Root/
1 | /* |
2 | * Simple NUMA memory policy for the Linux kernel. |
3 | * |
4 | * Copyright 2003,2004 Andi Kleen, SuSE Labs. |
5 | * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. |
6 | * Subject to the GNU Public License, version 2. |
7 | * |
8 | * NUMA policy allows the user to give hints in which node(s) memory should |
9 | * be allocated. |
10 | * |
11 | * Support four policies per VMA and per process: |
12 | * |
13 | * The VMA policy has priority over the process policy for a page fault. |
14 | * |
15 | * interleave Allocate memory interleaved over a set of nodes, |
16 | * with normal fallback if it fails. |
17 | * For VMA based allocations this interleaves based on the |
18 | * offset into the backing object or offset into the mapping |
19 | * for anonymous memory. For process policy an process counter |
20 | * is used. |
21 | * |
22 | * bind Only allocate memory on a specific set of nodes, |
23 | * no fallback. |
24 | * FIXME: memory is allocated starting with the first node |
25 | * to the last. It would be better if bind would truly restrict |
26 | * the allocation to memory nodes instead |
27 | * |
28 | * preferred Try a specific node first before normal fallback. |
29 | * As a special case node -1 here means do the allocation |
30 | * on the local CPU. This is normally identical to default, |
31 | * but useful to set in a VMA when you have a non default |
32 | * process policy. |
33 | * |
34 | * default Allocate on the local node first, or when on a VMA |
35 | * use the process policy. This is what Linux always did |
36 | * in a NUMA aware kernel and still does by, ahem, default. |
37 | * |
38 | * The process policy is applied for most non interrupt memory allocations |
39 | * in that process' context. Interrupts ignore the policies and always |
40 | * try to allocate on the local CPU. The VMA policy is only applied for memory |
41 | * allocations for a VMA in the VM. |
42 | * |
43 | * Currently there are a few corner cases in swapping where the policy |
44 | * is not applied, but the majority should be handled. When process policy |
45 | * is used it is not remembered over swap outs/swap ins. |
46 | * |
47 | * Only the highest zone in the zone hierarchy gets policied. Allocations |
48 | * requesting a lower zone just use default policy. This implies that |
49 | * on systems with highmem kernel lowmem allocation don't get policied. |
50 | * Same with GFP_DMA allocations. |
51 | * |
52 | * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between |
53 | * all users and remembered even when nobody has memory mapped. |
54 | */ |
55 | |
56 | /* Notebook: |
57 | fix mmap readahead to honour policy and enable policy for any page cache |
58 | object |
59 | statistics for bigpages |
60 | global policy for page cache? currently it uses process policy. Requires |
61 | first item above. |
62 | handle mremap for shared memory (currently ignored for the policy) |
63 | grows down? |
64 | make bind policy root only? It can trigger oom much faster and the |
65 | kernel is not always grateful with that. |
66 | */ |
67 | |
68 | #include <linux/mempolicy.h> |
69 | #include <linux/mm.h> |
70 | #include <linux/highmem.h> |
71 | #include <linux/hugetlb.h> |
72 | #include <linux/kernel.h> |
73 | #include <linux/sched.h> |
74 | #include <linux/nodemask.h> |
75 | #include <linux/cpuset.h> |
76 | #include <linux/slab.h> |
77 | #include <linux/string.h> |
78 | #include <linux/export.h> |
79 | #include <linux/nsproxy.h> |
80 | #include <linux/interrupt.h> |
81 | #include <linux/init.h> |
82 | #include <linux/compat.h> |
83 | #include <linux/swap.h> |
84 | #include <linux/seq_file.h> |
85 | #include <linux/proc_fs.h> |
86 | #include <linux/migrate.h> |
87 | #include <linux/ksm.h> |
88 | #include <linux/rmap.h> |
89 | #include <linux/security.h> |
90 | #include <linux/syscalls.h> |
91 | #include <linux/ctype.h> |
92 | #include <linux/mm_inline.h> |
93 | |
94 | #include <asm/tlbflush.h> |
95 | #include <asm/uaccess.h> |
96 | #include <linux/random.h> |
97 | |
98 | #include "internal.h" |
99 | |
100 | /* Internal flags */ |
101 | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ |
102 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ |
103 | |
104 | static struct kmem_cache *policy_cache; |
105 | static struct kmem_cache *sn_cache; |
106 | |
107 | /* Highest zone. An specific allocation for a zone below that is not |
108 | policied. */ |
109 | enum zone_type policy_zone = 0; |
110 | |
111 | /* |
112 | * run-time system-wide default policy => local allocation |
113 | */ |
114 | static struct mempolicy default_policy = { |
115 | .refcnt = ATOMIC_INIT(1), /* never free it */ |
116 | .mode = MPOL_PREFERRED, |
117 | .flags = MPOL_F_LOCAL, |
118 | }; |
119 | |
120 | static const struct mempolicy_operations { |
121 | int (*create)(struct mempolicy *pol, const nodemask_t *nodes); |
122 | /* |
123 | * If read-side task has no lock to protect task->mempolicy, write-side |
124 | * task will rebind the task->mempolicy by two step. The first step is |
125 | * setting all the newly nodes, and the second step is cleaning all the |
126 | * disallowed nodes. In this way, we can avoid finding no node to alloc |
127 | * page. |
128 | * If we have a lock to protect task->mempolicy in read-side, we do |
129 | * rebind directly. |
130 | * |
131 | * step: |
132 | * MPOL_REBIND_ONCE - do rebind work at once |
133 | * MPOL_REBIND_STEP1 - set all the newly nodes |
134 | * MPOL_REBIND_STEP2 - clean all the disallowed nodes |
135 | */ |
136 | void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, |
137 | enum mpol_rebind_step step); |
138 | } mpol_ops[MPOL_MAX]; |
139 | |
140 | /* Check that the nodemask contains at least one populated zone */ |
141 | static int is_valid_nodemask(const nodemask_t *nodemask) |
142 | { |
143 | int nd, k; |
144 | |
145 | for_each_node_mask(nd, *nodemask) { |
146 | struct zone *z; |
147 | |
148 | for (k = 0; k <= policy_zone; k++) { |
149 | z = &NODE_DATA(nd)->node_zones[k]; |
150 | if (z->present_pages > 0) |
151 | return 1; |
152 | } |
153 | } |
154 | |
155 | return 0; |
156 | } |
157 | |
158 | static inline int mpol_store_user_nodemask(const struct mempolicy *pol) |
159 | { |
160 | return pol->flags & MPOL_MODE_FLAGS; |
161 | } |
162 | |
163 | static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, |
164 | const nodemask_t *rel) |
165 | { |
166 | nodemask_t tmp; |
167 | nodes_fold(tmp, *orig, nodes_weight(*rel)); |
168 | nodes_onto(*ret, tmp, *rel); |
169 | } |
170 | |
171 | static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) |
172 | { |
173 | if (nodes_empty(*nodes)) |
174 | return -EINVAL; |
175 | pol->v.nodes = *nodes; |
176 | return 0; |
177 | } |
178 | |
179 | static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) |
180 | { |
181 | if (!nodes) |
182 | pol->flags |= MPOL_F_LOCAL; /* local allocation */ |
183 | else if (nodes_empty(*nodes)) |
184 | return -EINVAL; /* no allowed nodes */ |
185 | else |
186 | pol->v.preferred_node = first_node(*nodes); |
187 | return 0; |
188 | } |
189 | |
190 | static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) |
191 | { |
192 | if (!is_valid_nodemask(nodes)) |
193 | return -EINVAL; |
194 | pol->v.nodes = *nodes; |
195 | return 0; |
196 | } |
197 | |
198 | /* |
199 | * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if |
200 | * any, for the new policy. mpol_new() has already validated the nodes |
201 | * parameter with respect to the policy mode and flags. But, we need to |
202 | * handle an empty nodemask with MPOL_PREFERRED here. |
203 | * |
204 | * Must be called holding task's alloc_lock to protect task's mems_allowed |
205 | * and mempolicy. May also be called holding the mmap_semaphore for write. |
206 | */ |
207 | static int mpol_set_nodemask(struct mempolicy *pol, |
208 | const nodemask_t *nodes, struct nodemask_scratch *nsc) |
209 | { |
210 | int ret; |
211 | |
212 | /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ |
213 | if (pol == NULL) |
214 | return 0; |
215 | /* Check N_HIGH_MEMORY */ |
216 | nodes_and(nsc->mask1, |
217 | cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]); |
218 | |
219 | VM_BUG_ON(!nodes); |
220 | if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) |
221 | nodes = NULL; /* explicit local allocation */ |
222 | else { |
223 | if (pol->flags & MPOL_F_RELATIVE_NODES) |
224 | mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); |
225 | else |
226 | nodes_and(nsc->mask2, *nodes, nsc->mask1); |
227 | |
228 | if (mpol_store_user_nodemask(pol)) |
229 | pol->w.user_nodemask = *nodes; |
230 | else |
231 | pol->w.cpuset_mems_allowed = |
232 | cpuset_current_mems_allowed; |
233 | } |
234 | |
235 | if (nodes) |
236 | ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); |
237 | else |
238 | ret = mpol_ops[pol->mode].create(pol, NULL); |
239 | return ret; |
240 | } |
241 | |
242 | /* |
243 | * This function just creates a new policy, does some check and simple |
244 | * initialization. You must invoke mpol_set_nodemask() to set nodes. |
245 | */ |
246 | static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, |
247 | nodemask_t *nodes) |
248 | { |
249 | struct mempolicy *policy; |
250 | |
251 | pr_debug("setting mode %d flags %d nodes[0] %lx\n", |
252 | mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); |
253 | |
254 | if (mode == MPOL_DEFAULT) { |
255 | if (nodes && !nodes_empty(*nodes)) |
256 | return ERR_PTR(-EINVAL); |
257 | return NULL; /* simply delete any existing policy */ |
258 | } |
259 | VM_BUG_ON(!nodes); |
260 | |
261 | /* |
262 | * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or |
263 | * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). |
264 | * All other modes require a valid pointer to a non-empty nodemask. |
265 | */ |
266 | if (mode == MPOL_PREFERRED) { |
267 | if (nodes_empty(*nodes)) { |
268 | if (((flags & MPOL_F_STATIC_NODES) || |
269 | (flags & MPOL_F_RELATIVE_NODES))) |
270 | return ERR_PTR(-EINVAL); |
271 | } |
272 | } else if (nodes_empty(*nodes)) |
273 | return ERR_PTR(-EINVAL); |
274 | policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
275 | if (!policy) |
276 | return ERR_PTR(-ENOMEM); |
277 | atomic_set(&policy->refcnt, 1); |
278 | policy->mode = mode; |
279 | policy->flags = flags; |
280 | |
281 | return policy; |
282 | } |
283 | |
284 | /* Slow path of a mpol destructor. */ |
285 | void __mpol_put(struct mempolicy *p) |
286 | { |
287 | if (!atomic_dec_and_test(&p->refcnt)) |
288 | return; |
289 | kmem_cache_free(policy_cache, p); |
290 | } |
291 | |
