Root/mm/memory.c

1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100                    1;
101#else
102                    2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107    randomize_va_space = 0;
108    return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120    zero_pfn = page_to_pfn(ZERO_PAGE(0));
121    return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128void sync_mm_rss(struct mm_struct *mm)
129{
130    int i;
131
132    for (i = 0; i < NR_MM_COUNTERS; i++) {
133        if (current->rss_stat.count[i]) {
134            add_mm_counter(mm, i, current->rss_stat.count[i]);
135            current->rss_stat.count[i] = 0;
136        }
137    }
138    current->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143    struct task_struct *task = current;
144
145    if (likely(task->mm == mm))
146        task->rss_stat.count[member] += val;
147    else
148        add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157    if (unlikely(task != current))
158        return;
159    if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160        sync_mm_rss(task->mm);
161}
162#else /* SPLIT_RSS_COUNTING */
163
164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167static void check_sync_rss_stat(struct task_struct *task)
168{
169}
170
171#endif /* SPLIT_RSS_COUNTING */
172
173#ifdef HAVE_GENERIC_MMU_GATHER
174
175static int tlb_next_batch(struct mmu_gather *tlb)
176{
177    struct mmu_gather_batch *batch;
178
179    batch = tlb->active;
180    if (batch->next) {
181        tlb->active = batch->next;
182        return 1;
183    }
184
185    batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186    if (!batch)
187        return 0;
188
189    batch->next = NULL;
190    batch->nr = 0;
191    batch->max = MAX_GATHER_BATCH;
192
193    tlb->active->next = batch;
194    tlb->active = batch;
195
196    return 1;
197}
198
199/* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205{
206    tlb->mm = mm;
207
208    tlb->fullmm = fullmm;
209    tlb->start = -1UL;
210    tlb->end = 0;
211    tlb->need_flush = 0;
212    tlb->fast_mode = (num_possible_cpus() == 1);
213    tlb->local.next = NULL;
214    tlb->local.nr = 0;
215    tlb->local.max = ARRAY_SIZE(tlb->__pages);
216    tlb->active = &tlb->local;
217
218#ifdef CONFIG_HAVE_RCU_TABLE_FREE
219    tlb->batch = NULL;
220#endif
221}
222
223void tlb_flush_mmu(struct mmu_gather *tlb)
224{
225    struct mmu_gather_batch *batch;
226
227    if (!tlb->need_flush)
228        return;
229    tlb->need_flush = 0;
230    tlb_flush(tlb);
231#ifdef CONFIG_HAVE_RCU_TABLE_FREE
232    tlb_table_flush(tlb);
233#endif
234
235    if (tlb_fast_mode(tlb))
236        return;
237
238    for (batch = &tlb->local; batch; batch = batch->next) {
239        free_pages_and_swap_cache(batch->pages, batch->nr);
240        batch->nr = 0;
241    }
242    tlb->active = &tlb->local;
243}
244
245/* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
248 */
249void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250{
251    struct mmu_gather_batch *batch, *next;
252
253    tlb->start = start;
254    tlb->end = end;
255    tlb_flush_mmu(tlb);
256
257    /* keep the page table cache within bounds */
258    check_pgt_cache();
259
260    for (batch = tlb->local.next; batch; batch = next) {
261        next = batch->next;
262        free_pages((unsigned long)batch, 0);
263    }
264    tlb->local.next = NULL;
265}
266
267/* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
272 */
273int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274{
275    struct mmu_gather_batch *batch;
276
277    VM_BUG_ON(!tlb->need_flush);
278
279    if (tlb_fast_mode(tlb)) {
280        free_page_and_swap_cache(page);
281        return 1; /* avoid calling tlb_flush_mmu() */
282    }
283
284    batch = tlb->active;
285    batch->pages[batch->nr++] = page;
286    if (batch->nr == batch->max) {
287        if (!tlb_next_batch(tlb))
288            return 0;
289        batch = tlb->active;
290    }
291    VM_BUG_ON(batch->nr > batch->max);
292
293    return batch->max - batch->nr;
294}
295
296#endif /* HAVE_GENERIC_MMU_GATHER */
297
298#ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300/*
301 * See the comment near struct mmu_table_batch.
302 */
303
304static void tlb_remove_table_smp_sync(void *arg)
305{
306    /* Simply deliver the interrupt */
307}
308
309static void tlb_remove_table_one(void *table)
310{
311    /*
312     * This isn't an RCU grace period and hence the page-tables cannot be
313     * assumed to be actually RCU-freed.
314     *
315     * It is however sufficient for software page-table walkers that rely on
316     * IRQ disabling. See the comment near struct mmu_table_batch.
317     */
318    smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319    __tlb_remove_table(table);
320}
321
322static void tlb_remove_table_rcu(struct rcu_head *head)
323{
324    struct mmu_table_batch *batch;
325    int i;
326
327    batch = container_of(head, struct mmu_table_batch, rcu);
328
329    for (i = 0; i < batch->nr; i++)
330        __tlb_remove_table(batch->tables[i]);
331
332    free_page((unsigned long)batch);
333}
334
335void tlb_table_flush(struct mmu_gather *tlb)
336{
337    struct mmu_table_batch **batch = &tlb->batch;
338
339    if (*batch) {
340        call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341        *batch = NULL;
342    }
343}
344
345void tlb_remove_table(struct mmu_gather *tlb, void *table)
346{
347    struct mmu_table_batch **batch = &tlb->batch;
348
349    tlb->need_flush = 1;
350
351    /*
352     * When there's less then two users of this mm there cannot be a
353     * concurrent page-table walk.
354     */
355    if (atomic_read(&tlb->mm->mm_users) < 2) {
356        __tlb_remove_table(table);
357        return;
358    }
359
360    if (*batch == NULL) {
361        *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362        if (*batch == NULL) {
363            tlb_remove_table_one(table);
364            return;
365        }
366        (*batch)->nr = 0;
367    }
368    (*batch)->tables[(*batch)->nr++] = table;
369    if ((*batch)->nr == MAX_TABLE_BATCH)
370        tlb_table_flush(tlb);
371}
372
373#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375/*
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
379 */
380
381void pgd_clear_bad(pgd_t *pgd)
382{
383    pgd_ERROR(*pgd);
384    pgd_clear(pgd);
385}
386
387void pud_clear_bad(pud_t *pud)
388{
389    pud_ERROR(*pud);
390    pud_clear(pud);
391}
392
393void pmd_clear_bad(pmd_t *pmd)
394{
395    pmd_ERROR(*pmd);
396    pmd_clear(pmd);
397}
398
399/*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
403static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404               unsigned long addr)
405{
406    pgtable_t token = pmd_pgtable(*pmd);
407    pmd_clear(pmd);
408    pte_free_tlb(tlb, token, addr);
409    tlb->mm->nr_ptes--;
410}
411
412static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413                unsigned long addr, unsigned long end,
414                unsigned long floor, unsigned long ceiling)
415{
416    pmd_t *pmd;
417    unsigned long next;
418    unsigned long start;
419
420    start = addr;
421    pmd = pmd_offset(pud, addr);
422    do {
423        next = pmd_addr_end(addr, end);
424        if (pmd_none_or_clear_bad(pmd))
425            continue;
426        free_pte_range(tlb, pmd, addr);
427    } while (pmd++, addr = next, addr != end);
428
429    start &= PUD_MASK;
430    if (start < floor)
431        return;
432    if (ceiling) {
433        ceiling &= PUD_MASK;
434        if (!ceiling)
435            return;
436    }
437    if (end - 1 > ceiling - 1)
438        return;
439
440    pmd = pmd_offset(pud, start);
441    pud_clear(pud);
442    pmd_free_tlb(tlb, pmd, start);
443}
444
445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446                unsigned long addr, unsigned long end,
447                unsigned long floor, unsigned long ceiling)
448{
449    pud_t *pud;
450    unsigned long next;
451    unsigned long start;
452
453    start = addr;
454    pud = pud_offset(pgd, addr);
455    do {
456        next = pud_addr_end(addr, end);
457        if (pud_none_or_clear_bad(pud))
458            continue;
459        free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460    } while (pud++, addr = next, addr != end);
461
462    start &= PGDIR_MASK;
463    if (start < floor)
464        return;
465    if (ceiling) {
466        ceiling &= PGDIR_MASK;
467        if (!ceiling)
468            return;
469    }
470    if (end - 1 > ceiling - 1)
471        return;
472
473    pud = pud_offset(pgd, start);
474    pgd_clear(pgd);
475    pud_free_tlb(tlb, pud, start);
476}
477
478/*
479 * This function frees user-level page tables of a process.
480 *
481 * Must be called with pagetable lock held.
482 */
483void free_pgd_range(struct mmu_gather *tlb,
484            unsigned long addr, unsigned long end,
485            unsigned long floor, unsigned long ceiling)
486{
487    pgd_t *pgd;
488    unsigned long next;
489
490    /*
491     * The next few lines have given us lots of grief...
492     *
493     * Why are we testing PMD* at this top level? Because often
494     * there will be no work to do at all, and we'd prefer not to
495     * go all the way down to the bottom just to discover that.
496     *
497     * Why all these "- 1"s? Because 0 represents both the bottom
498     * of the address space and the top of it (using -1 for the
499     * top wouldn't help much: the masks would do the wrong thing).
500     * The rule is that addr 0 and floor 0 refer to the bottom of
501     * the address space, but end 0 and ceiling 0 refer to the top
502     * Comparisons need to use "end - 1" and "ceiling - 1" (though
503     * that end 0 case should be mythical).
504     *
505     * Wherever addr is brought up or ceiling brought down, we must
506     * be careful to reject "the opposite 0" before it confuses the
507     * subsequent tests. But what about where end is brought down
508     * by PMD_SIZE below? no, end can't go down to 0 there.
509     *
510     * Whereas we round start (addr) and ceiling down, by different
511     * masks at different levels, in order to test whether a table
512     * now has no other vmas using it, so can be freed, we don't
513     * bother to round floor or end up - the tests don't need that.
514     */
515
516    addr &= PMD_MASK;
517    if (addr < floor) {
518        addr += PMD_SIZE;
519        if (!addr)
520            return;
521    }
522    if (ceiling) {
523        ceiling &= PMD_MASK;
524        if (!ceiling)
525            return;
526    }
527    if (end - 1 > ceiling - 1)
528        end -= PMD_SIZE;
529    if (addr > end - 1)
530        return;
531
532    pgd = pgd_offset(tlb->mm, addr);
533    do {
534        next = pgd_addr_end(addr, end);
535        if (pgd_none_or_clear_bad(pgd))
536            continue;
537        free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538    } while (pgd++, addr = next, addr != end);
539}
540
541void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542        unsigned long floor, unsigned long ceiling)
543{
544    while (vma) {
545        struct vm_area_struct *next = vma->vm_next;
546        unsigned long addr = vma->vm_start;
547
548        /*
549         * Hide vma from rmap and truncate_pagecache before freeing
550         * pgtables
551         */
552        unlink_anon_vmas(vma);
553        unlink_file_vma(vma);
554
555        if (is_vm_hugetlb_page(vma)) {
556            hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557                floor, next? next->vm_start: ceiling);
558        } else {
559            /*
560             * Optimization: gather nearby vmas into one call down
561             */
562            while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563                   && !is_vm_hugetlb_page(next)) {
564                vma = next;
565                next = vma->vm_next;
566                unlink_anon_vmas(vma);
567                unlink_file_vma(vma);
568            }
569            free_pgd_range(tlb, addr, vma->vm_end,
570                floor, next? next->vm_start: ceiling);
571        }
572        vma = next;
573    }
574}
575
576int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577        pmd_t *pmd, unsigned long address)
578{
579    pgtable_t new = pte_alloc_one(mm, address);
580    int wait_split_huge_page;
581    if (!new)
582        return -ENOMEM;
583
584    /*
585     * Ensure all pte setup (eg. pte page lock and page clearing) are
586     * visible before the pte is made visible to other CPUs by being
587     * put into page tables.
588     *
589     * The other side of the story is the pointer chasing in the page
590     * table walking code (when walking the page table without locking;
591     * ie. most of the time). Fortunately, these data accesses consist
592     * of a chain of data-dependent loads, meaning most CPUs (alpha
593     * being the notable exception) will already guarantee loads are
594     * seen in-order. See the alpha page table accessors for the
595     * smp_read_barrier_depends() barriers in page table walking code.
596     */
597    smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
599    spin_lock(&mm->page_table_lock);
600    wait_split_huge_page = 0;
601    if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602        mm->nr_ptes++;
603        pmd_populate(mm, pmd, new);
604        new = NULL;
605    } else if (unlikely(pmd_trans_splitting(*pmd)))
606        wait_split_huge_page = 1;
607    spin_unlock(&mm->page_table_lock);
608    if (new)
609        pte_free(mm, new);
610    if (wait_split_huge_page)
611        wait_split_huge_page(vma->anon_vma, pmd);
612    return 0;
613}
614
615int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616{
617    pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618    if (!new)
619        return -ENOMEM;
620
621    smp_wmb(); /* See comment in __pte_alloc */
622
623    spin_lock(&init_mm.page_table_lock);
624    if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625        pmd_populate_kernel(&init_mm, pmd, new);
626        new = NULL;
627    } else
628        VM_BUG_ON(pmd_trans_splitting(*pmd));
629    spin_unlock(&init_mm.page_table_lock);
630    if (new)
631        pte_free_kernel(&init_mm, new);
632    return 0;
633}
634
635static inline void init_rss_vec(int *rss)
636{
637    memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638}
639
640static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641{
642    int i;
643
644    if (current->mm == mm)
645        sync_mm_rss(mm);
646    for (i = 0; i < NR_MM_COUNTERS; i++)
647        if (rss[i])
648            add_mm_counter(mm, i, rss[i]);
649}
650
651/*
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
655 *
656 * The calling function must still handle the error.
657 */
658static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659              pte_t pte, struct page *page)
660{
661    pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662    pud_t *pud = pud_offset(pgd, addr);
663    pmd_t *pmd = pmd_offset(pud, addr);
664    struct address_space *mapping;
665    pgoff_t index;
666    static unsigned long resume;
667    static unsigned long nr_shown;
668    static unsigned long nr_unshown;
669
670    /*
671     * Allow a burst of 60 reports, then keep quiet for that minute;
672     * or allow a steady drip of one report per second.
