Root/
1 | /* |
2 | * Copyright (C) 2008, 2009 Intel Corporation |
3 | * Authors: Andi Kleen, Fengguang Wu |
4 | * |
5 | * This software may be redistributed and/or modified under the terms of |
6 | * the GNU General Public License ("GPL") version 2 only as published by the |
7 | * Free Software Foundation. |
8 | * |
9 | * High level machine check handler. Handles pages reported by the |
10 | * hardware as being corrupted usually due to a multi-bit ECC memory or cache |
11 | * failure. |
12 | * |
13 | * In addition there is a "soft offline" entry point that allows stop using |
14 | * not-yet-corrupted-by-suspicious pages without killing anything. |
15 | * |
16 | * Handles page cache pages in various states. The tricky part |
17 | * here is that we can access any page asynchronously in respect to |
18 | * other VM users, because memory failures could happen anytime and |
19 | * anywhere. This could violate some of their assumptions. This is why |
20 | * this code has to be extremely careful. Generally it tries to use |
21 | * normal locking rules, as in get the standard locks, even if that means |
22 | * the error handling takes potentially a long time. |
23 | * |
24 | * There are several operations here with exponential complexity because |
25 | * of unsuitable VM data structures. For example the operation to map back |
26 | * from RMAP chains to processes has to walk the complete process list and |
27 | * has non linear complexity with the number. But since memory corruptions |
28 | * are rare we hope to get away with this. This avoids impacting the core |
29 | * VM. |
30 | */ |
31 | |
32 | /* |
33 | * Notebook: |
34 | * - hugetlb needs more code |
35 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages |
36 | * - pass bad pages to kdump next kernel |
37 | */ |
38 | #include <linux/kernel.h> |
39 | #include <linux/mm.h> |
40 | #include <linux/page-flags.h> |
41 | #include <linux/kernel-page-flags.h> |
42 | #include <linux/sched.h> |
43 | #include <linux/ksm.h> |
44 | #include <linux/rmap.h> |
45 | #include <linux/export.h> |
46 | #include <linux/pagemap.h> |
47 | #include <linux/swap.h> |
48 | #include <linux/backing-dev.h> |
49 | #include <linux/migrate.h> |
50 | #include <linux/page-isolation.h> |
51 | #include <linux/suspend.h> |
52 | #include <linux/slab.h> |
53 | #include <linux/swapops.h> |
54 | #include <linux/hugetlb.h> |
55 | #include <linux/memory_hotplug.h> |
56 | #include <linux/mm_inline.h> |
57 | #include <linux/kfifo.h> |
58 | #include "internal.h" |
59 | |
60 | int sysctl_memory_failure_early_kill __read_mostly = 0; |
61 | |
62 | int sysctl_memory_failure_recovery __read_mostly = 1; |
63 | |
64 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); |
65 | |
66 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) |
67 | |
68 | u32 hwpoison_filter_enable = 0; |
69 | u32 hwpoison_filter_dev_major = ~0U; |
70 | u32 hwpoison_filter_dev_minor = ~0U; |
71 | u64 hwpoison_filter_flags_mask; |
72 | u64 hwpoison_filter_flags_value; |
73 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); |
74 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); |
75 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); |
76 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); |
77 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); |
78 | |
79 | static int hwpoison_filter_dev(struct page *p) |
80 | { |
81 | struct address_space *mapping; |
82 | dev_t dev; |
83 | |
84 | if (hwpoison_filter_dev_major == ~0U && |
85 | hwpoison_filter_dev_minor == ~0U) |
86 | return 0; |
87 | |
88 | /* |
89 | * page_mapping() does not accept slab pages. |
90 | */ |
91 | if (PageSlab(p)) |
92 | return -EINVAL; |
93 | |
94 | mapping = page_mapping(p); |
95 | if (mapping == NULL || mapping->host == NULL) |
96 | return -EINVAL; |
97 | |
98 | dev = mapping->host->i_sb->s_dev; |
99 | if (hwpoison_filter_dev_major != ~0U && |
100 | hwpoison_filter_dev_major != MAJOR(dev)) |
101 | return -EINVAL; |
102 | if (hwpoison_filter_dev_minor != ~0U && |
103 | hwpoison_filter_dev_minor != MINOR(dev)) |
104 | return -EINVAL; |
105 | |
106 | return 0; |
107 | } |
108 | |
109 | static int hwpoison_filter_flags(struct page *p) |
110 | { |
111 | if (!hwpoison_filter_flags_mask) |
112 | return 0; |
113 | |
114 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == |
115 | hwpoison_filter_flags_value) |
116 | return 0; |
117 | else |
118 | return -EINVAL; |
119 | } |
120 | |
121 | /* |
122 | * This allows stress tests to limit test scope to a collection of tasks |
123 | * by putting them under some memcg. This prevents killing unrelated/important |
124 | * processes such as /sbin/init. Note that the target task may share clean |
125 | * pages with init (eg. libc text), which is harmless. If the target task |
126 | * share _dirty_ pages with another task B, the test scheme must make sure B |
127 | * is also included in the memcg. At last, due to race conditions this filter |
128 | * can only guarantee that the page either belongs to the memcg tasks, or is |
129 | * a freed page. |
130 | */ |
131 | #ifdef CONFIG_MEMCG_SWAP |
132 | u64 hwpoison_filter_memcg; |
133 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); |
134 | static int hwpoison_filter_task(struct page *p) |
135 | { |
136 | struct mem_cgroup *mem; |
137 | struct cgroup_subsys_state *css; |
138 | unsigned long ino; |
139 | |
140 | if (!hwpoison_filter_memcg) |
141 | return 0; |
142 | |
143 | mem = try_get_mem_cgroup_from_page(p); |
144 | if (!mem) |
145 | return -EINVAL; |
146 | |
147 | css = mem_cgroup_css(mem); |
148 | /* root_mem_cgroup has NULL dentries */ |
149 | if (!css->cgroup->dentry) |
150 | return -EINVAL; |
151 | |
152 | ino = css->cgroup->dentry->d_inode->i_ino; |
153 | css_put(css); |
154 | |
155 | if (ino != hwpoison_filter_memcg) |
156 | return -EINVAL; |
157 | |
158 | return 0; |
159 | } |
160 | #else |
161 | static int hwpoison_filter_task(struct page *p) { return 0; } |
162 | #endif |
163 | |
164 | int hwpoison_filter(struct page *p) |
165 | { |
166 | if (!hwpoison_filter_enable) |
167 | return 0; |
168 | |
169 | if (hwpoison_filter_dev(p)) |
170 | return -EINVAL; |
171 | |
172 | if (hwpoison_filter_flags(p)) |
173 | return -EINVAL; |
174 | |
175 | if (hwpoison_filter_task(p)) |
176 | return -EINVAL; |
177 | |
178 | return 0; |
179 | } |
180 | #else |
181 | int hwpoison_filter(struct page *p) |
182 | { |
183 | return 0; |
184 | } |
185 | #endif |
186 | |
187 | EXPORT_SYMBOL_GPL(hwpoison_filter); |
188 | |
189 | /* |
190 | * Send all the processes who have the page mapped a signal. |
191 | * ``action optional'' if they are not immediately affected by the error |
