Root/mm/memory-failure.c

1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/export.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/kfifo.h>
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68u32 hwpoison_filter_enable = 0;
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79static int hwpoison_filter_dev(struct page *p)
80{
81    struct address_space *mapping;
82    dev_t dev;
83
84    if (hwpoison_filter_dev_major == ~0U &&
85        hwpoison_filter_dev_minor == ~0U)
86        return 0;
87
88    /*
89     * page_mapping() does not accept slab pages.
90     */
91    if (PageSlab(p))
92        return -EINVAL;
93
94    mapping = page_mapping(p);
95    if (mapping == NULL || mapping->host == NULL)
96        return -EINVAL;
97
98    dev = mapping->host->i_sb->s_dev;
99    if (hwpoison_filter_dev_major != ~0U &&
100        hwpoison_filter_dev_major != MAJOR(dev))
101        return -EINVAL;
102    if (hwpoison_filter_dev_minor != ~0U &&
103        hwpoison_filter_dev_minor != MINOR(dev))
104        return -EINVAL;
105
106    return 0;
107}
108
109static int hwpoison_filter_flags(struct page *p)
110{
111    if (!hwpoison_filter_flags_mask)
112        return 0;
113
114    if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115                    hwpoison_filter_flags_value)
116        return 0;
117    else
118        return -EINVAL;
119}
120
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131#ifdef CONFIG_MEMCG_SWAP
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136    struct mem_cgroup *mem;
137    struct cgroup_subsys_state *css;
138    unsigned long ino;
139
140    if (!hwpoison_filter_memcg)
141        return 0;
142
143    mem = try_get_mem_cgroup_from_page(p);
144    if (!mem)
145        return -EINVAL;
146
147    css = mem_cgroup_css(mem);
148    /* root_mem_cgroup has NULL dentries */
149    if (!css->cgroup->dentry)
150        return -EINVAL;
151
152    ino = css->cgroup->dentry->d_inode->i_ino;
153    css_put(css);
154
155    if (ino != hwpoison_filter_memcg)
156        return -EINVAL;
157
158    return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
164int hwpoison_filter(struct page *p)
165{
166    if (!hwpoison_filter_enable)
167        return 0;
168
169    if (hwpoison_filter_dev(p))
170        return -EINVAL;
171
172    if (hwpoison_filter_flags(p))
173        return -EINVAL;
174
175    if (hwpoison_filter_task(p))
176        return -EINVAL;
177
178    return 0;
179}
180#else
181int hwpoison_filter(struct page *p)
182{
183    return 0;
184}
185#endif
186
187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
189/*
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
193 */
194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195            unsigned long pfn, struct page *page, int flags)
196{
197    struct siginfo si;
198    int ret;
199
200    printk(KERN_ERR
201        "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202        pfn, t->comm, t->pid);
203    si.si_signo = SIGBUS;
204    si.si_errno = 0;
205    si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207    si.si_trapno = trapno;
208#endif
209    si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210
211    if ((flags & MF_ACTION_REQUIRED) && t == current) {
212        si.si_code = BUS_MCEERR_AR;
213        ret = force_sig_info(SIGBUS, &si, t);
214    } else {
215        /*
216         * Don't use force here, it's convenient if the signal
217         * can be temporarily blocked.
218         * This could cause a loop when the user sets SIGBUS
219         * to SIG_IGN, but hopefully no one will do that?
220         */
221        si.si_code = BUS_MCEERR_AO;
222        ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223    }
224    if (ret < 0)
225        printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226               t->comm, t->pid, ret);
227    return ret;
228}
229
230/*
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
234void shake_page(struct page *p, int access)
235{
236    if (!PageSlab(p)) {
237        lru_add_drain_all();
238        if (PageLRU(p))
239            return;
240        drain_all_pages();
241        if (PageLRU(p) || is_free_buddy_page(p))
242            return;
243    }
244
245    /*
246     * Only call shrink_slab here (which would also shrink other caches) if
247     * access is not potentially fatal.
248     */
249    if (access) {
250        int nr;
251        do {
252            struct shrink_control shrink = {
253                .gfp_mask = GFP_KERNEL,
254            };
255
256            nr = shrink_slab(&shrink, 1000, 1000);
257            if (page_count(p) == 1)
258                break;
259        } while (nr > 10);
260    }
261}
262EXPORT_SYMBOL_GPL(shake_page);
263
264/*
265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286struct to_kill {
287    struct list_head nd;
288    struct task_struct *tsk;
289    unsigned long addr;
290    char addr_valid;
291};
292
293/*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298/*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303static void add_to_kill(struct task_struct *tsk, struct page *p,
304               struct vm_area_struct *vma,
305               struct list_head *to_kill,
306               struct to_kill **tkc)
307{
308    struct to_kill *tk;
309
310    if (*tkc) {
311        tk = *tkc;
312        *tkc = NULL;
313    } else {
314        tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315        if (!tk) {
316            printk(KERN_ERR
317        "MCE: Out of memory while machine check handling\n");
318            return;
319        }
320    }
321    tk->addr = page_address_in_vma(p, vma);
322    tk->addr_valid = 1;
323
324    /*
325     * In theory we don't have to kill when the page was
326     * munmaped. But it could be also a mremap. Since that's
327     * likely very rare kill anyways just out of paranoia, but use
328     * a SIGKILL because the error is not contained anymore.