292 | static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, |
293 | enum mpol_rebind_step step) |
294 | { |
295 | } |
296 | |
297 | /* |
298 | * step: |
299 | * MPOL_REBIND_ONCE - do rebind work at once |
300 | * MPOL_REBIND_STEP1 - set all the newly nodes |
301 | * MPOL_REBIND_STEP2 - clean all the disallowed nodes |
302 | */ |
303 | static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, |
304 | enum mpol_rebind_step step) |
305 | { |
306 | nodemask_t tmp; |
307 | |
308 | if (pol->flags & MPOL_F_STATIC_NODES) |
309 | nodes_and(tmp, pol->w.user_nodemask, *nodes); |
310 | else if (pol->flags & MPOL_F_RELATIVE_NODES) |
311 | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); |
312 | else { |
313 | /* |
314 | * if step == 1, we use ->w.cpuset_mems_allowed to cache the |
315 | * result |
316 | */ |
317 | if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { |
318 | nodes_remap(tmp, pol->v.nodes, |
319 | pol->w.cpuset_mems_allowed, *nodes); |
320 | pol->w.cpuset_mems_allowed = step ? tmp : *nodes; |
321 | } else if (step == MPOL_REBIND_STEP2) { |
322 | tmp = pol->w.cpuset_mems_allowed; |
323 | pol->w.cpuset_mems_allowed = *nodes; |
324 | } else |
325 | BUG(); |
326 | } |
327 | |
328 | if (nodes_empty(tmp)) |
329 | tmp = *nodes; |
330 | |
331 | if (step == MPOL_REBIND_STEP1) |
332 | nodes_or(pol->v.nodes, pol->v.nodes, tmp); |
333 | else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) |
334 | pol->v.nodes = tmp; |
335 | else |
336 | BUG(); |
337 | |
338 | if (!node_isset(current->il_next, tmp)) { |
339 | current->il_next = next_node(current->il_next, tmp); |
340 | if (current->il_next >= MAX_NUMNODES) |
341 | current->il_next = first_node(tmp); |
342 | if (current->il_next >= MAX_NUMNODES) |
343 | current->il_next = numa_node_id(); |
344 | } |
345 | } |
346 | |
347 | static void mpol_rebind_preferred(struct mempolicy *pol, |
348 | const nodemask_t *nodes, |
349 | enum mpol_rebind_step step) |
350 | { |
351 | nodemask_t tmp; |
352 | |
353 | if (pol->flags & MPOL_F_STATIC_NODES) { |
354 | int node = first_node(pol->w.user_nodemask); |
355 | |
356 | if (node_isset(node, *nodes)) { |
357 | pol->v.preferred_node = node; |
358 | pol->flags &= ~MPOL_F_LOCAL; |
359 | } else |
360 | pol->flags |= MPOL_F_LOCAL; |
361 | } else if (pol->flags & MPOL_F_RELATIVE_NODES) { |
362 | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); |
363 | pol->v.preferred_node = first_node(tmp); |
364 | } else if (!(pol->flags & MPOL_F_LOCAL)) { |
365 | pol->v.preferred_node = node_remap(pol->v.preferred_node, |
366 | pol->w.cpuset_mems_allowed, |
367 | *nodes); |
368 | pol->w.cpuset_mems_allowed = *nodes; |
369 | } |
370 | } |
371 | |
372 | /* |
373 | * mpol_rebind_policy - Migrate a policy to a different set of nodes |
374 | * |
375 | * If read-side task has no lock to protect task->mempolicy, write-side |
376 | * task will rebind the task->mempolicy by two step. The first step is |
377 | * setting all the newly nodes, and the second step is cleaning all the |
378 | * disallowed nodes. In this way, we can avoid finding no node to alloc |
379 | * page. |
380 | * If we have a lock to protect task->mempolicy in read-side, we do |
381 | * rebind directly. |
382 | * |
383 | * step: |
384 | * MPOL_REBIND_ONCE - do rebind work at once |
385 | * MPOL_REBIND_STEP1 - set all the newly nodes |
386 | * MPOL_REBIND_STEP2 - clean all the disallowed nodes |
387 | */ |
388 | static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, |
389 | enum mpol_rebind_step step) |
390 | { |
391 | if (!pol) |
392 | return; |
393 | if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && |
394 | nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) |
395 | return; |
396 | |
397 | if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) |
398 | return; |
399 | |
400 | if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) |
401 | BUG(); |
402 | |
403 | if (step == MPOL_REBIND_STEP1) |
404 | pol->flags |= MPOL_F_REBINDING; |
405 | else if (step == MPOL_REBIND_STEP2) |
406 | pol->flags &= ~MPOL_F_REBINDING; |
407 | else if (step >= MPOL_REBIND_NSTEP) |
408 | BUG(); |
409 | |
410 | mpol_ops[pol->mode].rebind(pol, newmask, step); |
411 | } |
412 | |
413 | /* |
414 | * Wrapper for mpol_rebind_policy() that just requires task |
415 | * pointer, and updates task mempolicy. |
416 | * |
417 | * Called with task's alloc_lock held. |
418 | */ |
419 | |
420 | void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, |
421 | enum mpol_rebind_step step) |
422 | { |
423 | mpol_rebind_policy(tsk->mempolicy, new, step); |
424 | } |
425 | |
426 | /* |
427 | * Rebind each vma in mm to new nodemask. |
428 | * |
429 | * Call holding a reference to mm. Takes mm->mmap_sem during call. |
430 | */ |
431 | |
432 | void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) |
433 | { |
434 | struct vm_area_struct *vma; |
435 | |
436 | down_write(&mm->mmap_sem); |
437 | for (vma = mm->mmap; vma; vma = vma->vm_next) |
438 | mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); |
439 | up_write(&mm->mmap_sem); |
440 | } |
441 | |
442 | static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { |
443 | [MPOL_DEFAULT] = { |
444 | .rebind = mpol_rebind_default, |
445 | }, |
446 | [MPOL_INTERLEAVE] = { |
447 | .create = mpol_new_interleave, |
448 | .rebind = mpol_rebind_nodemask, |
449 | }, |
450 | [MPOL_PREFERRED] = { |
451 | .create = mpol_new_preferred, |
452 | .rebind = mpol_rebind_preferred, |
453 | }, |
454 | [MPOL_BIND] = { |
455 | .create = mpol_new_bind, |
456 | .rebind = mpol_rebind_nodemask, |
457 | }, |
458 | }; |
459 | |
460 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
461 | unsigned long flags); |
462 | |
463 | /* Scan through pages checking if pages follow certain conditions. */ |
464 | static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
465 | unsigned long addr, unsigned long end, |
466 | const nodemask_t *nodes, unsigned long flags, |
467 | void *private) |
468 | { |
469 | pte_t *orig_pte; |
470 | pte_t *pte; |
471 | spinlock_t *ptl; |
472 | |
473 | orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
474 | do { |
475 | struct page *page; |
476 | int nid; |
477 | |
478 | if (!pte_present(*pte)) |
479 | continue; |
480 | page = vm_normal_page(vma, addr, *pte); |
481 | if (!page) |
482 | continue; |
483 | /* |
484 | * vm_normal_page() filters out zero pages, but there might |
485 | * still be PageReserved pages to skip, perhaps in a VDSO. |
486 | * And we cannot move PageKsm pages sensibly or safely yet. |
487 | */ |
488 | if (PageReserved(page) || PageKsm(page)) |
489 | continue; |
490 | nid = page_to_nid(page); |
491 | if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) |
492 | continue; |
493 | |
494 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) |
495 | migrate_page_add(page, private, flags); |
496 | else |
497 | break; |
498 | } while (pte++, addr += PAGE_SIZE, addr != end); |
499 | pte_unmap_unlock(orig_pte, ptl); |
500 | return addr != end; |
501 | } |
502 | |
503 | static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
504 | unsigned long addr, unsigned long end, |
505 | const nodemask_t *nodes, unsigned long flags, |
506 | void *private) |
507 | { |
508 | pmd_t *pmd; |
509 | unsigned long next; |
510 | |
511 | pmd = pmd_offset(pud, addr); |
512 | do { |
513 | next = pmd_addr_end(addr, end); |
514 | split_huge_page_pmd(vma->vm_mm, pmd); |
515 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) |
516 | continue; |
517 | if (check_pte_range(vma, pmd, addr, next, nodes, |
518 | flags, private)) |
519 | return -EIO; |
520 | } while (pmd++, addr = next, addr != end); |
521 | return 0; |
522 | } |
523 | |
524 | static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, |
525 | unsigned long addr, unsigned long end, |
526 | const nodemask_t *nodes, unsigned long flags, |
527 | void *private) |
528 | { |
529 | pud_t *pud; |
530 | unsigned long next; |
531 | |
532 | pud = pud_offset(pgd, addr); |
533 | do { |
534 | next = pud_addr_end(addr, end); |
535 | if (pud_none_or_clear_bad(pud)) |
536 | continue; |
537 | if (check_pmd_range(vma, pud, addr, next, nodes, |
538 | flags, private)) |
539 | return -EIO; |
540 | } while (pud++, addr = next, addr != end); |
541 | return 0; |
542 | } |
543 | |
544 | static inline int check_pgd_range(struct vm_area_struct *vma, |
545 | unsigned long addr, unsigned long end, |
546 | const nodemask_t *nodes, unsigned long flags, |
547 | void *private) |
548 | { |
549 | pgd_t *pgd; |
550 | unsigned long next; |
551 | |
552 | pgd = pgd_offset(vma->vm_mm, addr); |
553 | do { |
554 | next = pgd_addr_end(addr, end); |
555 | if (pgd_none_or_clear_bad(pgd)) |
556 | continue; |
557 | if (check_pud_range(vma, pgd, addr, next, nodes, |
558 | flags, private)) |
559 | return -EIO; |
560 | } while (pgd++, addr = next, addr != end); |
561 | return 0; |
562 | } |
563 | |
564 | /* |
565 | * Check if all pages in a range are on a set of nodes. |
566 | * If pagelist != NULL then isolate pages from the LRU and |
567 | * put them on the pagelist. |
568 | */ |
569 | static struct vm_area_struct * |
570 | check_range(struct mm_struct *mm, unsigned long start, unsigned long end, |
571 | const nodemask_t *nodes, unsigned long flags, void *private) |
572 | { |
573 | int err; |
574 | struct vm_area_struct *first, *vma, *prev; |
575 | |
576 | |
577 | first = find_vma(mm, start); |
578 | if (!first) |
579 | return ERR_PTR(-EFAULT); |
580 | prev = NULL; |
581 | for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { |
582 | if (!(flags & MPOL_MF_DISCONTIG_OK)) { |
583 | if (!vma->vm_next && vma->vm_end < end) |
584 | return ERR_PTR(-EFAULT); |
585 | if (prev && prev->vm_end < vma->vm_start) |
586 | return ERR_PTR(-EFAULT); |
587 | } |
588 | if (!is_vm_hugetlb_page(vma) && |
589 | ((flags & MPOL_MF_STRICT) || |
590 | ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && |
591 | vma_migratable(vma)))) { |
592 | unsigned long endvma = vma->vm_end; |
593 | |
594 | if (endvma > end) |
595 | endvma = end; |
596 | if (vma->vm_start > start) |
597 | start = vma->vm_start; |
598 | err = check_pgd_range(vma, start, endvma, nodes, |
599 | flags, private); |
600 | if (err) { |
601 | first = ERR_PTR(err); |
602 | break; |
603 | } |
604 | } |
605 | prev = vma; |
606 | } |
607 | return first; |
608 | } |
609 | |
610 | /* Step 2: apply policy to a range and do splits. */ |
611 | static int mbind_range(struct mm_struct *mm, unsigned long start, |
612 | unsigned long end, struct mempolicy *new_pol) |
613 | { |
614 | struct vm_area_struct *next; |
615 | struct vm_area_struct *prev; |