192 | * ``action required'' if error happened in current execution context |
193 | */ |
194 | static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, |
195 | unsigned long pfn, struct page *page, int flags) |
196 | { |
197 | struct siginfo si; |
198 | int ret; |
199 | |
200 | printk(KERN_ERR |
201 | "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", |
202 | pfn, t->comm, t->pid); |
203 | si.si_signo = SIGBUS; |
204 | si.si_errno = 0; |
205 | si.si_addr = (void *)addr; |
206 | #ifdef __ARCH_SI_TRAPNO |
207 | si.si_trapno = trapno; |
208 | #endif |
209 | si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; |
210 | |
211 | if ((flags & MF_ACTION_REQUIRED) && t == current) { |
212 | si.si_code = BUS_MCEERR_AR; |
213 | ret = force_sig_info(SIGBUS, &si, t); |
214 | } else { |
215 | /* |
216 | * Don't use force here, it's convenient if the signal |
217 | * can be temporarily blocked. |
218 | * This could cause a loop when the user sets SIGBUS |
219 | * to SIG_IGN, but hopefully no one will do that? |
220 | */ |
221 | si.si_code = BUS_MCEERR_AO; |
222 | ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ |
223 | } |
224 | if (ret < 0) |
225 | printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", |
226 | t->comm, t->pid, ret); |
227 | return ret; |
228 | } |
229 | |
230 | /* |
231 | * When a unknown page type is encountered drain as many buffers as possible |
232 | * in the hope to turn the page into a LRU or free page, which we can handle. |
233 | */ |
234 | void shake_page(struct page *p, int access) |
235 | { |
236 | if (!PageSlab(p)) { |
237 | lru_add_drain_all(); |
238 | if (PageLRU(p)) |
239 | return; |
240 | drain_all_pages(); |
241 | if (PageLRU(p) || is_free_buddy_page(p)) |
242 | return; |
243 | } |
244 | |
245 | /* |
246 | * Only call shrink_slab here (which would also shrink other caches) if |
247 | * access is not potentially fatal. |
248 | */ |
249 | if (access) { |
250 | int nr; |
251 | do { |
252 | struct shrink_control shrink = { |
253 | .gfp_mask = GFP_KERNEL, |
254 | }; |
255 | |
256 | nr = shrink_slab(&shrink, 1000, 1000); |
257 | if (page_count(p) == 1) |
258 | break; |
259 | } while (nr > 10); |
260 | } |
261 | } |
262 | EXPORT_SYMBOL_GPL(shake_page); |
263 | |
264 | /* |
265 | * Kill all processes that have a poisoned page mapped and then isolate |
266 | * the page. |
267 | * |
268 | * General strategy: |
269 | * Find all processes having the page mapped and kill them. |
270 | * But we keep a page reference around so that the page is not |
271 | * actually freed yet. |
272 | * Then stash the page away |
273 | * |
274 | * There's no convenient way to get back to mapped processes |
275 | * from the VMAs. So do a brute-force search over all |
276 | * running processes. |
277 | * |
278 | * Remember that machine checks are not common (or rather |
279 | * if they are common you have other problems), so this shouldn't |
280 | * be a performance issue. |
281 | * |
282 | * Also there are some races possible while we get from the |
283 | * error detection to actually handle it. |
284 | */ |
285 | |
286 | struct to_kill { |
287 | struct list_head nd; |
288 | struct task_struct *tsk; |
289 | unsigned long addr; |
290 | char addr_valid; |
291 | }; |
292 | |
293 | /* |
294 | * Failure handling: if we can't find or can't kill a process there's |
295 | * not much we can do. We just print a message and ignore otherwise. |
296 | */ |
297 | |
298 | /* |
299 | * Schedule a process for later kill. |
300 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. |
301 | * TBD would GFP_NOIO be enough? |
302 | */ |
303 | static void add_to_kill(struct task_struct *tsk, struct page *p, |
304 | struct vm_area_struct *vma, |
305 | struct list_head *to_kill, |
306 | struct to_kill **tkc) |
307 | { |
308 | struct to_kill *tk; |
309 | |
310 | if (*tkc) { |
311 | tk = *tkc; |
312 | *tkc = NULL; |
313 | } else { |
314 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); |
315 | if (!tk) { |
316 | printk(KERN_ERR |
317 | "MCE: Out of memory while machine check handling\n"); |
318 | return; |
319 | } |
320 | } |
321 | tk->addr = page_address_in_vma(p, vma); |
322 | tk->addr_valid = 1; |
323 | |
324 | /* |
325 | * In theory we don't have to kill when the page was |
326 | * munmaped. But it could be also a mremap. Since that's |
327 | * likely very rare kill anyways just out of paranoia, but use |
328 | * a SIGKILL because the error is not contained anymore. |
329 | */ |
330 | if (tk->addr == -EFAULT) { |
331 | pr_info("MCE: Unable to find user space address %lx in %s\n", |
332 | page_to_pfn(p), tsk->comm); |
333 | tk->addr_valid = 0; |
334 | } |
335 | get_task_struct(tsk); |
336 | tk->tsk = tsk; |
337 | list_add_tail(&tk->nd, to_kill); |
338 | } |
339 | |
340 | /* |
341 | * Kill the processes that have been collected earlier. |
342 | * |
343 | * Only do anything when DOIT is set, otherwise just free the list |
344 | * (this is used for clean pages which do not need killing) |
345 | * Also when FAIL is set do a force kill because something went |
346 | * wrong earlier. |
347 | */ |
348 | static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, |
349 | int fail, struct page *page, unsigned long pfn, |
350 | int flags) |
351 | { |
352 | struct to_kill *tk, *next; |
353 | |
354 | list_for_each_entry_safe (tk, next, to_kill, nd) { |
355 | if (forcekill) { |
356 | /* |
357 | * In case something went wrong with munmapping |
358 | * make sure the process doesn't catch the |
359 | * signal and then access the memory. Just kill it. |
360 | */ |
361 | if (fail || tk->addr_valid == 0) { |
362 | printk(KERN_ERR |
363 | "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", |
364 | pfn, tk->tsk->comm, tk->tsk->pid); |
365 | force_sig(SIGKILL, tk->tsk); |
366 | } |
367 | |
368 | /* |
369 | * In theory the process could have mapped |
370 | * something else on the address in-between. We could |
371 | * check for that, but we need to tell the |
372 | * process anyways. |
373 | */ |
374 | else if (kill_proc(tk->tsk, tk->addr, trapno, |
375 | pfn, page, flags) < 0) |
376 | printk(KERN_ERR |
377 | "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", |
378 | pfn, tk->tsk->comm, tk->tsk->pid); |
379 | } |
380 | put_task_struct(tk->tsk); |
381 | kfree(tk); |
382 | } |
383 | } |
384 | |
385 | static int task_early_kill(struct task_struct *tsk) |
386 | { |
387 | if (!tsk->mm) |
388 | return 0; |
389 | if (tsk->flags & PF_MCE_PROCESS) |
390 | return !!(tsk->flags & PF_MCE_EARLY); |
391 | return sysctl_memory_failure_early_kill; |
392 | } |
393 | |
394 | /* |
395 | * Collect processes when the error hit an anonymous page. |
396 | */ |