329     */
330    if (tk->addr == -EFAULT) {
331        pr_info("MCE: Unable to find user space address %lx in %s\n",
332            page_to_pfn(p), tsk->comm);
333        tk->addr_valid = 0;
334    }
335    get_task_struct(tsk);
336    tk->tsk = tsk;
337    list_add_tail(&tk->nd, to_kill);
338}
339
340/*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
348static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349              int fail, struct page *page, unsigned long pfn,
350              int flags)
351{
352    struct to_kill *tk, *next;
353
354    list_for_each_entry_safe (tk, next, to_kill, nd) {
355        if (forcekill) {
356            /*
357             * In case something went wrong with munmapping
358             * make sure the process doesn't catch the
359             * signal and then access the memory. Just kill it.
360             */
361            if (fail || tk->addr_valid == 0) {
362                printk(KERN_ERR
363        "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364                    pfn, tk->tsk->comm, tk->tsk->pid);
365                force_sig(SIGKILL, tk->tsk);
366            }
367
368            /*
369             * In theory the process could have mapped
370             * something else on the address in-between. We could
371             * check for that, but we need to tell the
372             * process anyways.
373             */
374            else if (kill_proc(tk->tsk, tk->addr, trapno,
375                          pfn, page, flags) < 0)
376                printk(KERN_ERR
377        "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378                    pfn, tk->tsk->comm, tk->tsk->pid);
379        }
380        put_task_struct(tk->tsk);
381        kfree(tk);
382    }
383}
384
385static int task_early_kill(struct task_struct *tsk)
386{
387    if (!tsk->mm)
388        return 0;
389    if (tsk->flags & PF_MCE_PROCESS)
390        return !!(tsk->flags & PF_MCE_EARLY);
391    return sysctl_memory_failure_early_kill;
392}
393
394/*
395 * Collect processes when the error hit an anonymous page.
396 */
397static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398                  struct to_kill **tkc)
399{
400    struct vm_area_struct *vma;
401    struct task_struct *tsk;
402    struct anon_vma *av;
403
404    av = page_lock_anon_vma(page);
405    if (av == NULL) /* Not actually mapped anymore */
406        return;
407
408    read_lock(&tasklist_lock);
409    for_each_process (tsk) {
410        struct anon_vma_chain *vmac;
411
412        if (!task_early_kill(tsk))
413            continue;
414        list_for_each_entry(vmac, &av->head, same_anon_vma) {
415            vma = vmac->vma;
416            if (!page_mapped_in_vma(page, vma))
417                continue;
418            if (vma->vm_mm == tsk->mm)
419                add_to_kill(tsk, page, vma, to_kill, tkc);
420        }
421    }
422    read_unlock(&tasklist_lock);
423    page_unlock_anon_vma(av);
424}
425
426/*
427 * Collect processes when the error hit a file mapped page.
428 */
429static void collect_procs_file(struct page *page, struct list_head *to_kill,
430                  struct to_kill **tkc)
431{
432    struct vm_area_struct *vma;
433    struct task_struct *tsk;
434    struct prio_tree_iter iter;
435    struct address_space *mapping = page->mapping;
436
437    mutex_lock(&mapping->i_mmap_mutex);
438    read_lock(&tasklist_lock);
439    for_each_process(tsk) {
440        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441
442        if (!task_early_kill(tsk))
443            continue;
444
445        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
446                      pgoff) {
447            /*
448             * Send early kill signal to tasks where a vma covers
449             * the page but the corrupted page is not necessarily
450             * mapped it in its pte.
451             * Assume applications who requested early kill want
452             * to be informed of all such data corruptions.
453             */
454            if (vma->vm_mm == tsk->mm)
455                add_to_kill(tsk, page, vma, to_kill, tkc);
456        }
457    }
458    read_unlock(&tasklist_lock);
459    mutex_unlock(&mapping->i_mmap_mutex);
460}
461
462/*
463 * Collect the processes who have the corrupted page mapped to kill.
464 * This is done in two steps for locking reasons.
465 * First preallocate one tokill structure outside the spin locks,
466 * so that we can kill at least one process reasonably reliable.
467 */
468static void collect_procs(struct page *page, struct list_head *tokill)
469{
470    struct to_kill *tk;
471
472    if (!page->mapping)
473        return;
474
475    tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476    if (!tk)
477        return;
478    if (PageAnon(page))
479        collect_procs_anon(page, tokill, &tk);
480    else
481        collect_procs_file(page, tokill, &tk);
482    kfree(tk);
483}
484
485/*
486 * Error handlers for various types of pages.
487 */
488
489enum outcome {
490    IGNORED, /* Error: cannot be handled */
491    FAILED, /* Error: handling failed */
492    DELAYED, /* Will be handled later */
493    RECOVERED, /* Successfully recovered */
494};
495
496static const char *action_name[] = {
497    [IGNORED] = "Ignored",
498    [FAILED] = "Failed",
499    [DELAYED] = "Delayed",
500    [RECOVERED] = "Recovered",
501};
502
503/*
504 * XXX: It is possible that a page is isolated from LRU cache,
505 * and then kept in swap cache or failed to remove from page cache.
506 * The page count will stop it from being freed by unpoison.
507 * Stress tests should be aware of this memory leak problem.
508 */
509static int delete_from_lru_cache(struct page *p)
510{
511    if (!isolate_lru_page(p)) {
512        /*
513         * Clear sensible page flags, so that the buddy system won't
514         * complain when the page is unpoison-and-freed.
515         */
516        ClearPageActive(p);
517        ClearPageUnevictable(p);
518        /*
519         * drop the page count elevated by isolate_lru_page()
520         */
521        page_cache_release(p);
522        return 0;
523    }
524    return -EIO;
525}
526
527/*
528 * Error hit kernel page.