673     */
674    if (nr_shown == 60) {
675        if (time_before(jiffies, resume)) {
676            nr_unshown++;
677            return;
678        }
679        if (nr_unshown) {
680            printk(KERN_ALERT
681                "BUG: Bad page map: %lu messages suppressed\n",
682                nr_unshown);
683            nr_unshown = 0;
684        }
685        nr_shown = 0;
686    }
687    if (nr_shown++ == 0)
688        resume = jiffies + 60 * HZ;
689
690    mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691    index = linear_page_index(vma, addr);
692
693    printk(KERN_ALERT
694        "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695        current->comm,
696        (long long)pte_val(pte), (long long)pmd_val(*pmd));
697    if (page)
698        dump_page(page);
699    printk(KERN_ALERT
700        "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701        (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702    /*
703     * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704     */
705    if (vma->vm_ops)
706        print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707                (unsigned long)vma->vm_ops->fault);
708    if (vma->vm_file && vma->vm_file->f_op)
709        print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710                (unsigned long)vma->vm_file->f_op->mmap);
711    dump_stack();
712    add_taint(TAINT_BAD_PAGE);
713}
714
715static inline int is_cow_mapping(vm_flags_t flags)
716{
717    return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718}
719
720#ifndef is_zero_pfn
721static inline int is_zero_pfn(unsigned long pfn)
722{
723    return pfn == zero_pfn;
724}
725#endif
726
727#ifndef my_zero_pfn
728static inline unsigned long my_zero_pfn(unsigned long addr)
729{
730    return zero_pfn;
731}
732#endif
733
734/*
735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
736 *
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
740 *
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
745 *
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
749 *
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
754 *
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756 *
757 * And for normal mappings this is false.
758 *
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
763 *
764 *
765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
766 *
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
774 *
775 */
776#ifdef __HAVE_ARCH_PTE_SPECIAL
777# define HAVE_PTE_SPECIAL 1
778#else
779# define HAVE_PTE_SPECIAL 0
780#endif
781struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782                pte_t pte)
783{
784    unsigned long pfn = pte_pfn(pte);
785
786    if (HAVE_PTE_SPECIAL) {
787        if (likely(!pte_special(pte)))
788            goto check_pfn;
789        if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790            return NULL;
791        if (!is_zero_pfn(pfn))
792            print_bad_pte(vma, addr, pte, NULL);
793        return NULL;
794    }
795
796    /* !HAVE_PTE_SPECIAL case follows: */
797
798    if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799        if (vma->vm_flags & VM_MIXEDMAP) {
800            if (!pfn_valid(pfn))
801                return NULL;
802            goto out;
803        } else {
804            unsigned long off;
805            off = (addr - vma->vm_start) >> PAGE_SHIFT;
806            if (pfn == vma->vm_pgoff + off)
807                return NULL;
808            if (!is_cow_mapping(vma->vm_flags))
809                return NULL;
810        }
811    }
812
813    if (is_zero_pfn(pfn))
814        return NULL;
815check_pfn:
816    if (unlikely(pfn > highest_memmap_pfn)) {
817        print_bad_pte(vma, addr, pte, NULL);
818        return NULL;
819    }
820
821    /*
822     * NOTE! We still have PageReserved() pages in the page tables.
823     * eg. VDSO mappings can cause them to exist.
824     */
825out:
826    return pfn_to_page(pfn);
827}
828
829/*
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
833 */
834
835static inline unsigned long
836copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837        pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838        unsigned long addr, int *rss)
839{
840    unsigned long vm_flags = vma->vm_flags;
841    pte_t pte = *src_pte;
842    struct page *page;
843
844    /* pte contains position in swap or file, so copy. */
845    if (unlikely(!pte_present(pte))) {
846        if (!pte_file(pte)) {
847            swp_entry_t entry = pte_to_swp_entry(pte);
848
849            if (swap_duplicate(entry) < 0)
850                return entry.val;
851
852            /* make sure dst_mm is on swapoff's mmlist. */
853            if (unlikely(list_empty(&dst_mm->mmlist))) {
854                spin_lock(&mmlist_lock);
855                if (list_empty(&dst_mm->mmlist))
856                    list_add(&dst_mm->mmlist,
857                         &src_mm->mmlist);
858                spin_unlock(&mmlist_lock);
859            }
860            if (likely(!non_swap_entry(entry)))
861                rss[MM_SWAPENTS]++;
862            else if (is_migration_entry(entry)) {
863                page = migration_entry_to_page(entry);
864
865                if (PageAnon(page))
866                    rss[MM_ANONPAGES]++;
867                else
868                    rss[MM_FILEPAGES]++;
869
870                if (is_write_migration_entry(entry) &&
871                    is_cow_mapping(vm_flags)) {
872                    /*
873                     * COW mappings require pages in both
874                     * parent and child to be set to read.
875                     */
876                    make_migration_entry_read(&entry);
877                    pte = swp_entry_to_pte(entry);
878                    set_pte_at(src_mm, addr, src_pte, pte);
879                }
880            }
881        }
882        goto out_set_pte;
883    }
884
885    /*
886     * If it's a COW mapping, write protect it both
887     * in the parent and the child
888     */
889    if (is_cow_mapping(vm_flags)) {
890        ptep_set_wrprotect(src_mm, addr, src_pte);
891        pte = pte_wrprotect(pte);
892    }
893
894    /*
895     * If it's a shared mapping, mark it clean in
896     * the child
897     */
898    if (vm_flags & VM_SHARED)
899        pte = pte_mkclean(pte);
900    pte = pte_mkold(pte);
901
902    page = vm_normal_page(vma, addr, pte);
903    if (page) {
904        get_page(page);
905        page_dup_rmap(page);
906        if (PageAnon(page))
907            rss[MM_ANONPAGES]++;
908        else
909            rss[MM_FILEPAGES]++;
910    }
911
912out_set_pte:
913    set_pte_at(dst_mm, addr, dst_pte, pte);
914    return 0;
915}
916
917int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918           pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919           unsigned long addr, unsigned long end)
920{
921    pte_t *orig_src_pte, *orig_dst_pte;
922    pte_t *src_pte, *dst_pte;
923    spinlock_t *src_ptl, *dst_ptl;
924    int progress = 0;
925    int rss[NR_MM_COUNTERS];
926    swp_entry_t entry = (swp_entry_t){0};
927
928again:
929    init_rss_vec(rss);
930
931    dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932    if (!dst_pte)
933        return -ENOMEM;
934    src_pte = pte_offset_map(src_pmd, addr);
935    src_ptl = pte_lockptr(src_mm, src_pmd);
936    spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937    orig_src_pte = src_pte;
938    orig_dst_pte = dst_pte;
939    arch_enter_lazy_mmu_mode();
940
941    do {
942        /*
943         * We are holding two locks at this point - either of them
944         * could generate latencies in another task on another CPU.
945         */
946        if (progress >= 32) {
947            progress = 0;
948            if (need_resched() ||
949                spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950                break;
951        }
952        if (pte_none(*src_pte)) {
953            progress++;
954            continue;
955        }
956        entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957                            vma, addr, rss);
958        if (entry.val)
959            break;
960        progress += 8;
961    } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
962
963    arch_leave_lazy_mmu_mode();
964    spin_unlock(src_ptl);
965    pte_unmap(orig_src_pte);
966    add_mm_rss_vec(dst_mm, rss);
967    pte_unmap_unlock(orig_dst_pte, dst_ptl);
968    cond_resched();
969
970    if (entry.val) {
971        if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972            return -ENOMEM;
973        progress = 0;
974    }
975    if (addr != end)
976        goto again;
977    return 0;
978}
979
980static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981        pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982        unsigned long addr, unsigned long end)
983{
984    pmd_t *src_pmd, *dst_pmd;
985    unsigned long next;
986
987    dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988    if (!dst_pmd)
989        return -ENOMEM;
990    src_pmd = pmd_offset(src_pud, addr);
991    do {
992        next = pmd_addr_end(addr, end);
993        if (pmd_trans_huge(*src_pmd)) {
994            int err;
995            VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996            err = copy_huge_pmd(dst_mm, src_mm,
997                        dst_pmd, src_pmd, addr, vma);
998            if (err == -ENOMEM)
999                return -ENOMEM;
1000            if (!err)
1001                continue;
1002            /* fall through */
1003        }
1004        if (pmd_none_or_clear_bad(src_pmd))
1005            continue;
1006        if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007                        vma, addr, next))
1008            return -ENOMEM;
1009    } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010    return 0;
1011}
1012
1013static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014        pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015        unsigned long addr, unsigned long end)
1016{
1017    pud_t *src_pud, *dst_pud;
1018    unsigned long next;
1019
1020    dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021    if (!dst_pud)
1022        return -ENOMEM;
1023    src_pud = pud_offset(src_pgd, addr);
1024    do {
1025        next = pud_addr_end(addr, end);
1026        if (pud_none_or_clear_bad(src_pud))
1027            continue;
1028        if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029                        vma, addr, next))
1030            return -ENOMEM;
1031    } while (dst_pud++, src_pud++, addr = next, addr != end);
1032    return 0;
1033}
1034
1035int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036        struct vm_area_struct *vma)
1037{
1038    pgd_t *src_pgd, *dst_pgd;
1039    unsigned long next;
1040    unsigned long addr = vma->vm_start;
1041    unsigned long end = vma->vm_end;
1042    int ret;
1043
1044    /*
1045     * Don't copy ptes where a page fault will fill them correctly.
1046     * Fork becomes much lighter when there are big shared or private
1047     * readonly mappings. The tradeoff is that copy_page_range is more
1048     * efficient than faulting.
1049     */
1050    if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1051        if (!vma->anon_vma)
1052            return 0;
1053    }
1054
1055    if (is_vm_hugetlb_page(vma))
1056        return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057
1058    if (unlikely(is_pfn_mapping(vma))) {
1059        /*
1060         * We do not free on error cases below as remove_vma
1061         * gets called on error from higher level routine
1062         */
1063        ret = track_pfn_vma_copy(vma);
1064        if (ret)
1065            return ret;
1066    }
1067
1068    /*
1069     * We need to invalidate the secondary MMU mappings only when
1070     * there could be a permission downgrade on the ptes of the
1071     * parent mm. And a permission downgrade will only happen if
1072     * is_cow_mapping() returns true.
1073     */
1074    if (is_cow_mapping(vma->vm_flags))
1075        mmu_notifier_invalidate_range_start(src_mm, addr, end);
1076
1077    ret = 0;
1078    dst_pgd = pgd_offset(dst_mm, addr);
1079    src_pgd = pgd_offset(src_mm, addr);
1080    do {
1081        next = pgd_addr_end(addr, end);
1082        if (pgd_none_or_clear_bad(src_pgd))
1083            continue;
1084        if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1085                        vma, addr, next))) {
1086            ret = -ENOMEM;
1087            break;
1088        }
1089    } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1090
1091    if (is_cow_mapping(vma->vm_flags))
1092        mmu_notifier_invalidate_range_end(src_mm,
1093                          vma->vm_start, end);
1094    return ret;
1095}
1096
1097static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098                struct vm_area_struct *vma, pmd_t *pmd,
1099                unsigned long addr, unsigned long end,
1100                struct zap_details *details)
1101{
1102    struct mm_struct *mm = tlb->mm;
1103    int force_flush = 0;
1104    int rss[NR_MM_COUNTERS];
1105    spinlock_t *ptl;
1106    pte_t *start_pte;
1107    pte_t *pte;
1108
1109again:
1110    init_rss_vec(rss);
1111    start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112    pte = start_pte;
1113    arch_enter_lazy_mmu_mode();
1114    do {
1115        pte_t ptent = *pte;
1116        if (pte_none(ptent)) {
1117            continue;
1118        }
1119
1120        if (pte_present(ptent)) {
1121            struct page *page;
1122
1123            page = vm_normal_page(vma, addr, ptent);
1124            if (unlikely(details) && page) {
1125                /*
1126                 * unmap_shared_mapping_pages() wants to
1127                 * invalidate cache without truncating:
1128                 * unmap shared but keep private pages.
1129                 */
1130                if (details->check_mapping &&
1131                    details->check_mapping != page->mapping)
1132                    continue;
1133                /*
1134                 * Each page->index must be checked when
1135                 * invalidating or truncating nonlinear.
1136                 */
1137                if (details->nonlinear_vma &&
1138                    (page->index < details->first_index ||
1139                     page->index > details->last_index))
1140                    continue;
1141            }
1142            ptent = ptep_get_and_clear_full(mm, addr, pte,
1143                            tlb->fullmm);
1144            tlb_remove_tlb_entry(tlb, pte, addr);
1145            if (unlikely(!page))
1146                continue;
1147            if (unlikely(details) && details->nonlinear_vma
1148                && linear_page_index(details->nonlinear_vma,
1149                        addr) != page->index)
1150                set_pte_at(mm, addr, pte,
1151                       pgoff_to_pte(page->index));
1152            if (PageAnon(page))
1153                rss[MM_ANONPAGES]--;
1154            else {
1155                if (pte_dirty(ptent))
1156                    set_page_dirty(page);
1157                if (pte_young(ptent) &&
1158                    likely(!VM_SequentialReadHint(vma)))
1159                    mark_page_accessed(page);
1160                rss[MM_FILEPAGES]--;
1161            }
1162            page_remove_rmap(page);
1163            if (unlikely(page_mapcount(page) < 0))
1164                print_bad_pte(vma, addr, ptent, page);
1165            force_flush = !__tlb_remove_page(tlb, page);
1166            if (force_flush)
1167                break;
1168            continue;
1169        }
1170        /*
1171         * If details->check_mapping, we leave swap entries;
1172         * if details->nonlinear_vma, we leave file entries.
1173         */
1174        if (unlikely(details))
1175            continue;
1176        if (pte_file(ptent)) {
1177            if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178                print_bad_pte(vma, addr, ptent, NULL);
1179        } else {
1180            swp_entry_t entry = pte_to_swp_entry(ptent);
1181
1182            if (!non_swap_entry(entry))
1183                rss[MM_SWAPENTS]--;
1184            else if (is_migration_entry(entry)) {
1185                struct page *page;
1186
1187                page = migration_entry_to_page(entry);
1188
1189                if (PageAnon(page))
1190                    rss[MM_ANONPAGES]--;
1191                else
1192                    rss[MM_FILEPAGES]--;
1193            }
1194            if (unlikely(!free_swap_and_cache(entry)))
1195                print_bad_pte(vma, addr, ptent, NULL);
1196        }
1197        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198    } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200    add_mm_rss_vec(mm, rss);
1201    arch_leave_lazy_mmu_mode();
1202    pte_unmap_unlock(start_pte, ptl);
1203
1204    /*
1205     * mmu_gather ran out of room to batch pages, we break out of
1206     * the PTE lock to avoid doing the potential expensive TLB invalidate
1207     * and page-free while holding it.
1208     */
1209    if (force_flush) {
1210        force_flush = 0;
1211
1212#ifdef HAVE_GENERIC_MMU_GATHER
1213        tlb->start = addr;
1214        tlb->end = end;
1215#endif
1216        tlb_flush_mmu(tlb);
1217        if (addr != end)
1218            goto again;
1219    }
1220
1221    return addr;
1222}
1223
1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225                struct vm_area_struct *vma, pud_t *pud,
1226                unsigned long addr, unsigned long end,
1227                struct zap_details *details)
1228{
1229    pmd_t *pmd;
1230    unsigned long next;
1231
1232    pmd = pmd_offset(pud, addr);
1233    do {
1234        next = pmd_addr_end(addr, end);
1235        if (pmd_trans_huge(*pmd)) {
1236            if (next - addr != HPAGE_PMD_SIZE) {
1237#ifdef CONFIG_DEBUG_VM
1238                if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239                    pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240                        __func__, addr, end,
1241                        vma->vm_start,
1242                        vma->vm_end);
1243                    BUG();
1244                }
1245#endif
1246                split_huge_page_pmd(vma->vm_mm, pmd);
1247            } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248                goto next;
1249            /* fall through */
1250        }
1251        /*
1252         * Here there can be other concurrent MADV_DONTNEED or
1253         * trans huge page faults running, and if the pmd is
1254         * none or trans huge it can change under us. This is
1255         * because MADV_DONTNEED holds the mmap_sem in read
1256         * mode.