397 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, |
398 | struct to_kill **tkc) |
399 | { |
400 | struct vm_area_struct *vma; |
401 | struct task_struct *tsk; |
402 | struct anon_vma *av; |
403 | |
404 | av = page_lock_anon_vma(page); |
405 | if (av == NULL) /* Not actually mapped anymore */ |
406 | return; |
407 | |
408 | read_lock(&tasklist_lock); |
409 | for_each_process (tsk) { |
410 | struct anon_vma_chain *vmac; |
411 | |
412 | if (!task_early_kill(tsk)) |
413 | continue; |
414 | list_for_each_entry(vmac, &av->head, same_anon_vma) { |
415 | vma = vmac->vma; |
416 | if (!page_mapped_in_vma(page, vma)) |
417 | continue; |
418 | if (vma->vm_mm == tsk->mm) |
419 | add_to_kill(tsk, page, vma, to_kill, tkc); |
420 | } |
421 | } |
422 | read_unlock(&tasklist_lock); |
423 | page_unlock_anon_vma(av); |
424 | } |
425 | |
426 | /* |
427 | * Collect processes when the error hit a file mapped page. |
428 | */ |
429 | static void collect_procs_file(struct page *page, struct list_head *to_kill, |
430 | struct to_kill **tkc) |
431 | { |
432 | struct vm_area_struct *vma; |
433 | struct task_struct *tsk; |
434 | struct prio_tree_iter iter; |
435 | struct address_space *mapping = page->mapping; |
436 | |
437 | mutex_lock(&mapping->i_mmap_mutex); |
438 | read_lock(&tasklist_lock); |
439 | for_each_process(tsk) { |
440 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
441 | |
442 | if (!task_early_kill(tsk)) |
443 | continue; |
444 | |
445 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, |
446 | pgoff) { |
447 | /* |
448 | * Send early kill signal to tasks where a vma covers |
449 | * the page but the corrupted page is not necessarily |
450 | * mapped it in its pte. |
451 | * Assume applications who requested early kill want |
452 | * to be informed of all such data corruptions. |
453 | */ |
454 | if (vma->vm_mm == tsk->mm) |
455 | add_to_kill(tsk, page, vma, to_kill, tkc); |
456 | } |
457 | } |
458 | read_unlock(&tasklist_lock); |
459 | mutex_unlock(&mapping->i_mmap_mutex); |
460 | } |
461 | |
462 | /* |
463 | * Collect the processes who have the corrupted page mapped to kill. |
464 | * This is done in two steps for locking reasons. |
465 | * First preallocate one tokill structure outside the spin locks, |
466 | * so that we can kill at least one process reasonably reliable. |
467 | */ |
468 | static void collect_procs(struct page *page, struct list_head *tokill) |
469 | { |
470 | struct to_kill *tk; |
471 | |
472 | if (!page->mapping) |
473 | return; |
474 | |
475 | tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); |
476 | if (!tk) |
477 | return; |
478 | if (PageAnon(page)) |
479 | collect_procs_anon(page, tokill, &tk); |
480 | else |
481 | collect_procs_file(page, tokill, &tk); |
482 | kfree(tk); |
483 | } |
484 | |
485 | /* |
486 | * Error handlers for various types of pages. |
487 | */ |
488 | |
489 | enum outcome { |
490 | IGNORED, /* Error: cannot be handled */ |
491 | FAILED, /* Error: handling failed */ |
492 | DELAYED, /* Will be handled later */ |
493 | RECOVERED, /* Successfully recovered */ |
494 | }; |
495 | |
496 | static const char *action_name[] = { |
497 | [IGNORED] = "Ignored", |
498 | [FAILED] = "Failed", |
499 | [DELAYED] = "Delayed", |
500 | [RECOVERED] = "Recovered", |
501 | }; |
502 | |
503 | /* |
504 | * XXX: It is possible that a page is isolated from LRU cache, |
505 | * and then kept in swap cache or failed to remove from page cache. |
506 | * The page count will stop it from being freed by unpoison. |
507 | * Stress tests should be aware of this memory leak problem. |
508 | */ |
509 | static int delete_from_lru_cache(struct page *p) |
510 | { |
511 | if (!isolate_lru_page(p)) { |
512 | /* |
513 | * Clear sensible page flags, so that the buddy system won't |
514 | * complain when the page is unpoison-and-freed. |
515 | */ |
516 | ClearPageActive(p); |
517 | ClearPageUnevictable(p); |
518 | /* |
519 | * drop the page count elevated by isolate_lru_page() |
520 | */ |
521 | page_cache_release(p); |
522 | return 0; |
523 | } |
524 | return -EIO; |
525 | } |
526 | |
527 | /* |
528 | * Error hit kernel page. |
529 | * Do nothing, try to be lucky and not touch this instead. For a few cases we |
530 | * could be more sophisticated. |
531 | */ |
532 | static int me_kernel(struct page *p, unsigned long pfn) |
533 | { |
534 | return IGNORED; |
535 | } |
536 | |
537 | /* |
538 | * Page in unknown state. Do nothing. |
539 | */ |
540 | static int me_unknown(struct page *p, unsigned long pfn) |
541 | { |
542 | printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); |
543 | return FAILED; |
544 | } |
545 | |
546 | /* |
547 | * Clean (or cleaned) page cache page. |
548 | */ |
549 | static int me_pagecache_clean(struct page *p, unsigned long pfn) |
550 | { |
551 | int err; |
552 | int ret = FAILED; |
553 | struct address_space *mapping; |
554 | |
555 | delete_from_lru_cache(p); |
556 | |
557 | /* |
558 | * For anonymous pages we're done the only reference left |
559 | * should be the one m_f() holds. |
560 | */ |
561 | if (PageAnon(p)) |
562 | return RECOVERED; |
563 | |
564 | /* |
565 | * Now truncate the page in the page cache. This is really |
566 | * more like a "temporary hole punch" |
567 | * Don't do this for block devices when someone else |
568 | * has a reference, because it could be file system metadata |
569 | * and that's not safe to truncate. |
570 | */ |
571 | mapping = page_mapping(p); |
572 | if (!mapping) { |
573 | /* |
574 | * Page has been teared down in the meanwhile |
575 | */ |
576 | return FAILED; |
577 | } |
578 | |
579 | /* |
580 | * Truncation is a bit tricky. Enable it per file system for now. |
581 | * |
582 | * Open: to take i_mutex or not for this? Right now we don't. |
583 | */ |
584 | if (mapping->a_ops->error_remove_page) { |
585 | err = mapping->a_ops->error_remove_page(mapping, p); |
586 | if (err != 0) { |
587 | printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", |
588 | pfn, err); |
589 | } else if (page_has_private(p) && |
590 | !try_to_release_page(p, GFP_NOIO)) { |
591 | pr_info("MCE %#lx: failed to release buffers\n", pfn); |
592 | } else { |
593 | ret = RECOVERED; |
594 | } |
595 | } else { |
596 | /* |
597 | * If the file system doesn't support it just invalidate |
598 | * This fails on dirty or anything with private pages |
599 | */ |
600 | if (invalidate_inode_page(p)) |
601 | ret = RECOVERED; |
602 | else |
603 | printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", |
604 | pfn); |
605 | } |
606 | return ret; |
607 | } |
608 | |
609 | /* |
610 | * Dirty cache page page |
611 | * Issues: when the error hit a hole page the error is not properly |