616 | struct vm_area_struct *vma; |
617 | int err = 0; |
618 | pgoff_t pgoff; |
619 | unsigned long vmstart; |
620 | unsigned long vmend; |
621 | |
622 | vma = find_vma(mm, start); |
623 | if (!vma || vma->vm_start > start) |
624 | return -EFAULT; |
625 | |
626 | prev = vma->vm_prev; |
627 | if (start > vma->vm_start) |
628 | prev = vma; |
629 | |
630 | for (; vma && vma->vm_start < end; prev = vma, vma = next) { |
631 | next = vma->vm_next; |
632 | vmstart = max(start, vma->vm_start); |
633 | vmend = min(end, vma->vm_end); |
634 | |
635 | if (mpol_equal(vma_policy(vma), new_pol)) |
636 | continue; |
637 | |
638 | pgoff = vma->vm_pgoff + |
639 | ((vmstart - vma->vm_start) >> PAGE_SHIFT); |
640 | prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, |
641 | vma->anon_vma, vma->vm_file, pgoff, |
642 | new_pol); |
643 | if (prev) { |
644 | vma = prev; |
645 | next = vma->vm_next; |
646 | continue; |
647 | } |
648 | if (vma->vm_start != vmstart) { |
649 | err = split_vma(vma->vm_mm, vma, vmstart, 1); |
650 | if (err) |
651 | goto out; |
652 | } |
653 | if (vma->vm_end != vmend) { |
654 | err = split_vma(vma->vm_mm, vma, vmend, 0); |
655 | if (err) |
656 | goto out; |
657 | } |
658 | |
659 | /* |
660 | * Apply policy to a single VMA. The reference counting of |
661 | * policy for vma_policy linkages has already been handled by |
662 | * vma_merge and split_vma as necessary. If this is a shared |
663 | * policy then ->set_policy will increment the reference count |
664 | * for an sp node. |
665 | */ |
666 | pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", |
667 | vma->vm_start, vma->vm_end, vma->vm_pgoff, |
668 | vma->vm_ops, vma->vm_file, |
669 | vma->vm_ops ? vma->vm_ops->set_policy : NULL); |
670 | if (vma->vm_ops && vma->vm_ops->set_policy) { |
671 | err = vma->vm_ops->set_policy(vma, new_pol); |
672 | if (err) |
673 | goto out; |
674 | } |
675 | } |
676 | |
677 | out: |
678 | return err; |
679 | } |
680 | |
681 | /* |
682 | * Update task->flags PF_MEMPOLICY bit: set iff non-default |
683 | * mempolicy. Allows more rapid checking of this (combined perhaps |
684 | * with other PF_* flag bits) on memory allocation hot code paths. |
685 | * |
686 | * If called from outside this file, the task 'p' should -only- be |
687 | * a newly forked child not yet visible on the task list, because |
688 | * manipulating the task flags of a visible task is not safe. |
689 | * |
690 | * The above limitation is why this routine has the funny name |
691 | * mpol_fix_fork_child_flag(). |
692 | * |
693 | * It is also safe to call this with a task pointer of current, |
694 | * which the static wrapper mpol_set_task_struct_flag() does, |
695 | * for use within this file. |
696 | */ |
697 | |
698 | void mpol_fix_fork_child_flag(struct task_struct *p) |
699 | { |
700 | if (p->mempolicy) |
701 | p->flags |= PF_MEMPOLICY; |
702 | else |
703 | p->flags &= ~PF_MEMPOLICY; |
704 | } |
705 | |
706 | static void mpol_set_task_struct_flag(void) |
707 | { |
708 | mpol_fix_fork_child_flag(current); |
709 | } |
710 | |
711 | /* Set the process memory policy */ |
712 | static long do_set_mempolicy(unsigned short mode, unsigned short flags, |
713 | nodemask_t *nodes) |
714 | { |
715 | struct mempolicy *new, *old; |
716 | struct mm_struct *mm = current->mm; |
717 | NODEMASK_SCRATCH(scratch); |
718 | int ret; |
719 | |
720 | if (!scratch) |
721 | return -ENOMEM; |
722 | |
723 | new = mpol_new(mode, flags, nodes); |
724 | if (IS_ERR(new)) { |
725 | ret = PTR_ERR(new); |
726 | goto out; |
727 | } |
728 | /* |
729 | * prevent changing our mempolicy while show_numa_maps() |
730 | * is using it. |
731 | * Note: do_set_mempolicy() can be called at init time |
732 | * with no 'mm'. |
733 | */ |
734 | if (mm) |
735 | down_write(&mm->mmap_sem); |
736 | task_lock(current); |
737 | ret = mpol_set_nodemask(new, nodes, scratch); |
738 | if (ret) { |
739 | task_unlock(current); |
740 | if (mm) |
741 | up_write(&mm->mmap_sem); |
742 | mpol_put(new); |
743 | goto out; |
744 | } |
745 | old = current->mempolicy; |
746 | current->mempolicy = new; |
747 | mpol_set_task_struct_flag(); |
748 | if (new && new->mode == MPOL_INTERLEAVE && |
749 | nodes_weight(new->v.nodes)) |
750 | current->il_next = first_node(new->v.nodes); |
751 | task_unlock(current); |
752 | if (mm) |
753 | up_write(&mm->mmap_sem); |
754 | |
755 | mpol_put(old); |
756 | ret = 0; |
757 | out: |
758 | NODEMASK_SCRATCH_FREE(scratch); |
759 | return ret; |
760 | } |
761 | |
762 | /* |
763 | * Return nodemask for policy for get_mempolicy() query |
764 | * |
765 | * Called with task's alloc_lock held |
766 | */ |
767 | static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) |
768 | { |
769 | nodes_clear(*nodes); |
770 | if (p == &default_policy) |
771 | return; |
772 | |
773 | switch (p->mode) { |
774 | case MPOL_BIND: |
775 | /* Fall through */ |
776 | case MPOL_INTERLEAVE: |
777 | *nodes = p->v.nodes; |
778 | break; |
779 | case MPOL_PREFERRED: |
780 | if (!(p->flags & MPOL_F_LOCAL)) |
781 | node_set(p->v.preferred_node, *nodes); |
782 | /* else return empty node mask for local allocation */ |
783 | break; |
784 | default: |
785 | BUG(); |
786 | } |
787 | } |
788 | |
789 | static int lookup_node(struct mm_struct *mm, unsigned long addr) |
790 | { |
791 | struct page *p; |
792 | int err; |
793 | |
794 | err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); |
795 | if (err >= 0) { |
796 | err = page_to_nid(p); |
797 | put_page(p); |
798 | } |
799 | return err; |
800 | } |
801 | |
802 | /* Retrieve NUMA policy */ |
803 | static long do_get_mempolicy(int *policy, nodemask_t *nmask, |
804 | unsigned long addr, unsigned long flags) |
805 | { |
806 | int err; |
807 | struct mm_struct *mm = current->mm; |
808 | struct vm_area_struct *vma = NULL; |
809 | struct mempolicy *pol = current->mempolicy; |
810 | |
811 | if (flags & |
812 | ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) |
813 | return -EINVAL; |
814 | |
815 | if (flags & MPOL_F_MEMS_ALLOWED) { |
816 | if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) |
817 | return -EINVAL; |
818 | *policy = 0; /* just so it's initialized */ |
819 | task_lock(current); |
820 | *nmask = cpuset_current_mems_allowed; |
821 | task_unlock(current); |
822 | return 0; |
823 | } |
824 | |
825 | if (flags & MPOL_F_ADDR) { |
826 | /* |
827 | * Do NOT fall back to task policy if the |
828 | * vma/shared policy at addr is NULL. We |
829 | * want to return MPOL_DEFAULT in this case. |
830 | */ |
831 | down_read(&mm->mmap_sem); |
832 | vma = find_vma_intersection(mm, addr, addr+1); |
833 | if (!vma) { |
834 | up_read(&mm->mmap_sem); |
835 | return -EFAULT; |
836 | } |
837 | if (vma->vm_ops && vma->vm_ops->get_policy) |
838 | pol = vma->vm_ops->get_policy(vma, addr); |
839 | else |
840 | pol = vma->vm_policy; |
841 | } else if (addr) |
842 | return -EINVAL; |
843 | |
844 | if (!pol) |
845 | pol = &default_policy; /* indicates default behavior */ |
846 | |
847 | if (flags & MPOL_F_NODE) { |
848 | if (flags & MPOL_F_ADDR) { |
849 | err = lookup_node(mm, addr); |
850 | if (err < 0) |
851 | goto out; |
852 | *policy = err; |
853 | } else if (pol == current->mempolicy && |
854 | pol->mode == MPOL_INTERLEAVE) { |
855 | *policy = current->il_next; |
856 | } else { |
857 | err = -EINVAL; |
858 | goto out; |
859 | } |
860 | } else { |
861 | *policy = pol == &default_policy ? MPOL_DEFAULT : |
862 | pol->mode; |
863 | /* |
864 | * Internal mempolicy flags must be masked off before exposing |
865 | * the policy to userspace. |
866 | */ |
867 | *policy |= (pol->flags & MPOL_MODE_FLAGS); |
868 | } |
869 | |
870 | if (vma) { |
871 | up_read(¤t->mm->mmap_sem); |
872 | vma = NULL; |
873 | } |
874 | |
875 | err = 0; |
876 | if (nmask) { |
877 | if (mpol_store_user_nodemask(pol)) { |
878 | *nmask = pol->w.user_nodemask; |
879 | } else { |
880 | task_lock(current); |
881 | get_policy_nodemask(pol, nmask); |
882 | task_unlock(current); |
883 | } |
884 | } |
885 | |
886 | out: |
887 | mpol_cond_put(pol); |
888 | if (vma) |
889 | up_read(¤t->mm->mmap_sem); |
890 | return err; |
891 | } |
892 | |
893 | #ifdef CONFIG_MIGRATION |
894 | /* |
895 | * page migration |
896 | */ |
897 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
898 | unsigned long flags) |
899 | { |
900 | /* |
901 | * Avoid migrating a page that is shared with others. |
902 | */ |
903 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { |
904 | if (!isolate_lru_page(page)) { |
905 | list_add_tail(&page->lru, pagelist); |
906 | inc_zone_page_state(page, NR_ISOLATED_ANON + |
907 | page_is_file_cache(page)); |
908 | } |
909 | } |
910 | } |
911 | |
912 | static struct page *new_node_page(struct page *page, unsigned long node, int **x) |
913 | { |
914 | return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); |
915 | } |
916 | |
917 | /* |
918 | * Migrate pages from one node to a target node. |
919 | * Returns error or the number of pages not migrated. |
920 | */ |
921 | static int migrate_to_node(struct mm_struct *mm, int source, int dest, |
922 | int flags) |
923 | { |
924 | nodemask_t nmask; |
925 | LIST_HEAD(pagelist); |
926 | int err = 0; |
927 | struct vm_area_struct *vma; |
928 | |
929 | nodes_clear(nmask); |
930 | node_set(source, nmask); |
931 | |
932 | vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, |
933 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); |
934 | if (IS_ERR(vma)) |
935 | return PTR_ERR(vma); |
936 | |
937 | if (!list_empty(&pagelist)) { |
938 | err = migrate_pages(&pagelist, new_node_page, dest, |
939 | false, MIGRATE_SYNC); |
940 | if (err) |
941 | putback_lru_pages(&pagelist); |
942 | } |
943 | |
944 | return err; |
945 | } |
946 | |
947 | /* |
948 | * Move pages between the two nodesets so as to preserve the physical |
949 | * layout as much as possible. |
950 | * |
951 | * Returns the number of page that could not be moved. |
952 | */ |
953 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, |
954 | const nodemask_t *to, int flags) |
955 | { |
956 | int busy = 0; |
957 | int err; |
958 | nodemask_t tmp; |
959 | |
960 | err = migrate_prep(); |
961 | if (err) |
962 | return err; |
963 | |
964 | down_read(&mm->mmap_sem); |
965 | |
966 | err = migrate_vmas(mm, from, to, flags); |
967 | if (err) |
968 | goto out; |
969 | |
970 | /* |
971 | * Find a 'source' bit set in 'tmp' whose corresponding 'dest' |
972 | * bit in 'to' is not also set in 'tmp'. Clear the found 'source' |
973 | * bit in 'tmp', and return that <source, dest> pair for migration. |
974 | * The pair of nodemasks 'to' and 'from' define the map. |