1257         */
1258        if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259            goto next;
1260        next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261next:
1262        cond_resched();
1263    } while (pmd++, addr = next, addr != end);
1264
1265    return addr;
1266}
1267
1268static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269                struct vm_area_struct *vma, pgd_t *pgd,
1270                unsigned long addr, unsigned long end,
1271                struct zap_details *details)
1272{
1273    pud_t *pud;
1274    unsigned long next;
1275
1276    pud = pud_offset(pgd, addr);
1277    do {
1278        next = pud_addr_end(addr, end);
1279        if (pud_none_or_clear_bad(pud))
1280            continue;
1281        next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282    } while (pud++, addr = next, addr != end);
1283
1284    return addr;
1285}
1286
1287static void unmap_page_range(struct mmu_gather *tlb,
1288                 struct vm_area_struct *vma,
1289                 unsigned long addr, unsigned long end,
1290                 struct zap_details *details)
1291{
1292    pgd_t *pgd;
1293    unsigned long next;
1294
1295    if (details && !details->check_mapping && !details->nonlinear_vma)
1296        details = NULL;
1297
1298    BUG_ON(addr >= end);
1299    mem_cgroup_uncharge_start();
1300    tlb_start_vma(tlb, vma);
1301    pgd = pgd_offset(vma->vm_mm, addr);
1302    do {
1303        next = pgd_addr_end(addr, end);
1304        if (pgd_none_or_clear_bad(pgd))
1305            continue;
1306        next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307    } while (pgd++, addr = next, addr != end);
1308    tlb_end_vma(tlb, vma);
1309    mem_cgroup_uncharge_end();
1310}
1311
1312
1313static void unmap_single_vma(struct mmu_gather *tlb,
1314        struct vm_area_struct *vma, unsigned long start_addr,
1315        unsigned long end_addr,
1316        struct zap_details *details)
1317{
1318    unsigned long start = max(vma->vm_start, start_addr);
1319    unsigned long end;
1320
1321    if (start >= vma->vm_end)
1322        return;
1323    end = min(vma->vm_end, end_addr);
1324    if (end <= vma->vm_start)
1325        return;
1326
1327    if (vma->vm_file)
1328        uprobe_munmap(vma, start, end);
1329
1330    if (unlikely(is_pfn_mapping(vma)))
1331        untrack_pfn_vma(vma, 0, 0);
1332
1333    if (start != end) {
1334        if (unlikely(is_vm_hugetlb_page(vma))) {
1335            /*
1336             * It is undesirable to test vma->vm_file as it
1337             * should be non-null for valid hugetlb area.
1338             * However, vm_file will be NULL in the error
1339             * cleanup path of do_mmap_pgoff. When
1340             * hugetlbfs ->mmap method fails,
1341             * do_mmap_pgoff() nullifies vma->vm_file
1342             * before calling this function to clean up.
1343             * Since no pte has actually been setup, it is
1344             * safe to do nothing in this case.
1345             */
1346            if (vma->vm_file) {
1347                mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349                mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350            }
1351        } else
1352            unmap_page_range(tlb, vma, start, end, details);
1353    }
1354}
1355
1356/**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1362 *
1363 * Unmap all pages in the vma list.
1364 *
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
1374void unmap_vmas(struct mmu_gather *tlb,
1375        struct vm_area_struct *vma, unsigned long start_addr,
1376        unsigned long end_addr)
1377{
1378    struct mm_struct *mm = vma->vm_mm;
1379
1380    mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381    for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382        unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383    mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384}
1385
1386/**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1392 *
1393 * Caller must protect the VMA list
1394 */
1395void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396        unsigned long size, struct zap_details *details)
1397{
1398    struct mm_struct *mm = vma->vm_mm;
1399    struct mmu_gather tlb;
1400    unsigned long end = start + size;
1401
1402    lru_add_drain();
1403    tlb_gather_mmu(&tlb, mm, 0);
1404    update_hiwater_rss(mm);
1405    mmu_notifier_invalidate_range_start(mm, start, end);
1406    for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407        unmap_single_vma(&tlb, vma, start, end, details);
1408    mmu_notifier_invalidate_range_end(mm, start, end);
1409    tlb_finish_mmu(&tlb, start, end);
1410}
1411
1412/**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1418 *
1419 * The range must fit into one VMA.
1420 */
1421static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422        unsigned long size, struct zap_details *details)
1423{
1424    struct mm_struct *mm = vma->vm_mm;
1425    struct mmu_gather tlb;
1426    unsigned long end = address + size;
1427
1428    lru_add_drain();
1429    tlb_gather_mmu(&tlb, mm, 0);
1430    update_hiwater_rss(mm);
1431    mmu_notifier_invalidate_range_start(mm, address, end);
1432    unmap_single_vma(&tlb, vma, address, end, details);
1433    mmu_notifier_invalidate_range_end(mm, address, end);
1434    tlb_finish_mmu(&tlb, address, end);
1435}
1436
1437/**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450        unsigned long size)
1451{
1452    if (address < vma->vm_start || address + size > vma->vm_end ||
1453                !(vma->vm_flags & VM_PFNMAP))
1454        return -1;
1455    zap_page_range_single(vma, address, size, NULL);
1456    return 0;
1457}
1458EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460/**
1461 * follow_page - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1465 *
1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467 *
1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469 * an error pointer if there is a mapping to something not represented
1470 * by a page descriptor (see also vm_normal_page()).
1471 */
1472struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1473            unsigned int flags)
1474{
1475    pgd_t *pgd;
1476    pud_t *pud;
1477    pmd_t *pmd;
1478    pte_t *ptep, pte;
1479    spinlock_t *ptl;
1480    struct page *page;
1481    struct mm_struct *mm = vma->vm_mm;
1482
1483    page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484    if (!IS_ERR(page)) {
1485        BUG_ON(flags & FOLL_GET);
1486        goto out;
1487    }
1488
1489    page = NULL;
1490    pgd = pgd_offset(mm, address);
1491    if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492        goto no_page_table;
1493
1494    pud = pud_offset(pgd, address);
1495    if (pud_none(*pud))
1496        goto no_page_table;
1497    if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498        BUG_ON(flags & FOLL_GET);
1499        page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500        goto out;
1501    }
1502    if (unlikely(pud_bad(*pud)))
1503        goto no_page_table;
1504
1505    pmd = pmd_offset(pud, address);
1506    if (pmd_none(*pmd))
1507        goto no_page_table;
1508    if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509        BUG_ON(flags & FOLL_GET);
1510        page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511        goto out;
1512    }
1513    if (pmd_trans_huge(*pmd)) {
1514        if (flags & FOLL_SPLIT) {
1515            split_huge_page_pmd(mm, pmd);
1516            goto split_fallthrough;
1517        }
1518        spin_lock(&mm->page_table_lock);
1519        if (likely(pmd_trans_huge(*pmd))) {
1520            if (unlikely(pmd_trans_splitting(*pmd))) {
1521                spin_unlock(&mm->page_table_lock);
1522                wait_split_huge_page(vma->anon_vma, pmd);
1523            } else {
1524                page = follow_trans_huge_pmd(mm, address,
1525                                 pmd, flags);
1526                spin_unlock(&mm->page_table_lock);
1527                goto out;
1528            }
1529        } else
1530            spin_unlock(&mm->page_table_lock);
1531        /* fall through */
1532    }
1533split_fallthrough:
1534    if (unlikely(pmd_bad(*pmd)))
1535        goto no_page_table;
1536
1537    ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1538
1539    pte = *ptep;
1540    if (!pte_present(pte))
1541        goto no_page;
1542    if ((flags & FOLL_WRITE) && !pte_write(pte))
1543        goto unlock;
1544
1545    page = vm_normal_page(vma, address, pte);
1546    if (unlikely(!page)) {
1547        if ((flags & FOLL_DUMP) ||
1548            !is_zero_pfn(pte_pfn(pte)))
1549            goto bad_page;
1550        page = pte_page(pte);
1551    }
1552
1553    if (flags & FOLL_GET)
1554        get_page_foll(page);
1555    if (flags & FOLL_TOUCH) {
1556        if ((flags & FOLL_WRITE) &&
1557            !pte_dirty(pte) && !PageDirty(page))
1558            set_page_dirty(page);
1559        /*
1560         * pte_mkyoung() would be more correct here, but atomic care
1561         * is needed to avoid losing the dirty bit: it is easier to use
1562         * mark_page_accessed().
1563         */
1564        mark_page_accessed(page);
1565    }
1566    if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1567        /*
1568         * The preliminary mapping check is mainly to avoid the
1569         * pointless overhead of lock_page on the ZERO_PAGE
1570         * which might bounce very badly if there is contention.
1571         *
1572         * If the page is already locked, we don't need to
1573         * handle it now - vmscan will handle it later if and
1574         * when it attempts to reclaim the page.
1575         */
1576        if (page->mapping && trylock_page(page)) {
1577            lru_add_drain(); /* push cached pages to LRU */
1578            /*
1579             * Because we lock page here and migration is
1580             * blocked by the pte's page reference, we need
1581             * only check for file-cache page truncation.
1582             */
1583            if (page->mapping)
1584                mlock_vma_page(page);
1585            unlock_page(page);
1586        }
1587    }
1588unlock:
1589    pte_unmap_unlock(ptep, ptl);
1590out:
1591    return page;
1592
1593bad_page:
1594    pte_unmap_unlock(ptep, ptl);
1595    return ERR_PTR(-EFAULT);
1596
1597no_page:
1598    pte_unmap_unlock(ptep, ptl);
1599    if (!pte_none(pte))
1600        return page;
1601
1602no_page_table:
1603    /*
1604     * When core dumping an enormous anonymous area that nobody
1605     * has touched so far, we don't want to allocate unnecessary pages or
1606     * page tables. Return error instead of NULL to skip handle_mm_fault,
1607     * then get_dump_page() will return NULL to leave a hole in the dump.
1608     * But we can only make this optimization where a hole would surely
1609     * be zero-filled if handle_mm_fault() actually did handle it.
1610     */
1611    if ((flags & FOLL_DUMP) &&
1612        (!vma->vm_ops || !vma->vm_ops->fault))
1613        return ERR_PTR(-EFAULT);
1614    return page;
1615}
1616
1617static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1618{
1619    return stack_guard_page_start(vma, addr) ||
1620           stack_guard_page_end(vma, addr+PAGE_SIZE);
1621}
1622
1623/**
1624 * __get_user_pages() - pin user pages in memory
1625 * @tsk: task_struct of target task
1626 * @mm: mm_struct of target mm
1627 * @start: starting user address
1628 * @nr_pages: number of pages from start to pin
1629 * @gup_flags: flags modifying pin behaviour
1630 * @pages: array that receives pointers to the pages pinned.
1631 * Should be at least nr_pages long. Or NULL, if caller
1632 * only intends to ensure the pages are faulted in.
1633 * @vmas: array of pointers to vmas corresponding to each page.
1634 * Or NULL if the caller does not require them.
1635 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1636 *
1637 * Returns number of pages pinned. This may be fewer than the number
1638 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1639 * were pinned, returns -errno. Each page returned must be released
1640 * with a put_page() call when it is finished with. vmas will only
1641 * remain valid while mmap_sem is held.
1642 *
1643 * Must be called with mmap_sem held for read or write.
1644 *
1645 * __get_user_pages walks a process's page tables and takes a reference to
1646 * each struct page that each user address corresponds to at a given
1647 * instant. That is, it takes the page that would be accessed if a user
1648 * thread accesses the given user virtual address at that instant.
1649 *
1650 * This does not guarantee that the page exists in the user mappings when
1651 * __get_user_pages returns, and there may even be a completely different
1652 * page there in some cases (eg. if mmapped pagecache has been invalidated
1653 * and subsequently re faulted). However it does guarantee that the page
1654 * won't be freed completely. And mostly callers simply care that the page
1655 * contains data that was valid *at some point in time*. Typically, an IO
1656 * or similar operation cannot guarantee anything stronger anyway because
1657 * locks can't be held over the syscall boundary.
1658 *
1659 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1660 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1661 * appropriate) must be called after the page is finished with, and
1662 * before put_page is called.
1663 *
1664 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1665 * or mmap_sem contention, and if waiting is needed to pin all pages,
1666 * *@nonblocking will be set to 0.
1667 *
1668 * In most cases, get_user_pages or get_user_pages_fast should be used
1669 * instead of __get_user_pages. __get_user_pages should be used only if
1670 * you need some special @gup_flags.
1671 */
1672int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1673             unsigned long start, int nr_pages, unsigned int gup_flags,
1674             struct page **pages, struct vm_area_struct **vmas,
1675             int *nonblocking)
1676{
1677    int i;
1678    unsigned long vm_flags;
1679
1680    if (nr_pages <= 0)
1681        return 0;
1682
1683    VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1684
1685    /*
1686     * Require read or write permissions.
1687     * If FOLL_FORCE is set, we only require the "MAY" flags.
1688     */
1689    vm_flags = (gup_flags & FOLL_WRITE) ?
1690            (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1691    vm_flags &= (gup_flags & FOLL_FORCE) ?
1692            (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1693    i = 0;
1694
1695    do {
1696        struct vm_area_struct *vma;
1697
1698        vma = find_extend_vma(mm, start);
1699        if (!vma && in_gate_area(mm, start)) {
1700            unsigned long pg = start & PAGE_MASK;
1701            pgd_t *pgd;
1702            pud_t *pud;
1703            pmd_t *pmd;
1704            pte_t *pte;
1705
1706            /* user gate pages are read-only */
1707            if (gup_flags & FOLL_WRITE)
1708                return i ? : -EFAULT;
1709            if (pg > TASK_SIZE)
1710                pgd = pgd_offset_k(pg);
1711            else
1712                pgd = pgd_offset_gate(mm, pg);
1713            BUG_ON(pgd_none(*pgd));
1714            pud = pud_offset(pgd, pg);
1715            BUG_ON(pud_none(*pud));
1716            pmd = pmd_offset(pud, pg);
1717            if (pmd_none(*pmd))
1718                return i ? : -EFAULT;
1719            VM_BUG_ON(pmd_trans_huge(*pmd));
1720            pte = pte_offset_map(pmd, pg);
1721            if (pte_none(*pte)) {
1722                pte_unmap(pte);
1723                return i ? : -EFAULT;
1724            }
1725            vma = get_gate_vma(mm);
1726            if (pages) {
1727                struct page *page;
1728
1729                page = vm_normal_page(vma, start, *pte);
1730                if (!page) {
1731                    if (!(gup_flags & FOLL_DUMP) &&
1732                         is_zero_pfn(pte_pfn(*pte)))
1733                        page = pte_page(*pte);
1734                    else {
1735                        pte_unmap(pte);
1736                        return i ? : -EFAULT;
1737                    }
1738                }
1739                pages[i] = page;
1740                get_page(page);
1741            }
1742            pte_unmap(pte);
1743            goto next_page;
1744        }
1745
1746        if (!vma ||
1747            (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1748            !(vm_flags & vma->vm_flags))
1749            return i ? : -EFAULT;
1750
1751        if (is_vm_hugetlb_page(vma)) {
1752            i = follow_hugetlb_page(mm, vma, pages, vmas,
1753                    &start, &nr_pages, i, gup_flags);
1754            continue;
1755        }
1756
1757        do {
1758            struct page *page;
1759            unsigned int foll_flags = gup_flags;
1760
1761            /*
1762             * If we have a pending SIGKILL, don't keep faulting
1763             * pages and potentially allocating memory.
