Root/
1 | /* |
2 | * mm/mmap.c |
3 | * |
4 | * Written by obz. |
5 | * |
6 | * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
7 | */ |
8 | |
9 | #include <linux/slab.h> |
10 | #include <linux/backing-dev.h> |
11 | #include <linux/mm.h> |
12 | #include <linux/shm.h> |
13 | #include <linux/mman.h> |
14 | #include <linux/pagemap.h> |
15 | #include <linux/swap.h> |
16 | #include <linux/syscalls.h> |
17 | #include <linux/capability.h> |
18 | #include <linux/init.h> |
19 | #include <linux/file.h> |
20 | #include <linux/fs.h> |
21 | #include <linux/personality.h> |
22 | #include <linux/security.h> |
23 | #include <linux/hugetlb.h> |
24 | #include <linux/profile.h> |
25 | #include <linux/export.h> |
26 | #include <linux/mount.h> |
27 | #include <linux/mempolicy.h> |
28 | #include <linux/rmap.h> |
29 | #include <linux/mmu_notifier.h> |
30 | #include <linux/perf_event.h> |
31 | #include <linux/audit.h> |
32 | #include <linux/khugepaged.h> |
33 | #include <linux/uprobes.h> |
34 | |
35 | #include <asm/uaccess.h> |
36 | #include <asm/cacheflush.h> |
37 | #include <asm/tlb.h> |
38 | #include <asm/mmu_context.h> |
39 | |
40 | #include "internal.h" |
41 | |
42 | #ifndef arch_mmap_check |
43 | #define arch_mmap_check(addr, len, flags) (0) |
44 | #endif |
45 | |
46 | #ifndef arch_rebalance_pgtables |
47 | #define arch_rebalance_pgtables(addr, len) (addr) |
48 | #endif |
49 | |
50 | static void unmap_region(struct mm_struct *mm, |
51 | struct vm_area_struct *vma, struct vm_area_struct *prev, |
52 | unsigned long start, unsigned long end); |
53 | |
54 | /* |
55 | * WARNING: the debugging will use recursive algorithms so never enable this |
56 | * unless you know what you are doing. |
57 | */ |
58 | #undef DEBUG_MM_RB |
59 | |
60 | /* description of effects of mapping type and prot in current implementation. |
61 | * this is due to the limited x86 page protection hardware. The expected |
62 | * behavior is in parens: |
63 | * |
64 | * map_type prot |
65 | * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC |
66 | * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
67 | * w: (no) no w: (no) no w: (yes) yes w: (no) no |
68 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes |
69 | * |
70 | * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
71 | * w: (no) no w: (no) no w: (copy) copy w: (no) no |
72 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes |
73 | * |
74 | */ |
75 | pgprot_t protection_map[16] = { |
76 | __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, |
77 | __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 |
78 | }; |
79 | |
80 | pgprot_t vm_get_page_prot(unsigned long vm_flags) |
81 | { |
82 | return __pgprot(pgprot_val(protection_map[vm_flags & |
83 | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | |
84 | pgprot_val(arch_vm_get_page_prot(vm_flags))); |
85 | } |
86 | EXPORT_SYMBOL(vm_get_page_prot); |
87 | |
88 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ |
89 | int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ |
90 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; |
91 | /* |
92 | * Make sure vm_committed_as in one cacheline and not cacheline shared with |
93 | * other variables. It can be updated by several CPUs frequently. |
94 | */ |
95 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; |
96 | |
97 | /* |
98 | * Check that a process has enough memory to allocate a new virtual |
99 | * mapping. 0 means there is enough memory for the allocation to |
100 | * succeed and -ENOMEM implies there is not. |
101 | * |
102 | * We currently support three overcommit policies, which are set via the |
103 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting |
104 | * |
105 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. |
106 | * Additional code 2002 Jul 20 by Robert Love. |
107 | * |
108 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. |
109 | * |
110 | * Note this is a helper function intended to be used by LSMs which |
111 | * wish to use this logic. |
112 | */ |
113 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) |
114 | { |
115 | unsigned long free, allowed; |
116 | |
117 | vm_acct_memory(pages); |
118 | |
119 | /* |
120 | * Sometimes we want to use more memory than we have |
121 | */ |
122 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) |
123 | return 0; |
124 | |
125 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { |
126 | free = global_page_state(NR_FREE_PAGES); |
127 | free += global_page_state(NR_FILE_PAGES); |
128 | |
129 | /* |
130 | * shmem pages shouldn't be counted as free in this |
131 | * case, they can't be purged, only swapped out, and |
132 | * that won't affect the overall amount of available |
133 | * memory in the system. |
134 | */ |
135 | free -= global_page_state(NR_SHMEM); |
136 | |
137 | free += nr_swap_pages; |
138 | |
139 | /* |
140 | * Any slabs which are created with the |
141 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents |
142 | * which are reclaimable, under pressure. The dentry |
143 | * cache and most inode caches should fall into this |
144 | */ |
145 | free += global_page_state(NR_SLAB_RECLAIMABLE); |
146 | |
147 | /* |
148 | * Leave reserved pages. The pages are not for anonymous pages. |
149 | */ |
150 | if (free <= totalreserve_pages) |
151 | goto error; |
152 | else |
153 | free -= totalreserve_pages; |
154 | |
155 | /* |
156 | * Leave the last 3% for root |
157 | */ |
158 | if (!cap_sys_admin) |
159 | free -= free / 32; |
160 | |
161 | if (free > pages) |
162 | return 0; |
163 | |
164 | goto error; |
165 | } |
166 | |
167 | allowed = (totalram_pages - hugetlb_total_pages()) |
168 | * sysctl_overcommit_ratio / 100; |
169 | /* |
170 | * Leave the last 3% for root |
171 | */ |
172 | if (!cap_sys_admin) |
173 | allowed -= allowed / 32; |
174 | allowed += total_swap_pages; |
175 | |
176 | /* Don't let a single process grow too big: |
177 | leave 3% of the size of this process for other processes */ |
178 | if (mm) |
179 | allowed -= mm->total_vm / 32; |
180 | |
181 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) |
182 | return 0; |
183 | error: |
184 | vm_unacct_memory(pages); |
185 | |
186 | return -ENOMEM; |
187 | } |
188 | |
189 | /* |
190 | * Requires inode->i_mapping->i_mmap_mutex |
191 | */ |
192 | static void __remove_shared_vm_struct(struct vm_area_struct *vma, |
193 | struct file *file, struct address_space *mapping) |
194 | { |
195 | if (vma->vm_flags & VM_DENYWRITE) |
196 | atomic_inc(&file->f_path.dentry->d_inode->i_writecount); |
197 | if (vma->vm_flags & VM_SHARED) |
198 | mapping->i_mmap_writable--; |
199 | |
200 | flush_dcache_mmap_lock(mapping); |
201 | if (unlikely(vma->vm_flags & VM_NONLINEAR)) |
202 | list_del_init(&vma->shared.vm_set.list); |
203 | else |
204 | vma_prio_tree_remove(vma, &mapping->i_mmap); |
205 | flush_dcache_mmap_unlock(mapping); |
206 | } |
207 | |
208 | /* |
209 | * Unlink a file-based vm structure from its prio_tree, to hide |
210 | * vma from rmap and vmtruncate before freeing its page tables. |
211 | */ |
212 | void unlink_file_vma(struct vm_area_struct *vma) |
213 | { |
214 | struct file *file = vma->vm_file; |
215 | |
216 | if (file) { |
217 | struct address_space *mapping = file->f_mapping; |
218 | mutex_lock(&mapping->i_mmap_mutex); |
219 | __remove_shared_vm_struct(vma, file, mapping); |
220 | mutex_unlock(&mapping->i_mmap_mutex); |
221 | } |
222 | } |
223 | |
224 | /* |
225 | * Close a vm structure and free it, returning the next. |
226 | */ |
227 | static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) |
228 | { |
229 | struct vm_area_struct *next = vma->vm_next; |
230 | |
231 | might_sleep(); |
232 | if (vma->vm_ops && vma->vm_ops->close) |
233 | vma->vm_ops->close(vma); |
234 | if (vma->vm_file) { |
235 | fput(vma->vm_file); |
236 | if (vma->vm_flags & VM_EXECUTABLE) |
237 | removed_exe_file_vma(vma->vm_mm); |
238 | } |
239 | mpol_put(vma_policy(vma)); |
240 | kmem_cache_free(vm_area_cachep, vma); |
241 | return next; |
242 | } |
243 | |
244 | static unsigned long do_brk(unsigned long addr, unsigned long len); |
245 | |
246 | SYSCALL_DEFINE1(brk, unsigned long, brk) |
247 | { |
248 | unsigned long rlim, retval; |
249 | unsigned long newbrk, oldbrk; |
250 | struct mm_struct *mm = current->mm; |
251 | unsigned long min_brk; |
252 | |
253 | down_write(&mm->mmap_sem); |
254 | |
255 | #ifdef CONFIG_COMPAT_BRK |
256 | /* |
257 | * CONFIG_COMPAT_BRK can still be overridden by setting |
258 | * randomize_va_space to 2, which will still cause mm->start_brk |
259 | * to be arbitrarily shifted |
260 | */ |
261 | if (current->brk_randomized) |
262 | min_brk = mm->start_brk; |
263 | else |
264 | min_brk = mm->end_data; |
265 | #else |
266 | min_brk = mm->start_brk; |
267 | #endif |
268 | if (brk < min_brk) |
269 | goto out; |
270 | |
271 | /* |
272 | * Check against rlimit here. If this check is done later after the test |
273 | * of oldbrk with newbrk then it can escape the test and let the data |
274 | * segment grow beyond its set limit the in case where the limit is |
275 | * not page aligned -Ram Gupta |
276 | */ |
277 | rlim = rlimit(RLIMIT_DATA); |
278 | if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + |
279 | (mm->end_data - mm->start_data) > rlim) |
280 | goto out; |
281 | |
282 | newbrk = PAGE_ALIGN(brk); |
283 | oldbrk = PAGE_ALIGN(mm->brk); |
284 | if (oldbrk == newbrk) |
285 | goto set_brk; |
286 | |
287 | /* Always allow shrinking brk. */ |
288 | if (brk <= mm->brk) { |
289 | if (!do_munmap(mm, newbrk, oldbrk-newbrk)) |
290 | goto set_brk; |
291 | goto out; |
292 | } |
293 | |
294 | /* Check against existing mmap mappings. */ |
295 | if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) |
296 | goto out; |
297 | |
298 | /* Ok, looks good - let it rip. */ |
299 | if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) |
300 | goto out; |
301 | set_brk: |
302 | mm->brk = brk; |
303 | out: |
304 | retval = mm->brk; |
305 | up_write(&mm->mmap_sem); |
306 | return retval; |
307 | } |
308 | |
309 | #ifdef DEBUG_MM_RB |
310 | static int browse_rb(struct rb_root *root) |
311 | { |
312 | int i = 0, j; |
313 | struct rb_node *nd, *pn = NULL; |
314 | unsigned long prev = 0, pend = 0; |
315 | |
316 | for (nd = rb_first(root); nd; nd = rb_next(nd)) { |
317 | struct vm_area_struct *vma; |
318 | vma = rb_entry(nd, struct vm_area_struct, vm_rb); |
319 | if (vma->vm_start < prev) |
320 | printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; |
321 | if (vma->vm_start < pend) |
322 | printk("vm_start %lx pend %lx\n", vma->vm_start, pend); |
323 | if (vma->vm_start > vma->vm_end) |
324 | printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); |
325 | i++; |
326 | pn = nd; |
327 | prev = vma->vm_start; |
328 | pend = vma->vm_end; |
329 | } |
330 | j = 0; |
331 | for (nd = pn; nd; nd = rb_prev(nd)) { |
332 | j++; |
333 | } |
334 | if (i != j) |
335 | printk("backwards %d, forwards %d\n", j, i), i = 0; |
336 | return i; |
337 | } |
338 | |
339 | void validate_mm(struct mm_struct *mm) |
340 | { |
341 | int bug = 0; |
342 | int i = 0; |
343 | struct vm_area_struct *tmp = mm->mmap; |
344 | while (tmp) { |
345 | tmp = tmp->vm_next; |
346 | i++; |
347 | } |
348 | if (i != mm->map_count) |
349 | printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; |
350 | i = browse_rb(&mm->mm_rb); |
