984    mutex_init(&memcg->thresholds_lock);
4985    spin_lock_init(&memcg->move_lock);
4986
4987    error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4988    if (error) {
4989        /*
4990         * We call put now because our (and parent's) refcnts
4991         * are already in place. mem_cgroup_put() will internally
4992         * call __mem_cgroup_free, so return directly
4993         */
4994        mem_cgroup_put(memcg);
4995        return ERR_PTR(error);
4996    }
4997    return &memcg->css;
4998free_out:
4999    __mem_cgroup_free(memcg);
5000    return ERR_PTR(error);
5001}
5002
5003static int mem_cgroup_pre_destroy(struct cgroup *cont)
5004{
5005    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5006
5007    return mem_cgroup_force_empty(memcg, false);
5008}
5009
5010static void mem_cgroup_destroy(struct cgroup *cont)
5011{
5012    struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5013
5014    kmem_cgroup_destroy(memcg);
5015
5016    mem_cgroup_put(memcg);
5017}
5018
5019#ifdef CONFIG_MMU
5020/* Handlers for move charge at task migration. */
5021#define PRECHARGE_COUNT_AT_ONCE 256
5022static int mem_cgroup_do_precharge(unsigned long count)
5023{
5024    int ret = 0;
5025    int batch_count = PRECHARGE_COUNT_AT_ONCE;
5026    struct mem_cgroup *memcg = mc.to;
5027
5028    if (mem_cgroup_is_root(memcg)) {
5029        mc.precharge += count;
5030        /* we don't need css_get for root */
5031        return ret;
5032    }
5033    /* try to charge at once */
5034    if (count > 1) {
5035        struct res_counter *dummy;
5036        /*
5037         * "memcg" cannot be under rmdir() because we've already checked
5038         * by cgroup_lock_live_cgroup() that it is not removed and we
5039         * are still under the same cgroup_mutex. So we can postpone
5040         * css_get().
5041         */
5042        if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5043            goto one_by_one;
5044        if (do_swap_account && res_counter_charge(&memcg->memsw,
5045                        PAGE_SIZE * count, &dummy)) {
5046            res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5047            goto one_by_one;
5048        }
5049        mc.precharge += count;
5050        return ret;
5051    }
5052one_by_one:
5053    /* fall back to one by one charge */
5054    while (count--) {
5055        if (signal_pending(current)) {
5056            ret = -EINTR;
5057            break;
5058        }
5059        if (!batch_count--) {
5060            batch_count = PRECHARGE_COUNT_AT_ONCE;
5061            cond_resched();
5062        }
5063        ret = __mem_cgroup_try_charge(NULL,
5064                    GFP_KERNEL, 1, &memcg, false);
5065        if (ret)
5066            /* mem_cgroup_clear_mc() will do uncharge later */
5067            return ret;
5068        mc.precharge++;
5069    }
5070    return ret;
5071}
5072
5073/**
5074 * get_mctgt_type - get target type of moving charge
5075 * @vma: the vma the pte to be checked belongs
5076 * @addr: the address corresponding to the pte to be checked
5077 * @ptent: the pte to be checked
5078 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5079 *
5080 * Returns
5081 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5082 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5083 * move charge. if @target is not NULL, the page is stored in target->page
5084 * with extra refcnt got(Callers should handle it).
5085 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5086 * target for charge migration. if @target is not NULL, the entry is stored
5087 * in target->ent.
5088 *
5089 * Called with pte lock held.
5090 */
5091union mc_target {
5092    struct page *page;
5093    swp_entry_t ent;
5094};
5095
5096enum mc_target_type {
5097    MC_TARGET_NONE = 0,
5098    MC_TARGET_PAGE,
5099    MC_TARGET_SWAP,
5100};
5101
5102static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5103                        unsigned long addr, pte_t ptent)
5104{
5105    struct page *page = vm_normal_page(vma, addr, ptent);
5106
5107    if (!page || !page_mapped(page))
5108        return NULL;
5109    if (PageAnon(page)) {
5110        /* we don't move shared anon */
5111        if (!move_anon())
5112            return NULL;
5113    } else if (!move_file())
5114        /* we ignore mapcount for file pages */
5115        return NULL;
5116    if (!get_page_unless_zero(page))
5117        return NULL;
5118
5119    return page;
5120}
5121
5122#ifdef CONFIG_SWAP
5123static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5124            unsigned long addr, pte_t ptent, swp_entry_t *entry)
5125{
5126    struct page *page = NULL;
5127    swp_entry_t ent = pte_to_swp_entry(ptent);
5128
5129    if (!move_anon() || non_swap_entry(ent))
5130        return NULL;
5131    /*
5132     * Because lookup_swap_cache() updates some statistics counter,
5133     * we call find_get_page() with swapper_space directly.