529 * Do nothing, try to be lucky and not touch this instead. For a few cases we
530 * could be more sophisticated.
531 */
532static int me_kernel(struct page *p, unsigned long pfn)
533{
534    return IGNORED;
535}
536
537/*
538 * Page in unknown state. Do nothing.
539 */
540static int me_unknown(struct page *p, unsigned long pfn)
541{
542    printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543    return FAILED;
544}
545
546/*
547 * Clean (or cleaned) page cache page.
548 */
549static int me_pagecache_clean(struct page *p, unsigned long pfn)
550{
551    int err;
552    int ret = FAILED;
553    struct address_space *mapping;
554
555    delete_from_lru_cache(p);
556
557    /*
558     * For anonymous pages we're done the only reference left
559     * should be the one m_f() holds.
560     */
561    if (PageAnon(p))
562        return RECOVERED;
563
564    /*
565     * Now truncate the page in the page cache. This is really
566     * more like a "temporary hole punch"
567     * Don't do this for block devices when someone else
568     * has a reference, because it could be file system metadata
569     * and that's not safe to truncate.
570     */
571    mapping = page_mapping(p);
572    if (!mapping) {
573        /*
574         * Page has been teared down in the meanwhile
575         */
576        return FAILED;
577    }
578
579    /*
580     * Truncation is a bit tricky. Enable it per file system for now.
581     *
582     * Open: to take i_mutex or not for this? Right now we don't.
583     */
584    if (mapping->a_ops->error_remove_page) {
585        err = mapping->a_ops->error_remove_page(mapping, p);
586        if (err != 0) {
587            printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588                    pfn, err);
589        } else if (page_has_private(p) &&
590                !try_to_release_page(p, GFP_NOIO)) {
591            pr_info("MCE %#lx: failed to release buffers\n", pfn);
592        } else {
593            ret = RECOVERED;
594        }
595    } else {
596        /*
597         * If the file system doesn't support it just invalidate
598         * This fails on dirty or anything with private pages
599         */
600        if (invalidate_inode_page(p))
601            ret = RECOVERED;
602        else
603            printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604                pfn);
605    }
606    return ret;
607}
608
609/*
610 * Dirty cache page page
611 * Issues: when the error hit a hole page the error is not properly
612 * propagated.
613 */
614static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615{
616    struct address_space *mapping = page_mapping(p);
617
618    SetPageError(p);
619    /* TBD: print more information about the file. */
620    if (mapping) {
621        /*
622         * IO error will be reported by write(), fsync(), etc.
623         * who check the mapping.
624         * This way the application knows that something went
625         * wrong with its dirty file data.
626         *
627         * There's one open issue:
628         *
629         * The EIO will be only reported on the next IO
630         * operation and then cleared through the IO map.
631         * Normally Linux has two mechanisms to pass IO error
632         * first through the AS_EIO flag in the address space
633         * and then through the PageError flag in the page.
634         * Since we drop pages on memory failure handling the
635         * only mechanism open to use is through AS_AIO.
636         *
637         * This has the disadvantage that it gets cleared on
638         * the first operation that returns an error, while
639         * the PageError bit is more sticky and only cleared
640         * when the page is reread or dropped. If an
641         * application assumes it will always get error on
642         * fsync, but does other operations on the fd before
643         * and the page is dropped between then the error
644         * will not be properly reported.
645         *
646         * This can already happen even without hwpoisoned
647         * pages: first on metadata IO errors (which only
648         * report through AS_EIO) or when the page is dropped
649         * at the wrong time.
650         *
651         * So right now we assume that the application DTRT on
652         * the first EIO, but we're not worse than other parts
653         * of the kernel.
654         */
655        mapping_set_error(mapping, EIO);
656    }
657
658    return me_pagecache_clean(p, pfn);
659}
660
661/*
662 * Clean and dirty swap cache.
663 *
664 * Dirty swap cache page is tricky to handle. The page could live both in page
665 * cache and swap cache(ie. page is freshly swapped in). So it could be
666 * referenced concurrently by 2 types of PTEs:
667 * normal PTEs and swap PTEs. We try to handle them consistently by calling
668 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669 * and then
670 * - clear dirty bit to prevent IO
671 * - remove from LRU
672 * - but keep in the swap cache, so that when we return to it on
673 * a later page fault, we know the application is accessing
674 * corrupted data and shall be killed (we installed simple
675 * interception code in do_swap_page to catch it).
676 *
677 * Clean swap cache pages can be directly isolated. A later page fault will
678 * bring in the known good data from disk.
679 */
680static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681{
682    ClearPageDirty(p);
683    /* Trigger EIO in shmem: */
684    ClearPageUptodate(p);
685
686    if (!delete_from_lru_cache(p))
687        return DELAYED;
688    else
689        return FAILED;
690}
691
692static int me_swapcache_clean(struct page *p, unsigned long pfn)
693{
694    delete_from_swap_cache(p);
695
696    if (!delete_from_lru_cache(p))
697        return RECOVERED;
698    else
699        return FAILED;
700}
701
702/*
703 * Huge pages. Needs work.
704 * Issues:
705 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706 * To narrow down kill region to one page, we need to break up pmd.
707 */
708static int me_huge_page(struct page *p, unsigned long pfn)
709{
710    int res = 0;
711    struct page *hpage = compound_head(p);
712    /*
713     * We can safely recover from error on free or reserved (i.e.
714     * not in-use) hugepage by dequeuing it from freelist.