351 | if (i != mm->map_count) |
352 | printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; |
353 | BUG_ON(bug); |
354 | } |
355 | #else |
356 | #define validate_mm(mm) do { } while (0) |
357 | #endif |
358 | |
359 | static struct vm_area_struct * |
360 | find_vma_prepare(struct mm_struct *mm, unsigned long addr, |
361 | struct vm_area_struct **pprev, struct rb_node ***rb_link, |
362 | struct rb_node ** rb_parent) |
363 | { |
364 | struct vm_area_struct * vma; |
365 | struct rb_node ** __rb_link, * __rb_parent, * rb_prev; |
366 | |
367 | __rb_link = &mm->mm_rb.rb_node; |
368 | rb_prev = __rb_parent = NULL; |
369 | vma = NULL; |
370 | |
371 | while (*__rb_link) { |
372 | struct vm_area_struct *vma_tmp; |
373 | |
374 | __rb_parent = *__rb_link; |
375 | vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); |
376 | |
377 | if (vma_tmp->vm_end > addr) { |
378 | vma = vma_tmp; |
379 | if (vma_tmp->vm_start <= addr) |
380 | break; |
381 | __rb_link = &__rb_parent->rb_left; |
382 | } else { |
383 | rb_prev = __rb_parent; |
384 | __rb_link = &__rb_parent->rb_right; |
385 | } |
386 | } |
387 | |
388 | *pprev = NULL; |
389 | if (rb_prev) |
390 | *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); |
391 | *rb_link = __rb_link; |
392 | *rb_parent = __rb_parent; |
393 | return vma; |
394 | } |
395 | |
396 | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, |
397 | struct rb_node **rb_link, struct rb_node *rb_parent) |
398 | { |
399 | rb_link_node(&vma->vm_rb, rb_parent, rb_link); |
400 | rb_insert_color(&vma->vm_rb, &mm->mm_rb); |
401 | } |
402 | |
403 | static void __vma_link_file(struct vm_area_struct *vma) |
404 | { |
405 | struct file *file; |
406 | |
407 | file = vma->vm_file; |
408 | if (file) { |
409 | struct address_space *mapping = file->f_mapping; |
410 | |
411 | if (vma->vm_flags & VM_DENYWRITE) |
412 | atomic_dec(&file->f_path.dentry->d_inode->i_writecount); |
413 | if (vma->vm_flags & VM_SHARED) |
414 | mapping->i_mmap_writable++; |
415 | |
416 | flush_dcache_mmap_lock(mapping); |
417 | if (unlikely(vma->vm_flags & VM_NONLINEAR)) |
418 | vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); |
419 | else |
420 | vma_prio_tree_insert(vma, &mapping->i_mmap); |
421 | flush_dcache_mmap_unlock(mapping); |
422 | } |
423 | } |
424 | |
425 | static void |
426 | __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, |
427 | struct vm_area_struct *prev, struct rb_node **rb_link, |
428 | struct rb_node *rb_parent) |
429 | { |
430 | __vma_link_list(mm, vma, prev, rb_parent); |
431 | __vma_link_rb(mm, vma, rb_link, rb_parent); |
432 | } |
433 | |
434 | static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, |
435 | struct vm_area_struct *prev, struct rb_node **rb_link, |
436 | struct rb_node *rb_parent) |
437 | { |
438 | struct address_space *mapping = NULL; |
439 | |
440 | if (vma->vm_file) |
441 | mapping = vma->vm_file->f_mapping; |
442 | |
443 | if (mapping) |
444 | mutex_lock(&mapping->i_mmap_mutex); |
445 | |
446 | __vma_link(mm, vma, prev, rb_link, rb_parent); |
447 | __vma_link_file(vma); |
448 | |
449 | if (mapping) |
450 | mutex_unlock(&mapping->i_mmap_mutex); |
451 | |
452 | mm->map_count++; |
453 | validate_mm(mm); |
454 | } |
455 | |
456 | /* |
457 | * Helper for vma_adjust() in the split_vma insert case: insert a vma into the |
458 | * mm's list and rbtree. It has already been inserted into the prio_tree. |
459 | */ |
460 | static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
461 | { |
462 | struct vm_area_struct *__vma, *prev; |
463 | struct rb_node **rb_link, *rb_parent; |
464 | |
465 | __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); |
466 | BUG_ON(__vma && __vma->vm_start < vma->vm_end); |
467 | __vma_link(mm, vma, prev, rb_link, rb_parent); |
468 | mm->map_count++; |
469 | } |
470 | |
471 | static inline void |
472 | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, |
473 | struct vm_area_struct *prev) |
474 | { |
475 | struct vm_area_struct *next = vma->vm_next; |
476 | |
477 | prev->vm_next = next; |
478 | if (next) |
479 | next->vm_prev = prev; |
480 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
481 | if (mm->mmap_cache == vma) |
482 | mm->mmap_cache = prev; |
483 | } |
484 | |
485 | /* |
486 | * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that |
487 | * is already present in an i_mmap tree without adjusting the tree. |
488 | * The following helper function should be used when such adjustments |
489 | * are necessary. The "insert" vma (if any) is to be inserted |
490 | * before we drop the necessary locks. |
491 | */ |
492 | int vma_adjust(struct vm_area_struct *vma, unsigned long start, |
493 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) |
494 | { |
495 | struct mm_struct *mm = vma->vm_mm; |
496 | struct vm_area_struct *next = vma->vm_next; |
497 | struct vm_area_struct *importer = NULL; |
498 | struct address_space *mapping = NULL; |
499 | struct prio_tree_root *root = NULL; |
500 | struct anon_vma *anon_vma = NULL; |
501 | struct file *file = vma->vm_file; |
502 | long adjust_next = 0; |
503 | int remove_next = 0; |
504 | |
505 | if (next && !insert) { |
506 | struct vm_area_struct *exporter = NULL; |
507 | |
508 | if (end >= next->vm_end) { |
509 | /* |
510 | * vma expands, overlapping all the next, and |
511 | * perhaps the one after too (mprotect case 6). |
512 | */ |
513 | again: remove_next = 1 + (end > next->vm_end); |
514 | end = next->vm_end; |
515 | exporter = next; |
516 | importer = vma; |
517 | } else if (end > next->vm_start) { |
518 | /* |
519 | * vma expands, overlapping part of the next: |
520 | * mprotect case 5 shifting the boundary up. |
521 | */ |
522 | adjust_next = (end - next->vm_start) >> PAGE_SHIFT; |
523 | exporter = next; |
524 | importer = vma; |
525 | } else if (end < vma->vm_end) { |
526 | /* |
527 | * vma shrinks, and !insert tells it's not |
528 | * split_vma inserting another: so it must be |
529 | * mprotect case 4 shifting the boundary down. |
530 | */ |
531 | adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); |
532 | exporter = vma; |
533 | importer = next; |
534 | } |
535 | |
536 | /* |
537 | * Easily overlooked: when mprotect shifts the boundary, |
538 | * make sure the expanding vma has anon_vma set if the |
539 | * shrinking vma had, to cover any anon pages imported. |
540 | */ |
541 | if (exporter && exporter->anon_vma && !importer->anon_vma) { |
542 | if (anon_vma_clone(importer, exporter)) |
543 | return -ENOMEM; |
544 | importer->anon_vma = exporter->anon_vma; |
545 | } |
546 | } |
547 | |
548 | if (file) { |
549 | mapping = file->f_mapping; |
550 | if (!(vma->vm_flags & VM_NONLINEAR)) { |
551 | root = &mapping->i_mmap; |
552 | uprobe_munmap(vma, vma->vm_start, vma->vm_end); |
553 | |
554 | if (adjust_next) |
555 | uprobe_munmap(next, next->vm_start, |
556 | next->vm_end); |
557 | } |
558 | |
559 | mutex_lock(&mapping->i_mmap_mutex); |
560 | if (insert) { |
561 | /* |
562 | * Put into prio_tree now, so instantiated pages |
563 | * are visible to arm/parisc __flush_dcache_page |
564 | * throughout; but we cannot insert into address |
565 | * space until vma start or end is updated. |
566 | */ |
567 | __vma_link_file(insert); |
568 | } |
569 | } |
570 | |
571 | vma_adjust_trans_huge(vma, start, end, adjust_next); |
572 | |
573 | /* |
574 | * When changing only vma->vm_end, we don't really need anon_vma |
575 | * lock. This is a fairly rare case by itself, but the anon_vma |
576 | * lock may be shared between many sibling processes. Skipping |
577 | * the lock for brk adjustments makes a difference sometimes. |
578 | */ |
579 | if (vma->anon_vma && (importer || start != vma->vm_start)) { |
580 | anon_vma = vma->anon_vma; |
581 | anon_vma_lock(anon_vma); |
582 | } |
583 | |
584 | if (root) { |
585 | flush_dcache_mmap_lock(mapping); |
586 | vma_prio_tree_remove(vma, root); |
587 | if (adjust_next) |
588 | vma_prio_tree_remove(next, root); |
589 | } |
590 | |
591 | vma->vm_start = start; |
592 | vma->vm_end = end; |
593 | vma->vm_pgoff = pgoff; |
594 | if (adjust_next) { |
595 | next->vm_start += adjust_next << PAGE_SHIFT; |
596 | next->vm_pgoff += adjust_next; |
597 | } |
598 | |
599 | if (root) { |
600 | if (adjust_next) |
601 | vma_prio_tree_insert(next, root); |
602 | vma_prio_tree_insert(vma, root); |
603 | flush_dcache_mmap_unlock(mapping); |
604 | } |
605 | |
606 | if (remove_next) { |
607 | /* |
608 | * vma_merge has merged next into vma, and needs |
609 | * us to remove next before dropping the locks. |
610 | */ |
611 | __vma_unlink(mm, next, vma); |
612 | if (file) |
613 | __remove_shared_vm_struct(next, file, mapping); |
614 | } else if (insert) { |
615 | /* |
616 | * split_vma has split insert from vma, and needs |
617 | * us to insert it before dropping the locks |
618 | * (it may either follow vma or precede it). |
619 | */ |
620 | __insert_vm_struct(mm, insert); |
621 | } |
622 | |
623 | if (anon_vma) |
624 | anon_vma_unlock(anon_vma); |
625 | if (mapping) |
626 | mutex_unlock(&mapping->i_mmap_mutex); |
627 | |
628 | if (root) { |
629 | uprobe_mmap(vma); |
630 | |
631 | if (adjust_next) |
632 | uprobe_mmap(next); |
633 | } |
634 | |
635 | if (remove_next) { |
636 | if (file) { |
637 | uprobe_munmap(next, next->vm_start, next->vm_end); |
638 | fput(file); |
639 | if (next->vm_flags & VM_EXECUTABLE) |
640 | removed_exe_file_vma(mm); |
641 | } |
642 | if (next->anon_vma) |
643 | anon_vma_merge(vma, next); |
644 | mm->map_count--; |
645 | mpol_put(vma_policy(next)); |
646 | kmem_cache_free(vm_area_cachep, next); |
647 | /* |
648 | * In mprotect's case 6 (see comments on vma_merge), |
649 | * we must remove another next too. It would clutter |
650 | * up the code too much to do both in one go. |
651 | */ |
652 | if (remove_next == 2) { |
653 | next = vma->vm_next; |
654 | goto again; |
655 | } |
656 | } |
657 | if (insert && file) |
658 | uprobe_mmap(insert); |
659 | |
660 | validate_mm(mm); |
661 | |
662 | return 0; |
663 | } |
664 | |
665 | /* |
666 | * If the vma has a ->close operation then the driver probably needs to release |
667 | * per-vma resources, so we don't attempt to merge those. |
668 | */ |
669 | static inline int is_mergeable_vma(struct vm_area_struct *vma, |
670 | struct file *file, unsigned long vm_flags) |
671 | { |
672 | /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ |
673 | if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) |
674 | return 0; |
675 | if (vma->vm_file != file) |
676 | return 0; |
677 | if (vma->vm_ops && vma->vm_ops->close) |
678 | return 0; |
679 | return 1; |
680 | } |
681 | |
682 | static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, |
683 | struct anon_vma *anon_vma2, |
684 | struct vm_area_struct *vma) |
685 | { |
686 | /* |
687 | * The list_is_singular() test is to avoid merging VMA cloned from |
688 | * parents. This can improve scalability caused by anon_vma lock. |
689 | */ |
690 | if ((!anon_vma1 || !anon_vma2) && (!vma || |
691 | list_is_singular(&vma->anon_vma_chain))) |
692 | return 1; |
693 | return anon_vma1 == anon_vma2; |
694 | } |
695 | |
696 | /* |
697 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) |
698 | * in front of (at a lower virtual address and file offset than) the vma. |
699 | * |
700 | * We cannot merge two vmas if they have differently assigned (non-NULL) |