5134     */
5135    page = find_get_page(&swapper_space, ent.val);
5136    if (do_swap_account)
5137        entry->val = ent.val;
5138
5139    return page;
5140}
5141#else
5142static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5143            unsigned long addr, pte_t ptent, swp_entry_t *entry)
5144{
5145    return NULL;
5146}
5147#endif
5148
5149static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5150            unsigned long addr, pte_t ptent, swp_entry_t *entry)
5151{
5152    struct page *page = NULL;
5153    struct address_space *mapping;
5154    pgoff_t pgoff;
5155
5156    if (!vma->vm_file) /* anonymous vma */
5157        return NULL;
5158    if (!move_file())
5159        return NULL;
5160
5161    mapping = vma->vm_file->f_mapping;
5162    if (pte_none(ptent))
5163        pgoff = linear_page_index(vma, addr);
5164    else /* pte_file(ptent) is true */
5165        pgoff = pte_to_pgoff(ptent);
5166
5167    /* page is moved even if it's not RSS of this task(page-faulted). */
5168    page = find_get_page(mapping, pgoff);
5169
5170#ifdef CONFIG_SWAP
5171    /* shmem/tmpfs may report page out on swap: account for that too. */
5172    if (radix_tree_exceptional_entry(page)) {
5173        swp_entry_t swap = radix_to_swp_entry(page);
5174        if (do_swap_account)
5175            *entry = swap;
5176        page = find_get_page(&swapper_space, swap.val);
5177    }
5178#endif
5179    return page;
5180}
5181
5182static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5183        unsigned long addr, pte_t ptent, union mc_target *target)
5184{
5185    struct page *page = NULL;
5186    struct page_cgroup *pc;
5187    enum mc_target_type ret = MC_TARGET_NONE;
5188    swp_entry_t ent = { .val = 0 };
5189
5190    if (pte_present(ptent))
5191        page = mc_handle_present_pte(vma, addr, ptent);
5192    else if (is_swap_pte(ptent))
5193        page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5194    else if (pte_none(ptent) || pte_file(ptent))
5195        page = mc_handle_file_pte(vma, addr, ptent, &ent);
5196
5197    if (!page && !ent.val)
5198        return ret;
5199    if (page) {
5200        pc = lookup_page_cgroup(page);
5201        /*
5202         * Do only loose check w/o page_cgroup lock.
5203         * mem_cgroup_move_account() checks the pc is valid or not under
5204         * the lock.
5205         */
5206        if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5207            ret = MC_TARGET_PAGE;
5208            if (target)
5209                target->page = page;
5210        }
5211        if (!ret || !target)
5212            put_page(page);
5213    }
5214    /* There is a swap entry and a page doesn't exist or isn't charged */
5215    if (ent.val && !ret &&
5216            css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5217        ret = MC_TARGET_SWAP;
5218        if (target)
5219            target->ent = ent;
5220    }
5221    return ret;
5222}
5223
5224#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5225/*
5226 * We don't consider swapping or file mapped pages because THP does not
5227 * support them for now.
5228 * Caller should make sure that pmd_trans_huge(pmd) is true.