1764             */
1765            if (unlikely(fatal_signal_pending(current)))
1766                return i ? i : -ERESTARTSYS;
1767
1768            cond_resched();
1769            while (!(page = follow_page(vma, start, foll_flags))) {
1770                int ret;
1771                unsigned int fault_flags = 0;
1772
1773                /* For mlock, just skip the stack guard page. */
1774                if (foll_flags & FOLL_MLOCK) {
1775                    if (stack_guard_page(vma, start))
1776                        goto next_page;
1777                }
1778                if (foll_flags & FOLL_WRITE)
1779                    fault_flags |= FAULT_FLAG_WRITE;
1780                if (nonblocking)
1781                    fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1782                if (foll_flags & FOLL_NOWAIT)
1783                    fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1784
1785                ret = handle_mm_fault(mm, vma, start,
1786                            fault_flags);
1787
1788                if (ret & VM_FAULT_ERROR) {
1789                    if (ret & VM_FAULT_OOM)
1790                        return i ? i : -ENOMEM;
1791                    if (ret & (VM_FAULT_HWPOISON |
1792                           VM_FAULT_HWPOISON_LARGE)) {
1793                        if (i)
1794                            return i;
1795                        else if (gup_flags & FOLL_HWPOISON)
1796                            return -EHWPOISON;
1797                        else
1798                            return -EFAULT;
1799                    }
1800                    if (ret & VM_FAULT_SIGBUS)
1801                        return i ? i : -EFAULT;
1802                    BUG();
1803                }
1804
1805                if (tsk) {
1806                    if (ret & VM_FAULT_MAJOR)
1807                        tsk->maj_flt++;
1808                    else
1809                        tsk->min_flt++;
1810                }
1811
1812                if (ret & VM_FAULT_RETRY) {
1813                    if (nonblocking)
1814                        *nonblocking = 0;
1815                    return i;
1816                }
1817
1818                /*
1819                 * The VM_FAULT_WRITE bit tells us that
1820                 * do_wp_page has broken COW when necessary,
1821                 * even if maybe_mkwrite decided not to set
1822                 * pte_write. We can thus safely do subsequent
1823                 * page lookups as if they were reads. But only
1824                 * do so when looping for pte_write is futile:
1825                 * in some cases userspace may also be wanting
1826                 * to write to the gotten user page, which a
1827                 * read fault here might prevent (a readonly
1828                 * page might get reCOWed by userspace write).
1829                 */
1830                if ((ret & VM_FAULT_WRITE) &&
1831                    !(vma->vm_flags & VM_WRITE))
1832                    foll_flags &= ~FOLL_WRITE;
1833
1834                cond_resched();
1835            }
1836            if (IS_ERR(page))
1837                return i ? i : PTR_ERR(page);
1838            if (pages) {
1839                pages[i] = page;
1840
1841                flush_anon_page(vma, page, start);
1842                flush_dcache_page(page);
1843            }
1844next_page:
1845            if (vmas)
1846                vmas[i] = vma;
1847            i++;
1848            start += PAGE_SIZE;
1849            nr_pages--;
1850        } while (nr_pages && start < vma->vm_end);
1851    } while (nr_pages);
1852    return i;
1853}
1854EXPORT_SYMBOL(__get_user_pages);
1855
1856/*
1857 * fixup_user_fault() - manually resolve a user page fault
1858 * @tsk: the task_struct to use for page fault accounting, or
1859 * NULL if faults are not to be recorded.
1860 * @mm: mm_struct of target mm
1861 * @address: user address
1862 * @fault_flags:flags to pass down to handle_mm_fault()
1863 *
1864 * This is meant to be called in the specific scenario where for locking reasons
1865 * we try to access user memory in atomic context (within a pagefault_disable()
1866 * section), this returns -EFAULT, and we want to resolve the user fault before
1867 * trying again.
1868 *
1869 * Typically this is meant to be used by the futex code.
1870 *
1871 * The main difference with get_user_pages() is that this function will
1872 * unconditionally call handle_mm_fault() which will in turn perform all the
1873 * necessary SW fixup of the dirty and young bits in the PTE, while
1874 * handle_mm_fault() only guarantees to update these in the struct page.
1875 *
1876 * This is important for some architectures where those bits also gate the
1877 * access permission to the page because they are maintained in software. On
1878 * such architectures, gup() will not be enough to make a subsequent access
1879 * succeed.
1880 *
1881 * This should be called with the mm_sem held for read.
1882 */
1883int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1884             unsigned long address, unsigned int fault_flags)
1885{
1886    struct vm_area_struct *vma;
1887    int ret;
1888
1889    vma = find_extend_vma(mm, address);
1890    if (!vma || address < vma->vm_start)
1891        return -EFAULT;
1892
1893    ret = handle_mm_fault(mm, vma, address, fault_flags);
1894    if (ret & VM_FAULT_ERROR) {
1895        if (ret & VM_FAULT_OOM)
1896            return -ENOMEM;
1897        if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1898            return -EHWPOISON;
1899        if (ret & VM_FAULT_SIGBUS)
1900            return -EFAULT;
1901        BUG();
1902    }
1903    if (tsk) {
1904        if (ret & VM_FAULT_MAJOR)
1905            tsk->maj_flt++;
1906        else
1907            tsk->min_flt++;
1908    }
1909    return 0;
1910}
1911
1912/*
1913 * get_user_pages() - pin user pages in memory
1914 * @tsk: the task_struct to use for page fault accounting, or
1915 * NULL if faults are not to be recorded.
1916 * @mm: mm_struct of target mm
1917 * @start: starting user address
1918 * @nr_pages: number of pages from start to pin
1919 * @write: whether pages will be written to by the caller
1920 * @force: whether to force write access even if user mapping is
1921 * readonly. This will result in the page being COWed even
1922 * in MAP_SHARED mappings. You do not want this.
1923 * @pages: array that receives pointers to the pages pinned.
1924 * Should be at least nr_pages long. Or NULL, if caller
1925 * only intends to ensure the pages are faulted in.
1926 * @vmas: array of pointers to vmas corresponding to each page.
1927 * Or NULL if the caller does not require them.
1928 *
1929 * Returns number of pages pinned. This may be fewer than the number
1930 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1931 * were pinned, returns -errno. Each page returned must be released
1932 * with a put_page() call when it is finished with. vmas will only
1933 * remain valid while mmap_sem is held.
1934 *
1935 * Must be called with mmap_sem held for read or write.
1936 *
1937 * get_user_pages walks a process's page tables and takes a reference to
1938 * each struct page that each user address corresponds to at a given
1939 * instant. That is, it takes the page that would be accessed if a user
1940 * thread accesses the given user virtual address at that instant.
1941 *
1942 * This does not guarantee that the page exists in the user mappings when
1943 * get_user_pages returns, and there may even be a completely different
1944 * page there in some cases (eg. if mmapped pagecache has been invalidated
1945 * and subsequently re faulted). However it does guarantee that the page
1946 * won't be freed completely. And mostly callers simply care that the page
1947 * contains data that was valid *at some point in time*. Typically, an IO
1948 * or similar operation cannot guarantee anything stronger anyway because
1949 * locks can't be held over the syscall boundary.
1950 *
1951 * If write=0, the page must not be written to. If the page is written to,
1952 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1953 * after the page is finished with, and before put_page is called.
1954 *
1955 * get_user_pages is typically used for fewer-copy IO operations, to get a
1956 * handle on the memory by some means other than accesses via the user virtual
1957 * addresses. The pages may be submitted for DMA to devices or accessed via
1958 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1959 * use the correct cache flushing APIs.
1960 *
1961 * See also get_user_pages_fast, for performance critical applications.
1962 */
1963int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1964        unsigned long start, int nr_pages, int write, int force,
1965        struct page **pages, struct vm_area_struct **vmas)
1966{
1967    int flags = FOLL_TOUCH;
1968
1969    if (pages)
1970        flags |= FOLL_GET;
1971    if (write)
1972        flags |= FOLL_WRITE;
1973    if (force)
1974        flags |= FOLL_FORCE;
1975
1976    return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1977                NULL);
1978}
1979EXPORT_SYMBOL(get_user_pages);
1980
1981/**
1982 * get_dump_page() - pin user page in memory while writing it to core dump
1983 * @addr: user address
1984 *
1985 * Returns struct page pointer of user page pinned for dump,
1986 * to be freed afterwards by page_cache_release() or put_page().
1987 *
1988 * Returns NULL on any kind of failure - a hole must then be inserted into
1989 * the corefile, to preserve alignment with its headers; and also returns
1990 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1991 * allowing a hole to be left in the corefile to save diskspace.
1992 *
1993 * Called without mmap_sem, but after all other threads have been killed.
1994 */
1995#ifdef CONFIG_ELF_CORE
1996struct page *get_dump_page(unsigned long addr)
1997{
1998    struct vm_area_struct *vma;
1999    struct page *page;
2000
2001    if (__get_user_pages(current, current->mm, addr, 1,
2002                 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2003                 NULL) < 1)
2004        return NULL;
2005    flush_cache_page(vma, addr, page_to_pfn(page));
2006    return page;
2007}
2008#endif /* CONFIG_ELF_CORE */
2009
2010pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2011            spinlock_t **ptl)
2012{
2013    pgd_t * pgd = pgd_offset(mm, addr);
2014    pud_t * pud = pud_alloc(mm, pgd, addr);
2015    if (pud) {
2016        pmd_t * pmd = pmd_alloc(mm, pud, addr);
2017        if (pmd) {
2018            VM_BUG_ON(pmd_trans_huge(*pmd));
2019            return pte_alloc_map_lock(mm, pmd, addr, ptl);
2020        }
2021    }
2022    return NULL;
2023}
2024
2025/*
2026 * This is the old fallback for page remapping.
2027 *
2028 * For historical reasons, it only allows reserved pages. Only
2029 * old drivers should use this, and they needed to mark their
2030 * pages reserved for the old functions anyway.
2031 */
2032static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2033            struct page *page, pgprot_t prot)
2034{
2035    struct mm_struct *mm = vma->vm_mm;
2036    int retval;
2037    pte_t *pte;
2038    spinlock_t *ptl;
2039
2040    retval = -EINVAL;
2041    if (PageAnon(page))
2042        goto out;
2043    retval = -ENOMEM;
2044    flush_dcache_page(page);
2045    pte = get_locked_pte(mm, addr, &ptl);
2046    if (!pte)
2047        goto out;
2048    retval = -EBUSY;
2049    if (!pte_none(*pte))
2050        goto out_unlock;
2051
2052    /* Ok, finally just insert the thing.. */
2053    get_page(page);
2054    inc_mm_counter_fast(mm, MM_FILEPAGES);
2055    page_add_file_rmap(page);
2056    set_pte_at(mm, addr, pte, mk_pte(page, prot));
2057
2058    retval = 0;
2059    pte_unmap_unlock(pte, ptl);
2060    return retval;
2061out_unlock:
2062    pte_unmap_unlock(pte, ptl);
2063out:
2064    return retval;
2065}
2066
2067/**
2068 * vm_insert_page - insert single page into user vma
2069 * @vma: user vma to map to
2070 * @addr: target user address of this page
2071 * @page: source kernel page
2072 *
2073 * This allows drivers to insert individual pages they've allocated
2074 * into a user vma.
2075 *
2076 * The page has to be a nice clean _individual_ kernel allocation.
2077 * If you allocate a compound page, you need to have marked it as
2078 * such (__GFP_COMP), or manually just split the page up yourself
2079 * (see split_page()).
2080 *
2081 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2082 * took an arbitrary page protection parameter. This doesn't allow
2083 * that. Your vma protection will have to be set up correctly, which
2084 * means that if you want a shared writable mapping, you'd better
2085 * ask for a shared writable mapping!
2086 *
2087 * The page does not need to be reserved.
2088 */
2089int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2090            struct page *page)
2091{
2092    if (addr < vma->vm_start || addr >= vma->vm_end)
2093        return -EFAULT;
2094    if (!page_count(page))
2095        return -EINVAL;
2096    vma->vm_flags |= VM_INSERTPAGE;
2097    return insert_page(vma, addr, page, vma->vm_page_prot);
2098}
2099EXPORT_SYMBOL(vm_insert_page);
2100
2101static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2102            unsigned long pfn, pgprot_t prot)
2103{
2104    struct mm_struct *mm = vma->vm_mm;
2105    int retval;
2106    pte_t *pte, entry;
2107    spinlock_t *ptl;
2108
2109    retval = -ENOMEM;
2110    pte = get_locked_pte(mm, addr, &ptl);
2111    if (!pte)
2112        goto out;
2113    retval = -EBUSY;
2114    if (!pte_none(*pte))
2115        goto out_unlock;
2116
2117    /* Ok, finally just insert the thing.. */
2118    entry = pte_mkspecial(pfn_pte(pfn, prot));
2119    set_pte_at(mm, addr, pte, entry);
2120    update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2121
2122    retval = 0;
2123out_unlock:
2124    pte_unmap_unlock(pte, ptl);
2125out:
2126    return retval;
2127}
2128
2129/**
2130 * vm_insert_pfn - insert single pfn into user vma
2131 * @vma: user vma to map to
2132 * @addr: target user address of this page
2133 * @pfn: source kernel pfn
2134 *
2135 * Similar to vm_inert_page, this allows drivers to insert individual pages
2136 * they've allocated into a user vma. Same comments apply.
2137 *
2138 * This function should only be called from a vm_ops->fault handler, and
2139 * in that case the handler should return NULL.
2140 *
2141 * vma cannot be a COW mapping.
2142 *
2143 * As this is called only for pages that do not currently exist, we
2144 * do not need to flush old virtual caches or the TLB.
2145 */
2146int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2147            unsigned long pfn)
2148{
2149    int ret;
2150    pgprot_t pgprot = vma->vm_page_prot;
2151    /*
2152     * Technically, architectures with pte_special can avoid all these
2153     * restrictions (same for remap_pfn_range). However we would like
2154     * consistency in testing and feature parity among all, so we should
2155     * try to keep these invariants in place for everybody.