701 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. |
702 | * |
703 | * We don't check here for the merged mmap wrapping around the end of pagecache |
704 | * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which |
705 | * wrap, nor mmaps which cover the final page at index -1UL. |
706 | */ |
707 | static int |
708 | can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, |
709 | struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) |
710 | { |
711 | if (is_mergeable_vma(vma, file, vm_flags) && |
712 | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { |
713 | if (vma->vm_pgoff == vm_pgoff) |
714 | return 1; |
715 | } |
716 | return 0; |
717 | } |
718 | |
719 | /* |
720 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) |
721 | * beyond (at a higher virtual address and file offset than) the vma. |
722 | * |
723 | * We cannot merge two vmas if they have differently assigned (non-NULL) |
724 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. |
725 | */ |
726 | static int |
727 | can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, |
728 | struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) |
729 | { |
730 | if (is_mergeable_vma(vma, file, vm_flags) && |
731 | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { |
732 | pgoff_t vm_pglen; |
733 | vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
734 | if (vma->vm_pgoff + vm_pglen == vm_pgoff) |
735 | return 1; |
736 | } |
737 | return 0; |
738 | } |
739 | |
740 | /* |
741 | * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out |
742 | * whether that can be merged with its predecessor or its successor. |
743 | * Or both (it neatly fills a hole). |
744 | * |
745 | * In most cases - when called for mmap, brk or mremap - [addr,end) is |
746 | * certain not to be mapped by the time vma_merge is called; but when |
747 | * called for mprotect, it is certain to be already mapped (either at |
748 | * an offset within prev, or at the start of next), and the flags of |
749 | * this area are about to be changed to vm_flags - and the no-change |
750 | * case has already been eliminated. |
751 | * |
752 | * The following mprotect cases have to be considered, where AAAA is |
753 | * the area passed down from mprotect_fixup, never extending beyond one |
754 | * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: |
755 | * |
756 | * AAAA AAAA AAAA AAAA |
757 | * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX |
758 | * cannot merge might become might become might become |
759 | * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or |
760 | * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or |
761 | * mremap move: PPPPNNNNNNNN 8 |
762 | * AAAA |
763 | * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN |
764 | * might become case 1 below case 2 below case 3 below |
765 | * |
766 | * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: |
767 | * mprotect_fixup updates vm_flags & vm_page_prot on successful return. |
768 | */ |
769 | struct vm_area_struct *vma_merge(struct mm_struct *mm, |
770 | struct vm_area_struct *prev, unsigned long addr, |
771 | unsigned long end, unsigned long vm_flags, |
772 | struct anon_vma *anon_vma, struct file *file, |
773 | pgoff_t pgoff, struct mempolicy *policy) |
774 | { |
775 | pgoff_t pglen = (end - addr) >> PAGE_SHIFT; |
776 | struct vm_area_struct *area, *next; |
777 | int err; |
778 | |
779 | /* |
780 | * We later require that vma->vm_flags == vm_flags, |
781 | * so this tests vma->vm_flags & VM_SPECIAL, too. |
782 | */ |
783 | if (vm_flags & VM_SPECIAL) |
784 | return NULL; |
785 | |
786 | if (prev) |
787 | next = prev->vm_next; |
788 | else |
789 | next = mm->mmap; |
790 | area = next; |
791 | if (next && next->vm_end == end) /* cases 6, 7, 8 */ |
792 | next = next->vm_next; |
793 | |
794 | /* |
795 | * Can it merge with the predecessor? |
796 | */ |
797 | if (prev && prev->vm_end == addr && |
798 | mpol_equal(vma_policy(prev), policy) && |
799 | can_vma_merge_after(prev, vm_flags, |
800 | anon_vma, file, pgoff)) { |
801 | /* |
802 | * OK, it can. Can we now merge in the successor as well? |
803 | */ |
804 | if (next && end == next->vm_start && |
805 | mpol_equal(policy, vma_policy(next)) && |
806 | can_vma_merge_before(next, vm_flags, |
807 | anon_vma, file, pgoff+pglen) && |
808 | is_mergeable_anon_vma(prev->anon_vma, |
809 | next->anon_vma, NULL)) { |
810 | /* cases 1, 6 */ |
811 | err = vma_adjust(prev, prev->vm_start, |
812 | next->vm_end, prev->vm_pgoff, NULL); |
813 | } else /* cases 2, 5, 7 */ |
814 | err = vma_adjust(prev, prev->vm_start, |
815 | end, prev->vm_pgoff, NULL); |
816 | if (err) |
817 | return NULL; |
818 | khugepaged_enter_vma_merge(prev); |
819 | return prev; |
820 | } |
821 | |
822 | /* |
823 | * Can this new request be merged in front of next? |
824 | */ |
825 | if (next && end == next->vm_start && |
826 | mpol_equal(policy, vma_policy(next)) && |
827 | can_vma_merge_before(next, vm_flags, |
828 | anon_vma, file, pgoff+pglen)) { |
829 | if (prev && addr < prev->vm_end) /* case 4 */ |
830 | err = vma_adjust(prev, prev->vm_start, |
831 | addr, prev->vm_pgoff, NULL); |
832 | else /* cases 3, 8 */ |
833 | err = vma_adjust(area, addr, next->vm_end, |
834 | next->vm_pgoff - pglen, NULL); |
835 | if (err) |
836 | return NULL; |
837 | khugepaged_enter_vma_merge(area); |
838 | return area; |
839 | } |
840 | |
841 | return NULL; |
842 | } |
843 | |
844 | /* |
845 | * Rough compatbility check to quickly see if it's even worth looking |
846 | * at sharing an anon_vma. |
847 | * |
848 | * They need to have the same vm_file, and the flags can only differ |
849 | * in things that mprotect may change. |
850 | * |
851 | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that |
852 | * we can merge the two vma's. For example, we refuse to merge a vma if |
853 | * there is a vm_ops->close() function, because that indicates that the |
854 | * driver is doing some kind of reference counting. But that doesn't |
855 | * really matter for the anon_vma sharing case. |
856 | */ |
857 | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) |
858 | { |
859 | return a->vm_end == b->vm_start && |
860 | mpol_equal(vma_policy(a), vma_policy(b)) && |
861 | a->vm_file == b->vm_file && |
862 | !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && |
863 | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); |
864 | } |
865 | |
866 | /* |
867 | * Do some basic sanity checking to see if we can re-use the anon_vma |
868 | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be |
869 | * the same as 'old', the other will be the new one that is trying |
870 | * to share the anon_vma. |
871 | * |
872 | * NOTE! This runs with mm_sem held for reading, so it is possible that |
873 | * the anon_vma of 'old' is concurrently in the process of being set up |
874 | * by another page fault trying to merge _that_. But that's ok: if it |
875 | * is being set up, that automatically means that it will be a singleton |
876 | * acceptable for merging, so we can do all of this optimistically. But |
877 | * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. |
878 | * |
879 | * IOW: that the "list_is_singular()" test on the anon_vma_chain only |
880 | * matters for the 'stable anon_vma' case (ie the thing we want to avoid |
881 | * is to return an anon_vma that is "complex" due to having gone through |
882 | * a fork). |
883 | * |
884 | * We also make sure that the two vma's are compatible (adjacent, |
885 | * and with the same memory policies). That's all stable, even with just |
886 | * a read lock on the mm_sem. |
887 | */ |
888 | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) |
889 | { |
890 | if (anon_vma_compatible(a, b)) { |
891 | struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); |
892 | |
893 | if (anon_vma && list_is_singular(&old->anon_vma_chain)) |
894 | return anon_vma; |
895 | } |
896 | return NULL; |
897 | } |
898 | |
899 | /* |
900 | * find_mergeable_anon_vma is used by anon_vma_prepare, to check |
901 | * neighbouring vmas for a suitable anon_vma, before it goes off |
902 | * to allocate a new anon_vma. It checks because a repetitive |
903 | * sequence of mprotects and faults may otherwise lead to distinct |
904 | * anon_vmas being allocated, preventing vma merge in subsequent |
905 | * mprotect. |
906 | */ |
907 | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) |
908 | { |
909 | struct anon_vma *anon_vma; |
910 | struct vm_area_struct *near; |
911 | |
912 | near = vma->vm_next; |
913 | if (!near) |
914 | goto try_prev; |
915 | |
916 | anon_vma = reusable_anon_vma(near, vma, near); |
917 | if (anon_vma) |
918 | return anon_vma; |
919 | try_prev: |
920 | near = vma->vm_prev; |
921 | if (!near) |
922 | goto none; |
923 | |
924 | anon_vma = reusable_anon_vma(near, near, vma); |
925 | if (anon_vma) |
926 | return anon_vma; |
927 | none: |
928 | /* |
929 | * There's no absolute need to look only at touching neighbours: |
930 | * we could search further afield for "compatible" anon_vmas. |
931 | * But it would probably just be a waste of time searching, |
932 | * or lead to too many vmas hanging off the same anon_vma. |
933 | * We're trying to allow mprotect remerging later on, |
934 | * not trying to minimize memory used for anon_vmas. |
935 | */ |
936 | return NULL; |
937 | } |
938 | |
939 | #ifdef CONFIG_PROC_FS |
940 | void vm_stat_account(struct mm_struct *mm, unsigned long flags, |
941 | struct file *file, long pages) |
942 | { |
943 | const unsigned long stack_flags |
944 | = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); |
945 | |
946 | mm->total_vm += pages; |
947 | |
948 | if (file) { |
949 | mm->shared_vm += pages; |
950 | if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) |
951 | mm->exec_vm += pages; |
952 | } else if (flags & stack_flags) |
953 | mm->stack_vm += pages; |
954 | if (flags & (VM_RESERVED|VM_IO)) |
955 | mm->reserved_vm += pages; |
956 | } |
957 | #endif /* CONFIG_PROC_FS */ |
958 | |
959 | /* |
960 | * If a hint addr is less than mmap_min_addr change hint to be as |
961 | * low as possible but still greater than mmap_min_addr |
962 | */ |
963 | static inline unsigned long round_hint_to_min(unsigned long hint) |
964 | { |
965 | hint &= PAGE_MASK; |
966 | if (((void *)hint != NULL) && |
967 | (hint < mmap_min_addr)) |
968 | return PAGE_ALIGN(mmap_min_addr); |
969 | return hint; |
970 | } |
971 | |
972 | /* |
973 | * The caller must hold down_write(¤t->mm->mmap_sem). |
974 | */ |
975 | |
976 | unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, |
977 | unsigned long len, unsigned long prot, |
978 | unsigned long flags, unsigned long pgoff) |
979 | { |
980 | struct mm_struct * mm = current->mm; |
981 | struct inode *inode; |
982 | vm_flags_t vm_flags; |
983 | |
984 | /* |
985 | * Does the application expect PROT_READ to imply PROT_EXEC? |
986 | * |
987 | * (the exception is when the underlying filesystem is noexec |
988 | * mounted, in which case we dont add PROT_EXEC.) |
989 | */ |
990 | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) |
991 | if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) |
992 | prot |= PROT_EXEC; |
993 | |
994 | if (!len) |
995 | return -EINVAL; |
996 | |
997 | if (!(flags & MAP_FIXED)) |
998 | addr = round_hint_to_min(addr); |
999 | |
1000 | /* Careful about overflows.. */ |