715     * To check whether a hugepage is in-use or not, we can't use
716     * page->lru because it can be used in other hugepage operations,
717     * such as __unmap_hugepage_range() and gather_surplus_pages().
718     * So instead we use page_mapping() and PageAnon().
719     * We assume that this function is called with page lock held,
720     * so there is no race between isolation and mapping/unmapping.
721     */
722    if (!(page_mapping(hpage) || PageAnon(hpage))) {
723        res = dequeue_hwpoisoned_huge_page(hpage);
724        if (!res)
725            return RECOVERED;
726    }
727    return DELAYED;
728}
729
730/*
731 * Various page states we can handle.
732 *
733 * A page state is defined by its current page->flags bits.
734 * The table matches them in order and calls the right handler.
735 *
736 * This is quite tricky because we can access page at any time
737 * in its live cycle, so all accesses have to be extremely careful.
738 *
739 * This is not complete. More states could be added.
740 * For any missing state don't attempt recovery.
741 */
742
743#define dirty (1UL << PG_dirty)
744#define sc (1UL << PG_swapcache)
745#define unevict (1UL << PG_unevictable)
746#define mlock (1UL << PG_mlocked)
747#define writeback (1UL << PG_writeback)
748#define lru (1UL << PG_lru)
749#define swapbacked (1UL << PG_swapbacked)
750#define head (1UL << PG_head)
751#define tail (1UL << PG_tail)
752#define compound (1UL << PG_compound)
753#define slab (1UL << PG_slab)
754#define reserved (1UL << PG_reserved)
755
756static struct page_state {
757    unsigned long mask;
758    unsigned long res;
759    char *msg;
760    int (*action)(struct page *p, unsigned long pfn);
761} error_states[] = {
762    { reserved, reserved, "reserved kernel", me_kernel },
763    /*
764     * free pages are specially detected outside this table:
765     * PG_buddy pages only make a small fraction of all free pages.
766     */
767
768    /*
769     * Could in theory check if slab page is free or if we can drop
770     * currently unused objects without touching them. But just
771     * treat it as standard kernel for now.
772     */
773    { slab, slab, "kernel slab", me_kernel },
774
775#ifdef CONFIG_PAGEFLAGS_EXTENDED
776    { head, head, "huge", me_huge_page },
777    { tail, tail, "huge", me_huge_page },
778#else
779    { compound, compound, "huge", me_huge_page },
780#endif
781
782    { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
783    { sc|dirty, sc, "swapcache", me_swapcache_clean },
784
785    { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
786    { unevict, unevict, "unevictable LRU", me_pagecache_clean},
787
788    { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
789    { mlock, mlock, "mlocked LRU", me_pagecache_clean },
790
791    { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
792    { lru|dirty, lru, "clean LRU", me_pagecache_clean },
793
794    /*
795     * Catchall entry: must be at end.
796     */
797    { 0, 0, "unknown page state", me_unknown },
798};
799
800#undef dirty
801#undef sc
802#undef unevict
803#undef mlock
804#undef writeback
805#undef lru
806#undef swapbacked
807#undef head
808#undef tail
809#undef compound
810#undef slab
811#undef reserved
812
813static void action_result(unsigned long pfn, char *msg, int result)
814{
815    struct page *page = pfn_to_page(pfn);
816
817    printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
818        pfn,
819        PageDirty(page) ? "dirty " : "",
820        msg, action_name[result]);
821}
822
823static int page_action(struct page_state *ps, struct page *p,
824            unsigned long pfn)
825{
826    int result;
827    int count;
828
829    result = ps->action(p, pfn);
830    action_result(pfn, ps->msg, result);
831
832    count = page_count(p) - 1;
833    if (ps->action == me_swapcache_dirty && result == DELAYED)
834        count--;
835    if (count != 0) {
836        printk(KERN_ERR
837               "MCE %#lx: %s page still referenced by %d users\n",
838               pfn, ps->msg, count);
839        result = FAILED;
840    }
841
842    /* Could do more checks here if page looks ok */
843    /*
844     * Could adjust zone counters here to correct for the missing page.
845     */
846
847    return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
848}
849
850/*
851 * Do all that is necessary to remove user space mappings. Unmap
852 * the pages and send SIGBUS to the processes if the data was dirty.
853 */
854static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
855                  int trapno, int flags)
856{
857    enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858    struct address_space *mapping;
859    LIST_HEAD(tokill);
860    int ret;
861    int kill = 1, forcekill;
862    struct page *hpage = compound_head(p);
863    struct page *ppage;
864
865    if (PageReserved(p) || PageSlab(p))
866        return SWAP_SUCCESS;
867
868    /*
869     * This check implies we don't kill processes if their pages
870     * are in the swap cache early. Those are always late kills.
871     */
872    if (!page_mapped(hpage))
873        return SWAP_SUCCESS;
874
875    if (PageKsm(p))
876        return SWAP_FAIL;
877
878    if (PageSwapCache(p)) {
879        printk(KERN_ERR
880               "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881        ttu |= TTU_IGNORE_HWPOISON;
882    }
883
884    /*
885     * Propagate the dirty bit from PTEs to struct page first, because we
886     * need this to decide if we should kill or just drop the page.
887     * XXX: the dirty test could be racy: set_page_dirty() may not always
888     * be called inside page lock (it's recommended but not enforced).