975 | * |
976 | * If no pair of bits is found that way, fallback to picking some |
977 | * pair of 'source' and 'dest' bits that are not the same. If the |
978 | * 'source' and 'dest' bits are the same, this represents a node |
979 | * that will be migrating to itself, so no pages need move. |
980 | * |
981 | * If no bits are left in 'tmp', or if all remaining bits left |
982 | * in 'tmp' correspond to the same bit in 'to', return false |
983 | * (nothing left to migrate). |
984 | * |
985 | * This lets us pick a pair of nodes to migrate between, such that |
986 | * if possible the dest node is not already occupied by some other |
987 | * source node, minimizing the risk of overloading the memory on a |
988 | * node that would happen if we migrated incoming memory to a node |
989 | * before migrating outgoing memory source that same node. |
990 | * |
991 | * A single scan of tmp is sufficient. As we go, we remember the |
992 | * most recent <s, d> pair that moved (s != d). If we find a pair |
993 | * that not only moved, but what's better, moved to an empty slot |
994 | * (d is not set in tmp), then we break out then, with that pair. |
995 | * Otherwise when we finish scanning from_tmp, we at least have the |
996 | * most recent <s, d> pair that moved. If we get all the way through |
997 | * the scan of tmp without finding any node that moved, much less |
998 | * moved to an empty node, then there is nothing left worth migrating. |
999 | */ |
1000 | |
1001 | tmp = *from; |
1002 | while (!nodes_empty(tmp)) { |
1003 | int s,d; |
1004 | int source = -1; |
1005 | int dest = 0; |
1006 | |
1007 | for_each_node_mask(s, tmp) { |
1008 | |
1009 | /* |
1010 | * do_migrate_pages() tries to maintain the relative |
1011 | * node relationship of the pages established between |
1012 | * threads and memory areas. |
1013 | * |
1014 | * However if the number of source nodes is not equal to |
1015 | * the number of destination nodes we can not preserve |
1016 | * this node relative relationship. In that case, skip |
1017 | * copying memory from a node that is in the destination |
1018 | * mask. |
1019 | * |
1020 | * Example: [2,3,4] -> [3,4,5] moves everything. |
1021 | * [0-7] - > [3,4,5] moves only 0,1,2,6,7. |
1022 | */ |
1023 | |
1024 | if ((nodes_weight(*from) != nodes_weight(*to)) && |
1025 | (node_isset(s, *to))) |
1026 | continue; |
1027 | |
1028 | d = node_remap(s, *from, *to); |
1029 | if (s == d) |
1030 | continue; |
1031 | |
1032 | source = s; /* Node moved. Memorize */ |
1033 | dest = d; |
1034 | |
1035 | /* dest not in remaining from nodes? */ |
1036 | if (!node_isset(dest, tmp)) |
1037 | break; |
1038 | } |
1039 | if (source == -1) |
1040 | break; |
1041 | |
1042 | node_clear(source, tmp); |
1043 | err = migrate_to_node(mm, source, dest, flags); |
1044 | if (err > 0) |
1045 | busy += err; |
1046 | if (err < 0) |
1047 | break; |
1048 | } |
1049 | out: |
1050 | up_read(&mm->mmap_sem); |
1051 | if (err < 0) |
1052 | return err; |
1053 | return busy; |
1054 | |
1055 | } |
1056 | |
1057 | /* |
1058 | * Allocate a new page for page migration based on vma policy. |
1059 | * Start assuming that page is mapped by vma pointed to by @private. |
1060 | * Search forward from there, if not. N.B., this assumes that the |
1061 | * list of pages handed to migrate_pages()--which is how we get here-- |
1062 | * is in virtual address order. |
1063 | */ |
1064 | static struct page *new_vma_page(struct page *page, unsigned long private, int **x) |
1065 | { |
1066 | struct vm_area_struct *vma = (struct vm_area_struct *)private; |
1067 | unsigned long uninitialized_var(address); |
1068 | |
1069 | while (vma) { |
1070 | address = page_address_in_vma(page, vma); |
1071 | if (address != -EFAULT) |
1072 | break; |
1073 | vma = vma->vm_next; |
1074 | } |
1075 | |
1076 | /* |
1077 | * if !vma, alloc_page_vma() will use task or system default policy |
1078 | */ |
1079 | return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); |
1080 | } |
1081 | #else |
1082 | |
1083 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
1084 | unsigned long flags) |
1085 | { |
1086 | } |
1087 | |
1088 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, |
1089 | const nodemask_t *to, int flags) |
1090 | { |
1091 | return -ENOSYS; |
1092 | } |
1093 | |
1094 | static struct page *new_vma_page(struct page *page, unsigned long private, int **x) |
1095 | { |
1096 | return NULL; |
1097 | } |
1098 | #endif |
1099 | |
1100 | static long do_mbind(unsigned long start, unsigned long len, |
1101 | unsigned short mode, unsigned short mode_flags, |
1102 | nodemask_t *nmask, unsigned long flags) |
1103 | { |
1104 | struct vm_area_struct *vma; |
1105 | struct mm_struct *mm = current->mm; |
1106 | struct mempolicy *new; |
1107 | unsigned long end; |
1108 | int err; |
1109 | LIST_HEAD(pagelist); |
1110 | |
1111 | if (flags & ~(unsigned long)(MPOL_MF_STRICT | |
1112 | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) |
1113 | return -EINVAL; |
1114 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) |
1115 | return -EPERM; |
1116 | |
1117 | if (start & ~PAGE_MASK) |
1118 | return -EINVAL; |
1119 | |
1120 | if (mode == MPOL_DEFAULT) |
1121 | flags &= ~MPOL_MF_STRICT; |
1122 | |
1123 | len = (len + PAGE_SIZE - 1) & PAGE_MASK; |
1124 | end = start + len; |
1125 | |
1126 | if (end < start) |
1127 | return -EINVAL; |
1128 | if (end == start) |
1129 | return 0; |
1130 | |
1131 | new = mpol_new(mode, mode_flags, nmask); |
1132 | if (IS_ERR(new)) |
1133 | return PTR_ERR(new); |
1134 | |
1135 | /* |
1136 | * If we are using the default policy then operation |
1137 | * on discontinuous address spaces is okay after all |
1138 | */ |
1139 | if (!new) |
1140 | flags |= MPOL_MF_DISCONTIG_OK; |
1141 | |
1142 | pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", |
1143 | start, start + len, mode, mode_flags, |
1144 | nmask ? nodes_addr(*nmask)[0] : -1); |
1145 | |
1146 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { |
1147 | |
1148 | err = migrate_prep(); |
1149 | if (err) |
1150 | goto mpol_out; |
1151 | } |
1152 | { |
1153 | NODEMASK_SCRATCH(scratch); |
1154 | if (scratch) { |
1155 | down_write(&mm->mmap_sem); |
1156 | task_lock(current); |
1157 | err = mpol_set_nodemask(new, nmask, scratch); |
1158 | task_unlock(current); |
1159 | if (err) |
1160 | up_write(&mm->mmap_sem); |
1161 | } else |
1162 | err = -ENOMEM; |
1163 | NODEMASK_SCRATCH_FREE(scratch); |
1164 | } |
1165 | if (err) |
1166 | goto mpol_out; |
1167 | |
1168 | vma = check_range(mm, start, end, nmask, |
1169 | flags | MPOL_MF_INVERT, &pagelist); |
1170 | |
1171 | err = PTR_ERR(vma); |
1172 | if (!IS_ERR(vma)) { |
1173 | int nr_failed = 0; |
1174 | |
1175 | err = mbind_range(mm, start, end, new); |
1176 | |
1177 | if (!list_empty(&pagelist)) { |
1178 | nr_failed = migrate_pages(&pagelist, new_vma_page, |
1179 | (unsigned long)vma, |
1180 | false, MIGRATE_SYNC); |
1181 | if (nr_failed) |
1182 | putback_lru_pages(&pagelist); |
1183 | } |
1184 | |
1185 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) |
1186 | err = -EIO; |
1187 | } else |
1188 | putback_lru_pages(&pagelist); |
1189 | |
1190 | up_write(&mm->mmap_sem); |
1191 | mpol_out: |
1192 | mpol_put(new); |
1193 | return err; |
1194 | } |
1195 | |
1196 | /* |
1197 | * User space interface with variable sized bitmaps for nodelists. |
1198 | */ |
1199 | |
1200 | /* Copy a node mask from user space. */ |
1201 | static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, |
1202 | unsigned long maxnode) |
1203 | { |
1204 | unsigned long k; |
1205 | unsigned long nlongs; |
1206 | unsigned long endmask; |
1207 | |
1208 | --maxnode; |
1209 | nodes_clear(*nodes); |
1210 | if (maxnode == 0 || !nmask) |
1211 | return 0; |
1212 | if (maxnode > PAGE_SIZE*BITS_PER_BYTE) |
1213 | return -EINVAL; |
1214 | |
1215 | nlongs = BITS_TO_LONGS(maxnode); |
1216 | if ((maxnode % BITS_PER_LONG) == 0) |
1217 | endmask = ~0UL; |
1218 | else |
1219 | endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; |
1220 | |
1221 | /* When the user specified more nodes than supported just check |
1222 | if the non supported part is all zero. */ |
1223 | if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { |
1224 | if (nlongs > PAGE_SIZE/sizeof(long)) |
1225 | return -EINVAL; |
1226 | for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { |
1227 | unsigned long t; |
1228 | if (get_user(t, nmask + k)) |
1229 | return -EFAULT; |
1230 | if (k == nlongs - 1) { |
1231 | if (t & endmask) |
1232 | return -EINVAL; |
1233 | } else if (t) |
1234 | return -EINVAL; |
1235 | } |
1236 | nlongs = BITS_TO_LONGS(MAX_NUMNODES); |
1237 | endmask = ~0UL; |
1238 | } |
1239 | |
1240 | if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) |
1241 | return -EFAULT; |
1242 | nodes_addr(*nodes)[nlongs-1] &= endmask; |
1243 | return 0; |
1244 | } |
1245 | |
1246 | /* Copy a kernel node mask to user space */ |
1247 | static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, |
1248 | nodemask_t *nodes) |
1249 | { |
1250 | unsigned long copy = ALIGN(maxnode-1, 64) / 8; |
1251 | const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); |
1252 | |
1253 | if (copy > nbytes) { |
1254 | if (copy > PAGE_SIZE) |
1255 | return -EINVAL; |
1256 | if (clear_user((char __user *)mask + nbytes, copy - nbytes)) |
1257 | return -EFAULT; |
1258 | copy = nbytes; |
1259 | } |
1260 | return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; |
1261 | } |
1262 | |
1263 | SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, |
1264 | unsigned long, mode, unsigned long __user *, nmask, |
1265 | unsigned long, maxnode, unsigned, flags) |
1266 | { |
1267 | nodemask_t nodes; |
1268 | int err; |
1269 | unsigned short mode_flags; |
1270 | |
1271 | mode_flags = mode & MPOL_MODE_FLAGS; |
1272 | mode &= ~MPOL_MODE_FLAGS; |
1273 | if (mode >= MPOL_MAX) |
1274 | return -EINVAL; |
1275 | if ((mode_flags & MPOL_F_STATIC_NODES) && |
1276 | (mode_flags & MPOL_F_RELATIVE_NODES)) |
1277 | return -EINVAL; |
1278 | err = get_nodes(&nodes, nmask, maxnode); |
1279 | if (err) |
1280 | return err; |
1281 | return do_mbind(start, len, mode, mode_flags, &nodes, flags); |
1282 | } |
1283 | |
1284 | /* Set the process memory policy */ |
1285 | SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, |
1286 | unsigned long, maxnode) |
1287 | { |
1288 | int err; |
1289 | nodemask_t nodes; |
1290 | unsigned short flags; |
1291 | |
1292 | flags = mode & MPOL_MODE_FLAGS; |
1293 | mode &= ~MPOL_MODE_FLAGS; |
1294 | if ((unsigned int)mode >= MPOL_MAX) |
1295 | return -EINVAL; |