1001 | len = PAGE_ALIGN(len); |
1002 | if (!len) |
1003 | return -ENOMEM; |
1004 | |
1005 | /* offset overflow? */ |
1006 | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) |
1007 | return -EOVERFLOW; |
1008 | |
1009 | /* Too many mappings? */ |
1010 | if (mm->map_count > sysctl_max_map_count) |
1011 | return -ENOMEM; |
1012 | |
1013 | /* Obtain the address to map to. we verify (or select) it and ensure |
1014 | * that it represents a valid section of the address space. |
1015 | */ |
1016 | addr = get_unmapped_area(file, addr, len, pgoff, flags); |
1017 | if (addr & ~PAGE_MASK) |
1018 | return addr; |
1019 | |
1020 | /* Do simple checking here so the lower-level routines won't have |
1021 | * to. we assume access permissions have been handled by the open |
1022 | * of the memory object, so we don't do any here. |
1023 | */ |
1024 | vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | |
1025 | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; |
1026 | |
1027 | if (flags & MAP_LOCKED) |
1028 | if (!can_do_mlock()) |
1029 | return -EPERM; |
1030 | |
1031 | /* mlock MCL_FUTURE? */ |
1032 | if (vm_flags & VM_LOCKED) { |
1033 | unsigned long locked, lock_limit; |
1034 | locked = len >> PAGE_SHIFT; |
1035 | locked += mm->locked_vm; |
1036 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1037 | lock_limit >>= PAGE_SHIFT; |
1038 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) |
1039 | return -EAGAIN; |
1040 | } |
1041 | |
1042 | inode = file ? file->f_path.dentry->d_inode : NULL; |
1043 | |
1044 | if (file) { |
1045 | switch (flags & MAP_TYPE) { |
1046 | case MAP_SHARED: |
1047 | if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) |
1048 | return -EACCES; |
1049 | |
1050 | /* |
1051 | * Make sure we don't allow writing to an append-only |
1052 | * file.. |
1053 | */ |
1054 | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) |
1055 | return -EACCES; |
1056 | |
1057 | /* |
1058 | * Make sure there are no mandatory locks on the file. |
1059 | */ |
1060 | if (locks_verify_locked(inode)) |
1061 | return -EAGAIN; |
1062 | |
1063 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
1064 | if (!(file->f_mode & FMODE_WRITE)) |
1065 | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); |
1066 | |
1067 | /* fall through */ |
1068 | case MAP_PRIVATE: |
1069 | if (!(file->f_mode & FMODE_READ)) |
1070 | return -EACCES; |
1071 | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { |
1072 | if (vm_flags & VM_EXEC) |
1073 | return -EPERM; |
1074 | vm_flags &= ~VM_MAYEXEC; |
1075 | } |
1076 | |
1077 | if (!file->f_op || !file->f_op->mmap) |
1078 | return -ENODEV; |
1079 | break; |
1080 | |
1081 | default: |
1082 | return -EINVAL; |
1083 | } |
1084 | } else { |
1085 | switch (flags & MAP_TYPE) { |
1086 | case MAP_SHARED: |
1087 | /* |
1088 | * Ignore pgoff. |
1089 | */ |
1090 | pgoff = 0; |
1091 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
1092 | break; |
1093 | case MAP_PRIVATE: |
1094 | /* |
1095 | * Set pgoff according to addr for anon_vma. |
1096 | */ |
1097 | pgoff = addr >> PAGE_SHIFT; |
1098 | break; |
1099 | default: |
1100 | return -EINVAL; |
1101 | } |
1102 | } |
1103 | |
1104 | return mmap_region(file, addr, len, flags, vm_flags, pgoff); |
1105 | } |
1106 | |
1107 | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, |
1108 | unsigned long, prot, unsigned long, flags, |
1109 | unsigned long, fd, unsigned long, pgoff) |
1110 | { |
1111 | struct file *file = NULL; |
1112 | unsigned long retval = -EBADF; |
1113 | |
1114 | if (!(flags & MAP_ANONYMOUS)) { |
1115 | audit_mmap_fd(fd, flags); |
1116 | if (unlikely(flags & MAP_HUGETLB)) |
1117 | return -EINVAL; |
1118 | file = fget(fd); |
1119 | if (!file) |
1120 | goto out; |
1121 | } else if (flags & MAP_HUGETLB) { |
1122 | struct user_struct *user = NULL; |
1123 | /* |
1124 | * VM_NORESERVE is used because the reservations will be |
1125 | * taken when vm_ops->mmap() is called |
1126 | * A dummy user value is used because we are not locking |
1127 | * memory so no accounting is necessary |
1128 | */ |
1129 | file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len, |
1130 | VM_NORESERVE, &user, |
1131 | HUGETLB_ANONHUGE_INODE); |
1132 | if (IS_ERR(file)) |
1133 | return PTR_ERR(file); |
1134 | } |
1135 | |
1136 | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); |
1137 | |
1138 | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); |
1139 | if (file) |
1140 | fput(file); |
1141 | out: |
1142 | return retval; |
1143 | } |
1144 | |
1145 | #ifdef __ARCH_WANT_SYS_OLD_MMAP |
1146 | struct mmap_arg_struct { |
1147 | unsigned long addr; |
1148 | unsigned long len; |
1149 | unsigned long prot; |
1150 | unsigned long flags; |
1151 | unsigned long fd; |
1152 | unsigned long offset; |
1153 | }; |
1154 | |
1155 | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) |
1156 | { |
1157 | struct mmap_arg_struct a; |
1158 | |
1159 | if (copy_from_user(&a, arg, sizeof(a))) |
1160 | return -EFAULT; |
1161 | if (a.offset & ~PAGE_MASK) |
1162 | return -EINVAL; |
1163 | |
1164 | return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, |
1165 | a.offset >> PAGE_SHIFT); |
1166 | } |
1167 | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ |
1168 | |
1169 | /* |
1170 | * Some shared mappigns will want the pages marked read-only |
1171 | * to track write events. If so, we'll downgrade vm_page_prot |
1172 | * to the private version (using protection_map[] without the |
1173 | * VM_SHARED bit). |
1174 | */ |
1175 | int vma_wants_writenotify(struct vm_area_struct *vma) |
1176 | { |
1177 | vm_flags_t vm_flags = vma->vm_flags; |
1178 | |
1179 | /* If it was private or non-writable, the write bit is already clear */ |
1180 | if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) |
1181 | return 0; |
1182 | |
1183 | /* The backer wishes to know when pages are first written to? */ |
1184 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) |
1185 | return 1; |
1186 | |
1187 | /* The open routine did something to the protections already? */ |
1188 | if (pgprot_val(vma->vm_page_prot) != |
1189 | pgprot_val(vm_get_page_prot(vm_flags))) |
1190 | return 0; |
1191 | |
1192 | /* Specialty mapping? */ |
1193 | if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) |
1194 | return 0; |
1195 | |
1196 | /* Can the mapping track the dirty pages? */ |
1197 | return vma->vm_file && vma->vm_file->f_mapping && |
1198 | mapping_cap_account_dirty(vma->vm_file->f_mapping); |
1199 | } |
1200 | |
1201 | /* |
1202 | * We account for memory if it's a private writeable mapping, |
1203 | * not hugepages and VM_NORESERVE wasn't set. |
1204 | */ |
1205 | static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) |
1206 | { |
1207 | /* |
1208 | * hugetlb has its own accounting separate from the core VM |
1209 | * VM_HUGETLB may not be set yet so we cannot check for that flag. |
1210 | */ |
1211 | if (file && is_file_hugepages(file)) |
1212 | return 0; |
1213 | |
1214 | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; |
1215 | } |
1216 | |
1217 | unsigned long mmap_region(struct file *file, unsigned long addr, |
1218 | unsigned long len, unsigned long flags, |
1219 | vm_flags_t vm_flags, unsigned long pgoff) |
1220 | { |
1221 | struct mm_struct *mm = current->mm; |
1222 | struct vm_area_struct *vma, *prev; |
1223 | int correct_wcount = 0; |
1224 | int error; |
1225 | struct rb_node **rb_link, *rb_parent; |
1226 | unsigned long charged = 0; |
1227 | struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; |
1228 | |
1229 | /* Clear old maps */ |
1230 | error = -ENOMEM; |
1231 | munmap_back: |
1232 | vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); |
1233 | if (vma && vma->vm_start < addr + len) { |
1234 | if (do_munmap(mm, addr, len)) |
1235 | return -ENOMEM; |
1236 | goto munmap_back; |
1237 | } |
1238 | |
1239 | /* Check against address space limit. */ |
1240 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) |
1241 | return -ENOMEM; |
1242 | |
1243 | /* |
1244 | * Set 'VM_NORESERVE' if we should not account for the |
1245 | * memory use of this mapping. |
1246 | */ |
1247 | if ((flags & MAP_NORESERVE)) { |
1248 | /* We honor MAP_NORESERVE if allowed to overcommit */ |
1249 | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) |
1250 | vm_flags |= VM_NORESERVE; |
1251 | |
1252 | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ |
1253 | if (file && is_file_hugepages(file)) |
1254 | vm_flags |= VM_NORESERVE; |
1255 | } |
1256 | |
1257 | /* |
1258 | * Private writable mapping: check memory availability |
1259 | */ |
1260 | if (accountable_mapping(file, vm_flags)) { |
1261 | charged = len >> PAGE_SHIFT; |
1262 | if (security_vm_enough_memory_mm(mm, charged)) |
1263 | return -ENOMEM; |
1264 | vm_flags |= VM_ACCOUNT; |
1265 | } |
1266 | |
1267 | /* |
1268 | * Can we just expand an old mapping? |
1269 | */ |
1270 | vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); |
1271 | if (vma) |
1272 | goto out; |
1273 | |
1274 | /* |
1275 | * Determine the object being mapped and call the appropriate |
1276 | * specific mapper. the address has already been validated, but |
1277 | * not unmapped, but the maps are removed from the list. |
1278 | */ |
1279 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1280 | if (!vma) { |
1281 | error = -ENOMEM; |
1282 | goto unacct_error; |
1283 | } |
1284 | |
1285 | vma->vm_mm = mm; |
1286 | vma->vm_start = addr; |
1287 | vma->vm_end = addr + len; |
1288 | vma->vm_flags = vm_flags; |
1289 | vma->vm_page_prot = vm_get_page_prot(vm_flags); |
1290 | vma->vm_pgoff = pgoff; |
1291 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1292 | |
1293 | error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ |
1294 | |
1295 | if (file) { |
1296 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
1297 | goto free_vma; |
1298 | if (vm_flags & VM_DENYWRITE) { |
1299 | error = deny_write_access(file); |
1300 | if (error) |
1301 | goto free_vma; |
1302 | correct_wcount = 1; |
1303 | } |
1304 | vma->vm_file = file; |
1305 | get_file(file); |
1306 | error = file->f_op->mmap(file, vma); |
1307 | if (error) |
1308 | goto unmap_and_free_vma; |
1309 | if (vm_flags & VM_EXECUTABLE) |
1310 | added_exe_file_vma(mm); |
1311 | |
1312 | /* Can addr have changed?? |
1313 | * |
1314 | * Answer: Yes, several device drivers can do it in their |
1315 | * f_op->mmap method. -DaveM |
1316 | */ |
1317 | addr = vma->vm_start; |
1318 | pgoff = vma->vm_pgoff; |
1319 | vm_flags = vma->vm_flags; |
1320 | } else if (vm_flags & VM_SHARED) { |
1321 | if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) |
1322 | goto free_vma; |
1323 | error = shmem_zero_setup(vma); |
1324 | if (error) |
1325 | goto free_vma; |
1326 | } |
1327 | |
1328 | if (vma_wants_writenotify(vma)) { |
1329 | pgprot_t pprot = vma->vm_page_prot; |
1330 | |
1331 | /* Can vma->vm_page_prot have changed?? |
1332 | * |
1333 | * Answer: Yes, drivers may have changed it in their |
1334 | * f_op->mmap method. |
1335 | * |
1336 | * Ensures that vmas marked as uncached stay that way. |
1337 | */ |
1338 | vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); |
1339 | if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) |
1340 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
1341 | } |
1342 | |
1343 | vma_link(mm, vma, prev, rb_link, rb_parent); |
1344 | file = vma->vm_file; |