612 | * propagated. |
613 | */ |
614 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) |
615 | { |
616 | struct address_space *mapping = page_mapping(p); |
617 | |
618 | SetPageError(p); |
619 | /* TBD: print more information about the file. */ |
620 | if (mapping) { |
621 | /* |
622 | * IO error will be reported by write(), fsync(), etc. |
623 | * who check the mapping. |
624 | * This way the application knows that something went |
625 | * wrong with its dirty file data. |
626 | * |
627 | * There's one open issue: |
628 | * |
629 | * The EIO will be only reported on the next IO |
630 | * operation and then cleared through the IO map. |
631 | * Normally Linux has two mechanisms to pass IO error |
632 | * first through the AS_EIO flag in the address space |
633 | * and then through the PageError flag in the page. |
634 | * Since we drop pages on memory failure handling the |
635 | * only mechanism open to use is through AS_AIO. |
636 | * |
637 | * This has the disadvantage that it gets cleared on |
638 | * the first operation that returns an error, while |
639 | * the PageError bit is more sticky and only cleared |
640 | * when the page is reread or dropped. If an |
641 | * application assumes it will always get error on |
642 | * fsync, but does other operations on the fd before |
643 | * and the page is dropped between then the error |
644 | * will not be properly reported. |
645 | * |
646 | * This can already happen even without hwpoisoned |
647 | * pages: first on metadata IO errors (which only |
648 | * report through AS_EIO) or when the page is dropped |
649 | * at the wrong time. |
650 | * |
651 | * So right now we assume that the application DTRT on |
652 | * the first EIO, but we're not worse than other parts |
653 | * of the kernel. |
654 | */ |
655 | mapping_set_error(mapping, EIO); |
656 | } |
657 | |
658 | return me_pagecache_clean(p, pfn); |
659 | } |
660 | |
661 | /* |
662 | * Clean and dirty swap cache. |
663 | * |
664 | * Dirty swap cache page is tricky to handle. The page could live both in page |
665 | * cache and swap cache(ie. page is freshly swapped in). So it could be |
666 | * referenced concurrently by 2 types of PTEs: |
667 | * normal PTEs and swap PTEs. We try to handle them consistently by calling |
668 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, |
669 | * and then |
670 | * - clear dirty bit to prevent IO |
671 | * - remove from LRU |
672 | * - but keep in the swap cache, so that when we return to it on |
673 | * a later page fault, we know the application is accessing |
674 | * corrupted data and shall be killed (we installed simple |
675 | * interception code in do_swap_page to catch it). |
676 | * |
677 | * Clean swap cache pages can be directly isolated. A later page fault will |
678 | * bring in the known good data from disk. |
679 | */ |
680 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) |
681 | { |
682 | ClearPageDirty(p); |
683 | /* Trigger EIO in shmem: */ |
684 | ClearPageUptodate(p); |
685 | |
686 | if (!delete_from_lru_cache(p)) |
687 | return DELAYED; |
688 | else |
689 | return FAILED; |
690 | } |
691 | |
692 | static int me_swapcache_clean(struct page *p, unsigned long pfn) |
693 | { |
694 | delete_from_swap_cache(p); |
695 | |
696 | if (!delete_from_lru_cache(p)) |
697 | return RECOVERED; |
698 | else |
699 | return FAILED; |
700 | } |
701 | |
702 | /* |
703 | * Huge pages. Needs work. |
704 | * Issues: |
705 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
706 | * To narrow down kill region to one page, we need to break up pmd. |
707 | */ |
708 | static int me_huge_page(struct page *p, unsigned long pfn) |
709 | { |
710 | int res = 0; |
711 | struct page *hpage = compound_head(p); |
712 | /* |
713 | * We can safely recover from error on free or reserved (i.e. |
714 | * not in-use) hugepage by dequeuing it from freelist. |
715 | * To check whether a hugepage is in-use or not, we can't use |
716 | * page->lru because it can be used in other hugepage operations, |
717 | * such as __unmap_hugepage_range() and gather_surplus_pages(). |
718 | * So instead we use page_mapping() and PageAnon(). |
719 | * We assume that this function is called with page lock held, |
720 | * so there is no race between isolation and mapping/unmapping. |
721 | */ |
722 | if (!(page_mapping(hpage) || PageAnon(hpage))) { |
723 | res = dequeue_hwpoisoned_huge_page(hpage); |
724 | if (!res) |
725 | return RECOVERED; |
726 | } |
727 | return DELAYED; |
728 | } |
729 | |
730 | /* |
731 | * Various page states we can handle. |
732 | * |
733 | * A page state is defined by its current page->flags bits. |
734 | * The table matches them in order and calls the right handler. |
735 | * |
736 | * This is quite tricky because we can access page at any time |
737 | * in its live cycle, so all accesses have to be extremely careful. |
738 | * |
739 | * This is not complete. More states could be added. |
740 | * For any missing state don't attempt recovery. |
741 | */ |
742 | |
743 | #define dirty (1UL << PG_dirty) |
744 | #define sc (1UL << PG_swapcache) |
745 | #define unevict (1UL << PG_unevictable) |
746 | #define mlock (1UL << PG_mlocked) |
747 | #define writeback (1UL << PG_writeback) |
748 | #define lru (1UL << PG_lru) |
749 | #define swapbacked (1UL << PG_swapbacked) |
750 | #define head (1UL << PG_head) |
751 | #define tail (1UL << PG_tail) |
752 | #define compound (1UL << PG_compound) |
753 | #define slab (1UL << PG_slab) |
754 | #define reserved (1UL << PG_reserved) |
755 | |
756 | static struct page_state { |
757 | unsigned long mask; |
758 | unsigned long res; |
759 | char *msg; |
760 | int (*action)(struct page *p, unsigned long pfn); |
761 | } error_states[] = { |
762 | { reserved, reserved, "reserved kernel", me_kernel }, |
763 | /* |
764 | * free pages are specially detected outside this table: |
765 | * PG_buddy pages only make a small fraction of all free pages. |
766 | */ |
767 | |
768 | /* |
769 | * Could in theory check if slab page is free or if we can drop |
770 | * currently unused objects without touching them. But just |
771 | * treat it as standard kernel for now. |
772 | */ |
773 | { slab, slab, "kernel slab", me_kernel }, |
774 | |
775 | #ifdef CONFIG_PAGEFLAGS_EXTENDED |
776 | { head, head, "huge", me_huge_page }, |
777 | { tail, tail, "huge", me_huge_page }, |
778 | #else |
779 | { compound, compound, "huge", me_huge_page }, |
780 | #endif |
781 | |
782 | { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, |
783 | { sc|dirty, sc, "swapcache", me_swapcache_clean }, |
784 | |
785 | { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, |