889     */
890    mapping = page_mapping(hpage);
891    if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
892        mapping_cap_writeback_dirty(mapping)) {
893        if (page_mkclean(hpage)) {
894            SetPageDirty(hpage);
895        } else {
896            kill = 0;
897            ttu |= TTU_IGNORE_HWPOISON;
898            printk(KERN_INFO
899    "MCE %#lx: corrupted page was clean: dropped without side effects\n",
900                pfn);
901        }
902    }
903
904    /*
905     * ppage: poisoned page
906     * if p is regular page(4k page)
907     * ppage == real poisoned page;
908     * else p is hugetlb or THP, ppage == head page.
909     */
910    ppage = hpage;
911
912    if (PageTransHuge(hpage)) {
913        /*
914         * Verify that this isn't a hugetlbfs head page, the check for
915         * PageAnon is just for avoid tripping a split_huge_page
916         * internal debug check, as split_huge_page refuses to deal with
917         * anything that isn't an anon page. PageAnon can't go away fro
918         * under us because we hold a refcount on the hpage, without a
919         * refcount on the hpage. split_huge_page can't be safely called
920         * in the first place, having a refcount on the tail isn't
921         * enough * to be safe.
922         */
923        if (!PageHuge(hpage) && PageAnon(hpage)) {
924            if (unlikely(split_huge_page(hpage))) {
925                /*
926                 * FIXME: if splitting THP is failed, it is
927                 * better to stop the following operation rather
928                 * than causing panic by unmapping. System might
929                 * survive if the page is freed later.
930                 */
931                printk(KERN_INFO
932                    "MCE %#lx: failed to split THP\n", pfn);
933
934                BUG_ON(!PageHWPoison(p));
935                return SWAP_FAIL;
936            }
937            /* THP is split, so ppage should be the real poisoned page. */
938            ppage = p;
939        }
940    }
941
942    /*
943     * First collect all the processes that have the page
944     * mapped in dirty form. This has to be done before try_to_unmap,
945     * because ttu takes the rmap data structures down.
946     *
947     * Error handling: We ignore errors here because
948     * there's nothing that can be done.
949     */
950    if (kill)
951        collect_procs(ppage, &tokill);
952
953    if (hpage != ppage)
954        lock_page(ppage);
955
956    ret = try_to_unmap(ppage, ttu);
957    if (ret != SWAP_SUCCESS)
958        printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
959                pfn, page_mapcount(ppage));
960
961    if (hpage != ppage)
962        unlock_page(ppage);
963
964    /*
965     * Now that the dirty bit has been propagated to the
966     * struct page and all unmaps done we can decide if
967     * killing is needed or not. Only kill when the page
968     * was dirty or the process is not restartable,
969     * otherwise the tokill list is merely
970     * freed. When there was a problem unmapping earlier
971     * use a more force-full uncatchable kill to prevent
972     * any accesses to the poisoned memory.
973     */
974    forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
975    kill_procs(&tokill, forcekill, trapno,
976              ret != SWAP_SUCCESS, p, pfn, flags);
977
978    return ret;
979}
980
981static void set_page_hwpoison_huge_page(struct page *hpage)
982{
983    int i;
984    int nr_pages = 1 << compound_trans_order(hpage);
985    for (i = 0; i < nr_pages; i++)
986        SetPageHWPoison(hpage + i);
987}
988
989static void clear_page_hwpoison_huge_page(struct page *hpage)
990{
991    int i;
992    int nr_pages = 1 << compound_trans_order(hpage);
993    for (i = 0; i < nr_pages; i++)
994        ClearPageHWPoison(hpage + i);
995}
996
997/**
998 * memory_failure - Handle memory failure of a page.
999 * @pfn: Page Number of the corrupted page
1000 * @trapno: Trap number reported in the signal to user space.
1001 * @flags: fine tune action taken
1002 *
1003 * This function is called by the low level machine check code
1004 * of an architecture when it detects hardware memory corruption
1005 * of a page. It tries its best to recover, which includes
1006 * dropping pages, killing processes etc.
1007 *
1008 * The function is primarily of use for corruptions that
1009 * happen outside the current execution context (e.g. when
1010 * detected by a background scrubber)
1011 *
1012 * Must run in process context (e.g. a work queue) with interrupts
1013 * enabled and no spinlocks hold.
1014 */
1015int memory_failure(unsigned long pfn, int trapno, int flags)
1016{
1017    struct page_state *ps;
1018    struct page *p;
1019    struct page *hpage;
1020    int res;
1021    unsigned int nr_pages;
1022
1023    if (!sysctl_memory_failure_recovery)
1024        panic("Memory failure from trap %d on page %lx", trapno, pfn);
1025
1026    if (!pfn_valid(pfn)) {
1027        printk(KERN_ERR
1028               "MCE %#lx: memory outside kernel control\n",
1029               pfn);
1030        return -ENXIO;
1031    }
1032
1033    p = pfn_to_page(pfn);
1034    hpage = compound_head(p);
1035    if (TestSetPageHWPoison(p)) {
1036        printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1037        return 0;
1038    }
1039
1040    nr_pages = 1 << compound_trans_order(hpage);
1041    atomic_long_add(nr_pages, &mce_bad_pages);
1042
1043    /*
1044     * We need/can do nothing about count=0 pages.
1045     * 1) it's a free page, and therefore in safe hand:
1046     * prep_new_page() will be the gate keeper.
1047     * 2) it's a free hugepage, which is also safe:
1048     * an affected hugepage will be dequeued from hugepage freelist,
1049     * so there's no concern about reusing it ever after.
1050     * 3) it's part of a non-compound high order page.