2156     */
2157    BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2158    BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2159                        (VM_PFNMAP|VM_MIXEDMAP));
2160    BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2161    BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2162
2163    if (addr < vma->vm_start || addr >= vma->vm_end)
2164        return -EFAULT;
2165    if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2166        return -EINVAL;
2167
2168    ret = insert_pfn(vma, addr, pfn, pgprot);
2169
2170    if (ret)
2171        untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2172
2173    return ret;
2174}
2175EXPORT_SYMBOL(vm_insert_pfn);
2176
2177int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2178            unsigned long pfn)
2179{
2180    BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2181
2182    if (addr < vma->vm_start || addr >= vma->vm_end)
2183        return -EFAULT;
2184
2185    /*
2186     * If we don't have pte special, then we have to use the pfn_valid()
2187     * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2188     * refcount the page if pfn_valid is true (hence insert_page rather
2189     * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2190     * without pte special, it would there be refcounted as a normal page.
2191     */
2192    if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2193        struct page *page;
2194
2195        page = pfn_to_page(pfn);
2196        return insert_page(vma, addr, page, vma->vm_page_prot);
2197    }
2198    return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2199}
2200EXPORT_SYMBOL(vm_insert_mixed);
2201
2202/*
2203 * maps a range of physical memory into the requested pages. the old
2204 * mappings are removed. any references to nonexistent pages results
2205 * in null mappings (currently treated as "copy-on-access")
2206 */
2207static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208            unsigned long addr, unsigned long end,
2209            unsigned long pfn, pgprot_t prot)
2210{
2211    pte_t *pte;
2212    spinlock_t *ptl;
2213
2214    pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2215    if (!pte)
2216        return -ENOMEM;
2217    arch_enter_lazy_mmu_mode();
2218    do {
2219        BUG_ON(!pte_none(*pte));
2220        set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2221        pfn++;
2222    } while (pte++, addr += PAGE_SIZE, addr != end);
2223    arch_leave_lazy_mmu_mode();
2224    pte_unmap_unlock(pte - 1, ptl);
2225    return 0;
2226}
2227
2228static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2229            unsigned long addr, unsigned long end,
2230            unsigned long pfn, pgprot_t prot)
2231{
2232    pmd_t *pmd;
2233    unsigned long next;
2234
2235    pfn -= addr >> PAGE_SHIFT;
2236    pmd = pmd_alloc(mm, pud, addr);
2237    if (!pmd)
2238        return -ENOMEM;
2239    VM_BUG_ON(pmd_trans_huge(*pmd));
2240    do {
2241        next = pmd_addr_end(addr, end);
2242        if (remap_pte_range(mm, pmd, addr, next,
2243                pfn + (addr >> PAGE_SHIFT), prot))
2244            return -ENOMEM;
2245    } while (pmd++, addr = next, addr != end);
2246    return 0;
2247}
2248
2249static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2250            unsigned long addr, unsigned long end,
2251            unsigned long pfn, pgprot_t prot)
2252{
2253    pud_t *pud;
2254    unsigned long next;
2255
2256    pfn -= addr >> PAGE_SHIFT;
2257    pud = pud_alloc(mm, pgd, addr);
2258    if (!pud)
2259        return -ENOMEM;
2260    do {
2261        next = pud_addr_end(addr, end);
2262        if (remap_pmd_range(mm, pud, addr, next,
2263                pfn + (addr >> PAGE_SHIFT), prot))
2264            return -ENOMEM;
2265    } while (pud++, addr = next, addr != end);
2266    return 0;
2267}
2268
2269/**
2270 * remap_pfn_range - remap kernel memory to userspace
2271 * @vma: user vma to map to
2272 * @addr: target user address to start at
2273 * @pfn: physical address of kernel memory
2274 * @size: size of map area
2275 * @prot: page protection flags for this mapping
2276 *
2277 * Note: this is only safe if the mm semaphore is held when called.
2278 */
2279int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2280            unsigned long pfn, unsigned long size, pgprot_t prot)
2281{
2282    pgd_t *pgd;
2283    unsigned long next;
2284    unsigned long end = addr + PAGE_ALIGN(size);
2285    struct mm_struct *mm = vma->vm_mm;
2286    int err;
2287
2288    /*
2289     * Physically remapped pages are special. Tell the
2290     * rest of the world about it:
2291     * VM_IO tells people not to look at these pages
2292     * (accesses can have side effects).
2293     * VM_RESERVED is specified all over the place, because
2294     * in 2.4 it kept swapout's vma scan off this vma; but
2295     * in 2.6 the LRU scan won't even find its pages, so this
2296     * flag means no more than count its pages in reserved_vm,
2297     * and omit it from core dump, even when VM_IO turned off.
2298     * VM_PFNMAP tells the core MM that the base pages are just
2299     * raw PFN mappings, and do not have a "struct page" associated
2300     * with them.
2301     *
2302     * There's a horrible special case to handle copy-on-write
2303     * behaviour that some programs depend on. We mark the "original"
2304     * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2305     */
2306    if (addr == vma->vm_start && end == vma->vm_end) {
2307        vma->vm_pgoff = pfn;
2308        vma->vm_flags |= VM_PFN_AT_MMAP;
2309    } else if (is_cow_mapping(vma->vm_flags))
2310        return -EINVAL;
2311
2312    vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2313
2314    err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2315    if (err) {
2316        /*
2317         * To indicate that track_pfn related cleanup is not
2318         * needed from higher level routine calling unmap_vmas
2319         */
2320        vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2321        vma->vm_flags &= ~VM_PFN_AT_MMAP;
2322        return -EINVAL;
2323    }
2324
2325    BUG_ON(addr >= end);
2326    pfn -= addr >> PAGE_SHIFT;
2327    pgd = pgd_offset(mm, addr);
2328    flush_cache_range(vma, addr, end);
2329    do {
2330        next = pgd_addr_end(addr, end);
2331        err = remap_pud_range(mm, pgd, addr, next,
2332                pfn + (addr >> PAGE_SHIFT), prot);
2333        if (err)
2334            break;
2335    } while (pgd++, addr = next, addr != end);
2336
2337    if (err)
2338        untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2339
2340    return err;
2341}
2342EXPORT_SYMBOL(remap_pfn_range);
2343
2344static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345                     unsigned long addr, unsigned long end,
2346                     pte_fn_t fn, void *data)
2347{
2348    pte_t *pte;
2349    int err;
2350    pgtable_t token;
2351    spinlock_t *uninitialized_var(ptl);
2352
2353    pte = (mm == &init_mm) ?
2354        pte_alloc_kernel(pmd, addr) :
2355        pte_alloc_map_lock(mm, pmd, addr, &ptl);
2356    if (!pte)
2357        return -ENOMEM;
2358
2359    BUG_ON(pmd_huge(*pmd));
2360
2361    arch_enter_lazy_mmu_mode();
2362
2363    token = pmd_pgtable(*pmd);
2364
2365    do {
2366        err = fn(pte++, token, addr, data);
2367        if (err)
2368            break;
2369    } while (addr += PAGE_SIZE, addr != end);
2370
2371    arch_leave_lazy_mmu_mode();
2372
2373    if (mm != &init_mm)
2374        pte_unmap_unlock(pte-1, ptl);
2375    return err;
2376}
2377
2378static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2379                     unsigned long addr, unsigned long end,
2380                     pte_fn_t fn, void *data)
2381{
2382    pmd_t *pmd;
2383    unsigned long next;
2384    int err;
2385
2386    BUG_ON(pud_huge(*pud));
2387
2388    pmd = pmd_alloc(mm, pud, addr);
2389    if (!pmd)
2390        return -ENOMEM;
2391    do {
2392        next = pmd_addr_end(addr, end);
2393        err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2394        if (err)
2395            break;
2396    } while (pmd++, addr = next, addr != end);
2397    return err;
2398}
2399
2400static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2401                     unsigned long addr, unsigned long end,
2402                     pte_fn_t fn, void *data)
2403{
2404    pud_t *pud;
2405    unsigned long next;
2406    int err;
2407
2408    pud = pud_alloc(mm, pgd, addr);
2409    if (!pud)
2410        return -ENOMEM;
2411    do {
2412        next = pud_addr_end(addr, end);
2413        err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2414        if (err)
2415            break;
2416    } while (pud++, addr = next, addr != end);
2417    return err;
2418}
2419
2420/*
2421 * Scan a region of virtual memory, filling in page tables as necessary
2422 * and calling a provided function on each leaf page table.
2423 */
2424int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2425            unsigned long size, pte_fn_t fn, void *data)
2426{
2427    pgd_t *pgd;
2428    unsigned long next;
2429    unsigned long end = addr + size;
2430    int err;
2431
2432    BUG_ON(addr >= end);
2433    pgd = pgd_offset(mm, addr);
2434    do {
2435        next = pgd_addr_end(addr, end);
2436        err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2437        if (err)
2438            break;
2439    } while (pgd++, addr = next, addr != end);
2440
2441    return err;
2442}
2443EXPORT_SYMBOL_GPL(apply_to_page_range);
2444
2445/*
2446 * handle_pte_fault chooses page fault handler according to an entry
2447 * which was read non-atomically. Before making any commitment, on
2448 * those architectures or configurations (e.g. i386 with PAE) which
2449 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2450 * must check under lock before unmapping the pte and proceeding
2451 * (but do_wp_page is only called after already making such a check;
2452 * and do_anonymous_page can safely check later on).
2453 */
2454static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2455                pte_t *page_table, pte_t orig_pte)
2456{
2457    int same = 1;
2458#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2459    if (sizeof(pte_t) > sizeof(unsigned long)) {
2460        spinlock_t *ptl = pte_lockptr(mm, pmd);
2461        spin_lock(ptl);
2462        same = pte_same(*page_table, orig_pte);
2463        spin_unlock(ptl);
2464    }
2465#endif
2466    pte_unmap(page_table);
2467    return same;
2468}
2469
2470static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2471{
2472    /*
2473     * If the source page was a PFN mapping, we don't have
2474     * a "struct page" for it. We do a best-effort copy by
2475     * just copying from the original user address. If that
2476     * fails, we just zero-fill it. Live with it.
2477     */
2478    if (unlikely(!src)) {
2479        void *kaddr = kmap_atomic(dst);
2480        void __user *uaddr = (void __user *)(va & PAGE_MASK);
2481
2482        /*
2483         * This really shouldn't fail, because the page is there
2484         * in the page tables. But it might just be unreadable,
2485         * in which case we just give up and fill the result with
2486         * zeroes.
2487         */
2488        if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2489            clear_page(kaddr);
2490        kunmap_atomic(kaddr);
2491        flush_dcache_page(dst);
2492    } else
2493        copy_user_highpage(dst, src, va, vma);
2494}
2495
2496/*
2497 * This routine handles present pages, when users try to write
2498 * to a shared page. It is done by copying the page to a new address
2499 * and decrementing the shared-page counter for the old page.
2500 *
2501 * Note that this routine assumes that the protection checks have been
2502 * done by the caller (the low-level page fault routine in most cases).
2503 * Thus we can safely just mark it writable once we've done any necessary
2504 * COW.
2505 *
2506 * We also mark the page dirty at this point even though the page will
2507 * change only once the write actually happens. This avoids a few races,
2508 * and potentially makes it more efficient.
2509 *
2510 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2511 * but allow concurrent faults), with pte both mapped and locked.
2512 * We return with mmap_sem still held, but pte unmapped and unlocked.
2513 */
2514static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2515        unsigned long address, pte_t *page_table, pmd_t *pmd,
2516        spinlock_t *ptl, pte_t orig_pte)
2517    __releases(ptl)
2518{
2519    struct page *old_page, *new_page;
2520    pte_t entry;
2521    int ret = 0;
2522    int page_mkwrite = 0;
2523    struct page *dirty_page = NULL;
2524
2525    old_page = vm_normal_page(vma, address, orig_pte);
2526    if (!old_page) {
2527        /*
2528         * VM_MIXEDMAP !pfn_valid() case
2529         *
2530         * We should not cow pages in a shared writeable mapping.
2531         * Just mark the pages writable as we can't do any dirty
2532         * accounting on raw pfn maps.
2533         */
2534        if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2535                     (VM_WRITE|VM_SHARED))
2536            goto reuse;
2537        goto gotten;
2538    }
2539
2540    /*
2541     * Take out anonymous pages first, anonymous shared vmas are
2542     * not dirty accountable.
2543     */
2544    if (PageAnon(old_page) && !PageKsm(old_page)) {
2545        if (!trylock_page(old_page)) {
2546            page_cache_get(old_page);
2547            pte_unmap_unlock(page_table, ptl);
2548            lock_page(old_page);
2549            page_table = pte_offset_map_lock(mm, pmd, address,
2550                             &ptl);
2551            if (!pte_same(*page_table, orig_pte)) {
2552                unlock_page(old_page);
2553                goto unlock;
2554            }
2555            page_cache_release(old_page);
2556        }
2557        if (reuse_swap_page(old_page)) {
2558            /*
2559             * The page is all ours. Move it to our anon_vma so
2560             * the rmap code will not search our parent or siblings.
2561             * Protected against the rmap code by the page lock.
2562             */
2563            page_move_anon_rmap(old_page, vma, address);
2564            unlock_page(old_page);
2565            goto reuse;
2566        }
2567        unlock_page(old_page);
2568    } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2569                    (VM_WRITE|VM_SHARED))) {
2570        /*
2571         * Only catch write-faults on shared writable pages,
2572         * read-only shared pages can get COWed by
2573         * get_user_pages(.write=1, .force=1).
2574         */
2575        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2576            struct vm_fault vmf;
2577            int tmp;
2578
2579            vmf.virtual_address = (void __user *)(address &
2580                                PAGE_MASK);
2581            vmf.pgoff = old_page->index;
2582            vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2583            vmf.page = old_page;
2584
2585            /*
2586             * Notify the address space that the page is about to
2587             * become writable so that it can prohibit this or wait
2588             * for the page to get into an appropriate state.
2589             *
2590             * We do this without the lock held, so that it can
2591             * sleep if it needs to.
2592             */
2593            page_cache_get(old_page);
2594            pte_unmap_unlock(page_table, ptl);
2595
2596            tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2597            if (unlikely(tmp &
2598                    (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2599                ret = tmp;
2600                goto unwritable_page;
2601            }
2602            if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2603                lock_page(old_page);
2604                if (!old_page->mapping) {
2605                    ret = 0; /* retry the fault */
2606                    unlock_page(old_page);
2607                    goto unwritable_page;
2608                }
2609            } else
2610                VM_BUG_ON(!PageLocked(old_page));
2611
2612            /*
2613             * Since we dropped the lock we need to revalidate
2614             * the PTE as someone else may have changed it. If
2615             * they did, we just return, as we can count on the
2616             * MMU to tell us if they didn't also make it writable.