786 | { unevict, unevict, "unevictable LRU", me_pagecache_clean}, |
787 | |
788 | { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, |
789 | { mlock, mlock, "mlocked LRU", me_pagecache_clean }, |
790 | |
791 | { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, |
792 | { lru|dirty, lru, "clean LRU", me_pagecache_clean }, |
793 | |
794 | /* |
795 | * Catchall entry: must be at end. |
796 | */ |
797 | { 0, 0, "unknown page state", me_unknown }, |
798 | }; |
799 | |
800 | #undef dirty |
801 | #undef sc |
802 | #undef unevict |
803 | #undef mlock |
804 | #undef writeback |
805 | #undef lru |
806 | #undef swapbacked |
807 | #undef head |
808 | #undef tail |
809 | #undef compound |
810 | #undef slab |
811 | #undef reserved |
812 | |
813 | static void action_result(unsigned long pfn, char *msg, int result) |
814 | { |
815 | struct page *page = pfn_to_page(pfn); |
816 | |
817 | printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", |
818 | pfn, |
819 | PageDirty(page) ? "dirty " : "", |
820 | msg, action_name[result]); |
821 | } |
822 | |
823 | static int page_action(struct page_state *ps, struct page *p, |
824 | unsigned long pfn) |
825 | { |
826 | int result; |
827 | int count; |
828 | |
829 | result = ps->action(p, pfn); |
830 | action_result(pfn, ps->msg, result); |
831 | |
832 | count = page_count(p) - 1; |
833 | if (ps->action == me_swapcache_dirty && result == DELAYED) |
834 | count--; |
835 | if (count != 0) { |
836 | printk(KERN_ERR |
837 | "MCE %#lx: %s page still referenced by %d users\n", |
838 | pfn, ps->msg, count); |
839 | result = FAILED; |
840 | } |
841 | |
842 | /* Could do more checks here if page looks ok */ |
843 | /* |
844 | * Could adjust zone counters here to correct for the missing page. |
845 | */ |
846 | |
847 | return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; |
848 | } |
849 | |
850 | /* |
851 | * Do all that is necessary to remove user space mappings. Unmap |
852 | * the pages and send SIGBUS to the processes if the data was dirty. |
853 | */ |
854 | static int hwpoison_user_mappings(struct page *p, unsigned long pfn, |
855 | int trapno, int flags) |
856 | { |
857 | enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; |
858 | struct address_space *mapping; |
859 | LIST_HEAD(tokill); |
860 | int ret; |
861 | int kill = 1, forcekill; |
862 | struct page *hpage = compound_head(p); |
863 | struct page *ppage; |
864 | |
865 | if (PageReserved(p) || PageSlab(p)) |
866 | return SWAP_SUCCESS; |
867 | |
868 | /* |
869 | * This check implies we don't kill processes if their pages |
870 | * are in the swap cache early. Those are always late kills. |
871 | */ |
872 | if (!page_mapped(hpage)) |
873 | return SWAP_SUCCESS; |
874 | |
875 | if (PageKsm(p)) |
876 | return SWAP_FAIL; |
877 | |
878 | if (PageSwapCache(p)) { |
879 | printk(KERN_ERR |
880 | "MCE %#lx: keeping poisoned page in swap cache\n", pfn); |
881 | ttu |= TTU_IGNORE_HWPOISON; |
882 | } |
883 | |
884 | /* |
885 | * Propagate the dirty bit from PTEs to struct page first, because we |
886 | * need this to decide if we should kill or just drop the page. |
887 | * XXX: the dirty test could be racy: set_page_dirty() may not always |
888 | * be called inside page lock (it's recommended but not enforced). |
889 | */ |
890 | mapping = page_mapping(hpage); |
891 | if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && |
892 | mapping_cap_writeback_dirty(mapping)) { |
893 | if (page_mkclean(hpage)) { |
894 | SetPageDirty(hpage); |
895 | } else { |
896 | kill = 0; |
897 | ttu |= TTU_IGNORE_HWPOISON; |
898 | printk(KERN_INFO |
899 | "MCE %#lx: corrupted page was clean: dropped without side effects\n", |
900 | pfn); |
901 | } |
902 | } |
903 | |
904 | /* |
905 | * ppage: poisoned page |
906 | * if p is regular page(4k page) |
907 | * ppage == real poisoned page; |
908 | * else p is hugetlb or THP, ppage == head page. |
909 | */ |
910 | ppage = hpage; |
911 | |
912 | if (PageTransHuge(hpage)) { |
913 | /* |
914 | * Verify that this isn't a hugetlbfs head page, the check for |
915 | * PageAnon is just for avoid tripping a split_huge_page |
916 | * internal debug check, as split_huge_page refuses to deal with |
917 | * anything that isn't an anon page. PageAnon can't go away fro |
918 | * under us because we hold a refcount on the hpage, without a |
919 | * refcount on the hpage. split_huge_page can't be safely called |
920 | * in the first place, having a refcount on the tail isn't |
921 | * enough * to be safe. |
922 | */ |
923 | if (!PageHuge(hpage) && PageAnon(hpage)) { |
924 | if (unlikely(split_huge_page(hpage))) { |
925 | /* |
926 | * FIXME: if splitting THP is failed, it is |
927 | * better to stop the following operation rather |
928 | * than causing panic by unmapping. System might |
929 | * survive if the page is freed later. |
930 | */ |
931 | printk(KERN_INFO |
932 | "MCE %#lx: failed to split THP\n", pfn); |
933 | |
934 | BUG_ON(!PageHWPoison(p)); |
935 | return SWAP_FAIL; |
936 | } |
937 | /* THP is split, so ppage should be the real poisoned page. */ |
938 | ppage = p; |
939 | } |
940 | } |
941 | |
942 | /* |
943 | * First collect all the processes that have the page |
944 | * mapped in dirty form. This has to be done before try_to_unmap, |
945 | * because ttu takes the rmap data structures down. |
946 | * |
947 | * Error handling: We ignore errors here because |
948 | * there's nothing that can be done. |
949 | */ |
950 | if (kill) |
951 | collect_procs(ppage, &tokill); |
952 | |
953 | if (hpage != ppage) |
954 | lock_page(ppage); |
955 | |
956 | ret = try_to_unmap(ppage, ttu); |
957 | if (ret != SWAP_SUCCESS) |
958 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", |
959 | pfn, page_mapcount(ppage)); |
960 | |
961 | if (hpage != ppage) |
962 | unlock_page(ppage); |
963 | |
964 | /* |
965 | * Now that the dirty bit has been propagated to the |
966 | * struct page and all unmaps done we can decide if |
967 | * killing is needed or not. Only kill when the page |
968 | * was dirty or the process is not restartable, |
969 | * otherwise the tokill list is merely |
970 | * freed. When there was a problem unmapping earlier |
971 | * use a more force-full uncatchable kill to prevent |
972 | * any accesses to the poisoned memory. |
973 | */ |
974 | forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); |
975 | kill_procs(&tokill, forcekill, trapno, |
976 | ret != SWAP_SUCCESS, p, pfn, flags); |
977 | |
978 | return ret; |
979 | } |
980 | |
981 | static void set_page_hwpoison_huge_page(struct page *hpage) |
982 | { |
983 | int i; |
984 | int nr_pages = 1 << compound_trans_order(hpage); |
985 | for (i = 0; i < nr_pages; i++) |
986 | SetPageHWPoison(hpage + i); |