1051     * Implies some kernel user: cannot stop them from
1052     * R/W the page; let's pray that the page has been
1053     * used and will be freed some time later.
1054     * In fact it's dangerous to directly bump up page count from 0,
1055     * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1056     */
1057    if (!(flags & MF_COUNT_INCREASED) &&
1058        !get_page_unless_zero(hpage)) {
1059        if (is_free_buddy_page(p)) {
1060            action_result(pfn, "free buddy", DELAYED);
1061            return 0;
1062        } else if (PageHuge(hpage)) {
1063            /*
1064             * Check "just unpoisoned", "filter hit", and
1065             * "race with other subpage."
1066             */
1067            lock_page(hpage);
1068            if (!PageHWPoison(hpage)
1069                || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1070                || (p != hpage && TestSetPageHWPoison(hpage))) {
1071                atomic_long_sub(nr_pages, &mce_bad_pages);
1072                return 0;
1073            }
1074            set_page_hwpoison_huge_page(hpage);
1075            res = dequeue_hwpoisoned_huge_page(hpage);
1076            action_result(pfn, "free huge",
1077                      res ? IGNORED : DELAYED);
1078            unlock_page(hpage);
1079            return res;
1080        } else {
1081            action_result(pfn, "high order kernel", IGNORED);
1082            return -EBUSY;
1083        }
1084    }
1085
1086    /*
1087     * We ignore non-LRU pages for good reasons.
1088     * - PG_locked is only well defined for LRU pages and a few others
1089     * - to avoid races with __set_page_locked()
1090     * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1091     * The check (unnecessarily) ignores LRU pages being isolated and
1092     * walked by the page reclaim code, however that's not a big loss.
1093     */
1094    if (!PageHuge(p) && !PageTransTail(p)) {
1095        if (!PageLRU(p))
1096            shake_page(p, 0);
1097        if (!PageLRU(p)) {
1098            /*
1099             * shake_page could have turned it free.
1100             */
1101            if (is_free_buddy_page(p)) {
1102                action_result(pfn, "free buddy, 2nd try",
1103                        DELAYED);
1104                return 0;
1105            }
1106            action_result(pfn, "non LRU", IGNORED);
1107            put_page(p);
1108            return -EBUSY;
1109        }
1110    }
1111
1112    /*
1113     * Lock the page and wait for writeback to finish.
1114     * It's very difficult to mess with pages currently under IO
1115     * and in many cases impossible, so we just avoid it here.
1116     */
1117    lock_page(hpage);
1118
1119    /*
1120     * unpoison always clear PG_hwpoison inside page lock
1121     */
1122    if (!PageHWPoison(p)) {
1123        printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1124        res = 0;
1125        goto out;
1126    }
1127    if (hwpoison_filter(p)) {
1128        if (TestClearPageHWPoison(p))
1129            atomic_long_sub(nr_pages, &mce_bad_pages);
1130        unlock_page(hpage);
1131        put_page(hpage);
1132        return 0;
1133    }
1134
1135    /*
1136     * For error on the tail page, we should set PG_hwpoison
1137     * on the head page to show that the hugepage is hwpoisoned
1138     */
1139    if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1140        action_result(pfn, "hugepage already hardware poisoned",
1141                IGNORED);
1142        unlock_page(hpage);
1143        put_page(hpage);
1144        return 0;
1145    }
1146    /*
1147     * Set PG_hwpoison on all pages in an error hugepage,
1148     * because containment is done in hugepage unit for now.
1149     * Since we have done TestSetPageHWPoison() for the head page with
1150     * page lock held, we can safely set PG_hwpoison bits on tail pages.
1151     */
1152    if (PageHuge(p))
1153        set_page_hwpoison_huge_page(hpage);
1154
1155    wait_on_page_writeback(p);
1156
1157    /*
1158     * Now take care of user space mappings.
1159     * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1160     */
1161    if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1162        printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1163        res = -EBUSY;
1164        goto out;
1165    }
1166
1167    /*
1168     * Torn down by someone else?
1169     */
1170    if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1171        action_result(pfn, "already truncated LRU", IGNORED);
1172        res = -EBUSY;
1173        goto out;
1174    }
1175
1176    res = -EBUSY;
1177    for (ps = error_states;; ps++) {
1178        if ((p->flags & ps->mask) == ps->res) {
1179            res = page_action(ps, p, pfn);
1180            break;
1181        }
1182    }
1183out:
1184    unlock_page(hpage);
1185    return res;
1186}
1187EXPORT_SYMBOL_GPL(memory_failure);
1188
1189#define MEMORY_FAILURE_FIFO_ORDER 4
1190#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1191
1192struct memory_failure_entry {
1193    unsigned long pfn;
1194    int trapno;
1195    int flags;
1196};
1197
1198struct memory_failure_cpu {
1199    DECLARE_KFIFO(fifo, struct memory_failure_entry,
1200              MEMORY_FAILURE_FIFO_SIZE);
1201    spinlock_t lock;
1202    struct work_struct work;
1203};
1204
1205static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1206
1207/**
1208 * memory_failure_queue - Schedule handling memory failure of a page.
1209 * @pfn: Page Number of the corrupted page
1210 * @trapno: Trap number reported in the signal to user space.
1211 * @flags: Flags for memory failure handling
1212 *
1213 * This function is called by the low level hardware error handler
1214 * when it detects hardware memory corruption of a page. It schedules
1215 * the recovering of error page, including dropping pages, killing
1216 * processes etc.
1217 *
1218 * The function is primarily of use for corruptions that
1219 * happen outside the current execution context (e.g. when
1220 * detected by a background scrubber)
1221 *
1222 * Can run in IRQ context.