1345 | |
1346 | /* Once vma denies write, undo our temporary denial count */ |
1347 | if (correct_wcount) |
1348 | atomic_inc(&inode->i_writecount); |
1349 | out: |
1350 | perf_event_mmap(vma); |
1351 | |
1352 | vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); |
1353 | if (vm_flags & VM_LOCKED) { |
1354 | if (!mlock_vma_pages_range(vma, addr, addr + len)) |
1355 | mm->locked_vm += (len >> PAGE_SHIFT); |
1356 | } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) |
1357 | make_pages_present(addr, addr + len); |
1358 | |
1359 | if (file && uprobe_mmap(vma)) |
1360 | /* matching probes but cannot insert */ |
1361 | goto unmap_and_free_vma; |
1362 | |
1363 | return addr; |
1364 | |
1365 | unmap_and_free_vma: |
1366 | if (correct_wcount) |
1367 | atomic_inc(&inode->i_writecount); |
1368 | vma->vm_file = NULL; |
1369 | fput(file); |
1370 | |
1371 | /* Undo any partial mapping done by a device driver. */ |
1372 | unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); |
1373 | charged = 0; |
1374 | free_vma: |
1375 | kmem_cache_free(vm_area_cachep, vma); |
1376 | unacct_error: |
1377 | if (charged) |
1378 | vm_unacct_memory(charged); |
1379 | return error; |
1380 | } |
1381 | |
1382 | /* Get an address range which is currently unmapped. |
1383 | * For shmat() with addr=0. |
1384 | * |
1385 | * Ugly calling convention alert: |
1386 | * Return value with the low bits set means error value, |
1387 | * ie |
1388 | * if (ret & ~PAGE_MASK) |
1389 | * error = ret; |
1390 | * |
1391 | * This function "knows" that -ENOMEM has the bits set. |
1392 | */ |
1393 | #ifndef HAVE_ARCH_UNMAPPED_AREA |
1394 | unsigned long |
1395 | arch_get_unmapped_area(struct file *filp, unsigned long addr, |
1396 | unsigned long len, unsigned long pgoff, unsigned long flags) |
1397 | { |
1398 | struct mm_struct *mm = current->mm; |
1399 | struct vm_area_struct *vma; |
1400 | unsigned long start_addr; |
1401 | |
1402 | if (len > TASK_SIZE) |
1403 | return -ENOMEM; |
1404 | |
1405 | if (flags & MAP_FIXED) |
1406 | return addr; |
1407 | |
1408 | if (addr) { |
1409 | addr = PAGE_ALIGN(addr); |
1410 | vma = find_vma(mm, addr); |
1411 | if (TASK_SIZE - len >= addr && |
1412 | (!vma || addr + len <= vma->vm_start)) |
1413 | return addr; |
1414 | } |
1415 | if (len > mm->cached_hole_size) { |
1416 | start_addr = addr = mm->free_area_cache; |
1417 | } else { |
1418 | start_addr = addr = TASK_UNMAPPED_BASE; |
1419 | mm->cached_hole_size = 0; |
1420 | } |
1421 | |
1422 | full_search: |
1423 | for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { |
1424 | /* At this point: (!vma || addr < vma->vm_end). */ |
1425 | if (TASK_SIZE - len < addr) { |
1426 | /* |
1427 | * Start a new search - just in case we missed |
1428 | * some holes. |
1429 | */ |
1430 | if (start_addr != TASK_UNMAPPED_BASE) { |
1431 | addr = TASK_UNMAPPED_BASE; |
1432 | start_addr = addr; |
1433 | mm->cached_hole_size = 0; |
1434 | goto full_search; |
1435 | } |
1436 | return -ENOMEM; |
1437 | } |
1438 | if (!vma || addr + len <= vma->vm_start) { |
1439 | /* |
1440 | * Remember the place where we stopped the search: |
1441 | */ |
1442 | mm->free_area_cache = addr + len; |
1443 | return addr; |
1444 | } |
1445 | if (addr + mm->cached_hole_size < vma->vm_start) |
1446 | mm->cached_hole_size = vma->vm_start - addr; |
1447 | addr = vma->vm_end; |
1448 | } |
1449 | } |
1450 | #endif |
1451 | |
1452 | void arch_unmap_area(struct mm_struct *mm, unsigned long addr) |
1453 | { |
1454 | /* |
1455 | * Is this a new hole at the lowest possible address? |
1456 | */ |
1457 | if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) |
1458 | mm->free_area_cache = addr; |
1459 | } |
1460 | |
1461 | /* |
1462 | * This mmap-allocator allocates new areas top-down from below the |
1463 | * stack's low limit (the base): |
1464 | */ |
1465 | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN |
1466 | unsigned long |
1467 | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, |
1468 | const unsigned long len, const unsigned long pgoff, |
1469 | const unsigned long flags) |
1470 | { |
1471 | struct vm_area_struct *vma; |
1472 | struct mm_struct *mm = current->mm; |
1473 | unsigned long addr = addr0, start_addr; |
1474 | |
1475 | /* requested length too big for entire address space */ |
1476 | if (len > TASK_SIZE) |
1477 | return -ENOMEM; |
1478 | |
1479 | if (flags & MAP_FIXED) |
1480 | return addr; |
1481 | |
1482 | /* requesting a specific address */ |
1483 | if (addr) { |
1484 | addr = PAGE_ALIGN(addr); |
1485 | vma = find_vma(mm, addr); |
1486 | if (TASK_SIZE - len >= addr && |
1487 | (!vma || addr + len <= vma->vm_start)) |
1488 | return addr; |
1489 | } |
1490 | |
1491 | /* check if free_area_cache is useful for us */ |
1492 | if (len <= mm->cached_hole_size) { |
1493 | mm->cached_hole_size = 0; |
1494 | mm->free_area_cache = mm->mmap_base; |
1495 | } |
1496 | |
1497 | try_again: |
1498 | /* either no address requested or can't fit in requested address hole */ |
1499 | start_addr = addr = mm->free_area_cache; |
1500 | |
1501 | if (addr < len) |
1502 | goto fail; |
1503 | |
1504 | addr -= len; |
1505 | do { |
1506 | /* |
1507 | * Lookup failure means no vma is above this address, |
1508 | * else if new region fits below vma->vm_start, |
1509 | * return with success: |
1510 | */ |
1511 | vma = find_vma(mm, addr); |
1512 | if (!vma || addr+len <= vma->vm_start) |
1513 | /* remember the address as a hint for next time */ |
1514 | return (mm->free_area_cache = addr); |
1515 | |
1516 | /* remember the largest hole we saw so far */ |
1517 | if (addr + mm->cached_hole_size < vma->vm_start) |
1518 | mm->cached_hole_size = vma->vm_start - addr; |
1519 | |
1520 | /* try just below the current vma->vm_start */ |
1521 | addr = vma->vm_start-len; |
1522 | } while (len < vma->vm_start); |
1523 | |
1524 | fail: |
1525 | /* |
1526 | * if hint left us with no space for the requested |
1527 | * mapping then try again: |
1528 | * |
1529 | * Note: this is different with the case of bottomup |
1530 | * which does the fully line-search, but we use find_vma |
1531 | * here that causes some holes skipped. |
1532 | */ |
1533 | if (start_addr != mm->mmap_base) { |
1534 | mm->free_area_cache = mm->mmap_base; |
1535 | mm->cached_hole_size = 0; |
1536 | goto try_again; |
1537 | } |
1538 | |
1539 | /* |
1540 | * A failed mmap() very likely causes application failure, |
1541 | * so fall back to the bottom-up function here. This scenario |
1542 | * can happen with large stack limits and large mmap() |
1543 | * allocations. |
1544 | */ |
1545 | mm->cached_hole_size = ~0UL; |
1546 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
1547 | addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); |
1548 | /* |
1549 | * Restore the topdown base: |
1550 | */ |
1551 | mm->free_area_cache = mm->mmap_base; |
1552 | mm->cached_hole_size = ~0UL; |
1553 | |
1554 | return addr; |
1555 | } |
1556 | #endif |
1557 | |
1558 | void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) |
1559 | { |
1560 | /* |
1561 | * Is this a new hole at the highest possible address? |
1562 | */ |
1563 | if (addr > mm->free_area_cache) |
1564 | mm->free_area_cache = addr; |
1565 | |
1566 | /* dont allow allocations above current base */ |
1567 | if (mm->free_area_cache > mm->mmap_base) |
1568 | mm->free_area_cache = mm->mmap_base; |
1569 | } |
1570 | |
1571 | unsigned long |
1572 | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
1573 | unsigned long pgoff, unsigned long flags) |
1574 | { |
1575 | unsigned long (*get_area)(struct file *, unsigned long, |
1576 | unsigned long, unsigned long, unsigned long); |
1577 | |
1578 | unsigned long error = arch_mmap_check(addr, len, flags); |
1579 | if (error) |
1580 | return error; |
1581 | |
1582 | /* Careful about overflows.. */ |
1583 | if (len > TASK_SIZE) |
1584 | return -ENOMEM; |
1585 | |
1586 | get_area = current->mm->get_unmapped_area; |
1587 | if (file && file->f_op && file->f_op->get_unmapped_area) |
1588 | get_area = file->f_op->get_unmapped_area; |
1589 | addr = get_area(file, addr, len, pgoff, flags); |
1590 | if (IS_ERR_VALUE(addr)) |
1591 | return addr; |
1592 | |
1593 | if (addr > TASK_SIZE - len) |
1594 | return -ENOMEM; |
1595 | if (addr & ~PAGE_MASK) |
1596 | return -EINVAL; |
1597 | |
1598 | addr = arch_rebalance_pgtables(addr, len); |
1599 | error = security_mmap_addr(addr); |
1600 | return error ? error : addr; |
1601 | } |
1602 | |
1603 | EXPORT_SYMBOL(get_unmapped_area); |
1604 | |
1605 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
1606 | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) |
1607 | { |
1608 | struct vm_area_struct *vma = NULL; |
1609 | |
1610 | if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */ |
1611 | return NULL; |
1612 | |
1613 | /* Check the cache first. */ |
1614 | /* (Cache hit rate is typically around 35%.) */ |
1615 | vma = mm->mmap_cache; |
1616 | if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { |
1617 | struct rb_node *rb_node; |
1618 | |
1619 | rb_node = mm->mm_rb.rb_node; |
1620 | vma = NULL; |
1621 | |
1622 | while (rb_node) { |
1623 | struct vm_area_struct *vma_tmp; |
1624 | |
1625 | vma_tmp = rb_entry(rb_node, |
1626 | struct vm_area_struct, vm_rb); |
1627 | |
1628 | if (vma_tmp->vm_end > addr) { |
1629 | vma = vma_tmp; |
1630 | if (vma_tmp->vm_start <= addr) |
1631 | break; |
1632 | rb_node = rb_node->rb_left; |
1633 | } else |
1634 | rb_node = rb_node->rb_right; |
1635 | } |
1636 | if (vma) |
1637 | mm->mmap_cache = vma; |
1638 | } |
1639 | return vma; |
1640 | } |
1641 | |
1642 | EXPORT_SYMBOL(find_vma); |
1643 | |
1644 | /* |
1645 | * Same as find_vma, but also return a pointer to the previous VMA in *pprev. |
1646 | */ |
1647 | struct vm_area_struct * |
1648 | find_vma_prev(struct mm_struct *mm, unsigned long addr, |
1649 | struct vm_area_struct **pprev) |
1650 | { |
1651 | struct vm_area_struct *vma; |
1652 | |
1653 | vma = find_vma(mm, addr); |
1654 | if (vma) { |
1655 | *pprev = vma->vm_prev; |
1656 | } else { |
1657 | struct rb_node *rb_node = mm->mm_rb.rb_node; |
1658 | *pprev = NULL; |
1659 | while (rb_node) { |
1660 | *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); |
1661 | rb_node = rb_node->rb_right; |
1662 | } |
1663 | } |
1664 | return vma; |
1665 | } |
1666 | |
1667 | /* |
1668 | * Verify that the stack growth is acceptable and |
1669 | * update accounting. This is shared with both the |
1670 | * grow-up and grow-down cases. |
1671 | */ |
1672 | static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) |
1673 | { |
1674 | struct mm_struct *mm = vma->vm_mm; |
1675 | struct rlimit *rlim = current->signal->rlim; |
1676 | unsigned long new_start; |
1677 | |
1678 | /* address space limit tests */ |
1679 | if (!may_expand_vm(mm, grow)) |
1680 | return -ENOMEM; |
1681 | |
1682 | /* Stack limit test */ |
1683 | if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) |
1684 | return -ENOMEM; |
1685 | |
1686 | /* mlock limit tests */ |
1687 | if (vma->vm_flags & VM_LOCKED) { |
1688 | unsigned long locked; |
1689 | unsigned long limit; |
1690 | locked = mm->locked_vm + grow; |
1691 | limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); |
1692 | limit >>= PAGE_SHIFT; |
1693 | if (locked > limit && !capable(CAP_IPC_LOCK)) |
1694 | return -ENOMEM; |
1695 | } |
1696 | |