987 | } |
988 | |
989 | static void clear_page_hwpoison_huge_page(struct page *hpage) |
990 | { |
991 | int i; |
992 | int nr_pages = 1 << compound_trans_order(hpage); |
993 | for (i = 0; i < nr_pages; i++) |
994 | ClearPageHWPoison(hpage + i); |
995 | } |
996 | |
997 | /** |
998 | * memory_failure - Handle memory failure of a page. |
999 | * @pfn: Page Number of the corrupted page |
1000 | * @trapno: Trap number reported in the signal to user space. |
1001 | * @flags: fine tune action taken |
1002 | * |
1003 | * This function is called by the low level machine check code |
1004 | * of an architecture when it detects hardware memory corruption |
1005 | * of a page. It tries its best to recover, which includes |
1006 | * dropping pages, killing processes etc. |
1007 | * |
1008 | * The function is primarily of use for corruptions that |
1009 | * happen outside the current execution context (e.g. when |
1010 | * detected by a background scrubber) |
1011 | * |
1012 | * Must run in process context (e.g. a work queue) with interrupts |
1013 | * enabled and no spinlocks hold. |
1014 | */ |
1015 | int memory_failure(unsigned long pfn, int trapno, int flags) |
1016 | { |
1017 | struct page_state *ps; |
1018 | struct page *p; |
1019 | struct page *hpage; |
1020 | int res; |
1021 | unsigned int nr_pages; |
1022 | |
1023 | if (!sysctl_memory_failure_recovery) |
1024 | panic("Memory failure from trap %d on page %lx", trapno, pfn); |
1025 | |
1026 | if (!pfn_valid(pfn)) { |
1027 | printk(KERN_ERR |
1028 | "MCE %#lx: memory outside kernel control\n", |
1029 | pfn); |
1030 | return -ENXIO; |
1031 | } |
1032 | |
1033 | p = pfn_to_page(pfn); |
1034 | hpage = compound_head(p); |
1035 | if (TestSetPageHWPoison(p)) { |
1036 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); |
1037 | return 0; |
1038 | } |
1039 | |
1040 | nr_pages = 1 << compound_trans_order(hpage); |
1041 | atomic_long_add(nr_pages, &mce_bad_pages); |
1042 | |
1043 | /* |
1044 | * We need/can do nothing about count=0 pages. |
1045 | * 1) it's a free page, and therefore in safe hand: |
1046 | * prep_new_page() will be the gate keeper. |
1047 | * 2) it's a free hugepage, which is also safe: |
1048 | * an affected hugepage will be dequeued from hugepage freelist, |
1049 | * so there's no concern about reusing it ever after. |
1050 | * 3) it's part of a non-compound high order page. |
1051 | * Implies some kernel user: cannot stop them from |
1052 | * R/W the page; let's pray that the page has been |
1053 | * used and will be freed some time later. |
1054 | * In fact it's dangerous to directly bump up page count from 0, |
1055 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. |
1056 | */ |
1057 | if (!(flags & MF_COUNT_INCREASED) && |
1058 | !get_page_unless_zero(hpage)) { |
1059 | if (is_free_buddy_page(p)) { |
1060 | action_result(pfn, "free buddy", DELAYED); |
1061 | return 0; |
1062 | } else if (PageHuge(hpage)) { |
1063 | /* |
1064 | * Check "just unpoisoned", "filter hit", and |
1065 | * "race with other subpage." |
1066 | */ |
1067 | lock_page(hpage); |
1068 | if (!PageHWPoison(hpage) |
1069 | || (hwpoison_filter(p) && TestClearPageHWPoison(p)) |
1070 | || (p != hpage && TestSetPageHWPoison(hpage))) { |
1071 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1072 | return 0; |
1073 | } |
1074 | set_page_hwpoison_huge_page(hpage); |
1075 | res = dequeue_hwpoisoned_huge_page(hpage); |
1076 | action_result(pfn, "free huge", |
1077 | res ? IGNORED : DELAYED); |
1078 | unlock_page(hpage); |
1079 | return res; |
1080 | } else { |
1081 | action_result(pfn, "high order kernel", IGNORED); |
1082 | return -EBUSY; |
1083 | } |
1084 | } |
1085 | |
1086 | /* |
1087 | * We ignore non-LRU pages for good reasons. |
1088 | * - PG_locked is only well defined for LRU pages and a few others |
1089 | * - to avoid races with __set_page_locked() |
1090 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) |
1091 | * The check (unnecessarily) ignores LRU pages being isolated and |
1092 | * walked by the page reclaim code, however that's not a big loss. |
1093 | */ |
1094 | if (!PageHuge(p) && !PageTransTail(p)) { |
1095 | if (!PageLRU(p)) |
1096 | shake_page(p, 0); |
1097 | if (!PageLRU(p)) { |
1098 | /* |
1099 | * shake_page could have turned it free. |
1100 | */ |
1101 | if (is_free_buddy_page(p)) { |
1102 | action_result(pfn, "free buddy, 2nd try", |
1103 | DELAYED); |
1104 | return 0; |
1105 | } |
1106 | action_result(pfn, "non LRU", IGNORED); |
1107 | put_page(p); |
1108 | return -EBUSY; |
1109 | } |
1110 | } |
1111 | |
1112 | /* |
1113 | * Lock the page and wait for writeback to finish. |
1114 | * It's very difficult to mess with pages currently under IO |
1115 | * and in many cases impossible, so we just avoid it here. |
1116 | */ |
1117 | lock_page(hpage); |
1118 | |
1119 | /* |
1120 | * unpoison always clear PG_hwpoison inside page lock |
1121 | */ |
1122 | if (!PageHWPoison(p)) { |
1123 | printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); |
1124 | res = 0; |
1125 | goto out; |
1126 | } |
1127 | if (hwpoison_filter(p)) { |
1128 | if (TestClearPageHWPoison(p)) |
1129 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1130 | unlock_page(hpage); |
1131 | put_page(hpage); |
1132 | return 0; |
1133 | } |
1134 | |
1135 | /* |
1136 | * For error on the tail page, we should set PG_hwpoison |
1137 | * on the head page to show that the hugepage is hwpoisoned |
1138 | */ |
1139 | if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { |
1140 | action_result(pfn, "hugepage already hardware poisoned", |
1141 | IGNORED); |
1142 | unlock_page(hpage); |
1143 | put_page(hpage); |
1144 | return 0; |
1145 | } |
1146 | /* |
1147 | * Set PG_hwpoison on all pages in an error hugepage, |
1148 | * because containment is done in hugepage unit for now. |
1149 | * Since we have done TestSetPageHWPoison() for the head page with |
1150 | * page lock held, we can safely set PG_hwpoison bits on tail pages. |
1151 | */ |
1152 | if (PageHuge(p)) |
1153 | set_page_hwpoison_huge_page(hpage); |
1154 | |
1155 | wait_on_page_writeback(p); |
1156 | |
1157 | /* |
1158 | * Now take care of user space mappings. |
1159 | * Abort on fail: __delete_from_page_cache() assumes unmapped page. |
1160 | */ |
1161 | if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) { |
1162 | printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); |
1163 | res = -EBUSY; |
1164 | goto out; |
1165 | } |
1166 | |
1167 | /* |
1168 | * Torn down by someone else? |
1169 | */ |
1170 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { |
1171 | action_result(pfn, "already truncated LRU", IGNORED); |
1172 | res = -EBUSY; |