1223 */
1224void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1225{
1226    struct memory_failure_cpu *mf_cpu;
1227    unsigned long proc_flags;
1228    struct memory_failure_entry entry = {
1229        .pfn = pfn,
1230        .trapno = trapno,
1231        .flags = flags,
1232    };
1233
1234    mf_cpu = &get_cpu_var(memory_failure_cpu);
1235    spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1236    if (kfifo_put(&mf_cpu->fifo, &entry))
1237        schedule_work_on(smp_processor_id(), &mf_cpu->work);
1238    else
1239        pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1240               pfn);
1241    spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1242    put_cpu_var(memory_failure_cpu);
1243}
1244EXPORT_SYMBOL_GPL(memory_failure_queue);
1245
1246static void memory_failure_work_func(struct work_struct *work)
1247{
1248    struct memory_failure_cpu *mf_cpu;
1249    struct memory_failure_entry entry = { 0, };
1250    unsigned long proc_flags;
1251    int gotten;
1252
1253    mf_cpu = &__get_cpu_var(memory_failure_cpu);
1254    for (;;) {
1255        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1256        gotten = kfifo_get(&mf_cpu->fifo, &entry);
1257        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1258        if (!gotten)
1259            break;
1260        memory_failure(entry.pfn, entry.trapno, entry.flags);
1261    }
1262}
1263
1264static int __init memory_failure_init(void)
1265{
1266    struct memory_failure_cpu *mf_cpu;
1267    int cpu;
1268
1269    for_each_possible_cpu(cpu) {
1270        mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1271        spin_lock_init(&mf_cpu->lock);
1272        INIT_KFIFO(mf_cpu->fifo);
1273        INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1274    }
1275
1276    return 0;
1277}
1278core_initcall(memory_failure_init);
1279
1280/**
1281 * unpoison_memory - Unpoison a previously poisoned page
1282 * @pfn: Page number of the to be unpoisoned page
1283 *
1284 * Software-unpoison a page that has been poisoned by
1285 * memory_failure() earlier.
1286 *
1287 * This is only done on the software-level, so it only works
1288 * for linux injected failures, not real hardware failures
1289 *
1290 * Returns 0 for success, otherwise -errno.
1291 */
1292int unpoison_memory(unsigned long pfn)
1293{
1294    struct page *page;
1295    struct page *p;
1296    int freeit = 0;
1297    unsigned int nr_pages;
1298
1299    if (!pfn_valid(pfn))
1300        return -ENXIO;
1301
1302    p = pfn_to_page(pfn);
1303    page = compound_head(p);
1304
1305    if (!PageHWPoison(p)) {
1306        pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1307        return 0;
1308    }
1309
1310    nr_pages = 1 << compound_trans_order(page);
1311
1312    if (!get_page_unless_zero(page)) {
1313        /*
1314         * Since HWPoisoned hugepage should have non-zero refcount,
1315         * race between memory failure and unpoison seems to happen.
1316         * In such case unpoison fails and memory failure runs
1317         * to the end.
1318         */
1319        if (PageHuge(page)) {
1320            pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1321            return 0;
1322        }
1323        if (TestClearPageHWPoison(p))
1324            atomic_long_sub(nr_pages, &mce_bad_pages);
1325        pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1326        return 0;
1327    }
1328
1329    lock_page(page);
1330    /*
1331     * This test is racy because PG_hwpoison is set outside of page lock.
1332     * That's acceptable because that won't trigger kernel panic. Instead,
1333     * the PG_hwpoison page will be caught and isolated on the entrance to
1334     * the free buddy page pool.
1335     */
1336    if (TestClearPageHWPoison(page)) {
1337        pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1338        atomic_long_sub(nr_pages, &mce_bad_pages);
1339        freeit = 1;
1340        if (PageHuge(page))
1341            clear_page_hwpoison_huge_page(page);
1342    }
1343    unlock_page(page);
1344
1345    put_page(page);
1346    if (freeit)
1347        put_page(page);
1348
1349    return 0;
1350}
1351EXPORT_SYMBOL(unpoison_memory);
1352
1353static struct page *new_page(struct page *p, unsigned long private, int **x)
1354{
1355    int nid = page_to_nid(p);
1356    if (PageHuge(p))
1357        return alloc_huge_page_node(page_hstate(compound_head(p)),
1358                           nid);
1359    else
1360        return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1361}
1362
1363/*
1364 * Safely get reference count of an arbitrary page.
1365 * Returns 0 for a free page, -EIO for a zero refcount page
1366 * that is not free, and 1 for any other page type.
1367 * For 1 the page is returned with increased page count, otherwise not.
1368 */
1369static int get_any_page(struct page *p, unsigned long pfn, int flags)
1370{
1371    int ret;
1372
1373    if (flags & MF_COUNT_INCREASED)
1374        return 1;
1375
1376    /*
1377     * The lock_memory_hotplug prevents a race with memory hotplug.
1378     * This is a big hammer, a better would be nicer.
1379     */
1380    lock_memory_hotplug();
1381
1382    /*
1383     * Isolate the page, so that it doesn't get reallocated if it
1384     * was free.
1385     */
1386    set_migratetype_isolate(p);
1387    /*
1388     * When the target page is a free hugepage, just remove it
1389     * from free hugepage list.