1296 | if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) |
1297 | return -EINVAL; |
1298 | err = get_nodes(&nodes, nmask, maxnode); |
1299 | if (err) |
1300 | return err; |
1301 | return do_set_mempolicy(mode, flags, &nodes); |
1302 | } |
1303 | |
1304 | SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, |
1305 | const unsigned long __user *, old_nodes, |
1306 | const unsigned long __user *, new_nodes) |
1307 | { |
1308 | const struct cred *cred = current_cred(), *tcred; |
1309 | struct mm_struct *mm = NULL; |
1310 | struct task_struct *task; |
1311 | nodemask_t task_nodes; |
1312 | int err; |
1313 | nodemask_t *old; |
1314 | nodemask_t *new; |
1315 | NODEMASK_SCRATCH(scratch); |
1316 | |
1317 | if (!scratch) |
1318 | return -ENOMEM; |
1319 | |
1320 | old = &scratch->mask1; |
1321 | new = &scratch->mask2; |
1322 | |
1323 | err = get_nodes(old, old_nodes, maxnode); |
1324 | if (err) |
1325 | goto out; |
1326 | |
1327 | err = get_nodes(new, new_nodes, maxnode); |
1328 | if (err) |
1329 | goto out; |
1330 | |
1331 | /* Find the mm_struct */ |
1332 | rcu_read_lock(); |
1333 | task = pid ? find_task_by_vpid(pid) : current; |
1334 | if (!task) { |
1335 | rcu_read_unlock(); |
1336 | err = -ESRCH; |
1337 | goto out; |
1338 | } |
1339 | get_task_struct(task); |
1340 | |
1341 | err = -EINVAL; |
1342 | |
1343 | /* |
1344 | * Check if this process has the right to modify the specified |
1345 | * process. The right exists if the process has administrative |
1346 | * capabilities, superuser privileges or the same |
1347 | * userid as the target process. |
1348 | */ |
1349 | tcred = __task_cred(task); |
1350 | if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && |
1351 | !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && |
1352 | !capable(CAP_SYS_NICE)) { |
1353 | rcu_read_unlock(); |
1354 | err = -EPERM; |
1355 | goto out_put; |
1356 | } |
1357 | rcu_read_unlock(); |
1358 | |
1359 | task_nodes = cpuset_mems_allowed(task); |
1360 | /* Is the user allowed to access the target nodes? */ |
1361 | if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { |
1362 | err = -EPERM; |
1363 | goto out_put; |
1364 | } |
1365 | |
1366 | if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) { |
1367 | err = -EINVAL; |
1368 | goto out_put; |
1369 | } |
1370 | |
1371 | err = security_task_movememory(task); |
1372 | if (err) |
1373 | goto out_put; |
1374 | |
1375 | mm = get_task_mm(task); |
1376 | put_task_struct(task); |
1377 | |
1378 | if (!mm) { |
1379 | err = -EINVAL; |
1380 | goto out; |
1381 | } |
1382 | |
1383 | err = do_migrate_pages(mm, old, new, |
1384 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); |
1385 | |
1386 | mmput(mm); |
1387 | out: |
1388 | NODEMASK_SCRATCH_FREE(scratch); |
1389 | |
1390 | return err; |
1391 | |
1392 | out_put: |
1393 | put_task_struct(task); |
1394 | goto out; |
1395 | |
1396 | } |
1397 | |
1398 | |
1399 | /* Retrieve NUMA policy */ |
1400 | SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, |
1401 | unsigned long __user *, nmask, unsigned long, maxnode, |
1402 | unsigned long, addr, unsigned long, flags) |
1403 | { |
1404 | int err; |
1405 | int uninitialized_var(pval); |
1406 | nodemask_t nodes; |
1407 | |
1408 | if (nmask != NULL && maxnode < MAX_NUMNODES) |
1409 | return -EINVAL; |
1410 | |
1411 | err = do_get_mempolicy(&pval, &nodes, addr, flags); |
1412 | |
1413 | if (err) |
1414 | return err; |
1415 | |
1416 | if (policy && put_user(pval, policy)) |
1417 | return -EFAULT; |
1418 | |
1419 | if (nmask) |
1420 | err = copy_nodes_to_user(nmask, maxnode, &nodes); |
1421 | |
1422 | return err; |
1423 | } |
1424 | |
1425 | #ifdef CONFIG_COMPAT |
1426 | |
1427 | asmlinkage long compat_sys_get_mempolicy(int __user *policy, |
1428 | compat_ulong_t __user *nmask, |
1429 | compat_ulong_t maxnode, |
1430 | compat_ulong_t addr, compat_ulong_t flags) |
1431 | { |
1432 | long err; |
1433 | unsigned long __user *nm = NULL; |
1434 | unsigned long nr_bits, alloc_size; |
1435 | DECLARE_BITMAP(bm, MAX_NUMNODES); |
1436 | |
1437 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
1438 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
1439 | |
1440 | if (nmask) |
1441 | nm = compat_alloc_user_space(alloc_size); |
1442 | |
1443 | err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); |
1444 | |
1445 | if (!err && nmask) { |
1446 | unsigned long copy_size; |
1447 | copy_size = min_t(unsigned long, sizeof(bm), alloc_size); |
1448 | err = copy_from_user(bm, nm, copy_size); |
1449 | /* ensure entire bitmap is zeroed */ |
1450 | err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); |
1451 | err |= compat_put_bitmap(nmask, bm, nr_bits); |
1452 | } |
1453 | |
1454 | return err; |
1455 | } |
1456 | |
1457 | asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, |
1458 | compat_ulong_t maxnode) |
1459 | { |
1460 | long err = 0; |
1461 | unsigned long __user *nm = NULL; |
1462 | unsigned long nr_bits, alloc_size; |
1463 | DECLARE_BITMAP(bm, MAX_NUMNODES); |
1464 | |
1465 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
1466 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
1467 | |
1468 | if (nmask) { |
1469 | err = compat_get_bitmap(bm, nmask, nr_bits); |
1470 | nm = compat_alloc_user_space(alloc_size); |
1471 | err |= copy_to_user(nm, bm, alloc_size); |
1472 | } |
1473 | |
1474 | if (err) |
1475 | return -EFAULT; |
1476 | |
1477 | return sys_set_mempolicy(mode, nm, nr_bits+1); |
1478 | } |
1479 | |
1480 | asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, |
1481 | compat_ulong_t mode, compat_ulong_t __user *nmask, |
1482 | compat_ulong_t maxnode, compat_ulong_t flags) |
1483 | { |
1484 | long err = 0; |
1485 | unsigned long __user *nm = NULL; |
1486 | unsigned long nr_bits, alloc_size; |
1487 | nodemask_t bm; |
1488 | |
1489 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
1490 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
1491 | |
1492 | if (nmask) { |
1493 | err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); |
1494 | nm = compat_alloc_user_space(alloc_size); |
1495 | err |= copy_to_user(nm, nodes_addr(bm), alloc_size); |
1496 | } |
1497 | |
1498 | if (err) |
1499 | return -EFAULT; |
1500 | |
1501 | return sys_mbind(start, len, mode, nm, nr_bits+1, flags); |
1502 | } |
1503 | |
1504 | #endif |
1505 | |
1506 | /* |
1507 | * get_vma_policy(@task, @vma, @addr) |
1508 | * @task - task for fallback if vma policy == default |
1509 | * @vma - virtual memory area whose policy is sought |
1510 | * @addr - address in @vma for shared policy lookup |
1511 | * |
1512 | * Returns effective policy for a VMA at specified address. |
1513 | * Falls back to @task or system default policy, as necessary. |
1514 | * Current or other task's task mempolicy and non-shared vma policies |
1515 | * are protected by the task's mmap_sem, which must be held for read by |
1516 | * the caller. |
1517 | * Shared policies [those marked as MPOL_F_SHARED] require an extra reference |
1518 | * count--added by the get_policy() vm_op, as appropriate--to protect against |
1519 | * freeing by another task. It is the caller's responsibility to free the |
1520 | * extra reference for shared policies. |
1521 | */ |
1522 | struct mempolicy *get_vma_policy(struct task_struct *task, |
1523 | struct vm_area_struct *vma, unsigned long addr) |
1524 | { |
1525 | struct mempolicy *pol = task->mempolicy; |
1526 | |
1527 | if (vma) { |
1528 | if (vma->vm_ops && vma->vm_ops->get_policy) { |
1529 | struct mempolicy *vpol = vma->vm_ops->get_policy(vma, |
1530 | addr); |
1531 | if (vpol) |
1532 | pol = vpol; |
1533 | } else if (vma->vm_policy) |
1534 | pol = vma->vm_policy; |
1535 | } |
1536 | if (!pol) |
1537 | pol = &default_policy; |
1538 | return pol; |
1539 | } |
1540 | |
1541 | /* |
1542 | * Return a nodemask representing a mempolicy for filtering nodes for |
1543 | * page allocation |
1544 | */ |
1545 | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) |
1546 | { |
1547 | /* Lower zones don't get a nodemask applied for MPOL_BIND */ |
1548 | if (unlikely(policy->mode == MPOL_BIND) && |
1549 | gfp_zone(gfp) >= policy_zone && |
1550 | cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) |
1551 | return &policy->v.nodes; |
1552 | |
1553 | return NULL; |
1554 | } |
1555 | |
1556 | /* Return a zonelist indicated by gfp for node representing a mempolicy */ |
1557 | static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, |
1558 | int nd) |
1559 | { |
1560 | switch (policy->mode) { |
1561 | case MPOL_PREFERRED: |
1562 | if (!(policy->flags & MPOL_F_LOCAL)) |
1563 | nd = policy->v.preferred_node; |
1564 | break; |
1565 | case MPOL_BIND: |
1566 | /* |
1567 | * Normally, MPOL_BIND allocations are node-local within the |
1568 | * allowed nodemask. However, if __GFP_THISNODE is set and the |
1569 | * current node isn't part of the mask, we use the zonelist for |
1570 | * the first node in the mask instead. |
1571 | */ |
1572 | if (unlikely(gfp & __GFP_THISNODE) && |
1573 | unlikely(!node_isset(nd, policy->v.nodes))) |
1574 | nd = first_node(policy->v.nodes); |
1575 | break; |
1576 | default: |
1577 | BUG(); |
1578 | } |
1579 | return node_zonelist(nd, gfp); |
1580 | } |
1581 | |
1582 | /* Do dynamic interleaving for a process */ |
1583 | static unsigned interleave_nodes(struct mempolicy *policy) |
1584 | { |
1585 | unsigned nid, next; |
1586 | struct task_struct *me = current; |
1587 | |
1588 | nid = me->il_next; |
1589 | next = next_node(nid, policy->v.nodes); |
1590 | if (next >= MAX_NUMNODES) |
1591 | next = first_node(policy->v.nodes); |
1592 | if (next < MAX_NUMNODES) |
1593 | me->il_next = next; |
1594 | return nid; |
1595 | } |
1596 | |
1597 | /* |
1598 | * Depending on the memory policy provide a node from which to allocate the |
1599 | * next slab entry. |
1600 | * @policy must be protected by freeing by the caller. If @policy is |
1601 | * the current task's mempolicy, this protection is implicit, as only the |
1602 | * task can change it's policy. The system default policy requires no |
1603 | * such protection. |
1604 | */ |
1605 | unsigned slab_node(void) |
1606 | { |
1607 | struct mempolicy *policy; |
1608 | |
1609 | if (in_interrupt()) |
1610 | return numa_node_id(); |
1611 | |
1612 | policy = current->mempolicy; |
1613 | if (!policy || policy->flags & MPOL_F_LOCAL) |
1614 | return numa_node_id(); |
1615 | |
1616 | switch (policy->mode) { |
1617 | case MPOL_PREFERRED: |
1618 | /* |
1619 | * handled MPOL_F_LOCAL above |
1620 | */ |
1621 | return policy->v.preferred_node; |
1622 | |
1623 | case MPOL_INTERLEAVE: |