1173 | goto out; |
1174 | } |
1175 | |
1176 | res = -EBUSY; |
1177 | for (ps = error_states;; ps++) { |
1178 | if ((p->flags & ps->mask) == ps->res) { |
1179 | res = page_action(ps, p, pfn); |
1180 | break; |
1181 | } |
1182 | } |
1183 | out: |
1184 | unlock_page(hpage); |
1185 | return res; |
1186 | } |
1187 | EXPORT_SYMBOL_GPL(memory_failure); |
1188 | |
1189 | #define MEMORY_FAILURE_FIFO_ORDER 4 |
1190 | #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) |
1191 | |
1192 | struct memory_failure_entry { |
1193 | unsigned long pfn; |
1194 | int trapno; |
1195 | int flags; |
1196 | }; |
1197 | |
1198 | struct memory_failure_cpu { |
1199 | DECLARE_KFIFO(fifo, struct memory_failure_entry, |
1200 | MEMORY_FAILURE_FIFO_SIZE); |
1201 | spinlock_t lock; |
1202 | struct work_struct work; |
1203 | }; |
1204 | |
1205 | static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); |
1206 | |
1207 | /** |
1208 | * memory_failure_queue - Schedule handling memory failure of a page. |
1209 | * @pfn: Page Number of the corrupted page |
1210 | * @trapno: Trap number reported in the signal to user space. |
1211 | * @flags: Flags for memory failure handling |
1212 | * |
1213 | * This function is called by the low level hardware error handler |
1214 | * when it detects hardware memory corruption of a page. It schedules |
1215 | * the recovering of error page, including dropping pages, killing |
1216 | * processes etc. |
1217 | * |
1218 | * The function is primarily of use for corruptions that |
1219 | * happen outside the current execution context (e.g. when |
1220 | * detected by a background scrubber) |
1221 | * |
1222 | * Can run in IRQ context. |
1223 | */ |
1224 | void memory_failure_queue(unsigned long pfn, int trapno, int flags) |
1225 | { |
1226 | struct memory_failure_cpu *mf_cpu; |
1227 | unsigned long proc_flags; |
1228 | struct memory_failure_entry entry = { |
1229 | .pfn = pfn, |
1230 | .trapno = trapno, |
1231 | .flags = flags, |
1232 | }; |
1233 | |
1234 | mf_cpu = &get_cpu_var(memory_failure_cpu); |
1235 | spin_lock_irqsave(&mf_cpu->lock, proc_flags); |
1236 | if (kfifo_put(&mf_cpu->fifo, &entry)) |
1237 | schedule_work_on(smp_processor_id(), &mf_cpu->work); |
1238 | else |
1239 | pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n", |
1240 | pfn); |
1241 | spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); |
1242 | put_cpu_var(memory_failure_cpu); |
1243 | } |
1244 | EXPORT_SYMBOL_GPL(memory_failure_queue); |
1245 | |
1246 | static void memory_failure_work_func(struct work_struct *work) |
1247 | { |
1248 | struct memory_failure_cpu *mf_cpu; |
1249 | struct memory_failure_entry entry = { 0, }; |
1250 | unsigned long proc_flags; |
1251 | int gotten; |
1252 | |
1253 | mf_cpu = &__get_cpu_var(memory_failure_cpu); |
1254 | for (;;) { |
1255 | spin_lock_irqsave(&mf_cpu->lock, proc_flags); |
1256 | gotten = kfifo_get(&mf_cpu->fifo, &entry); |
1257 | spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); |
1258 | if (!gotten) |
1259 | break; |
1260 | memory_failure(entry.pfn, entry.trapno, entry.flags); |
1261 | } |
1262 | } |
1263 | |
1264 | static int __init memory_failure_init(void) |
1265 | { |
1266 | struct memory_failure_cpu *mf_cpu; |
1267 | int cpu; |
1268 | |
1269 | for_each_possible_cpu(cpu) { |
1270 | mf_cpu = &per_cpu(memory_failure_cpu, cpu); |
1271 | spin_lock_init(&mf_cpu->lock); |
1272 | INIT_KFIFO(mf_cpu->fifo); |
1273 | INIT_WORK(&mf_cpu->work, memory_failure_work_func); |
1274 | } |
1275 | |
1276 | return 0; |
1277 | } |
1278 | core_initcall(memory_failure_init); |
1279 | |
1280 | /** |
1281 | * unpoison_memory - Unpoison a previously poisoned page |
1282 | * @pfn: Page number of the to be unpoisoned page |
1283 | * |
1284 | * Software-unpoison a page that has been poisoned by |
1285 | * memory_failure() earlier. |
1286 | * |
1287 | * This is only done on the software-level, so it only works |
1288 | * for linux injected failures, not real hardware failures |
1289 | * |
1290 | * Returns 0 for success, otherwise -errno. |
1291 | */ |
1292 | int unpoison_memory(unsigned long pfn) |
1293 | { |
1294 | struct page *page; |
1295 | struct page *p; |
1296 | int freeit = 0; |
1297 | unsigned int nr_pages; |
1298 | |
1299 | if (!pfn_valid(pfn)) |
1300 | return -ENXIO; |
1301 | |
1302 | p = pfn_to_page(pfn); |
1303 | page = compound_head(p); |
1304 | |
1305 | if (!PageHWPoison(p)) { |
1306 | pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); |
1307 | return 0; |
1308 | } |
1309 | |
1310 | nr_pages = 1 << compound_trans_order(page); |
1311 | |
1312 | if (!get_page_unless_zero(page)) { |
1313 | /* |
1314 | * Since HWPoisoned hugepage should have non-zero refcount, |
1315 | * race between memory failure and unpoison seems to happen. |
1316 | * In such case unpoison fails and memory failure runs |
1317 | * to the end. |
1318 | */ |
1319 | if (PageHuge(page)) { |
1320 | pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); |
1321 | return 0; |
1322 | } |
1323 | if (TestClearPageHWPoison(p)) |
1324 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1325 | pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); |
1326 | return 0; |
1327 | } |
1328 | |
1329 | lock_page(page); |
1330 | /* |
1331 | * This test is racy because PG_hwpoison is set outside of page lock. |
1332 | * That's acceptable because that won't trigger kernel panic. Instead, |
1333 | * the PG_hwpoison page will be caught and isolated on the entrance to |
1334 | * the free buddy page pool. |
1335 | */ |
1336 | if (TestClearPageHWPoison(page)) { |
1337 | pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); |
1338 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1339 | freeit = 1; |
1340 | if (PageHuge(page)) |
1341 | clear_page_hwpoison_huge_page(page); |
1342 | } |
1343 | unlock_page(page); |
1344 | |
1345 | put_page(page); |
1346 | if (freeit) |
1347 | put_page(page); |
1348 | |
1349 | return 0; |
1350 | } |
1351 | EXPORT_SYMBOL(unpoison_memory); |
1352 | |
1353 | static struct page *new_page(struct page *p, unsigned long private, int **x) |
1354 | { |
1355 | int nid = page_to_nid(p); |
1356 | if (PageHuge(p)) |
1357 | return alloc_huge_page_node(page_hstate(compound_head(p)), |
1358 | nid); |
1359 | else |
1360 | return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); |
1361 | } |
1362 | |
1363 | /* |
1364 | * Safely get reference count of an arbitrary page. |
1365 | * Returns 0 for a free page, -EIO for a zero refcount page |
1366 | * that is not free, and 1 for any other page type. |
1367 | * For 1 the page is returned with increased page count, otherwise not. |
1368 | */ |