5229 */
5230static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5231        unsigned long addr, pmd_t pmd, union mc_target *target)
5232{
5233    struct page *page = NULL;
5234    struct page_cgroup *pc;
5235    enum mc_target_type ret = MC_TARGET_NONE;
5236
5237    page = pmd_page(pmd);
5238    VM_BUG_ON(!page || !PageHead(page));
5239    if (!move_anon())
5240        return ret;
5241    pc = lookup_page_cgroup(page);
5242    if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5243        ret = MC_TARGET_PAGE;
5244        if (target) {
5245            get_page(page);
5246            target->page = page;
5247        }
5248    }
5249    return ret;
5250}
5251#else
5252static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5253        unsigned long addr, pmd_t pmd, union mc_target *target)
5254{
5255    return MC_TARGET_NONE;
5256}
5257#endif
5258
5259static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5260                    unsigned long addr, unsigned long end,
5261                    struct mm_walk *walk)
5262{
5263    struct vm_area_struct *vma = walk->private;
5264    pte_t *pte;
5265    spinlock_t *ptl;
5266
5267    if (pmd_trans_huge_lock(pmd, vma) == 1) {
5268        if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5269            mc.precharge += HPAGE_PMD_NR;
5270        spin_unlock(&vma->vm_mm->page_table_lock);
5271        return 0;
5272    }
5273
5274    if (pmd_trans_unstable(pmd))
5275        return 0;
5276    pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5277    for (; addr != end; pte++, addr += PAGE_SIZE)
5278        if (get_mctgt_type(vma, addr, *pte, NULL))
5279            mc.precharge++; /* increment precharge temporarily */
5280    pte_unmap_unlock(pte - 1, ptl);
5281    cond_resched();
5282
5283    return 0;
5284}
5285
5286static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5287{
5288    unsigned long precharge;
5289    struct vm_area_struct *vma;
5290
5291    down_read(&mm->mmap_sem);
5292    for (vma = mm->mmap; vma; vma = vma->vm_next) {
5293        struct mm_walk mem_cgroup_count_precharge_walk = {
5294            .pmd_entry = mem_cgroup_count_precharge_pte_range,
5295            .mm = mm,
5296            .private = vma,
5297        };
5298        if (is_vm_hugetlb_page(vma))
5299            continue;
5300        walk_page_range(vma->vm_start, vma->vm_end,
5301                    &mem_cgroup_count_precharge_walk);
5302    }
5303    up_read(&mm->mmap_sem);
5304
5305    precharge = mc.precharge;
5306    mc.precharge = 0;
5307
5308    return precharge;
5309}
5310
5311static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5312{
5313    unsigned long precharge = mem_cgroup_count_precharge(mm);
5314
5315    VM_BUG_ON(mc.moving_task);
5316    mc.moving_task = current;
5317    return mem_cgroup_do_precharge(precharge);
5318}
5319
5320/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5321static void __mem_cgroup_clear_mc(void)
5322{
5323    struct mem_cgroup *from = mc.from;
5324    struct mem_cgroup *to = mc.to;
5325
5326    /* we must uncharge all the leftover precharges from mc.to */
5327    if (mc.precharge) {
5328        __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5329        mc.precharge = 0;
5330    }
5331    /*
5332     * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5333     * we must uncharge here.
5334     */
5335    if (mc.moved_charge) {
5336        __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5337        mc.moved_charge = 0;
5338    }
5339    /* we must fixup refcnts and charges */
5340    if (mc.moved_swap) {
5341        /* uncharge swap account from the old cgroup */
5342        if (!mem_cgroup_is_root(mc.from))
5343            res_counter_uncharge(&mc.from->memsw,
5344                        PAGE_SIZE * mc.moved_swap);
5345        __mem_cgroup_put(mc.from, mc.moved_swap);
5346
5347        if (!mem_cgroup_is_root(mc.to)) {
5348            /*
5349             * we charged both to->res and to->memsw, so we should
5350             * uncharge to->res.
5351             */
5352            res_counter_uncharge(&mc.to->res,
5353                        PAGE_SIZE * mc.moved_swap);
5354        }
5355        /* we've already done mem_cgroup_get(mc.to) */
5356        mc.moved_swap = 0;
5357    }
5358    memcg_oom_recover(from);
5359    memcg_oom_recover(to);
5360    wake_up_all(&mc.waitq);
5361}
5362
5363static void mem_cgroup_clear_mc(void)
5364{
5365    struct mem_cgroup *from = mc.from;
5366
5367    /*
5368     * we must clear moving_task before waking up waiters at the end of
5369     * task migration.