1624 | return interleave_nodes(policy); |
1625 | |
1626 | case MPOL_BIND: { |
1627 | /* |
1628 | * Follow bind policy behavior and start allocation at the |
1629 | * first node. |
1630 | */ |
1631 | struct zonelist *zonelist; |
1632 | struct zone *zone; |
1633 | enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); |
1634 | zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; |
1635 | (void)first_zones_zonelist(zonelist, highest_zoneidx, |
1636 | &policy->v.nodes, |
1637 | &zone); |
1638 | return zone ? zone->node : numa_node_id(); |
1639 | } |
1640 | |
1641 | default: |
1642 | BUG(); |
1643 | } |
1644 | } |
1645 | |
1646 | /* Do static interleaving for a VMA with known offset. */ |
1647 | static unsigned offset_il_node(struct mempolicy *pol, |
1648 | struct vm_area_struct *vma, unsigned long off) |
1649 | { |
1650 | unsigned nnodes = nodes_weight(pol->v.nodes); |
1651 | unsigned target; |
1652 | int c; |
1653 | int nid = -1; |
1654 | |
1655 | if (!nnodes) |
1656 | return numa_node_id(); |
1657 | target = (unsigned int)off % nnodes; |
1658 | c = 0; |
1659 | do { |
1660 | nid = next_node(nid, pol->v.nodes); |
1661 | c++; |
1662 | } while (c <= target); |
1663 | return nid; |
1664 | } |
1665 | |
1666 | /* Determine a node number for interleave */ |
1667 | static inline unsigned interleave_nid(struct mempolicy *pol, |
1668 | struct vm_area_struct *vma, unsigned long addr, int shift) |
1669 | { |
1670 | if (vma) { |
1671 | unsigned long off; |
1672 | |
1673 | /* |
1674 | * for small pages, there is no difference between |
1675 | * shift and PAGE_SHIFT, so the bit-shift is safe. |
1676 | * for huge pages, since vm_pgoff is in units of small |
1677 | * pages, we need to shift off the always 0 bits to get |
1678 | * a useful offset. |
1679 | */ |
1680 | BUG_ON(shift < PAGE_SHIFT); |
1681 | off = vma->vm_pgoff >> (shift - PAGE_SHIFT); |
1682 | off += (addr - vma->vm_start) >> shift; |
1683 | return offset_il_node(pol, vma, off); |
1684 | } else |
1685 | return interleave_nodes(pol); |
1686 | } |
1687 | |
1688 | /* |
1689 | * Return the bit number of a random bit set in the nodemask. |
1690 | * (returns -1 if nodemask is empty) |
1691 | */ |
1692 | int node_random(const nodemask_t *maskp) |
1693 | { |
1694 | int w, bit = -1; |
1695 | |
1696 | w = nodes_weight(*maskp); |
1697 | if (w) |
1698 | bit = bitmap_ord_to_pos(maskp->bits, |
1699 | get_random_int() % w, MAX_NUMNODES); |
1700 | return bit; |
1701 | } |
1702 | |
1703 | #ifdef CONFIG_HUGETLBFS |
1704 | /* |
1705 | * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) |
1706 | * @vma = virtual memory area whose policy is sought |
1707 | * @addr = address in @vma for shared policy lookup and interleave policy |
1708 | * @gfp_flags = for requested zone |
1709 | * @mpol = pointer to mempolicy pointer for reference counted mempolicy |
1710 | * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask |
1711 | * |
1712 | * Returns a zonelist suitable for a huge page allocation and a pointer |
1713 | * to the struct mempolicy for conditional unref after allocation. |
1714 | * If the effective policy is 'BIND, returns a pointer to the mempolicy's |
1715 | * @nodemask for filtering the zonelist. |
1716 | * |
1717 | * Must be protected by get_mems_allowed() |
1718 | */ |
1719 | struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, |
1720 | gfp_t gfp_flags, struct mempolicy **mpol, |
1721 | nodemask_t **nodemask) |
1722 | { |
1723 | struct zonelist *zl; |
1724 | |
1725 | *mpol = get_vma_policy(current, vma, addr); |
1726 | *nodemask = NULL; /* assume !MPOL_BIND */ |
1727 | |
1728 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { |
1729 | zl = node_zonelist(interleave_nid(*mpol, vma, addr, |
1730 | huge_page_shift(hstate_vma(vma))), gfp_flags); |
1731 | } else { |
1732 | zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); |
1733 | if ((*mpol)->mode == MPOL_BIND) |
1734 | *nodemask = &(*mpol)->v.nodes; |
1735 | } |
1736 | return zl; |
1737 | } |
1738 | |
1739 | /* |
1740 | * init_nodemask_of_mempolicy |
1741 | * |
1742 | * If the current task's mempolicy is "default" [NULL], return 'false' |
1743 | * to indicate default policy. Otherwise, extract the policy nodemask |
1744 | * for 'bind' or 'interleave' policy into the argument nodemask, or |
1745 | * initialize the argument nodemask to contain the single node for |
1746 | * 'preferred' or 'local' policy and return 'true' to indicate presence |
1747 | * of non-default mempolicy. |
1748 | * |
1749 | * We don't bother with reference counting the mempolicy [mpol_get/put] |
1750 | * because the current task is examining it's own mempolicy and a task's |
1751 | * mempolicy is only ever changed by the task itself. |
1752 | * |
1753 | * N.B., it is the caller's responsibility to free a returned nodemask. |
1754 | */ |
1755 | bool init_nodemask_of_mempolicy(nodemask_t *mask) |
1756 | { |
1757 | struct mempolicy *mempolicy; |
1758 | int nid; |
1759 | |
1760 | if (!(mask && current->mempolicy)) |
1761 | return false; |
1762 | |
1763 | task_lock(current); |
1764 | mempolicy = current->mempolicy; |
1765 | switch (mempolicy->mode) { |
1766 | case MPOL_PREFERRED: |
1767 | if (mempolicy->flags & MPOL_F_LOCAL) |
1768 | nid = numa_node_id(); |
1769 | else |
1770 | nid = mempolicy->v.preferred_node; |
1771 | init_nodemask_of_node(mask, nid); |
1772 | break; |
1773 | |
1774 | case MPOL_BIND: |
1775 | /* Fall through */ |
1776 | case MPOL_INTERLEAVE: |
1777 | *mask = mempolicy->v.nodes; |
1778 | break; |
1779 | |
1780 | default: |
1781 | BUG(); |
1782 | } |
1783 | task_unlock(current); |
1784 | |
1785 | return true; |
1786 | } |
1787 | #endif |
1788 | |
1789 | /* |
1790 | * mempolicy_nodemask_intersects |
1791 | * |
1792 | * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default |
1793 | * policy. Otherwise, check for intersection between mask and the policy |
1794 | * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' |
1795 | * policy, always return true since it may allocate elsewhere on fallback. |
1796 | * |
1797 | * Takes task_lock(tsk) to prevent freeing of its mempolicy. |
1798 | */ |
1799 | bool mempolicy_nodemask_intersects(struct task_struct *tsk, |
1800 | const nodemask_t *mask) |
1801 | { |
1802 | struct mempolicy *mempolicy; |
1803 | bool ret = true; |
1804 | |
1805 | if (!mask) |
1806 | return ret; |
1807 | task_lock(tsk); |
1808 | mempolicy = tsk->mempolicy; |
1809 | if (!mempolicy) |
1810 | goto out; |
1811 | |
1812 | switch (mempolicy->mode) { |
1813 | case MPOL_PREFERRED: |
1814 | /* |
1815 | * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to |
1816 | * allocate from, they may fallback to other nodes when oom. |
1817 | * Thus, it's possible for tsk to have allocated memory from |
1818 | * nodes in mask. |
1819 | */ |
1820 | break; |
1821 | case MPOL_BIND: |
1822 | case MPOL_INTERLEAVE: |
1823 | ret = nodes_intersects(mempolicy->v.nodes, *mask); |
1824 | break; |
1825 | default: |
1826 | BUG(); |
1827 | } |
1828 | out: |
1829 | task_unlock(tsk); |
1830 | return ret; |
1831 | } |
1832 | |
1833 | /* Allocate a page in interleaved policy. |
1834 | Own path because it needs to do special accounting. */ |
1835 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, |
1836 | unsigned nid) |
1837 | { |
1838 | struct zonelist *zl; |
1839 | struct page *page; |
1840 | |
1841 | zl = node_zonelist(nid, gfp); |
1842 | page = __alloc_pages(gfp, order, zl); |
1843 | if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) |
1844 | inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); |
1845 | return page; |
1846 | } |
1847 | |
1848 | /** |
1849 | * alloc_pages_vma - Allocate a page for a VMA. |
1850 | * |
1851 | * @gfp: |
1852 | * %GFP_USER user allocation. |
1853 | * %GFP_KERNEL kernel allocations, |
1854 | * %GFP_HIGHMEM highmem/user allocations, |
1855 | * %GFP_FS allocation should not call back into a file system. |
1856 | * %GFP_ATOMIC don't sleep. |
1857 | * |
1858 | * @order:Order of the GFP allocation. |
1859 | * @vma: Pointer to VMA or NULL if not available. |
1860 | * @addr: Virtual Address of the allocation. Must be inside the VMA. |
1861 | * |
1862 | * This function allocates a page from the kernel page pool and applies |
1863 | * a NUMA policy associated with the VMA or the current process. |
1864 | * When VMA is not NULL caller must hold down_read on the mmap_sem of the |
1865 | * mm_struct of the VMA to prevent it from going away. Should be used for |
1866 | * all allocations for pages that will be mapped into |
1867 | * user space. Returns NULL when no page can be allocated. |
1868 | * |
1869 | * Should be called with the mm_sem of the vma hold. |
1870 | */ |
1871 | struct page * |
1872 | alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, |
1873 | unsigned long addr, int node) |
1874 | { |
1875 | struct mempolicy *pol; |
1876 | struct zonelist *zl; |
1877 | struct page *page; |
1878 | unsigned int cpuset_mems_cookie; |
1879 | |
1880 | retry_cpuset: |
1881 | pol = get_vma_policy(current, vma, addr); |
1882 | cpuset_mems_cookie = get_mems_allowed(); |
1883 | |
1884 | if (unlikely(pol->mode == MPOL_INTERLEAVE)) { |
1885 | unsigned nid; |
1886 | |
1887 | nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); |
1888 | mpol_cond_put(pol); |
1889 | page = alloc_page_interleave(gfp, order, nid); |
1890 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
1891 | goto retry_cpuset; |
1892 | |
1893 | return page; |
1894 | } |
1895 | zl = policy_zonelist(gfp, pol, node); |
1896 | if (unlikely(mpol_needs_cond_ref(pol))) { |
1897 | /* |
1898 | * slow path: ref counted shared policy |
1899 | */ |
1900 | struct page *page = __alloc_pages_nodemask(gfp, order, |
1901 | zl, policy_nodemask(gfp, pol)); |
1902 | __mpol_put(pol); |
1903 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
1904 | goto retry_cpuset; |
1905 | return page; |
1906 | } |
1907 | /* |
1908 | * fast path: default or task policy |
1909 | */ |
1910 | page = __alloc_pages_nodemask(gfp, order, zl, |
1911 | policy_nodemask(gfp, pol)); |
1912 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
1913 | goto retry_cpuset; |
1914 | return page; |
1915 | } |
1916 | |
1917 | /** |
1918 | * alloc_pages_current - Allocate pages. |
1919 | * |
1920 | * @gfp: |
1921 | * %GFP_USER user allocation, |
1922 | * %GFP_KERNEL kernel allocation, |
1923 | * %GFP_HIGHMEM highmem allocation, |
1924 | * %GFP_FS don't call back into a file system. |
1925 | * %GFP_ATOMIC don't sleep. |
1926 | * @order: Power of two of allocation size in pages. 0 is a single page. |
1927 | * |