2617             */
2618            page_table = pte_offset_map_lock(mm, pmd, address,
2619                             &ptl);
2620            if (!pte_same(*page_table, orig_pte)) {
2621                unlock_page(old_page);
2622                goto unlock;
2623            }
2624
2625            page_mkwrite = 1;
2626        }
2627        dirty_page = old_page;
2628        get_page(dirty_page);
2629
2630reuse:
2631        flush_cache_page(vma, address, pte_pfn(orig_pte));
2632        entry = pte_mkyoung(orig_pte);
2633        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2634        if (ptep_set_access_flags(vma, address, page_table, entry,1))
2635            update_mmu_cache(vma, address, page_table);
2636        pte_unmap_unlock(page_table, ptl);
2637        ret |= VM_FAULT_WRITE;
2638
2639        if (!dirty_page)
2640            return ret;
2641
2642        /*
2643         * Yes, Virginia, this is actually required to prevent a race
2644         * with clear_page_dirty_for_io() from clearing the page dirty
2645         * bit after it clear all dirty ptes, but before a racing
2646         * do_wp_page installs a dirty pte.
2647         *
2648         * __do_fault is protected similarly.
2649         */
2650        if (!page_mkwrite) {
2651            wait_on_page_locked(dirty_page);
2652            set_page_dirty_balance(dirty_page, page_mkwrite);
2653            /* file_update_time outside page_lock */
2654            if (vma->vm_file)
2655                file_update_time(vma->vm_file);
2656        }
2657        put_page(dirty_page);
2658        if (page_mkwrite) {
2659            struct address_space *mapping = dirty_page->mapping;
2660
2661            set_page_dirty(dirty_page);
2662            unlock_page(dirty_page);
2663            page_cache_release(dirty_page);
2664            if (mapping) {
2665                /*
2666                 * Some device drivers do not set page.mapping
2667                 * but still dirty their pages
2668                 */
2669                balance_dirty_pages_ratelimited(mapping);
2670            }
2671        }
2672
2673        return ret;
2674    }
2675
2676    /*
2677     * Ok, we need to copy. Oh, well..
2678     */
2679    page_cache_get(old_page);
2680gotten:
2681    pte_unmap_unlock(page_table, ptl);
2682
2683    if (unlikely(anon_vma_prepare(vma)))
2684        goto oom;
2685
2686    if (is_zero_pfn(pte_pfn(orig_pte))) {
2687        new_page = alloc_zeroed_user_highpage_movable(vma, address);
2688        if (!new_page)
2689            goto oom;
2690    } else {
2691        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2692        if (!new_page)
2693            goto oom;
2694        cow_user_page(new_page, old_page, address, vma);
2695    }
2696    __SetPageUptodate(new_page);
2697
2698    if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2699        goto oom_free_new;
2700
2701    /*
2702     * Re-check the pte - we dropped the lock
2703     */
2704    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2705    if (likely(pte_same(*page_table, orig_pte))) {
2706        if (old_page) {
2707            if (!PageAnon(old_page)) {
2708                dec_mm_counter_fast(mm, MM_FILEPAGES);
2709                inc_mm_counter_fast(mm, MM_ANONPAGES);
2710            }
2711        } else
2712            inc_mm_counter_fast(mm, MM_ANONPAGES);
2713        flush_cache_page(vma, address, pte_pfn(orig_pte));
2714        entry = mk_pte(new_page, vma->vm_page_prot);
2715        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2716        /*
2717         * Clear the pte entry and flush it first, before updating the
2718         * pte with the new entry. This will avoid a race condition
2719         * seen in the presence of one thread doing SMC and another
2720         * thread doing COW.
2721         */
2722        ptep_clear_flush(vma, address, page_table);
2723        page_add_new_anon_rmap(new_page, vma, address);
2724        /*
2725         * We call the notify macro here because, when using secondary
2726         * mmu page tables (such as kvm shadow page tables), we want the
2727         * new page to be mapped directly into the secondary page table.
2728         */
2729        set_pte_at_notify(mm, address, page_table, entry);
2730        update_mmu_cache(vma, address, page_table);
2731        if (old_page) {
2732            /*
2733             * Only after switching the pte to the new page may
2734             * we remove the mapcount here. Otherwise another
2735             * process may come and find the rmap count decremented
2736             * before the pte is switched to the new page, and
2737             * "reuse" the old page writing into it while our pte
2738             * here still points into it and can be read by other
2739             * threads.
2740             *
2741             * The critical issue is to order this
2742             * page_remove_rmap with the ptp_clear_flush above.
2743             * Those stores are ordered by (if nothing else,)
2744             * the barrier present in the atomic_add_negative
2745             * in page_remove_rmap.
2746             *
2747             * Then the TLB flush in ptep_clear_flush ensures that
2748             * no process can access the old page before the
2749             * decremented mapcount is visible. And the old page
2750             * cannot be reused until after the decremented
2751             * mapcount is visible. So transitively, TLBs to
2752             * old page will be flushed before it can be reused.
2753             */
2754            page_remove_rmap(old_page);
2755        }
2756
2757        /* Free the old page.. */
2758        new_page = old_page;
2759        ret |= VM_FAULT_WRITE;
2760    } else
2761        mem_cgroup_uncharge_page(new_page);
2762
2763    if (new_page)
2764        page_cache_release(new_page);
2765unlock:
2766    pte_unmap_unlock(page_table, ptl);
2767    if (old_page) {
2768        /*
2769         * Don't let another task, with possibly unlocked vma,
2770         * keep the mlocked page.
2771         */
2772        if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2773            lock_page(old_page); /* LRU manipulation */
2774            munlock_vma_page(old_page);
2775            unlock_page(old_page);
2776        }
2777        page_cache_release(old_page);
2778    }
2779    return ret;
2780oom_free_new:
2781    page_cache_release(new_page);
2782oom:
2783    if (old_page) {
2784        if (page_mkwrite) {
2785            unlock_page(old_page);
2786            page_cache_release(old_page);
2787        }
2788        page_cache_release(old_page);
2789    }
2790    return VM_FAULT_OOM;
2791
2792unwritable_page:
2793    page_cache_release(old_page);
2794    return ret;
2795}
2796
2797static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2798        unsigned long start_addr, unsigned long end_addr,
2799        struct zap_details *details)
2800{
2801    zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2802}
2803
2804static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2805                        struct zap_details *details)
2806{
2807    struct vm_area_struct *vma;
2808    struct prio_tree_iter iter;
2809    pgoff_t vba, vea, zba, zea;
2810
2811    vma_prio_tree_foreach(vma, &iter, root,
2812            details->first_index, details->last_index) {
2813
2814        vba = vma->vm_pgoff;
2815        vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2816        /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2817        zba = details->first_index;
2818        if (zba < vba)
2819            zba = vba;
2820        zea = details->last_index;
2821        if (zea > vea)
2822            zea = vea;
2823
2824        unmap_mapping_range_vma(vma,
2825            ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2826            ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2827                details);
2828    }
2829}
2830
2831static inline void unmap_mapping_range_list(struct list_head *head,
2832                        struct zap_details *details)
2833{
2834    struct vm_area_struct *vma;
2835
2836    /*
2837     * In nonlinear VMAs there is no correspondence between virtual address
2838     * offset and file offset. So we must perform an exhaustive search
2839     * across *all* the pages in each nonlinear VMA, not just the pages
2840     * whose virtual address lies outside the file truncation point.
2841     */
2842    list_for_each_entry(vma, head, shared.vm_set.list) {
2843        details->nonlinear_vma = vma;
2844        unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2845    }
2846}
2847
2848/**
2849 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2850 * @mapping: the address space containing mmaps to be unmapped.
2851 * @holebegin: byte in first page to unmap, relative to the start of
2852 * the underlying file. This will be rounded down to a PAGE_SIZE
2853 * boundary. Note that this is different from truncate_pagecache(), which
2854 * must keep the partial page. In contrast, we must get rid of
2855 * partial pages.
2856 * @holelen: size of prospective hole in bytes. This will be rounded
2857 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2858 * end of the file.
2859 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2860 * but 0 when invalidating pagecache, don't throw away private data.
2861 */
2862void unmap_mapping_range(struct address_space *mapping,
2863        loff_t const holebegin, loff_t const holelen, int even_cows)
2864{
2865    struct zap_details details;
2866    pgoff_t hba = holebegin >> PAGE_SHIFT;
2867    pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2868
2869    /* Check for overflow. */
2870    if (sizeof(holelen) > sizeof(hlen)) {
2871        long long holeend =
2872            (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2873        if (holeend & ~(long long)ULONG_MAX)
2874            hlen = ULONG_MAX - hba + 1;
2875    }
2876
2877    details.check_mapping = even_cows? NULL: mapping;
2878    details.nonlinear_vma = NULL;
2879    details.first_index = hba;
2880    details.last_index = hba + hlen - 1;
2881    if (details.last_index < details.first_index)
2882        details.last_index = ULONG_MAX;
2883
2884
2885    mutex_lock(&mapping->i_mmap_mutex);
2886    if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2887        unmap_mapping_range_tree(&mapping->i_mmap, &details);
2888    if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2889        unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2890    mutex_unlock(&mapping->i_mmap_mutex);
2891}
2892EXPORT_SYMBOL(unmap_mapping_range);
2893
2894/*
2895 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2896 * but allow concurrent faults), and pte mapped but not yet locked.
2897 * We return with mmap_sem still held, but pte unmapped and unlocked.
2898 */
2899static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2900        unsigned long address, pte_t *page_table, pmd_t *pmd,
2901        unsigned int flags, pte_t orig_pte)
2902{
2903    spinlock_t *ptl;
2904    struct page *page, *swapcache = NULL;
2905    swp_entry_t entry;
2906    pte_t pte;
2907    int locked;
2908    struct mem_cgroup *ptr;
2909    int exclusive = 0;
2910    int ret = 0;
2911
2912    if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2913        goto out;
2914
2915    entry = pte_to_swp_entry(orig_pte);
2916    if (unlikely(non_swap_entry(entry))) {
2917        if (is_migration_entry(entry)) {
2918            migration_entry_wait(mm, pmd, address);
2919        } else if (is_hwpoison_entry(entry)) {
2920            ret = VM_FAULT_HWPOISON;
2921        } else {
2922            print_bad_pte(vma, address, orig_pte, NULL);
2923            ret = VM_FAULT_SIGBUS;
2924        }
2925        goto out;
2926    }
2927    delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2928    page = lookup_swap_cache(entry);
2929    if (!page) {
2930        page = swapin_readahead(entry,
2931                    GFP_HIGHUSER_MOVABLE, vma, address);
2932        if (!page) {
2933            /*
2934             * Back out if somebody else faulted in this pte
2935             * while we released the pte lock.
2936             */
2937            page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2938            if (likely(pte_same(*page_table, orig_pte)))
2939                ret = VM_FAULT_OOM;
2940            delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2941            goto unlock;
2942        }
2943
2944        /* Had to read the page from swap area: Major fault */
2945        ret = VM_FAULT_MAJOR;
2946        count_vm_event(PGMAJFAULT);
2947        mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2948    } else if (PageHWPoison(page)) {
2949        /*
2950         * hwpoisoned dirty swapcache pages are kept for killing
2951         * owner processes (which may be unknown at hwpoison time)
2952         */
2953        ret = VM_FAULT_HWPOISON;
2954        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955        goto out_release;
2956    }
2957
2958    locked = lock_page_or_retry(page, mm, flags);
2959
2960    delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2961    if (!locked) {
2962        ret |= VM_FAULT_RETRY;
2963        goto out_release;
2964    }
2965
2966    /*
2967     * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2968     * release the swapcache from under us. The page pin, and pte_same
2969     * test below, are not enough to exclude that. Even if it is still
2970     * swapcache, we need to check that the page's swap has not changed.
2971     */
2972    if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2973        goto out_page;
2974
2975    if (ksm_might_need_to_copy(page, vma, address)) {
2976        swapcache = page;
2977        page = ksm_does_need_to_copy(page, vma, address);
2978
2979        if (unlikely(!page)) {
2980            ret = VM_FAULT_OOM;
2981            page = swapcache;
2982            swapcache = NULL;
2983            goto out_page;
2984        }
2985    }
2986
2987    if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2988        ret = VM_FAULT_OOM;
2989        goto out_page;
2990    }
2991
2992    /*
2993     * Back out if somebody else already faulted in this pte.
2994     */
2995    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2996    if (unlikely(!pte_same(*page_table, orig_pte)))
2997        goto out_nomap;
2998
2999    if (unlikely(!PageUptodate(page))) {
3000        ret = VM_FAULT_SIGBUS;
3001        goto out_nomap;
3002    }
3003
3004    /*
3005     * The page isn't present yet, go ahead with the fault.
3006     *
3007     * Be careful about the sequence of operations here.
3008     * To get its accounting right, reuse_swap_page() must be called
3009     * while the page is counted on swap but not yet in mapcount i.e.
3010     * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3011     * must be called after the swap_free(), or it will never succeed.
3012     * Because delete_from_swap_page() may be called by reuse_swap_page(),
3013     * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3014     * in page->private. In this case, a record in swap_cgroup is silently
3015     * discarded at swap_free().
3016     */
3017
3018    inc_mm_counter_fast(mm, MM_ANONPAGES);
3019    dec_mm_counter_fast(mm, MM_SWAPENTS);
3020    pte = mk_pte(page, vma->vm_page_prot);
3021    if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3022        pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3023        flags &= ~FAULT_FLAG_WRITE;
3024        ret |= VM_FAULT_WRITE;
3025        exclusive = 1;
3026    }
3027    flush_icache_page(vma, page);
3028    set_pte_at(mm, address, page_table, pte);
3029    do_page_add_anon_rmap(page, vma, address, exclusive);
3030    /* It's better to call commit-charge after rmap is established */
3031    mem_cgroup_commit_charge_swapin(page, ptr);
3032
3033    swap_free(entry);
3034    if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3035        try_to_free_swap(page);
3036    unlock_page(page);
3037    if (swapcache) {
3038        /*
3039         * Hold the lock to avoid the swap entry to be reused
3040         * until we take the PT lock for the pte_same() check
3041         * (to avoid false positives from pte_same). For
3042         * further safety release the lock after the swap_free
3043         * so that the swap count won't change under a
3044         * parallel locked swapcache.
3045         */
3046        unlock_page(swapcache);
3047        page_cache_release(swapcache);
3048    }
3049
3050    if (flags & FAULT_FLAG_WRITE) {
3051        ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3052        if (ret & VM_FAULT_ERROR)
3053            ret &= VM_FAULT_ERROR;
3054        goto out;
3055    }
3056
3057    /* No need to invalidate - it was non-present before */
3058    update_mmu_cache(vma, address, page_table);
3059unlock:
3060    pte_unmap_unlock(page_table, ptl);
3061out:
3062    return ret;
3063out_nomap:
3064    mem_cgroup_cancel_charge_swapin(ptr);
3065    pte_unmap_unlock(page_table, ptl);
3066out_page:
3067    unlock_page(page);
3068out_release:
3069    page_cache_release(page);
3070    if (swapcache) {
3071        unlock_page(swapcache);
3072        page_cache_release(swapcache);
3073    }
3074    return ret;
3075}
3076
3077/*
3078 * This is like a special single-page "expand_{down|up}wards()",
3079 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3080 * doesn't hit another vma.