5370     */
5371    mc.moving_task = NULL;
5372    __mem_cgroup_clear_mc();
5373    spin_lock(&mc.lock);
5374    mc.from = NULL;
5375    mc.to = NULL;
5376    spin_unlock(&mc.lock);
5377    mem_cgroup_end_move(from);
5378}
5379
5380static int mem_cgroup_can_attach(struct cgroup *cgroup,
5381                 struct cgroup_taskset *tset)
5382{
5383    struct task_struct *p = cgroup_taskset_first(tset);
5384    int ret = 0;
5385    struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5386
5387    if (memcg->move_charge_at_immigrate) {
5388        struct mm_struct *mm;
5389        struct mem_cgroup *from = mem_cgroup_from_task(p);
5390
5391        VM_BUG_ON(from == memcg);
5392
5393        mm = get_task_mm(p);
5394        if (!mm)
5395            return 0;
5396        /* We move charges only when we move a owner of the mm */
5397        if (mm->owner == p) {
5398            VM_BUG_ON(mc.from);
5399            VM_BUG_ON(mc.to);
5400            VM_BUG_ON(mc.precharge);
5401            VM_BUG_ON(mc.moved_charge);
5402            VM_BUG_ON(mc.moved_swap);
5403            mem_cgroup_start_move(from);
5404            spin_lock(&mc.lock);
5405            mc.from = from;
5406            mc.to = memcg;
5407            spin_unlock(&mc.lock);
5408            /* We set mc.moving_task later */
5409
5410            ret = mem_cgroup_precharge_mc(mm);
5411            if (ret)
5412                mem_cgroup_clear_mc();
5413        }
5414        mmput(mm);
5415    }
5416    return ret;
5417}
5418
5419static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5420                     struct cgroup_taskset *tset)
5421{
5422    mem_cgroup_clear_mc();
5423}
5424
5425static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5426                unsigned long addr, unsigned long end,
5427                struct mm_walk *walk)
5428{
5429    int ret = 0;
5430    struct vm_area_struct *vma = walk->private;
5431    pte_t *pte;
5432    spinlock_t *ptl;
5433    enum mc_target_type target_type;
5434    union mc_target target;
5435    struct page *page;
5436    struct page_cgroup *pc;
5437
5438    /*
5439     * We don't take compound_lock() here but no race with splitting thp
5440     * happens because:
5441     * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5442     * under splitting, which means there's no concurrent thp split,
5443     * - if another thread runs into split_huge_page() just after we
5444     * entered this if-block, the thread must wait for page table lock
5445     * to be unlocked in __split_huge_page_splitting(), where the main
5446     * part of thp split is not executed yet.
5447     */
5448    if (pmd_trans_huge_lock(pmd, vma) == 1) {
5449        if (mc.precharge < HPAGE_PMD_NR) {
5450            spin_unlock(&vma->vm_mm->page_table_lock);
5451            return 0;
5452        }
5453        target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5454        if (target_type == MC_TARGET_PAGE) {
5455            page = target.page;
5456            if (!isolate_lru_page(page)) {
5457                pc = lookup_page_cgroup(page);
5458                if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5459                            pc, mc.from, mc.to)) {
5460                    mc.precharge -= HPAGE_PMD_NR;
5461                    mc.moved_charge += HPAGE_PMD_NR;
5462                }
5463                putback_lru_page(page);
5464            }
5465            put_page(page);
5466        }
5467        spin_unlock(&vma->vm_mm->page_table_lock);
5468        return 0;
5469    }
5470
5471    if (pmd_trans_unstable(pmd))
5472        return 0;
5473retry:
5474    pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5475    for (; addr != end; addr += PAGE_SIZE) {
5476        pte_t ptent = *(pte++);
5477        swp_entry_t ent;
5478
5479        if (!mc.precharge)
5480            break;
5481
5482        switch (get_mctgt_type(vma, addr, ptent, &target)) {
5483        case MC_TARGET_PAGE:
5484            page = target.page;
5485            if (isolate_lru_page(page))
5486                goto put;
5487            pc = lookup_page_cgroup(page);
5488            if (!mem_cgroup_move_account(page, 1, pc,
5489                             mc.from, mc.to)) {
5490                mc.precharge--;
5491                /* we uncharge from mc.from later. */
5492                mc.moved_charge++;
5493            }
5494            putback_lru_page(page);
5495put: /* get_mctgt_type() gets the page */
5496            put_page(page);
5497            break;
5498        case MC_TARGET_SWAP:
5499            ent = target.ent;
5500            if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5501                mc.precharge--;
5502                /* we fixup refcnts and charges later. */
5503                mc.moved_swap++;
5504            }
5505            break;
5506        default:
5507            break;
5508        }
5509    }
5510    pte_unmap_unlock(pte - 1, ptl);
5511    cond_resched();
5512
5513    if (addr != end) {
5514        /*
5515         * We have consumed all precharges we got in can_attach().