1697 | /* Check to ensure the stack will not grow into a hugetlb-only region */ |
1698 | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : |
1699 | vma->vm_end - size; |
1700 | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) |
1701 | return -EFAULT; |
1702 | |
1703 | /* |
1704 | * Overcommit.. This must be the final test, as it will |
1705 | * update security statistics. |
1706 | */ |
1707 | if (security_vm_enough_memory_mm(mm, grow)) |
1708 | return -ENOMEM; |
1709 | |
1710 | /* Ok, everything looks good - let it rip */ |
1711 | if (vma->vm_flags & VM_LOCKED) |
1712 | mm->locked_vm += grow; |
1713 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); |
1714 | return 0; |
1715 | } |
1716 | |
1717 | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) |
1718 | /* |
1719 | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. |
1720 | * vma is the last one with address > vma->vm_end. Have to extend vma. |
1721 | */ |
1722 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
1723 | { |
1724 | int error; |
1725 | |
1726 | if (!(vma->vm_flags & VM_GROWSUP)) |
1727 | return -EFAULT; |
1728 | |
1729 | /* |
1730 | * We must make sure the anon_vma is allocated |
1731 | * so that the anon_vma locking is not a noop. |
1732 | */ |
1733 | if (unlikely(anon_vma_prepare(vma))) |
1734 | return -ENOMEM; |
1735 | vma_lock_anon_vma(vma); |
1736 | |
1737 | /* |
1738 | * vma->vm_start/vm_end cannot change under us because the caller |
1739 | * is required to hold the mmap_sem in read mode. We need the |
1740 | * anon_vma lock to serialize against concurrent expand_stacks. |
1741 | * Also guard against wrapping around to address 0. |
1742 | */ |
1743 | if (address < PAGE_ALIGN(address+4)) |
1744 | address = PAGE_ALIGN(address+4); |
1745 | else { |
1746 | vma_unlock_anon_vma(vma); |
1747 | return -ENOMEM; |
1748 | } |
1749 | error = 0; |
1750 | |
1751 | /* Somebody else might have raced and expanded it already */ |
1752 | if (address > vma->vm_end) { |
1753 | unsigned long size, grow; |
1754 | |
1755 | size = address - vma->vm_start; |
1756 | grow = (address - vma->vm_end) >> PAGE_SHIFT; |
1757 | |
1758 | error = -ENOMEM; |
1759 | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { |
1760 | error = acct_stack_growth(vma, size, grow); |
1761 | if (!error) { |
1762 | vma->vm_end = address; |
1763 | perf_event_mmap(vma); |
1764 | } |
1765 | } |
1766 | } |
1767 | vma_unlock_anon_vma(vma); |
1768 | khugepaged_enter_vma_merge(vma); |
1769 | return error; |
1770 | } |
1771 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ |
1772 | |
1773 | /* |
1774 | * vma is the first one with address < vma->vm_start. Have to extend vma. |
1775 | */ |
1776 | int expand_downwards(struct vm_area_struct *vma, |
1777 | unsigned long address) |
1778 | { |
1779 | int error; |
1780 | |
1781 | /* |
1782 | * We must make sure the anon_vma is allocated |
1783 | * so that the anon_vma locking is not a noop. |
1784 | */ |
1785 | if (unlikely(anon_vma_prepare(vma))) |
1786 | return -ENOMEM; |
1787 | |
1788 | address &= PAGE_MASK; |
1789 | error = security_mmap_addr(address); |
1790 | if (error) |
1791 | return error; |
1792 | |
1793 | vma_lock_anon_vma(vma); |
1794 | |
1795 | /* |
1796 | * vma->vm_start/vm_end cannot change under us because the caller |
1797 | * is required to hold the mmap_sem in read mode. We need the |
1798 | * anon_vma lock to serialize against concurrent expand_stacks. |
1799 | */ |
1800 | |
1801 | /* Somebody else might have raced and expanded it already */ |
1802 | if (address < vma->vm_start) { |
1803 | unsigned long size, grow; |
1804 | |
1805 | size = vma->vm_end - address; |
1806 | grow = (vma->vm_start - address) >> PAGE_SHIFT; |
1807 | |
1808 | error = -ENOMEM; |
1809 | if (grow <= vma->vm_pgoff) { |
1810 | error = acct_stack_growth(vma, size, grow); |
1811 | if (!error) { |
1812 | vma->vm_start = address; |
1813 | vma->vm_pgoff -= grow; |
1814 | perf_event_mmap(vma); |
1815 | } |
1816 | } |
1817 | } |
1818 | vma_unlock_anon_vma(vma); |
1819 | khugepaged_enter_vma_merge(vma); |
1820 | return error; |
1821 | } |
1822 | |
1823 | #ifdef CONFIG_STACK_GROWSUP |
1824 | int expand_stack(struct vm_area_struct *vma, unsigned long address) |
1825 | { |
1826 | return expand_upwards(vma, address); |
1827 | } |
1828 | |
1829 | struct vm_area_struct * |
1830 | find_extend_vma(struct mm_struct *mm, unsigned long addr) |
1831 | { |
1832 | struct vm_area_struct *vma, *prev; |
1833 | |
1834 | addr &= PAGE_MASK; |
1835 | vma = find_vma_prev(mm, addr, &prev); |
1836 | if (vma && (vma->vm_start <= addr)) |
1837 | return vma; |
1838 | if (!prev || expand_stack(prev, addr)) |
1839 | return NULL; |
1840 | if (prev->vm_flags & VM_LOCKED) { |
1841 | mlock_vma_pages_range(prev, addr, prev->vm_end); |
1842 | } |
1843 | return prev; |
1844 | } |
1845 | #else |
1846 | int expand_stack(struct vm_area_struct *vma, unsigned long address) |
1847 | { |
1848 | return expand_downwards(vma, address); |
1849 | } |
1850 | |
1851 | struct vm_area_struct * |
1852 | find_extend_vma(struct mm_struct * mm, unsigned long addr) |
1853 | { |
1854 | struct vm_area_struct * vma; |
1855 | unsigned long start; |
1856 | |
1857 | addr &= PAGE_MASK; |
1858 | vma = find_vma(mm,addr); |
1859 | if (!vma) |
1860 | return NULL; |
1861 | if (vma->vm_start <= addr) |
1862 | return vma; |
1863 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
1864 | return NULL; |
1865 | start = vma->vm_start; |
1866 | if (expand_stack(vma, addr)) |
1867 | return NULL; |
1868 | if (vma->vm_flags & VM_LOCKED) { |
1869 | mlock_vma_pages_range(vma, addr, start); |
1870 | } |
1871 | return vma; |
1872 | } |
1873 | #endif |
1874 | |
1875 | /* |
1876 | * Ok - we have the memory areas we should free on the vma list, |
1877 | * so release them, and do the vma updates. |
1878 | * |
1879 | * Called with the mm semaphore held. |
1880 | */ |
1881 | static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) |
1882 | { |
1883 | unsigned long nr_accounted = 0; |
1884 | |
1885 | /* Update high watermark before we lower total_vm */ |
1886 | update_hiwater_vm(mm); |
1887 | do { |
1888 | long nrpages = vma_pages(vma); |
1889 | |
1890 | if (vma->vm_flags & VM_ACCOUNT) |
1891 | nr_accounted += nrpages; |
1892 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); |
1893 | vma = remove_vma(vma); |
1894 | } while (vma); |
1895 | vm_unacct_memory(nr_accounted); |
1896 | validate_mm(mm); |
1897 | } |
1898 | |
1899 | /* |
1900 | * Get rid of page table information in the indicated region. |
1901 | * |
1902 | * Called with the mm semaphore held. |
1903 | */ |
1904 | static void unmap_region(struct mm_struct *mm, |
1905 | struct vm_area_struct *vma, struct vm_area_struct *prev, |
1906 | unsigned long start, unsigned long end) |
1907 | { |
1908 | struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; |
1909 | struct mmu_gather tlb; |
1910 | |
1911 | lru_add_drain(); |
1912 | tlb_gather_mmu(&tlb, mm, 0); |
1913 | update_hiwater_rss(mm); |
1914 | unmap_vmas(&tlb, vma, start, end); |
1915 | free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, |
1916 | next ? next->vm_start : 0); |
1917 | tlb_finish_mmu(&tlb, start, end); |
1918 | } |
1919 | |
1920 | /* |
1921 | * Create a list of vma's touched by the unmap, removing them from the mm's |
1922 | * vma list as we go.. |
1923 | */ |
1924 | static void |
1925 | detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, |
1926 | struct vm_area_struct *prev, unsigned long end) |
1927 | { |
1928 | struct vm_area_struct **insertion_point; |
1929 | struct vm_area_struct *tail_vma = NULL; |
1930 | unsigned long addr; |
1931 | |
1932 | insertion_point = (prev ? &prev->vm_next : &mm->mmap); |
1933 | vma->vm_prev = NULL; |
1934 | do { |
1935 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
1936 | mm->map_count--; |
1937 | tail_vma = vma; |
1938 | vma = vma->vm_next; |
1939 | } while (vma && vma->vm_start < end); |
1940 | *insertion_point = vma; |
1941 | if (vma) |
1942 | vma->vm_prev = prev; |
1943 | tail_vma->vm_next = NULL; |
1944 | if (mm->unmap_area == arch_unmap_area) |
1945 | addr = prev ? prev->vm_end : mm->mmap_base; |
1946 | else |
1947 | addr = vma ? vma->vm_start : mm->mmap_base; |
1948 | mm->unmap_area(mm, addr); |
1949 | mm->mmap_cache = NULL; /* Kill the cache. */ |
1950 | } |
1951 | |
1952 | /* |
1953 | * __split_vma() bypasses sysctl_max_map_count checking. We use this on the |
1954 | * munmap path where it doesn't make sense to fail. |
1955 | */ |
1956 | static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, |
1957 | unsigned long addr, int new_below) |
1958 | { |
1959 | struct mempolicy *pol; |
1960 | struct vm_area_struct *new; |
1961 | int err = -ENOMEM; |
1962 | |
1963 | if (is_vm_hugetlb_page(vma) && (addr & |
1964 | ~(huge_page_mask(hstate_vma(vma))))) |
1965 | return -EINVAL; |
1966 | |
1967 | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
1968 | if (!new) |
1969 | goto out_err; |
1970 | |
1971 | /* most fields are the same, copy all, and then fixup */ |
1972 | *new = *vma; |
1973 | |
1974 | INIT_LIST_HEAD(&new->anon_vma_chain); |
1975 | |
1976 | if (new_below) |
1977 | new->vm_end = addr; |
1978 | else { |
1979 | new->vm_start = addr; |
1980 | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); |
1981 | } |
1982 | |
1983 | pol = mpol_dup(vma_policy(vma)); |
1984 | if (IS_ERR(pol)) { |
1985 | err = PTR_ERR(pol); |
1986 | goto out_free_vma; |
1987 | } |
1988 | vma_set_policy(new, pol); |
1989 | |
1990 | if (anon_vma_clone(new, vma)) |
1991 | goto out_free_mpol; |
1992 | |
1993 | if (new->vm_file) { |
1994 | get_file(new->vm_file); |
1995 | if (vma->vm_flags & VM_EXECUTABLE) |
1996 | added_exe_file_vma(mm); |
1997 | } |
1998 | |
1999 | if (new->vm_ops && new->vm_ops->open) |
2000 | new->vm_ops->open(new); |
2001 | |
2002 | if (new_below) |
2003 | err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + |
2004 | ((addr - new->vm_start) >> PAGE_SHIFT), new); |
2005 | else |
2006 | err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); |
2007 | |
2008 | /* Success. */ |
2009 | if (!err) |
2010 | return 0; |
2011 | |
2012 | /* Clean everything up if vma_adjust failed. */ |
2013 | if (new->vm_ops && new->vm_ops->close) |
2014 | new->vm_ops->close(new); |
2015 | if (new->vm_file) { |
2016 | if (vma->vm_flags & VM_EXECUTABLE) |
2017 | removed_exe_file_vma(mm); |
2018 | fput(new->vm_file); |
2019 | } |
2020 | unlink_anon_vmas(new); |
2021 | out_free_mpol: |
2022 | mpol_put(pol); |
2023 | out_free_vma: |
2024 | kmem_cache_free(vm_area_cachep, new); |
2025 | out_err: |
2026 | return err; |
2027 | } |
2028 | |
2029 | /* |
2030 | * Split a vma into two pieces at address 'addr', a new vma is allocated |
2031 | * either for the first part or the tail. |
2032 | */ |
2033 | int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, |
2034 | unsigned long addr, int new_below) |
2035 | { |
2036 | if (mm->map_count >= sysctl_max_map_count) |
2037 | return -ENOMEM; |
2038 | |
2039 | return __split_vma(mm, vma, addr, new_below); |
2040 | } |
2041 | |
2042 | /* Munmap is split into 2 main parts -- this part which finds |
2043 | * what needs doing, and the areas themselves, which do the |
2044 | * work. This now handles partial unmappings. |
2045 | * Jeremy Fitzhardinge <jeremy@goop.org> |
2046 | */ |
2047 | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) |