3081 */
3082static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3083{
3084    address &= PAGE_MASK;
3085    if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3086        struct vm_area_struct *prev = vma->vm_prev;
3087
3088        /*
3089         * Is there a mapping abutting this one below?
3090         *
3091         * That's only ok if it's the same stack mapping
3092         * that has gotten split..
3093         */
3094        if (prev && prev->vm_end == address)
3095            return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3096
3097        expand_downwards(vma, address - PAGE_SIZE);
3098    }
3099    if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3100        struct vm_area_struct *next = vma->vm_next;
3101
3102        /* As VM_GROWSDOWN but s/below/above/ */
3103        if (next && next->vm_start == address + PAGE_SIZE)
3104            return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3105
3106        expand_upwards(vma, address + PAGE_SIZE);
3107    }
3108    return 0;
3109}
3110
3111/*
3112 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3113 * but allow concurrent faults), and pte mapped but not yet locked.
3114 * We return with mmap_sem still held, but pte unmapped and unlocked.
3115 */
3116static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3117        unsigned long address, pte_t *page_table, pmd_t *pmd,
3118        unsigned int flags)
3119{
3120    struct page *page;
3121    spinlock_t *ptl;
3122    pte_t entry;
3123
3124    pte_unmap(page_table);
3125
3126    /* Check if we need to add a guard page to the stack */
3127    if (check_stack_guard_page(vma, address) < 0)
3128        return VM_FAULT_SIGBUS;
3129
3130    /* Use the zero-page for reads */
3131    if (!(flags & FAULT_FLAG_WRITE)) {
3132        entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3133                        vma->vm_page_prot));
3134        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3135        if (!pte_none(*page_table))
3136            goto unlock;
3137        goto setpte;
3138    }
3139
3140    /* Allocate our own private page. */
3141    if (unlikely(anon_vma_prepare(vma)))
3142        goto oom;
3143    page = alloc_zeroed_user_highpage_movable(vma, address);
3144    if (!page)
3145        goto oom;
3146    __SetPageUptodate(page);
3147
3148    if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3149        goto oom_free_page;
3150
3151    entry = mk_pte(page, vma->vm_page_prot);
3152    if (vma->vm_flags & VM_WRITE)
3153        entry = pte_mkwrite(pte_mkdirty(entry));
3154
3155    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3156    if (!pte_none(*page_table))
3157        goto release;
3158
3159    inc_mm_counter_fast(mm, MM_ANONPAGES);
3160    page_add_new_anon_rmap(page, vma, address);
3161setpte:
3162    set_pte_at(mm, address, page_table, entry);
3163
3164    /* No need to invalidate - it was non-present before */
3165    update_mmu_cache(vma, address, page_table);
3166unlock:
3167    pte_unmap_unlock(page_table, ptl);
3168    return 0;
3169release:
3170    mem_cgroup_uncharge_page(page);
3171    page_cache_release(page);
3172    goto unlock;
3173oom_free_page:
3174    page_cache_release(page);
3175oom:
3176    return VM_FAULT_OOM;
3177}
3178
3179/*
3180 * __do_fault() tries to create a new page mapping. It aggressively
3181 * tries to share with existing pages, but makes a separate copy if
3182 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3183 * the next page fault.
3184 *
3185 * As this is called only for pages that do not currently exist, we
3186 * do not need to flush old virtual caches or the TLB.
3187 *
3188 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3189 * but allow concurrent faults), and pte neither mapped nor locked.
3190 * We return with mmap_sem still held, but pte unmapped and unlocked.
3191 */
3192static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3193        unsigned long address, pmd_t *pmd,
3194        pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3195{
3196    pte_t *page_table;
3197    spinlock_t *ptl;
3198    struct page *page;
3199    struct page *cow_page;
3200    pte_t entry;
3201    int anon = 0;
3202    struct page *dirty_page = NULL;
3203    struct vm_fault vmf;
3204    int ret;
3205    int page_mkwrite = 0;
3206
3207    /*
3208     * If we do COW later, allocate page befor taking lock_page()
3209     * on the file cache page. This will reduce lock holding time.
3210     */
3211    if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3212
3213        if (unlikely(anon_vma_prepare(vma)))
3214            return VM_FAULT_OOM;
3215
3216        cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3217        if (!cow_page)
3218            return VM_FAULT_OOM;
3219
3220        if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3221            page_cache_release(cow_page);
3222            return VM_FAULT_OOM;
3223        }
3224    } else
3225        cow_page = NULL;
3226
3227    vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3228    vmf.pgoff = pgoff;
3229    vmf.flags = flags;
3230    vmf.page = NULL;
3231
3232    ret = vma->vm_ops->fault(vma, &vmf);
3233    if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3234                VM_FAULT_RETRY)))
3235        goto uncharge_out;
3236
3237    if (unlikely(PageHWPoison(vmf.page))) {
3238        if (ret & VM_FAULT_LOCKED)
3239            unlock_page(vmf.page);
3240        ret = VM_FAULT_HWPOISON;
3241        goto uncharge_out;
3242    }
3243
3244    /*
3245     * For consistency in subsequent calls, make the faulted page always
3246     * locked.
3247     */
3248    if (unlikely(!(ret & VM_FAULT_LOCKED)))
3249        lock_page(vmf.page);
3250    else
3251        VM_BUG_ON(!PageLocked(vmf.page));
3252
3253    /*
3254     * Should we do an early C-O-W break?
3255     */
3256    page = vmf.page;
3257    if (flags & FAULT_FLAG_WRITE) {
3258        if (!(vma->vm_flags & VM_SHARED)) {
3259            page = cow_page;
3260            anon = 1;
3261            copy_user_highpage(page, vmf.page, address, vma);
3262            __SetPageUptodate(page);
3263        } else {
3264            /*
3265             * If the page will be shareable, see if the backing
3266             * address space wants to know that the page is about
3267             * to become writable
3268             */
3269            if (vma->vm_ops->page_mkwrite) {
3270                int tmp;
3271
3272                unlock_page(page);
3273                vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3274                tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3275                if (unlikely(tmp &
3276                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3277                    ret = tmp;
3278                    goto unwritable_page;
3279                }
3280                if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3281                    lock_page(page);
3282                    if (!page->mapping) {
3283                        ret = 0; /* retry the fault */
3284                        unlock_page(page);
3285                        goto unwritable_page;
3286                    }
3287                } else
3288                    VM_BUG_ON(!PageLocked(page));
3289                page_mkwrite = 1;
3290            }
3291        }
3292
3293    }
3294
3295    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3296
3297    /*
3298     * This silly early PAGE_DIRTY setting removes a race
3299     * due to the bad i386 page protection. But it's valid
3300     * for other architectures too.
3301     *
3302     * Note that if FAULT_FLAG_WRITE is set, we either now have
3303     * an exclusive copy of the page, or this is a shared mapping,
3304     * so we can make it writable and dirty to avoid having to
3305     * handle that later.
3306     */
3307    /* Only go through if we didn't race with anybody else... */
3308    if (likely(pte_same(*page_table, orig_pte))) {
3309        flush_icache_page(vma, page);
3310        entry = mk_pte(page, vma->vm_page_prot);
3311        if (flags & FAULT_FLAG_WRITE)
3312            entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3313        if (anon) {
3314            inc_mm_counter_fast(mm, MM_ANONPAGES);
3315            page_add_new_anon_rmap(page, vma, address);
3316        } else {
3317            inc_mm_counter_fast(mm, MM_FILEPAGES);
3318            page_add_file_rmap(page);
3319            if (flags & FAULT_FLAG_WRITE) {
3320                dirty_page = page;
3321                get_page(dirty_page);
3322            }
3323        }
3324        set_pte_at(mm, address, page_table, entry);
3325
3326        /* no need to invalidate: a not-present page won't be cached */
3327        update_mmu_cache(vma, address, page_table);
3328    } else {
3329        if (cow_page)
3330            mem_cgroup_uncharge_page(cow_page);
3331        if (anon)
3332            page_cache_release(page);
3333        else
3334            anon = 1; /* no anon but release faulted_page */
3335    }
3336
3337    pte_unmap_unlock(page_table, ptl);
3338
3339    if (dirty_page) {
3340        struct address_space *mapping = page->mapping;
3341        int dirtied = 0;
3342
3343        if (set_page_dirty(dirty_page))
3344            dirtied = 1;
3345        unlock_page(dirty_page);
3346        put_page(dirty_page);
3347        if ((dirtied || page_mkwrite) && mapping) {
3348            /*
3349             * Some device drivers do not set page.mapping but still
3350             * dirty their pages
3351             */
3352            balance_dirty_pages_ratelimited(mapping);
3353        }
3354
3355        /* file_update_time outside page_lock */
3356        if (vma->vm_file && !page_mkwrite)
3357            file_update_time(vma->vm_file);
3358    } else {
3359        unlock_page(vmf.page);
3360        if (anon)
3361            page_cache_release(vmf.page);
3362    }
3363
3364    return ret;
3365
3366unwritable_page:
3367    page_cache_release(page);
3368    return ret;
3369uncharge_out:
3370    /* fs's fault handler get error */
3371    if (cow_page) {
3372        mem_cgroup_uncharge_page(cow_page);
3373        page_cache_release(cow_page);
3374    }
3375    return ret;
3376}
3377
3378static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3379        unsigned long address, pte_t *page_table, pmd_t *pmd,
3380        unsigned int flags, pte_t orig_pte)
3381{
3382    pgoff_t pgoff = (((address & PAGE_MASK)
3383            - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3384
3385    pte_unmap(page_table);
3386    return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3387}
3388
3389/*
3390 * Fault of a previously existing named mapping. Repopulate the pte
3391 * from the encoded file_pte if possible. This enables swappable
3392 * nonlinear vmas.
3393 *
3394 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3395 * but allow concurrent faults), and pte mapped but not yet locked.
3396 * We return with mmap_sem still held, but pte unmapped and unlocked.
3397 */
3398static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3399        unsigned long address, pte_t *page_table, pmd_t *pmd,
3400        unsigned int flags, pte_t orig_pte)
3401{
3402    pgoff_t pgoff;
3403
3404    flags |= FAULT_FLAG_NONLINEAR;
3405
3406    if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3407        return 0;
3408
3409    if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3410        /*
3411         * Page table corrupted: show pte and kill process.
3412         */
3413        print_bad_pte(vma, address, orig_pte, NULL);
3414        return VM_FAULT_SIGBUS;
3415    }
3416
3417    pgoff = pte_to_pgoff(orig_pte);
3418    return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3419}
3420
3421/*
3422 * These routines also need to handle stuff like marking pages dirty
3423 * and/or accessed for architectures that don't do it in hardware (most
3424 * RISC architectures). The early dirtying is also good on the i386.
3425 *
3426 * There is also a hook called "update_mmu_cache()" that architectures
3427 * with external mmu caches can use to update those (ie the Sparc or
3428 * PowerPC hashed page tables that act as extended TLBs).
3429 *
3430 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3431 * but allow concurrent faults), and pte mapped but not yet locked.
3432 * We return with mmap_sem still held, but pte unmapped and unlocked.
3433 */
3434int handle_pte_fault(struct mm_struct *mm,
3435             struct vm_area_struct *vma, unsigned long address,
3436             pte_t *pte, pmd_t *pmd, unsigned int flags)
3437{
3438    pte_t entry;
3439    spinlock_t *ptl;
3440
3441    entry = *pte;
3442    if (!pte_present(entry)) {
3443        if (pte_none(entry)) {
3444            if (vma->vm_ops) {
3445                if (likely(vma->vm_ops->fault))
3446                    return do_linear_fault(mm, vma, address,
3447                        pte, pmd, flags, entry);
3448            }
3449            return do_anonymous_page(mm, vma, address,
3450                         pte, pmd, flags);
3451        }
3452        if (pte_file(entry))
3453            return do_nonlinear_fault(mm, vma, address,
3454                    pte, pmd, flags, entry);
3455        return do_swap_page(mm, vma, address,
3456                    pte, pmd, flags, entry);
3457    }
3458
3459    ptl = pte_lockptr(mm, pmd);
3460    spin_lock(ptl);
3461    if (unlikely(!pte_same(*pte, entry)))
3462        goto unlock;
3463    if (flags & FAULT_FLAG_WRITE) {
3464        if (!pte_write(entry))
3465            return do_wp_page(mm, vma, address,
3466                    pte, pmd, ptl, entry);
3467        entry = pte_mkdirty(entry);
3468    }
3469    entry = pte_mkyoung(entry);
3470    if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3471        update_mmu_cache(vma, address, pte);
3472    } else {
3473        /*
3474         * This is needed only for protection faults but the arch code
3475         * is not yet telling us if this is a protection fault or not.
3476         * This still avoids useless tlb flushes for .text page faults
3477         * with threads.
3478         */
3479        if (flags & FAULT_FLAG_WRITE)
3480            flush_tlb_fix_spurious_fault(vma, address);
3481    }
3482unlock:
3483    pte_unmap_unlock(pte, ptl);
3484    return 0;
3485}
3486
3487/*
3488 * By the time we get here, we already hold the mm semaphore
3489 */
3490int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3491        unsigned long address, unsigned int flags)
3492{
3493    pgd_t *pgd;
3494    pud_t *pud;
3495    pmd_t *pmd;
3496    pte_t *pte;
3497
3498    __set_current_state(TASK_RUNNING);
3499
3500    count_vm_event(PGFAULT);
3501    mem_cgroup_count_vm_event(mm, PGFAULT);
3502
3503    /* do counter updates before entering really critical section. */
3504    check_sync_rss_stat(current);
3505
3506    if (unlikely(is_vm_hugetlb_page(vma)))
3507        return hugetlb_fault(mm, vma, address, flags);
3508
3509retry:
3510    pgd = pgd_offset(mm, address);
3511    pud = pud_alloc(mm, pgd, address);
3512    if (!pud)
3513        return VM_FAULT_OOM;
3514    pmd = pmd_alloc(mm, pud, address);
3515    if (!pmd)
3516        return VM_FAULT_OOM;
3517    if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3518        if (!vma->vm_ops)
3519            return do_huge_pmd_anonymous_page(mm, vma, address,
3520                              pmd, flags);
3521    } else {
3522        pmd_t orig_pmd = *pmd;
3523        int ret;
3524
3525        barrier();
3526        if (pmd_trans_huge(orig_pmd)) {
3527            if (flags & FAULT_FLAG_WRITE &&
3528                !pmd_write(orig_pmd) &&
3529                !pmd_trans_splitting(orig_pmd)) {
3530                ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3531                              orig_pmd);
3532                /*
3533                 * If COW results in an oom, the huge pmd will
3534                 * have been split, so retry the fault on the
3535                 * pte for a smaller charge.