5516         * We try charge one by one, but don't do any additional
5517         * charges to mc.to if we have failed in charge once in attach()
5518         * phase.
5519         */
5520        ret = mem_cgroup_do_precharge(1);
5521        if (!ret)
5522            goto retry;
5523    }
5524
5525    return ret;
5526}
5527
5528static void mem_cgroup_move_charge(struct mm_struct *mm)
5529{
5530    struct vm_area_struct *vma;
5531
5532    lru_add_drain_all();
5533retry:
5534    if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5535        /*
5536         * Someone who are holding the mmap_sem might be waiting in
5537         * waitq. So we cancel all extra charges, wake up all waiters,
5538         * and retry. Because we cancel precharges, we might not be able
5539         * to move enough charges, but moving charge is a best-effort
5540         * feature anyway, so it wouldn't be a big problem.
5541         */
5542        __mem_cgroup_clear_mc();
5543        cond_resched();
5544        goto retry;
5545    }
5546    for (vma = mm->mmap; vma; vma = vma->vm_next) {
5547        int ret;
5548        struct mm_walk mem_cgroup_move_charge_walk = {
5549            .pmd_entry = mem_cgroup_move_charge_pte_range,
5550            .mm = mm,
5551            .private = vma,
5552        };
5553        if (is_vm_hugetlb_page(vma))
5554            continue;
5555        ret = walk_page_range(vma->vm_start, vma->vm_end,
5556                        &mem_cgroup_move_charge_walk);
5557        if (ret)
5558            /*
5559             * means we have consumed all precharges and failed in
5560             * doing additional charge. Just abandon here.
5561             */
5562            break;
5563    }
5564    up_read(&mm->mmap_sem);
5565}
5566
5567static void mem_cgroup_move_task(struct cgroup *cont,
5568                 struct cgroup_taskset *tset)
5569{
5570    struct task_struct *p = cgroup_taskset_first(tset);
5571    struct mm_struct *mm = get_task_mm(p);
5572
5573    if (mm) {
5574        if (mc.to)
5575            mem_cgroup_move_charge(mm);
5576        mmput(mm);
5577    }
5578    if (mc.to)
5579        mem_cgroup_clear_mc();
5580}
5581#else /* !CONFIG_MMU */
5582static int mem_cgroup_can_attach(struct cgroup *cgroup,
5583                 struct cgroup_taskset *tset)
5584{
5585    return 0;
5586}
5587static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5588                     struct cgroup_taskset *tset)
5589{
5590}
5591static void mem_cgroup_move_task(struct cgroup *cont,
5592                 struct cgroup_taskset *tset)
5593{
5594}
5595#endif
5596
5597struct cgroup_subsys mem_cgroup_subsys = {
5598    .name = "memory",
5599    .subsys_id = mem_cgroup_subsys_id,
5600    .create = mem_cgroup_create,
5601    .pre_destroy = mem_cgroup_pre_destroy,
5602    .destroy = mem_cgroup_destroy,
5603    .can_attach = mem_cgroup_can_attach,
5604    .cancel_attach = mem_cgroup_cancel_attach,
5605    .attach = mem_cgroup_move_task,
5606    .base_cftypes = mem_cgroup_files,
5607    .early_init = 0,
5608    .use_id = 1,
5609    .__DEPRECATED_clear_css_refs = true,
5610};
5611
5612#ifdef CONFIG_MEMCG_SWAP
5613static int __init enable_swap_account(char *s)
5614{
5615    /* consider enabled if no parameter or 1 is given */
5616    if (!strcmp(s, "1"))
5617        really_do_swap_account = 1;
5618    else if (!strcmp(s, "0"))
5619        really_do_swap_account = 0;
5620    return 1;
5621}
5622__setup("swapaccount=", enable_swap_account);
5623
5624#endif
5625

Archive Download this file



interactive