2048 | { |
2049 | unsigned long end; |
2050 | struct vm_area_struct *vma, *prev, *last; |
2051 | |
2052 | if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) |
2053 | return -EINVAL; |
2054 | |
2055 | if ((len = PAGE_ALIGN(len)) == 0) |
2056 | return -EINVAL; |
2057 | |
2058 | /* Find the first overlapping VMA */ |
2059 | vma = find_vma(mm, start); |
2060 | if (!vma) |
2061 | return 0; |
2062 | prev = vma->vm_prev; |
2063 | /* we have start < vma->vm_end */ |
2064 | |
2065 | /* if it doesn't overlap, we have nothing.. */ |
2066 | end = start + len; |
2067 | if (vma->vm_start >= end) |
2068 | return 0; |
2069 | |
2070 | /* |
2071 | * If we need to split any vma, do it now to save pain later. |
2072 | * |
2073 | * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially |
2074 | * unmapped vm_area_struct will remain in use: so lower split_vma |
2075 | * places tmp vma above, and higher split_vma places tmp vma below. |
2076 | */ |
2077 | if (start > vma->vm_start) { |
2078 | int error; |
2079 | |
2080 | /* |
2081 | * Make sure that map_count on return from munmap() will |
2082 | * not exceed its limit; but let map_count go just above |
2083 | * its limit temporarily, to help free resources as expected. |
2084 | */ |
2085 | if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) |
2086 | return -ENOMEM; |
2087 | |
2088 | error = __split_vma(mm, vma, start, 0); |
2089 | if (error) |
2090 | return error; |
2091 | prev = vma; |
2092 | } |
2093 | |
2094 | /* Does it split the last one? */ |
2095 | last = find_vma(mm, end); |
2096 | if (last && end > last->vm_start) { |
2097 | int error = __split_vma(mm, last, end, 1); |
2098 | if (error) |
2099 | return error; |
2100 | } |
2101 | vma = prev? prev->vm_next: mm->mmap; |
2102 | |
2103 | /* |
2104 | * unlock any mlock()ed ranges before detaching vmas |
2105 | */ |
2106 | if (mm->locked_vm) { |
2107 | struct vm_area_struct *tmp = vma; |
2108 | while (tmp && tmp->vm_start < end) { |
2109 | if (tmp->vm_flags & VM_LOCKED) { |
2110 | mm->locked_vm -= vma_pages(tmp); |
2111 | munlock_vma_pages_all(tmp); |
2112 | } |
2113 | tmp = tmp->vm_next; |
2114 | } |
2115 | } |
2116 | |
2117 | /* |
2118 | * Remove the vma's, and unmap the actual pages |
2119 | */ |
2120 | detach_vmas_to_be_unmapped(mm, vma, prev, end); |
2121 | unmap_region(mm, vma, prev, start, end); |
2122 | |
2123 | /* Fix up all other VM information */ |
2124 | remove_vma_list(mm, vma); |
2125 | |
2126 | return 0; |
2127 | } |
2128 | |
2129 | int vm_munmap(unsigned long start, size_t len) |
2130 | { |
2131 | int ret; |
2132 | struct mm_struct *mm = current->mm; |
2133 | |
2134 | down_write(&mm->mmap_sem); |
2135 | ret = do_munmap(mm, start, len); |
2136 | up_write(&mm->mmap_sem); |
2137 | return ret; |
2138 | } |
2139 | EXPORT_SYMBOL(vm_munmap); |
2140 | |
2141 | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) |
2142 | { |
2143 | profile_munmap(addr); |
2144 | return vm_munmap(addr, len); |
2145 | } |
2146 | |
2147 | static inline void verify_mm_writelocked(struct mm_struct *mm) |
2148 | { |
2149 | #ifdef CONFIG_DEBUG_VM |
2150 | if (unlikely(down_read_trylock(&mm->mmap_sem))) { |
2151 | WARN_ON(1); |
2152 | up_read(&mm->mmap_sem); |
2153 | } |
2154 | #endif |
2155 | } |
2156 | |
2157 | /* |
2158 | * this is really a simplified "do_mmap". it only handles |
2159 | * anonymous maps. eventually we may be able to do some |
2160 | * brk-specific accounting here. |
2161 | */ |
2162 | static unsigned long do_brk(unsigned long addr, unsigned long len) |
2163 | { |
2164 | struct mm_struct * mm = current->mm; |
2165 | struct vm_area_struct * vma, * prev; |
2166 | unsigned long flags; |
2167 | struct rb_node ** rb_link, * rb_parent; |
2168 | pgoff_t pgoff = addr >> PAGE_SHIFT; |
2169 | int error; |
2170 | |
2171 | len = PAGE_ALIGN(len); |
2172 | if (!len) |
2173 | return addr; |
2174 | |
2175 | flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; |
2176 | |
2177 | error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); |
2178 | if (error & ~PAGE_MASK) |
2179 | return error; |
2180 | |
2181 | /* |
2182 | * mlock MCL_FUTURE? |
2183 | */ |
2184 | if (mm->def_flags & VM_LOCKED) { |
2185 | unsigned long locked, lock_limit; |
2186 | locked = len >> PAGE_SHIFT; |
2187 | locked += mm->locked_vm; |
2188 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
2189 | lock_limit >>= PAGE_SHIFT; |
2190 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) |
2191 | return -EAGAIN; |
2192 | } |
2193 | |
2194 | /* |
2195 | * mm->mmap_sem is required to protect against another thread |
2196 | * changing the mappings in case we sleep. |
2197 | */ |
2198 | verify_mm_writelocked(mm); |
2199 | |
2200 | /* |
2201 | * Clear old maps. this also does some error checking for us |
2202 | */ |
2203 | munmap_back: |
2204 | vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); |
2205 | if (vma && vma->vm_start < addr + len) { |
2206 | if (do_munmap(mm, addr, len)) |
2207 | return -ENOMEM; |
2208 | goto munmap_back; |
2209 | } |
2210 | |
2211 | /* Check against address space limits *after* clearing old maps... */ |
2212 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) |
2213 | return -ENOMEM; |
2214 | |
2215 | if (mm->map_count > sysctl_max_map_count) |
2216 | return -ENOMEM; |
2217 | |
2218 | if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) |
2219 | return -ENOMEM; |
2220 | |
2221 | /* Can we just expand an old private anonymous mapping? */ |
2222 | vma = vma_merge(mm, prev, addr, addr + len, flags, |
2223 | NULL, NULL, pgoff, NULL); |
2224 | if (vma) |
2225 | goto out; |
2226 | |
2227 | /* |
2228 | * create a vma struct for an anonymous mapping |
2229 | */ |
2230 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
2231 | if (!vma) { |
2232 | vm_unacct_memory(len >> PAGE_SHIFT); |
2233 | return -ENOMEM; |
2234 | } |
2235 | |
2236 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
2237 | vma->vm_mm = mm; |
2238 | vma->vm_start = addr; |
2239 | vma->vm_end = addr + len; |
2240 | vma->vm_pgoff = pgoff; |
2241 | vma->vm_flags = flags; |
2242 | vma->vm_page_prot = vm_get_page_prot(flags); |
2243 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2244 | out: |
2245 | perf_event_mmap(vma); |
2246 | mm->total_vm += len >> PAGE_SHIFT; |
2247 | if (flags & VM_LOCKED) { |
2248 | if (!mlock_vma_pages_range(vma, addr, addr + len)) |
2249 | mm->locked_vm += (len >> PAGE_SHIFT); |
2250 | } |
2251 | return addr; |
2252 | } |
2253 | |
2254 | unsigned long vm_brk(unsigned long addr, unsigned long len) |
2255 | { |
2256 | struct mm_struct *mm = current->mm; |
2257 | unsigned long ret; |
2258 | |
2259 | down_write(&mm->mmap_sem); |
2260 | ret = do_brk(addr, len); |
2261 | up_write(&mm->mmap_sem); |
2262 | return ret; |
2263 | } |
2264 | EXPORT_SYMBOL(vm_brk); |
2265 | |
2266 | /* Release all mmaps. */ |
2267 | void exit_mmap(struct mm_struct *mm) |
2268 | { |
2269 | struct mmu_gather tlb; |
2270 | struct vm_area_struct *vma; |
2271 | unsigned long nr_accounted = 0; |
2272 | |
2273 | /* mm's last user has gone, and its about to be pulled down */ |
2274 | mmu_notifier_release(mm); |
2275 | |
2276 | if (mm->locked_vm) { |
2277 | vma = mm->mmap; |
2278 | while (vma) { |
2279 | if (vma->vm_flags & VM_LOCKED) |
2280 | munlock_vma_pages_all(vma); |
2281 | vma = vma->vm_next; |
2282 | } |
2283 | } |
2284 | |
2285 | arch_exit_mmap(mm); |
2286 | |
2287 | vma = mm->mmap; |
2288 | if (!vma) /* Can happen if dup_mmap() received an OOM */ |
2289 | return; |
2290 | |
2291 | lru_add_drain(); |
2292 | flush_cache_mm(mm); |
2293 | tlb_gather_mmu(&tlb, mm, 1); |
2294 | /* update_hiwater_rss(mm) here? but nobody should be looking */ |
2295 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ |
2296 | unmap_vmas(&tlb, vma, 0, -1); |
2297 | |
2298 | free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); |
2299 | tlb_finish_mmu(&tlb, 0, -1); |
2300 | |
2301 | /* |
2302 | * Walk the list again, actually closing and freeing it, |
2303 | * with preemption enabled, without holding any MM locks. |
2304 | */ |
2305 | while (vma) { |
2306 | if (vma->vm_flags & VM_ACCOUNT) |
2307 | nr_accounted += vma_pages(vma); |
2308 | vma = remove_vma(vma); |
2309 | } |
2310 | vm_unacct_memory(nr_accounted); |
2311 | |
2312 | BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); |
2313 | } |
2314 | |
2315 | /* Insert vm structure into process list sorted by address |
2316 | * and into the inode's i_mmap tree. If vm_file is non-NULL |
2317 | * then i_mmap_mutex is taken here. |
2318 | */ |
2319 | int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) |
2320 | { |
2321 | struct vm_area_struct * __vma, * prev; |
2322 | struct rb_node ** rb_link, * rb_parent; |
2323 | |
2324 | /* |
2325 | * The vm_pgoff of a purely anonymous vma should be irrelevant |
2326 | * until its first write fault, when page's anon_vma and index |
2327 | * are set. But now set the vm_pgoff it will almost certainly |
2328 | * end up with (unless mremap moves it elsewhere before that |
2329 | * first wfault), so /proc/pid/maps tells a consistent story. |
2330 | * |
2331 | * By setting it to reflect the virtual start address of the |
2332 | * vma, merges and splits can happen in a seamless way, just |
2333 | * using the existing file pgoff checks and manipulations. |
2334 | * Similarly in do_mmap_pgoff and in do_brk. |
2335 | */ |
2336 | if (!vma->vm_file) { |
2337 | BUG_ON(vma->anon_vma); |
2338 | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; |
2339 | } |
2340 | __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); |
2341 | if (__vma && __vma->vm_start < vma->vm_end) |
2342 | return -ENOMEM; |
2343 | if ((vma->vm_flags & VM_ACCOUNT) && |
2344 | security_vm_enough_memory_mm(mm, vma_pages(vma))) |
2345 | return -ENOMEM; |
2346 | |
2347 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2348 | return 0; |
2349 | } |
2350 | |
2351 | /* |
2352 | * Copy the vma structure to a new location in the same mm, |
2353 | * prior to moving page table entries, to effect an mremap move. |
2354 | */ |
2355 | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, |
2356 | unsigned long addr, unsigned long len, pgoff_t pgoff) |
2357 | { |
2358 | struct vm_area_struct *vma = *vmap; |
2359 | unsigned long vma_start = vma->vm_start; |
2360 | struct mm_struct *mm = vma->vm_mm; |
2361 | struct vm_area_struct *new_vma, *prev; |
2362 | struct rb_node **rb_link, *rb_parent; |
2363 | struct mempolicy *pol; |
2364 | bool faulted_in_anon_vma = true; |
2365 | |
2366 | /* |
2367 | * If anonymous vma has not yet been faulted, update new pgoff |
2368 | * to match new location, to increase its chance of merging. |
2369 | */ |
2370 | if (unlikely(!vma->vm_file && !vma->anon_vma)) { |
2371 | pgoff = addr >> PAGE_SHIFT; |
2372 | faulted_in_anon_vma = false; |
2373 | } |
2374 | |
2375 | find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); |
2376 | new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, |
2377 | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); |
2378 | if (new_vma) { |
2379 | /* |
2380 | * Source vma may have been merged into new_vma |
2381 | */ |
2382 | if (unlikely(vma_start >= new_vma->vm_start && |
2383 | vma_start < new_vma->vm_end)) { |
2384 | /* |
2385 | * The only way we can get a vma_merge with |
2386 | * self during an mremap is if the vma hasn't |