3536                 */
3537                if (unlikely(ret & VM_FAULT_OOM))
3538                    goto retry;
3539                return ret;
3540            }
3541            return 0;
3542        }
3543    }
3544
3545    /*
3546     * Use __pte_alloc instead of pte_alloc_map, because we can't
3547     * run pte_offset_map on the pmd, if an huge pmd could
3548     * materialize from under us from a different thread.
3549     */
3550    if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3551        return VM_FAULT_OOM;
3552    /* if an huge pmd materialized from under us just retry later */
3553    if (unlikely(pmd_trans_huge(*pmd)))
3554        return 0;
3555    /*
3556     * A regular pmd is established and it can't morph into a huge pmd
3557     * from under us anymore at this point because we hold the mmap_sem
3558     * read mode and khugepaged takes it in write mode. So now it's
3559     * safe to run pte_offset_map().
3560     */
3561    pte = pte_offset_map(pmd, address);
3562
3563    return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3564}
3565
3566#ifndef __PAGETABLE_PUD_FOLDED
3567/*
3568 * Allocate page upper directory.
3569 * We've already handled the fast-path in-line.
3570 */
3571int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3572{
3573    pud_t *new = pud_alloc_one(mm, address);
3574    if (!new)
3575        return -ENOMEM;
3576
3577    smp_wmb(); /* See comment in __pte_alloc */
3578
3579    spin_lock(&mm->page_table_lock);
3580    if (pgd_present(*pgd)) /* Another has populated it */
3581        pud_free(mm, new);
3582    else
3583        pgd_populate(mm, pgd, new);
3584    spin_unlock(&mm->page_table_lock);
3585    return 0;
3586}
3587#endif /* __PAGETABLE_PUD_FOLDED */
3588
3589#ifndef __PAGETABLE_PMD_FOLDED
3590/*
3591 * Allocate page middle directory.
3592 * We've already handled the fast-path in-line.
3593 */
3594int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3595{
3596    pmd_t *new = pmd_alloc_one(mm, address);
3597    if (!new)
3598        return -ENOMEM;
3599
3600    smp_wmb(); /* See comment in __pte_alloc */
3601
3602    spin_lock(&mm->page_table_lock);
3603#ifndef __ARCH_HAS_4LEVEL_HACK
3604    if (pud_present(*pud)) /* Another has populated it */
3605        pmd_free(mm, new);
3606    else
3607        pud_populate(mm, pud, new);
3608#else
3609    if (pgd_present(*pud)) /* Another has populated it */
3610        pmd_free(mm, new);
3611    else
3612        pgd_populate(mm, pud, new);
3613#endif /* __ARCH_HAS_4LEVEL_HACK */
3614    spin_unlock(&mm->page_table_lock);
3615    return 0;
3616}
3617#endif /* __PAGETABLE_PMD_FOLDED */
3618
3619int make_pages_present(unsigned long addr, unsigned long end)
3620{
3621    int ret, len, write;
3622    struct vm_area_struct * vma;
3623
3624    vma = find_vma(current->mm, addr);
3625    if (!vma)
3626        return -ENOMEM;
3627    /*
3628     * We want to touch writable mappings with a write fault in order
3629     * to break COW, except for shared mappings because these don't COW
3630     * and we would not want to dirty them for nothing.
3631     */
3632    write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3633    BUG_ON(addr >= end);
3634    BUG_ON(end > vma->vm_end);
3635    len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3636    ret = get_user_pages(current, current->mm, addr,
3637            len, write, 0, NULL, NULL);
3638    if (ret < 0)
3639        return ret;
3640    return ret == len ? 0 : -EFAULT;
3641}
3642
3643#if !defined(__HAVE_ARCH_GATE_AREA)
3644
3645#if defined(AT_SYSINFO_EHDR)
3646static struct vm_area_struct gate_vma;
3647
3648static int __init gate_vma_init(void)
3649{
3650    gate_vma.vm_mm = NULL;
3651    gate_vma.vm_start = FIXADDR_USER_START;
3652    gate_vma.vm_end = FIXADDR_USER_END;
3653    gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3654    gate_vma.vm_page_prot = __P101;
3655
3656    return 0;
3657}
3658__initcall(gate_vma_init);
3659#endif
3660
3661struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3662{
3663#ifdef AT_SYSINFO_EHDR
3664    return &gate_vma;
3665#else
3666    return NULL;
3667#endif
3668}
3669
3670int in_gate_area_no_mm(unsigned long addr)
3671{
3672#ifdef AT_SYSINFO_EHDR
3673    if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3674        return 1;
3675#endif
3676    return 0;
3677}
3678
3679#endif /* __HAVE_ARCH_GATE_AREA */
3680
3681static int __follow_pte(struct mm_struct *mm, unsigned long address,
3682        pte_t **ptepp, spinlock_t **ptlp)
3683{
3684    pgd_t *pgd;
3685    pud_t *pud;
3686    pmd_t *pmd;
3687    pte_t *ptep;
3688
3689    pgd = pgd_offset(mm, address);
3690    if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3691        goto out;
3692
3693    pud = pud_offset(pgd, address);
3694    if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3695        goto out;
3696
3697    pmd = pmd_offset(pud, address);
3698    VM_BUG_ON(pmd_trans_huge(*pmd));
3699    if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3700        goto out;
3701
3702    /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3703    if (pmd_huge(*pmd))
3704        goto out;
3705
3706    ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3707    if (!ptep)
3708        goto out;
3709    if (!pte_present(*ptep))
3710        goto unlock;
3711    *ptepp = ptep;
3712    return 0;
3713unlock:
3714    pte_unmap_unlock(ptep, *ptlp);
3715out:
3716    return -EINVAL;
3717}
3718
3719static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3720                 pte_t **ptepp, spinlock_t **ptlp)
3721{
3722    int res;
3723
3724    /* (void) is needed to make gcc happy */
3725    (void) __cond_lock(*ptlp,
3726               !(res = __follow_pte(mm, address, ptepp, ptlp)));
3727    return res;
3728}
3729
3730/**
3731 * follow_pfn - look up PFN at a user virtual address
3732 * @vma: memory mapping
3733 * @address: user virtual address
3734 * @pfn: location to store found PFN
3735 *
3736 * Only IO mappings and raw PFN mappings are allowed.
3737 *
3738 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3739 */
3740int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3741    unsigned long *pfn)
3742{
3743    int ret = -EINVAL;
3744    spinlock_t *ptl;
3745    pte_t *ptep;
3746
3747    if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3748        return ret;
3749
3750    ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3751    if (ret)
3752        return ret;
3753    *pfn = pte_pfn(*ptep);
3754    pte_unmap_unlock(ptep, ptl);
3755    return 0;
3756}
3757EXPORT_SYMBOL(follow_pfn);
3758
3759#ifdef CONFIG_HAVE_IOREMAP_PROT
3760int follow_phys(struct vm_area_struct *vma,
3761        unsigned long address, unsigned int flags,
3762        unsigned long *prot, resource_size_t *phys)
3763{
3764    int ret = -EINVAL;
3765    pte_t *ptep, pte;
3766    spinlock_t *ptl;
3767
3768    if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3769        goto out;
3770
3771    if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3772        goto out;
3773    pte = *ptep;
3774
3775    if ((flags & FOLL_WRITE) && !pte_write(pte))
3776        goto unlock;
3777
3778    *prot = pgprot_val(pte_pgprot(pte));
3779    *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3780
3781    ret = 0;
3782unlock:
3783    pte_unmap_unlock(ptep, ptl);
3784out:
3785    return ret;
3786}
3787
3788int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3789            void *buf, int len, int write)
3790{
3791    resource_size_t phys_addr;
3792    unsigned long prot = 0;
3793    void __iomem *maddr;
3794    int offset = addr & (PAGE_SIZE-1);
3795
3796    if (follow_phys(vma, addr, write, &prot, &phys_addr))
3797        return -EINVAL;
3798
3799    maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3800    if (write)
3801        memcpy_toio(maddr + offset, buf, len);
3802    else
3803        memcpy_fromio(buf, maddr + offset, len);
3804    iounmap(maddr);
3805
3806    return len;
3807}
3808#endif
3809
3810/*
3811 * Access another process' address space as given in mm. If non-NULL, use the
3812 * given task for page fault accounting.
3813 */
3814static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3815        unsigned long addr, void *buf, int len, int write)
3816{
3817    struct vm_area_struct *vma;
3818    void *old_buf = buf;
3819
3820    down_read(&mm->mmap_sem);
3821    /* ignore errors, just check how much was successfully transferred */
3822    while (len) {
3823        int bytes, ret, offset;
3824        void *maddr;
3825        struct page *page = NULL;
3826
3827        ret = get_user_pages(tsk, mm, addr, 1,
3828                write, 1, &page, &vma);
3829        if (ret <= 0) {
3830            /*
3831             * Check if this is a VM_IO | VM_PFNMAP VMA, which
3832             * we can access using slightly different code.
3833             */
3834#ifdef CONFIG_HAVE_IOREMAP_PROT
3835            vma = find_vma(mm, addr);
3836            if (!vma || vma->vm_start > addr)
3837                break;
3838            if (vma->vm_ops && vma->vm_ops->access)
3839                ret = vma->vm_ops->access(vma, addr, buf,
3840                              len, write);
3841            if (ret <= 0)
3842#endif
3843                break;
3844            bytes = ret;
3845        } else {
3846            bytes = len;
3847            offset = addr & (PAGE_SIZE-1);
3848            if (bytes > PAGE_SIZE-offset)
3849                bytes = PAGE_SIZE-offset;
3850
3851            maddr = kmap(page);
3852            if (write) {
3853                copy_to_user_page(vma, page, addr,
3854                          maddr + offset, buf, bytes);
3855                set_page_dirty_lock(page);
3856            } else {
3857                copy_from_user_page(vma, page, addr,
3858                            buf, maddr + offset, bytes);
3859            }
3860            kunmap(page);
3861            page_cache_release(page);
3862        }
3863        len -= bytes;
3864        buf += bytes;
3865        addr += bytes;
3866    }
3867    up_read(&mm->mmap_sem);
3868
3869    return buf - old_buf;
3870}
3871
3872/**
3873 * access_remote_vm - access another process' address space
3874 * @mm: the mm_struct of the target address space
3875 * @addr: start address to access
3876 * @buf: source or destination buffer
3877 * @len: number of bytes to transfer
3878 * @write: whether the access is a write
3879 *
3880 * The caller must hold a reference on @mm.
3881 */
3882int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3883        void *buf, int len, int write)
3884{
3885    return __access_remote_vm(NULL, mm, addr, buf, len, write);
3886}
3887
3888/*
3889 * Access another process' address space.
3890 * Source/target buffer must be kernel space,
3891 * Do not walk the page table directly, use get_user_pages
3892 */
3893int access_process_vm(struct task_struct *tsk, unsigned long addr,
3894        void *buf, int len, int write)
3895{
3896    struct mm_struct *mm;
3897    int ret;
3898
3899    mm = get_task_mm(tsk);
3900    if (!mm)
3901        return 0;
3902
3903    ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3904    mmput(mm);
3905
3906    return ret;
3907}
3908
3909/*
3910 * Print the name of a VMA.
3911 */
3912void print_vma_addr(char *prefix, unsigned long ip)
3913{
3914    struct mm_struct *mm = current->mm;
3915    struct vm_area_struct *vma;
3916
3917    /*
3918     * Do not print if we are in atomic
3919     * contexts (in exception stacks, etc.):
3920     */
3921    if (preempt_count())
3922        return;
3923
3924    down_read(&mm->mmap_sem);
3925    vma = find_vma(mm, ip);
3926    if (vma && vma->vm_file) {
3927        struct file *f = vma->vm_file;
3928        char *buf = (char *)__get_free_page(GFP_KERNEL);
3929        if (buf) {
3930            char *p, *s;
3931
3932            p = d_path(&f->f_path, buf, PAGE_SIZE);
3933            if (IS_ERR(p))
3934                p = "?";
3935            s = strrchr(p, '/');
3936            if (s)
3937                p = s+1;
3938            printk("%s%s[%lx+%lx]", prefix, p,
3939                    vma->vm_start,
3940                    vma->vm_end - vma->vm_start);
3941            free_page((unsigned long)buf);
3942        }
3943    }
3944    up_read(&mm->mmap_sem);
3945}
3946
3947#ifdef CONFIG_PROVE_LOCKING
3948void might_fault(void)
3949{
3950    /*
3951     * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3952     * holding the mmap_sem, this is safe because kernel memory doesn't
3953     * get paged out, therefore we'll never actually fault, and the
3954     * below annotations will generate false positives.
3955     */
3956    if (segment_eq(get_fs(), KERNEL_DS))
3957        return;
3958
3959    might_sleep();
3960    /*
3961     * it would be nicer only to annotate paths which are not under
3962     * pagefault_disable, however that requires a larger audit and
3963     * providing helpers like get_user_atomic.
3964     */
3965    if (!in_atomic() && current->mm)
3966        might_lock_read(&current->mm->mmap_sem);
3967}
3968EXPORT_SYMBOL(might_fault);
3969#endif
3970
3971#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3972static void clear_gigantic_page(struct page *page,
3973                unsigned long addr,
3974                unsigned int pages_per_huge_page)
3975{
3976    int i;
3977    struct page *p = page;
3978
3979    might_sleep();
3980    for (i = 0; i < pages_per_huge_page;
3981         i++, p = mem_map_next(p, page, i)) {
3982        cond_resched();
3983        clear_user_highpage(p, addr + i * PAGE_SIZE);
3984    }
3985}
3986void clear_huge_page(struct page *page,
3987             unsigned long addr, unsigned int pages_per_huge_page)
3988{
3989    int i;
3990
3991    if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3992        clear_gigantic_page(page, addr, pages_per_huge_page);
3993        return;
3994    }
3995
3996    might_sleep();
3997    for (i = 0; i < pages_per_huge_page; i++) {
3998        cond_resched();
3999        clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4000    }
4001}
4002
4003static void copy_user_gigantic_page(struct page *dst, struct page *src,
4004                    unsigned long addr,
4005                    struct vm_area_struct *vma,
4006                    unsigned int pages_per_huge_page)
4007{
4008    int i;
4009    struct page *dst_base = dst;
4010    struct page *src_base = src;
4011
4012    for (i = 0; i < pages_per_huge_page; ) {
4013        cond_resched();
4014        copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4015
4016        i++;
4017        dst = mem_map_next(dst, dst_base, i);
4018        src = mem_map_next(src, src_base, i);
4019    }
4020}
4021
4022void copy_user_huge_page(struct page *dst, struct page *src,
4023             unsigned long addr, struct vm_area_struct *vma,
4024             unsigned int pages_per_huge_page)
4025{
4026    int i;
4027
4028    if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4029        copy_user_gigantic_page(dst, src, addr, vma,
4030                    pages_per_huge_page);
4031        return;
4032    }
4033
4034    might_sleep();
4035    for (i = 0; i < pages_per_huge_page; i++) {
4036        cond_resched();
4037        copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4038    }
4039}
4040#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4041

Archive Download this file



interactive