1928 | * Allocate a page from the kernel page pool. When not in |
1929 | * interrupt context and apply the current process NUMA policy. |
1930 | * Returns NULL when no page can be allocated. |
1931 | * |
1932 | * Don't call cpuset_update_task_memory_state() unless |
1933 | * 1) it's ok to take cpuset_sem (can WAIT), and |
1934 | * 2) allocating for current task (not interrupt). |
1935 | */ |
1936 | struct page *alloc_pages_current(gfp_t gfp, unsigned order) |
1937 | { |
1938 | struct mempolicy *pol = current->mempolicy; |
1939 | struct page *page; |
1940 | unsigned int cpuset_mems_cookie; |
1941 | |
1942 | if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) |
1943 | pol = &default_policy; |
1944 | |
1945 | retry_cpuset: |
1946 | cpuset_mems_cookie = get_mems_allowed(); |
1947 | |
1948 | /* |
1949 | * No reference counting needed for current->mempolicy |
1950 | * nor system default_policy |
1951 | */ |
1952 | if (pol->mode == MPOL_INTERLEAVE) |
1953 | page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); |
1954 | else |
1955 | page = __alloc_pages_nodemask(gfp, order, |
1956 | policy_zonelist(gfp, pol, numa_node_id()), |
1957 | policy_nodemask(gfp, pol)); |
1958 | |
1959 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
1960 | goto retry_cpuset; |
1961 | |
1962 | return page; |
1963 | } |
1964 | EXPORT_SYMBOL(alloc_pages_current); |
1965 | |
1966 | /* |
1967 | * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it |
1968 | * rebinds the mempolicy its copying by calling mpol_rebind_policy() |
1969 | * with the mems_allowed returned by cpuset_mems_allowed(). This |
1970 | * keeps mempolicies cpuset relative after its cpuset moves. See |
1971 | * further kernel/cpuset.c update_nodemask(). |
1972 | * |
1973 | * current's mempolicy may be rebinded by the other task(the task that changes |
1974 | * cpuset's mems), so we needn't do rebind work for current task. |
1975 | */ |
1976 | |
1977 | /* Slow path of a mempolicy duplicate */ |
1978 | struct mempolicy *__mpol_dup(struct mempolicy *old) |
1979 | { |
1980 | struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
1981 | |
1982 | if (!new) |
1983 | return ERR_PTR(-ENOMEM); |
1984 | |
1985 | /* task's mempolicy is protected by alloc_lock */ |
1986 | if (old == current->mempolicy) { |
1987 | task_lock(current); |
1988 | *new = *old; |
1989 | task_unlock(current); |
1990 | } else |
1991 | *new = *old; |
1992 | |
1993 | rcu_read_lock(); |
1994 | if (current_cpuset_is_being_rebound()) { |
1995 | nodemask_t mems = cpuset_mems_allowed(current); |
1996 | if (new->flags & MPOL_F_REBINDING) |
1997 | mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); |
1998 | else |
1999 | mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); |
2000 | } |
2001 | rcu_read_unlock(); |
2002 | atomic_set(&new->refcnt, 1); |
2003 | return new; |
2004 | } |
2005 | |
2006 | /* |
2007 | * If *frompol needs [has] an extra ref, copy *frompol to *tompol , |
2008 | * eliminate the * MPOL_F_* flags that require conditional ref and |
2009 | * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly |
2010 | * after return. Use the returned value. |
2011 | * |
2012 | * Allows use of a mempolicy for, e.g., multiple allocations with a single |
2013 | * policy lookup, even if the policy needs/has extra ref on lookup. |
2014 | * shmem_readahead needs this. |
2015 | */ |
2016 | struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, |
2017 | struct mempolicy *frompol) |
2018 | { |
2019 | if (!mpol_needs_cond_ref(frompol)) |
2020 | return frompol; |
2021 | |
2022 | *tompol = *frompol; |
2023 | tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ |
2024 | __mpol_put(frompol); |
2025 | return tompol; |
2026 | } |
2027 | |
2028 | /* Slow path of a mempolicy comparison */ |
2029 | bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) |
2030 | { |
2031 | if (!a || !b) |
2032 | return false; |
2033 | if (a->mode != b->mode) |
2034 | return false; |
2035 | if (a->flags != b->flags) |
2036 | return false; |
2037 | if (mpol_store_user_nodemask(a)) |
2038 | if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) |
2039 | return false; |
2040 | |
2041 | switch (a->mode) { |
2042 | case MPOL_BIND: |
2043 | /* Fall through */ |
2044 | case MPOL_INTERLEAVE: |
2045 | return !!nodes_equal(a->v.nodes, b->v.nodes); |
2046 | case MPOL_PREFERRED: |
2047 | return a->v.preferred_node == b->v.preferred_node; |
2048 | default: |
2049 | BUG(); |
2050 | return false; |
2051 | } |
2052 | } |
2053 | |
2054 | /* |
2055 | * Shared memory backing store policy support. |
2056 | * |
2057 | * Remember policies even when nobody has shared memory mapped. |
2058 | * The policies are kept in Red-Black tree linked from the inode. |
2059 | * They are protected by the sp->lock spinlock, which should be held |
2060 | * for any accesses to the tree. |
2061 | */ |
2062 | |
2063 | /* lookup first element intersecting start-end */ |
2064 | /* Caller holds sp->lock */ |
2065 | static struct sp_node * |
2066 | sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) |
2067 | { |
2068 | struct rb_node *n = sp->root.rb_node; |
2069 | |
2070 | while (n) { |
2071 | struct sp_node *p = rb_entry(n, struct sp_node, nd); |
2072 | |
2073 | if (start >= p->end) |
2074 | n = n->rb_right; |
2075 | else if (end <= p->start) |
2076 | n = n->rb_left; |
2077 | else |
2078 | break; |
2079 | } |
2080 | if (!n) |
2081 | return NULL; |
2082 | for (;;) { |
2083 | struct sp_node *w = NULL; |
2084 | struct rb_node *prev = rb_prev(n); |
2085 | if (!prev) |
2086 | break; |
2087 | w = rb_entry(prev, struct sp_node, nd); |
2088 | if (w->end <= start) |
2089 | break; |
2090 | n = prev; |
2091 | } |
2092 | return rb_entry(n, struct sp_node, nd); |
2093 | } |
2094 | |
2095 | /* Insert a new shared policy into the list. */ |
2096 | /* Caller holds sp->lock */ |
2097 | static void sp_insert(struct shared_policy *sp, struct sp_node *new) |
2098 | { |
2099 | struct rb_node **p = &sp->root.rb_node; |
2100 | struct rb_node *parent = NULL; |
2101 | struct sp_node *nd; |
2102 | |
2103 | while (*p) { |
2104 | parent = *p; |
2105 | nd = rb_entry(parent, struct sp_node, nd); |
2106 | if (new->start < nd->start) |
2107 | p = &(*p)->rb_left; |
2108 | else if (new->end > nd->end) |
2109 | p = &(*p)->rb_right; |
2110 | else |
2111 | BUG(); |
2112 | } |
2113 | rb_link_node(&new->nd, parent, p); |
2114 | rb_insert_color(&new->nd, &sp->root); |
2115 | pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, |
2116 | new->policy ? new->policy->mode : 0); |
2117 | } |
2118 | |
2119 | /* Find shared policy intersecting idx */ |
2120 | struct mempolicy * |
2121 | mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) |
2122 | { |
2123 | struct mempolicy *pol = NULL; |
2124 | struct sp_node *sn; |
2125 | |
2126 | if (!sp->root.rb_node) |
2127 | return NULL; |
2128 | spin_lock(&sp->lock); |
2129 | sn = sp_lookup(sp, idx, idx+1); |
2130 | if (sn) { |
2131 | mpol_get(sn->policy); |
2132 | pol = sn->policy; |
2133 | } |
2134 | spin_unlock(&sp->lock); |
2135 | return pol; |
2136 | } |
2137 | |
2138 | static void sp_delete(struct shared_policy *sp, struct sp_node *n) |
2139 | { |
2140 | pr_debug("deleting %lx-l%lx\n", n->start, n->end); |
2141 | rb_erase(&n->nd, &sp->root); |
2142 | mpol_put(n->policy); |
2143 | kmem_cache_free(sn_cache, n); |
2144 | } |
2145 | |
2146 | static struct sp_node *sp_alloc(unsigned long start, unsigned long end, |
2147 | struct mempolicy *pol) |
2148 | { |
2149 | struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); |
2150 | |
2151 | if (!n) |
2152 | return NULL; |
2153 | n->start = start; |
2154 | n->end = end; |
2155 | mpol_get(pol); |
2156 | pol->flags |= MPOL_F_SHARED; /* for unref */ |
2157 | n->policy = pol; |
2158 | return n; |
2159 | } |
2160 | |
2161 | /* Replace a policy range. */ |
2162 | static int shared_policy_replace(struct shared_policy *sp, unsigned long start, |
2163 | unsigned long end, struct sp_node *new) |
2164 | { |
2165 | struct sp_node *n, *new2 = NULL; |
2166 | |
2167 | restart: |
2168 | spin_lock(&sp->lock); |
2169 | n = sp_lookup(sp, start, end); |
2170 | /* Take care of old policies in the same range. */ |
2171 | while (n && n->start < end) { |
2172 | struct rb_node *next = rb_next(&n->nd); |
2173 | if (n->start >= start) { |
2174 | if (n->end <= end) |
2175 | sp_delete(sp, n); |
2176 | else |
2177 | n->start = end; |
2178 | } else { |
2179 | /* Old policy spanning whole new range. */ |
2180 | if (n->end > end) { |
2181 | if (!new2) { |
2182 | spin_unlock(&sp->lock); |
2183 | new2 = sp_alloc(end, n->end, n->policy); |
2184 | if (!new2) |
2185 | return -ENOMEM; |
2186 | goto restart; |
2187 | } |
2188 | n->end = start; |
2189 | sp_insert(sp, new2); |
2190 | new2 = NULL; |
2191 | break; |
2192 | } else |
2193 | n->end = start; |
2194 | } |
2195 | if (!next) |
2196 | break; |
2197 | n = rb_entry(next, struct sp_node, nd); |
2198 | } |
2199 | if (new) |
2200 | sp_insert(sp, new); |
2201 | spin_unlock(&sp->lock); |
2202 | if (new2) { |
2203 | mpol_put(new2->policy); |
2204 | kmem_cache_free(sn_cache, new2); |
2205 | } |
2206 | return 0; |
2207 | } |
2208 | |
2209 | /** |
2210 | * mpol_shared_policy_init - initialize shared policy for inode |
2211 | * @sp: pointer to inode shared policy |
2212 | * @mpol: struct mempolicy to install |
2213 | * |
2214 | * Install non-NULL @mpol in inode's shared policy rb-tree. |
2215 | * On entry, the current task has a reference on a non-NULL @mpol. |
2216 | * This must be released on exit. |
2217 | * This is called at get_inode() calls and we can use GFP_KERNEL. |
2218 | */ |
2219 | void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) |
2220 | { |
2221 | int ret; |
2222 | |
2223 | sp->root = RB_ROOT; /* empty tree == default mempolicy */ |
2224 | spin_lock_init(&sp->lock); |
2225 | |
2226 | if (mpol) { |
2227 | struct vm_area_struct pvma; |
2228 | struct mempolicy *new; |
2229 | NODEMASK_SCRATCH(scratch); |
2230 | |
2231 | if (!scratch) |
2232 | goto put_mpol; |
2233 | /* contextualize the tmpfs mount point mempolicy */ |
2234 | new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); |
2235 | if (IS_ERR(new)) |
2236 | goto free_scratch; /* no valid nodemask intersection */ |
2237 | |
2238 | task_lock(current); |
2239 | ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); |
2240 | task_unlock(current); |
2241 | if (ret) |
2242 | goto put_new; |
2243 | |
2244 | /* Create pseudo-vma that contains just the policy */ |
2245 | memset(&pvma, 0, sizeof(struct vm_area_struct)); |
2246 | pvma.vm_end = TASK_SIZE; /* policy covers entire file */ |