1369 | static int get_any_page(struct page *p, unsigned long pfn, int flags) |
1370 | { |
1371 | int ret; |
1372 | |
1373 | if (flags & MF_COUNT_INCREASED) |
1374 | return 1; |
1375 | |
1376 | /* |
1377 | * The lock_memory_hotplug prevents a race with memory hotplug. |
1378 | * This is a big hammer, a better would be nicer. |
1379 | */ |
1380 | lock_memory_hotplug(); |
1381 | |
1382 | /* |
1383 | * Isolate the page, so that it doesn't get reallocated if it |
1384 | * was free. |
1385 | */ |
1386 | set_migratetype_isolate(p); |
1387 | /* |
1388 | * When the target page is a free hugepage, just remove it |
1389 | * from free hugepage list. |
1390 | */ |
1391 | if (!get_page_unless_zero(compound_head(p))) { |
1392 | if (PageHuge(p)) { |
1393 | pr_info("%s: %#lx free huge page\n", __func__, pfn); |
1394 | ret = dequeue_hwpoisoned_huge_page(compound_head(p)); |
1395 | } else if (is_free_buddy_page(p)) { |
1396 | pr_info("%s: %#lx free buddy page\n", __func__, pfn); |
1397 | /* Set hwpoison bit while page is still isolated */ |
1398 | SetPageHWPoison(p); |
1399 | ret = 0; |
1400 | } else { |
1401 | pr_info("%s: %#lx: unknown zero refcount page type %lx\n", |
1402 | __func__, pfn, p->flags); |
1403 | ret = -EIO; |
1404 | } |
1405 | } else { |
1406 | /* Not a free page */ |
1407 | ret = 1; |
1408 | } |
1409 | unset_migratetype_isolate(p, MIGRATE_MOVABLE); |
1410 | unlock_memory_hotplug(); |
1411 | return ret; |
1412 | } |
1413 | |
1414 | static int soft_offline_huge_page(struct page *page, int flags) |
1415 | { |
1416 | int ret; |
1417 | unsigned long pfn = page_to_pfn(page); |
1418 | struct page *hpage = compound_head(page); |
1419 | |
1420 | ret = get_any_page(page, pfn, flags); |
1421 | if (ret < 0) |
1422 | return ret; |
1423 | if (ret == 0) |
1424 | goto done; |
1425 | |
1426 | if (PageHWPoison(hpage)) { |
1427 | put_page(hpage); |
1428 | pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); |
1429 | return -EBUSY; |
1430 | } |
1431 | |
1432 | /* Keep page count to indicate a given hugepage is isolated. */ |
1433 | ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false, |
1434 | MIGRATE_SYNC); |
1435 | put_page(hpage); |
1436 | if (ret) { |
1437 | pr_info("soft offline: %#lx: migration failed %d, type %lx\n", |
1438 | pfn, ret, page->flags); |
1439 | return ret; |
1440 | } |
1441 | done: |
1442 | if (!PageHWPoison(hpage)) |
1443 | atomic_long_add(1 << compound_trans_order(hpage), |
1444 | &mce_bad_pages); |
1445 | set_page_hwpoison_huge_page(hpage); |
1446 | dequeue_hwpoisoned_huge_page(hpage); |
1447 | /* keep elevated page count for bad page */ |
1448 | return ret; |
1449 | } |
1450 | |
1451 | /** |
1452 | * soft_offline_page - Soft offline a page. |
1453 | * @page: page to offline |
1454 | * @flags: flags. Same as memory_failure(). |
1455 | * |
1456 | * Returns 0 on success, otherwise negated errno. |
1457 | * |
1458 | * Soft offline a page, by migration or invalidation, |
1459 | * without killing anything. This is for the case when |
1460 | * a page is not corrupted yet (so it's still valid to access), |
1461 | * but has had a number of corrected errors and is better taken |
1462 | * out. |
1463 | * |
1464 | * The actual policy on when to do that is maintained by |
1465 | * user space. |
1466 | * |
1467 | * This should never impact any application or cause data loss, |
1468 | * however it might take some time. |
1469 | * |
1470 | * This is not a 100% solution for all memory, but tries to be |
1471 | * ``good enough'' for the majority of memory. |
1472 | */ |
1473 | int soft_offline_page(struct page *page, int flags) |
1474 | { |
1475 | int ret; |
1476 | unsigned long pfn = page_to_pfn(page); |
1477 | |
1478 | if (PageHuge(page)) |
1479 | return soft_offline_huge_page(page, flags); |
1480 | |
1481 | ret = get_any_page(page, pfn, flags); |
1482 | if (ret < 0) |
1483 | return ret; |
1484 | if (ret == 0) |
1485 | goto done; |
1486 | |
1487 | /* |
1488 | * Page cache page we can handle? |
1489 | */ |
1490 | if (!PageLRU(page)) { |
1491 | /* |
1492 | * Try to free it. |
1493 | */ |
1494 | put_page(page); |
1495 | shake_page(page, 1); |
1496 | |
1497 | /* |
1498 | * Did it turn free? |
1499 | */ |
1500 | ret = get_any_page(page, pfn, 0); |
1501 | if (ret < 0) |
1502 | return ret; |
1503 | if (ret == 0) |
1504 | goto done; |
1505 | } |
1506 | if (!PageLRU(page)) { |
1507 | pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", |
1508 | pfn, page->flags); |
1509 | return -EIO; |
1510 | } |
1511 | |
1512 | lock_page(page); |
1513 | wait_on_page_writeback(page); |
1514 | |
1515 | /* |
1516 | * Synchronized using the page lock with memory_failure() |
1517 | */ |
1518 | if (PageHWPoison(page)) { |
1519 | unlock_page(page); |
1520 | put_page(page); |
1521 | pr_info("soft offline: %#lx page already poisoned\n", pfn); |
1522 | return -EBUSY; |
1523 | } |
1524 | |
1525 | /* |
1526 | * Try to invalidate first. This should work for |
1527 | * non dirty unmapped page cache pages. |
1528 | */ |
1529 | ret = invalidate_inode_page(page); |
1530 | unlock_page(page); |
1531 | /* |
1532 | * RED-PEN would be better to keep it isolated here, but we |
1533 | * would need to fix isolation locking first. |
1534 | */ |
1535 | if (ret == 1) { |
1536 | put_page(page); |
1537 | ret = 0; |
1538 | pr_info("soft_offline: %#lx: invalidated\n", pfn); |
1539 | goto done; |
1540 | } |
1541 | |
1542 | /* |
1543 | * Simple invalidation didn't work. |
1544 | * Try to migrate to a new page instead. migrate.c |
1545 | * handles a large number of cases for us. |
1546 | */ |
1547 | ret = isolate_lru_page(page); |
1548 | /* |
1549 | * Drop page reference which is came from get_any_page() |
1550 | * successful isolate_lru_page() already took another one. |
1551 | */ |
1552 | put_page(page); |
1553 | if (!ret) { |
1554 | LIST_HEAD(pagelist); |
1555 | inc_zone_page_state(page, NR_ISOLATED_ANON + |
1556 | page_is_file_cache(page)); |
1557 | list_add(&page->lru, &pagelist); |
1558 | ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, |
1559 | false, MIGRATE_SYNC); |
1560 | if (ret) { |
1561 | putback_lru_pages(&pagelist); |
1562 | pr_info("soft offline: %#lx: migration failed %d, type %lx\n", |
1563 | pfn, ret, page->flags); |
1564 | if (ret > 0) |
1565 | ret = -EIO; |
1566 | } |
1567 | } else { |
1568 | pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", |
1569 | pfn, ret, page_count(page), page->flags); |
1570 | } |
1571 | if (ret) |
1572 | return ret; |
1573 | |
1574 | done: |
1575 | atomic_long_add(1, &mce_bad_pages); |
1576 | SetPageHWPoison(page); |
1577 | /* keep elevated page count for bad page */ |
1578 | return ret; |
1579 | } |
1580 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9