1390     */
1391    if (!get_page_unless_zero(compound_head(p))) {
1392        if (PageHuge(p)) {
1393            pr_info("%s: %#lx free huge page\n", __func__, pfn);
1394            ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1395        } else if (is_free_buddy_page(p)) {
1396            pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1397            /* Set hwpoison bit while page is still isolated */
1398            SetPageHWPoison(p);
1399            ret = 0;
1400        } else {
1401            pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1402                __func__, pfn, p->flags);
1403            ret = -EIO;
1404        }
1405    } else {
1406        /* Not a free page */
1407        ret = 1;
1408    }
1409    unset_migratetype_isolate(p, MIGRATE_MOVABLE);
1410    unlock_memory_hotplug();
1411    return ret;
1412}
1413
1414static int soft_offline_huge_page(struct page *page, int flags)
1415{
1416    int ret;
1417    unsigned long pfn = page_to_pfn(page);
1418    struct page *hpage = compound_head(page);
1419
1420    ret = get_any_page(page, pfn, flags);
1421    if (ret < 0)
1422        return ret;
1423    if (ret == 0)
1424        goto done;
1425
1426    if (PageHWPoison(hpage)) {
1427        put_page(hpage);
1428        pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1429        return -EBUSY;
1430    }
1431
1432    /* Keep page count to indicate a given hugepage is isolated. */
1433    ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
1434                MIGRATE_SYNC);
1435    put_page(hpage);
1436    if (ret) {
1437        pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1438            pfn, ret, page->flags);
1439        return ret;
1440    }
1441done:
1442    if (!PageHWPoison(hpage))
1443        atomic_long_add(1 << compound_trans_order(hpage),
1444                &mce_bad_pages);
1445    set_page_hwpoison_huge_page(hpage);
1446    dequeue_hwpoisoned_huge_page(hpage);
1447    /* keep elevated page count for bad page */
1448    return ret;
1449}
1450
1451/**
1452 * soft_offline_page - Soft offline a page.
1453 * @page: page to offline
1454 * @flags: flags. Same as memory_failure().
1455 *
1456 * Returns 0 on success, otherwise negated errno.
1457 *
1458 * Soft offline a page, by migration or invalidation,
1459 * without killing anything. This is for the case when
1460 * a page is not corrupted yet (so it's still valid to access),
1461 * but has had a number of corrected errors and is better taken
1462 * out.
1463 *
1464 * The actual policy on when to do that is maintained by
1465 * user space.
1466 *
1467 * This should never impact any application or cause data loss,
1468 * however it might take some time.
1469 *
1470 * This is not a 100% solution for all memory, but tries to be
1471 * ``good enough'' for the majority of memory.
1472 */
1473int soft_offline_page(struct page *page, int flags)
1474{
1475    int ret;
1476    unsigned long pfn = page_to_pfn(page);
1477
1478    if (PageHuge(page))
1479        return soft_offline_huge_page(page, flags);
1480
1481    ret = get_any_page(page, pfn, flags);
1482    if (ret < 0)
1483        return ret;
1484    if (ret == 0)
1485        goto done;
1486
1487    /*
1488     * Page cache page we can handle?
1489     */
1490    if (!PageLRU(page)) {
1491        /*
1492         * Try to free it.
1493         */
1494        put_page(page);
1495        shake_page(page, 1);
1496
1497        /*
1498         * Did it turn free?
1499         */
1500        ret = get_any_page(page, pfn, 0);
1501        if (ret < 0)
1502            return ret;
1503        if (ret == 0)
1504            goto done;
1505    }
1506    if (!PageLRU(page)) {
1507        pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508            pfn, page->flags);
1509        return -EIO;
1510    }
1511
1512    lock_page(page);
1513    wait_on_page_writeback(page);
1514
1515    /*
1516     * Synchronized using the page lock with memory_failure()
1517     */
1518    if (PageHWPoison(page)) {
1519        unlock_page(page);
1520        put_page(page);
1521        pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522        return -EBUSY;
1523    }
1524
1525    /*
1526     * Try to invalidate first. This should work for
1527     * non dirty unmapped page cache pages.
1528     */
1529    ret = invalidate_inode_page(page);
1530    unlock_page(page);
1531    /*
1532     * RED-PEN would be better to keep it isolated here, but we
1533     * would need to fix isolation locking first.
1534     */
1535    if (ret == 1) {
1536        put_page(page);
1537        ret = 0;
1538        pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539        goto done;
1540    }
1541
1542    /*
1543     * Simple invalidation didn't work.
1544     * Try to migrate to a new page instead. migrate.c
1545     * handles a large number of cases for us.
1546     */
1547    ret = isolate_lru_page(page);
1548    /*
1549     * Drop page reference which is came from get_any_page()
1550     * successful isolate_lru_page() already took another one.
1551     */
1552    put_page(page);
1553    if (!ret) {
1554        LIST_HEAD(pagelist);
1555        inc_zone_page_state(page, NR_ISOLATED_ANON +
1556                        page_is_file_cache(page));
1557        list_add(&page->lru, &pagelist);
1558        ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559                            false, MIGRATE_SYNC);
1560        if (ret) {
1561            putback_lru_pages(&pagelist);
1562            pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563                pfn, ret, page->flags);
1564            if (ret > 0)
1565                ret = -EIO;
1566        }
1567    } else {
1568        pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569            pfn, ret, page_count(page), page->flags);
1570    }
1571    if (ret)
1572        return ret;
1573
1574done:
1575    atomic_long_add(1, &mce_bad_pages);
1576    SetPageHWPoison(page);
1577    /* keep elevated page count for bad page */
1578    return ret;
1579}
1580

Archive Download this file



interactive