2247 | mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ |
2248 | |
2249 | put_new: |
2250 | mpol_put(new); /* drop initial ref */ |
2251 | free_scratch: |
2252 | NODEMASK_SCRATCH_FREE(scratch); |
2253 | put_mpol: |
2254 | mpol_put(mpol); /* drop our incoming ref on sb mpol */ |
2255 | } |
2256 | } |
2257 | |
2258 | int mpol_set_shared_policy(struct shared_policy *info, |
2259 | struct vm_area_struct *vma, struct mempolicy *npol) |
2260 | { |
2261 | int err; |
2262 | struct sp_node *new = NULL; |
2263 | unsigned long sz = vma_pages(vma); |
2264 | |
2265 | pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", |
2266 | vma->vm_pgoff, |
2267 | sz, npol ? npol->mode : -1, |
2268 | npol ? npol->flags : -1, |
2269 | npol ? nodes_addr(npol->v.nodes)[0] : -1); |
2270 | |
2271 | if (npol) { |
2272 | new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); |
2273 | if (!new) |
2274 | return -ENOMEM; |
2275 | } |
2276 | err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); |
2277 | if (err && new) |
2278 | kmem_cache_free(sn_cache, new); |
2279 | return err; |
2280 | } |
2281 | |
2282 | /* Free a backing policy store on inode delete. */ |
2283 | void mpol_free_shared_policy(struct shared_policy *p) |
2284 | { |
2285 | struct sp_node *n; |
2286 | struct rb_node *next; |
2287 | |
2288 | if (!p->root.rb_node) |
2289 | return; |
2290 | spin_lock(&p->lock); |
2291 | next = rb_first(&p->root); |
2292 | while (next) { |
2293 | n = rb_entry(next, struct sp_node, nd); |
2294 | next = rb_next(&n->nd); |
2295 | rb_erase(&n->nd, &p->root); |
2296 | mpol_put(n->policy); |
2297 | kmem_cache_free(sn_cache, n); |
2298 | } |
2299 | spin_unlock(&p->lock); |
2300 | } |
2301 | |
2302 | /* assumes fs == KERNEL_DS */ |
2303 | void __init numa_policy_init(void) |
2304 | { |
2305 | nodemask_t interleave_nodes; |
2306 | unsigned long largest = 0; |
2307 | int nid, prefer = 0; |
2308 | |
2309 | policy_cache = kmem_cache_create("numa_policy", |
2310 | sizeof(struct mempolicy), |
2311 | 0, SLAB_PANIC, NULL); |
2312 | |
2313 | sn_cache = kmem_cache_create("shared_policy_node", |
2314 | sizeof(struct sp_node), |
2315 | 0, SLAB_PANIC, NULL); |
2316 | |
2317 | /* |
2318 | * Set interleaving policy for system init. Interleaving is only |
2319 | * enabled across suitably sized nodes (default is >= 16MB), or |
2320 | * fall back to the largest node if they're all smaller. |
2321 | */ |
2322 | nodes_clear(interleave_nodes); |
2323 | for_each_node_state(nid, N_HIGH_MEMORY) { |
2324 | unsigned long total_pages = node_present_pages(nid); |
2325 | |
2326 | /* Preserve the largest node */ |
2327 | if (largest < total_pages) { |
2328 | largest = total_pages; |
2329 | prefer = nid; |
2330 | } |
2331 | |
2332 | /* Interleave this node? */ |
2333 | if ((total_pages << PAGE_SHIFT) >= (16 << 20)) |
2334 | node_set(nid, interleave_nodes); |
2335 | } |
2336 | |
2337 | /* All too small, use the largest */ |
2338 | if (unlikely(nodes_empty(interleave_nodes))) |
2339 | node_set(prefer, interleave_nodes); |
2340 | |
2341 | if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) |
2342 | printk("numa_policy_init: interleaving failed\n"); |
2343 | } |
2344 | |
2345 | /* Reset policy of current process to default */ |
2346 | void numa_default_policy(void) |
2347 | { |
2348 | do_set_mempolicy(MPOL_DEFAULT, 0, NULL); |
2349 | } |
2350 | |
2351 | /* |
2352 | * Parse and format mempolicy from/to strings |
2353 | */ |
2354 | |
2355 | /* |
2356 | * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag |
2357 | * Used only for mpol_parse_str() and mpol_to_str() |
2358 | */ |
2359 | #define MPOL_LOCAL MPOL_MAX |
2360 | static const char * const policy_modes[] = |
2361 | { |
2362 | [MPOL_DEFAULT] = "default", |
2363 | [MPOL_PREFERRED] = "prefer", |
2364 | [MPOL_BIND] = "bind", |
2365 | [MPOL_INTERLEAVE] = "interleave", |
2366 | [MPOL_LOCAL] = "local" |
2367 | }; |
2368 | |
2369 | |
2370 | #ifdef CONFIG_TMPFS |
2371 | /** |
2372 | * mpol_parse_str - parse string to mempolicy |
2373 | * @str: string containing mempolicy to parse |
2374 | * @mpol: pointer to struct mempolicy pointer, returned on success. |
2375 | * @no_context: flag whether to "contextualize" the mempolicy |
2376 | * |
2377 | * Format of input: |
2378 | * <mode>[=<flags>][:<nodelist>] |
2379 | * |
2380 | * if @no_context is true, save the input nodemask in w.user_nodemask in |
2381 | * the returned mempolicy. This will be used to "clone" the mempolicy in |
2382 | * a specific context [cpuset] at a later time. Used to parse tmpfs mpol |
2383 | * mount option. Note that if 'static' or 'relative' mode flags were |
2384 | * specified, the input nodemask will already have been saved. Saving |
2385 | * it again is redundant, but safe. |
2386 | * |
2387 | * On success, returns 0, else 1 |
2388 | */ |
2389 | int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) |
2390 | { |
2391 | struct mempolicy *new = NULL; |
2392 | unsigned short mode; |
2393 | unsigned short uninitialized_var(mode_flags); |
2394 | nodemask_t nodes; |
2395 | char *nodelist = strchr(str, ':'); |
2396 | char *flags = strchr(str, '='); |
2397 | int err = 1; |
2398 | |
2399 | if (nodelist) { |
2400 | /* NUL-terminate mode or flags string */ |
2401 | *nodelist++ = '\0'; |
2402 | if (nodelist_parse(nodelist, nodes)) |
2403 | goto out; |
2404 | if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) |
2405 | goto out; |
2406 | } else |
2407 | nodes_clear(nodes); |
2408 | |
2409 | if (flags) |
2410 | *flags++ = '\0'; /* terminate mode string */ |
2411 | |
2412 | for (mode = 0; mode <= MPOL_LOCAL; mode++) { |
2413 | if (!strcmp(str, policy_modes[mode])) { |
2414 | break; |
2415 | } |
2416 | } |
2417 | if (mode > MPOL_LOCAL) |
2418 | goto out; |
2419 | |
2420 | switch (mode) { |
2421 | case MPOL_PREFERRED: |
2422 | /* |
2423 | * Insist on a nodelist of one node only |
2424 | */ |
2425 | if (nodelist) { |
2426 | char *rest = nodelist; |
2427 | while (isdigit(*rest)) |
2428 | rest++; |
2429 | if (*rest) |
2430 | goto out; |
2431 | } |
2432 | break; |
2433 | case MPOL_INTERLEAVE: |
2434 | /* |
2435 | * Default to online nodes with memory if no nodelist |
2436 | */ |
2437 | if (!nodelist) |
2438 | nodes = node_states[N_HIGH_MEMORY]; |
2439 | break; |
2440 | case MPOL_LOCAL: |
2441 | /* |
2442 | * Don't allow a nodelist; mpol_new() checks flags |
2443 | */ |
2444 | if (nodelist) |
2445 | goto out; |
2446 | mode = MPOL_PREFERRED; |
2447 | break; |
2448 | case MPOL_DEFAULT: |
2449 | /* |
2450 | * Insist on a empty nodelist |
2451 | */ |
2452 | if (!nodelist) |
2453 | err = 0; |
2454 | goto out; |
2455 | case MPOL_BIND: |
2456 | /* |
2457 | * Insist on a nodelist |
2458 | */ |
2459 | if (!nodelist) |
2460 | goto out; |
2461 | } |
2462 | |
2463 | mode_flags = 0; |
2464 | if (flags) { |
2465 | /* |
2466 | * Currently, we only support two mutually exclusive |
2467 | * mode flags. |
2468 | */ |
2469 | if (!strcmp(flags, "static")) |
2470 | mode_flags |= MPOL_F_STATIC_NODES; |
2471 | else if (!strcmp(flags, "relative")) |
2472 | mode_flags |= MPOL_F_RELATIVE_NODES; |
2473 | else |
2474 | goto out; |
2475 | } |
2476 | |
2477 | new = mpol_new(mode, mode_flags, &nodes); |
2478 | if (IS_ERR(new)) |
2479 | goto out; |
2480 | |
2481 | if (no_context) { |
2482 | /* save for contextualization */ |
2483 | new->w.user_nodemask = nodes; |
2484 | } else { |
2485 | int ret; |
2486 | NODEMASK_SCRATCH(scratch); |
2487 | if (scratch) { |
2488 | task_lock(current); |
2489 | ret = mpol_set_nodemask(new, &nodes, scratch); |
2490 | task_unlock(current); |
2491 | } else |
2492 | ret = -ENOMEM; |
2493 | NODEMASK_SCRATCH_FREE(scratch); |
2494 | if (ret) { |
2495 | mpol_put(new); |
2496 | goto out; |
2497 | } |
2498 | } |
2499 | err = 0; |
2500 | |
2501 | out: |
2502 | /* Restore string for error message */ |
2503 | if (nodelist) |
2504 | *--nodelist = ':'; |
2505 | if (flags) |
2506 | *--flags = '='; |
2507 | if (!err) |
2508 | *mpol = new; |
2509 | return err; |
2510 | } |
2511 | #endif /* CONFIG_TMPFS */ |
2512 | |
2513 | /** |
2514 | * mpol_to_str - format a mempolicy structure for printing |
2515 | * @buffer: to contain formatted mempolicy string |
2516 | * @maxlen: length of @buffer |
2517 | * @pol: pointer to mempolicy to be formatted |
2518 | * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask |
2519 | * |
2520 | * Convert a mempolicy into a string. |
2521 | * Returns the number of characters in buffer (if positive) |
2522 | * or an error (negative) |
2523 | */ |
2524 | int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) |
2525 | { |
2526 | char *p = buffer; |
2527 | int l; |
2528 | nodemask_t nodes; |
2529 | unsigned short mode; |
2530 | unsigned short flags = pol ? pol->flags : 0; |
2531 | |
2532 | /* |
2533 | * Sanity check: room for longest mode, flag and some nodes |
2534 | */ |
2535 | VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); |
2536 | |
2537 | if (!pol || pol == &default_policy) |
2538 | mode = MPOL_DEFAULT; |
2539 | else |
2540 | mode = pol->mode; |
2541 | |
2542 | switch (mode) { |
2543 | case MPOL_DEFAULT: |
2544 | nodes_clear(nodes); |
2545 | break; |
2546 | |
2547 | case MPOL_PREFERRED: |
2548 | nodes_clear(nodes); |
2549 | if (flags & MPOL_F_LOCAL) |
2550 | mode = MPOL_LOCAL; /* pseudo-policy */ |
2551 | else |
2552 | node_set(pol->v.preferred_node, nodes); |
2553 | break; |
2554 | |
2555 | case MPOL_BIND: |
2556 | /* Fall through */ |
2557 | case MPOL_INTERLEAVE: |
2558 | if (no_context) |
2559 | nodes = pol->w.user_nodemask; |
2560 | else |
2561 | nodes = pol->v.nodes; |
2562 | break; |
2563 | |
2564 | default: |
2565 | BUG(); |
2566 | } |
2567 | |
2568 | l = strlen(policy_modes[mode]); |
2569 | if (buffer + maxlen < p + l + 1) |
2570 | return -ENOSPC; |
2571 | |
2572 | strcpy(p, policy_modes[mode]); |
2573 | p += l; |
2574 | |
2575 | if (flags & MPOL_MODE_FLAGS) { |
2576 | if (buffer + maxlen < p + 2) |
2577 | return -ENOSPC; |
2578 | *p++ = '='; |
2579 | |
2580 | /* |
2581 | * Currently, the only defined flags are mutually exclusive |
2582 | */ |
2583 | if (flags & MPOL_F_STATIC_NODES) |
2584 | p += snprintf(p, buffer + maxlen - p, "static"); |
2585 | else if (flags & MPOL_F_RELATIVE_NODES) |
2586 | p += snprintf(p, buffer + maxlen - p, "relative"); |
2587 | } |
2588 | |
2589 | if (!nodes_empty(nodes)) { |
2590 | if (buffer + maxlen < p + 2) |
2591 | return -ENOSPC; |
2592 | *p++ = ':'; |
2593 | p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); |
2594 | } |
2595 | return p - buffer; |
2596 | } |
2597 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9