2387 | * been faulted in yet and we were allowed to |
2388 | * reset the dst vma->vm_pgoff to the |
2389 | * destination address of the mremap to allow |
2390 | * the merge to happen. mremap must change the |
2391 | * vm_pgoff linearity between src and dst vmas |
2392 | * (in turn preventing a vma_merge) to be |
2393 | * safe. It is only safe to keep the vm_pgoff |
2394 | * linear if there are no pages mapped yet. |
2395 | */ |
2396 | VM_BUG_ON(faulted_in_anon_vma); |
2397 | *vmap = new_vma; |
2398 | } else |
2399 | anon_vma_moveto_tail(new_vma); |
2400 | } else { |
2401 | new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
2402 | if (new_vma) { |
2403 | *new_vma = *vma; |
2404 | pol = mpol_dup(vma_policy(vma)); |
2405 | if (IS_ERR(pol)) |
2406 | goto out_free_vma; |
2407 | INIT_LIST_HEAD(&new_vma->anon_vma_chain); |
2408 | if (anon_vma_clone(new_vma, vma)) |
2409 | goto out_free_mempol; |
2410 | vma_set_policy(new_vma, pol); |
2411 | new_vma->vm_start = addr; |
2412 | new_vma->vm_end = addr + len; |
2413 | new_vma->vm_pgoff = pgoff; |
2414 | if (new_vma->vm_file) { |
2415 | get_file(new_vma->vm_file); |
2416 | |
2417 | if (vma->vm_flags & VM_EXECUTABLE) |
2418 | added_exe_file_vma(mm); |
2419 | } |
2420 | if (new_vma->vm_ops && new_vma->vm_ops->open) |
2421 | new_vma->vm_ops->open(new_vma); |
2422 | vma_link(mm, new_vma, prev, rb_link, rb_parent); |
2423 | } |
2424 | } |
2425 | return new_vma; |
2426 | |
2427 | out_free_mempol: |
2428 | mpol_put(pol); |
2429 | out_free_vma: |
2430 | kmem_cache_free(vm_area_cachep, new_vma); |
2431 | return NULL; |
2432 | } |
2433 | |
2434 | /* |
2435 | * Return true if the calling process may expand its vm space by the passed |
2436 | * number of pages |
2437 | */ |
2438 | int may_expand_vm(struct mm_struct *mm, unsigned long npages) |
2439 | { |
2440 | unsigned long cur = mm->total_vm; /* pages */ |
2441 | unsigned long lim; |
2442 | |
2443 | lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; |
2444 | |
2445 | if (cur + npages > lim) |
2446 | return 0; |
2447 | return 1; |
2448 | } |
2449 | |
2450 | |
2451 | static int special_mapping_fault(struct vm_area_struct *vma, |
2452 | struct vm_fault *vmf) |
2453 | { |
2454 | pgoff_t pgoff; |
2455 | struct page **pages; |
2456 | |
2457 | /* |
2458 | * special mappings have no vm_file, and in that case, the mm |
2459 | * uses vm_pgoff internally. So we have to subtract it from here. |
2460 | * We are allowed to do this because we are the mm; do not copy |
2461 | * this code into drivers! |
2462 | */ |
2463 | pgoff = vmf->pgoff - vma->vm_pgoff; |
2464 | |
2465 | for (pages = vma->vm_private_data; pgoff && *pages; ++pages) |
2466 | pgoff--; |
2467 | |
2468 | if (*pages) { |
2469 | struct page *page = *pages; |
2470 | get_page(page); |
2471 | vmf->page = page; |
2472 | return 0; |
2473 | } |
2474 | |
2475 | return VM_FAULT_SIGBUS; |
2476 | } |
2477 | |
2478 | /* |
2479 | * Having a close hook prevents vma merging regardless of flags. |
2480 | */ |
2481 | static void special_mapping_close(struct vm_area_struct *vma) |
2482 | { |
2483 | } |
2484 | |
2485 | static const struct vm_operations_struct special_mapping_vmops = { |
2486 | .close = special_mapping_close, |
2487 | .fault = special_mapping_fault, |
2488 | }; |
2489 | |
2490 | /* |
2491 | * Called with mm->mmap_sem held for writing. |
2492 | * Insert a new vma covering the given region, with the given flags. |
2493 | * Its pages are supplied by the given array of struct page *. |
2494 | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. |
2495 | * The region past the last page supplied will always produce SIGBUS. |
2496 | * The array pointer and the pages it points to are assumed to stay alive |
2497 | * for as long as this mapping might exist. |
2498 | */ |
2499 | int install_special_mapping(struct mm_struct *mm, |
2500 | unsigned long addr, unsigned long len, |
2501 | unsigned long vm_flags, struct page **pages) |
2502 | { |
2503 | int ret; |
2504 | struct vm_area_struct *vma; |
2505 | |
2506 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
2507 | if (unlikely(vma == NULL)) |
2508 | return -ENOMEM; |
2509 | |
2510 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
2511 | vma->vm_mm = mm; |
2512 | vma->vm_start = addr; |
2513 | vma->vm_end = addr + len; |
2514 | |
2515 | vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; |
2516 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
2517 | |
2518 | vma->vm_ops = &special_mapping_vmops; |
2519 | vma->vm_private_data = pages; |
2520 | |
2521 | ret = insert_vm_struct(mm, vma); |
2522 | if (ret) |
2523 | goto out; |
2524 | |
2525 | mm->total_vm += len >> PAGE_SHIFT; |
2526 | |
2527 | perf_event_mmap(vma); |
2528 | |
2529 | return 0; |
2530 | |
2531 | out: |
2532 | kmem_cache_free(vm_area_cachep, vma); |
2533 | return ret; |
2534 | } |
2535 | |
2536 | static DEFINE_MUTEX(mm_all_locks_mutex); |
2537 | |
2538 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
2539 | { |
2540 | if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { |
2541 | /* |
2542 | * The LSB of head.next can't change from under us |
2543 | * because we hold the mm_all_locks_mutex. |
2544 | */ |
2545 | mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem); |
2546 | /* |
2547 | * We can safely modify head.next after taking the |
2548 | * anon_vma->root->mutex. If some other vma in this mm shares |
2549 | * the same anon_vma we won't take it again. |
2550 | * |
2551 | * No need of atomic instructions here, head.next |
2552 | * can't change from under us thanks to the |
2553 | * anon_vma->root->mutex. |
2554 | */ |
2555 | if (__test_and_set_bit(0, (unsigned long *) |
2556 | &anon_vma->root->head.next)) |
2557 | BUG(); |
2558 | } |
2559 | } |
2560 | |
2561 | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) |
2562 | { |
2563 | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { |
2564 | /* |
2565 | * AS_MM_ALL_LOCKS can't change from under us because |
2566 | * we hold the mm_all_locks_mutex. |
2567 | * |
2568 | * Operations on ->flags have to be atomic because |
2569 | * even if AS_MM_ALL_LOCKS is stable thanks to the |
2570 | * mm_all_locks_mutex, there may be other cpus |
2571 | * changing other bitflags in parallel to us. |
2572 | */ |
2573 | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) |
2574 | BUG(); |
2575 | mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem); |
2576 | } |
2577 | } |
2578 | |
2579 | /* |
2580 | * This operation locks against the VM for all pte/vma/mm related |
2581 | * operations that could ever happen on a certain mm. This includes |
2582 | * vmtruncate, try_to_unmap, and all page faults. |
2583 | * |
2584 | * The caller must take the mmap_sem in write mode before calling |
2585 | * mm_take_all_locks(). The caller isn't allowed to release the |
2586 | * mmap_sem until mm_drop_all_locks() returns. |
2587 | * |
2588 | * mmap_sem in write mode is required in order to block all operations |
2589 | * that could modify pagetables and free pages without need of |
2590 | * altering the vma layout (for example populate_range() with |
2591 | * nonlinear vmas). It's also needed in write mode to avoid new |
2592 | * anon_vmas to be associated with existing vmas. |
2593 | * |
2594 | * A single task can't take more than one mm_take_all_locks() in a row |
2595 | * or it would deadlock. |
2596 | * |
2597 | * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in |
2598 | * mapping->flags avoid to take the same lock twice, if more than one |
2599 | * vma in this mm is backed by the same anon_vma or address_space. |
2600 | * |
2601 | * We can take all the locks in random order because the VM code |
2602 | * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never |
2603 | * takes more than one of them in a row. Secondly we're protected |
2604 | * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. |
2605 | * |
2606 | * mm_take_all_locks() and mm_drop_all_locks are expensive operations |
2607 | * that may have to take thousand of locks. |
2608 | * |
2609 | * mm_take_all_locks() can fail if it's interrupted by signals. |
2610 | */ |
2611 | int mm_take_all_locks(struct mm_struct *mm) |
2612 | { |
2613 | struct vm_area_struct *vma; |
2614 | struct anon_vma_chain *avc; |
2615 | |
2616 | BUG_ON(down_read_trylock(&mm->mmap_sem)); |
2617 | |
2618 | mutex_lock(&mm_all_locks_mutex); |
2619 | |
2620 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
2621 | if (signal_pending(current)) |
2622 | goto out_unlock; |
2623 | if (vma->vm_file && vma->vm_file->f_mapping) |
2624 | vm_lock_mapping(mm, vma->vm_file->f_mapping); |
2625 | } |
2626 | |
2627 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
2628 | if (signal_pending(current)) |
2629 | goto out_unlock; |
2630 | if (vma->anon_vma) |
2631 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
2632 | vm_lock_anon_vma(mm, avc->anon_vma); |
2633 | } |
2634 | |
2635 | return 0; |
2636 | |
2637 | out_unlock: |
2638 | mm_drop_all_locks(mm); |
2639 | return -EINTR; |
2640 | } |
2641 | |
2642 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) |
2643 | { |
2644 | if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { |
2645 | /* |
2646 | * The LSB of head.next can't change to 0 from under |
2647 | * us because we hold the mm_all_locks_mutex. |
2648 | * |
2649 | * We must however clear the bitflag before unlocking |
2650 | * the vma so the users using the anon_vma->head will |
2651 | * never see our bitflag. |
2652 | * |
2653 | * No need of atomic instructions here, head.next |
2654 | * can't change from under us until we release the |
2655 | * anon_vma->root->mutex. |
2656 | */ |
2657 | if (!__test_and_clear_bit(0, (unsigned long *) |
2658 | &anon_vma->root->head.next)) |
2659 | BUG(); |
2660 | anon_vma_unlock(anon_vma); |
2661 | } |
2662 | } |
2663 | |
2664 | static void vm_unlock_mapping(struct address_space *mapping) |
2665 | { |
2666 | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { |
2667 | /* |
2668 | * AS_MM_ALL_LOCKS can't change to 0 from under us |
2669 | * because we hold the mm_all_locks_mutex. |
2670 | */ |
2671 | mutex_unlock(&mapping->i_mmap_mutex); |
2672 | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, |
2673 | &mapping->flags)) |
2674 | BUG(); |
2675 | } |
2676 | } |
2677 | |
2678 | /* |
2679 | * The mmap_sem cannot be released by the caller until |
2680 | * mm_drop_all_locks() returns. |
2681 | */ |
2682 | void mm_drop_all_locks(struct mm_struct *mm) |
2683 | { |
2684 | struct vm_area_struct *vma; |
2685 | struct anon_vma_chain *avc; |
2686 | |
2687 | BUG_ON(down_read_trylock(&mm->mmap_sem)); |
2688 | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); |
2689 | |
2690 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
2691 | if (vma->anon_vma) |
2692 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
2693 | vm_unlock_anon_vma(avc->anon_vma); |
2694 | if (vma->vm_file && vma->vm_file->f_mapping) |
2695 | vm_unlock_mapping(vma->vm_file->f_mapping); |
2696 | } |
2697 | |
2698 | mutex_unlock(&mm_all_locks_mutex); |
2699 | } |
2700 | |
2701 | /* |
2702 | * initialise the VMA slab |
2703 | */ |
2704 | void __init mmap_init(void) |
2705 | { |
2706 | int ret; |
2707 | |
2708 | ret = percpu_counter_init(&vm_committed_as, 0); |
2709 | VM_BUG_ON(ret); |
2710 | } |
2711 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9