Root/
1 | /* |
2 | * linux/mm/nommu.c |
3 | * |
4 | * Replacement code for mm functions to support CPU's that don't |
5 | * have any form of memory management unit (thus no virtual memory). |
6 | * |
7 | * See Documentation/nommu-mmap.txt |
8 | * |
9 | * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> |
10 | * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> |
11 | * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> |
12 | * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> |
13 | * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> |
14 | */ |
15 | |
16 | #include <linux/export.h> |
17 | #include <linux/mm.h> |
18 | #include <linux/mman.h> |
19 | #include <linux/swap.h> |
20 | #include <linux/file.h> |
21 | #include <linux/highmem.h> |
22 | #include <linux/pagemap.h> |
23 | #include <linux/slab.h> |
24 | #include <linux/vmalloc.h> |
25 | #include <linux/blkdev.h> |
26 | #include <linux/backing-dev.h> |
27 | #include <linux/mount.h> |
28 | #include <linux/personality.h> |
29 | #include <linux/security.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/audit.h> |
32 | |
33 | #include <asm/uaccess.h> |
34 | #include <asm/tlb.h> |
35 | #include <asm/tlbflush.h> |
36 | #include <asm/mmu_context.h> |
37 | #include "internal.h" |
38 | |
39 | #if 0 |
40 | #define kenter(FMT, ...) \ |
41 | printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) |
42 | #define kleave(FMT, ...) \ |
43 | printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) |
44 | #define kdebug(FMT, ...) \ |
45 | printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) |
46 | #else |
47 | #define kenter(FMT, ...) \ |
48 | no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) |
49 | #define kleave(FMT, ...) \ |
50 | no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) |
51 | #define kdebug(FMT, ...) \ |
52 | no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) |
53 | #endif |
54 | |
55 | void *high_memory; |
56 | struct page *mem_map; |
57 | unsigned long max_mapnr; |
58 | unsigned long num_physpages; |
59 | unsigned long highest_memmap_pfn; |
60 | struct percpu_counter vm_committed_as; |
61 | int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ |
62 | int sysctl_overcommit_ratio = 50; /* default is 50% */ |
63 | int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; |
64 | int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; |
65 | int heap_stack_gap = 0; |
66 | |
67 | atomic_long_t mmap_pages_allocated; |
68 | |
69 | EXPORT_SYMBOL(mem_map); |
70 | EXPORT_SYMBOL(num_physpages); |
71 | |
72 | /* list of mapped, potentially shareable regions */ |
73 | static struct kmem_cache *vm_region_jar; |
74 | struct rb_root nommu_region_tree = RB_ROOT; |
75 | DECLARE_RWSEM(nommu_region_sem); |
76 | |
77 | const struct vm_operations_struct generic_file_vm_ops = { |
78 | }; |
79 | |
80 | /* |
81 | * Return the total memory allocated for this pointer, not |
82 | * just what the caller asked for. |
83 | * |
84 | * Doesn't have to be accurate, i.e. may have races. |
85 | */ |
86 | unsigned int kobjsize(const void *objp) |
87 | { |
88 | struct page *page; |
89 | |
90 | /* |
91 | * If the object we have should not have ksize performed on it, |
92 | * return size of 0 |
93 | */ |
94 | if (!objp || !virt_addr_valid(objp)) |
95 | return 0; |
96 | |
97 | page = virt_to_head_page(objp); |
98 | |
99 | /* |
100 | * If the allocator sets PageSlab, we know the pointer came from |
101 | * kmalloc(). |
102 | */ |
103 | if (PageSlab(page)) |
104 | return ksize(objp); |
105 | |
106 | /* |
107 | * If it's not a compound page, see if we have a matching VMA |
108 | * region. This test is intentionally done in reverse order, |
109 | * so if there's no VMA, we still fall through and hand back |
110 | * PAGE_SIZE for 0-order pages. |
111 | */ |
112 | if (!PageCompound(page)) { |
113 | struct vm_area_struct *vma; |
114 | |
115 | vma = find_vma(current->mm, (unsigned long)objp); |
116 | if (vma) |
117 | return vma->vm_end - vma->vm_start; |
118 | } |
119 | |
120 | /* |
121 | * The ksize() function is only guaranteed to work for pointers |
122 | * returned by kmalloc(). So handle arbitrary pointers here. |
123 | */ |
124 | return PAGE_SIZE << compound_order(page); |
125 | } |
126 | |
127 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
128 | unsigned long start, int nr_pages, unsigned int foll_flags, |
129 | struct page **pages, struct vm_area_struct **vmas, |
130 | int *retry) |
131 | { |
132 | struct vm_area_struct *vma; |
133 | unsigned long vm_flags; |
134 | int i; |
135 | |
136 | /* calculate required read or write permissions. |
137 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
138 | */ |
139 | vm_flags = (foll_flags & FOLL_WRITE) ? |
140 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
141 | vm_flags &= (foll_flags & FOLL_FORCE) ? |
142 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
143 | |
144 | for (i = 0; i < nr_pages; i++) { |
145 | vma = find_vma(mm, start); |
146 | if (!vma) |
147 | goto finish_or_fault; |
148 | |
149 | /* protect what we can, including chardevs */ |
150 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || |
151 | !(vm_flags & vma->vm_flags)) |
152 | goto finish_or_fault; |
153 | |
154 | if (pages) { |
155 | pages[i] = virt_to_page(start); |
156 | if (pages[i]) |
157 | page_cache_get(pages[i]); |
158 | } |
159 | if (vmas) |
160 | vmas[i] = vma; |
161 | start = (start + PAGE_SIZE) & PAGE_MASK; |
162 | } |
163 | |
164 | return i; |
165 | |
166 | finish_or_fault: |
167 | return i ? : -EFAULT; |
168 | } |
169 | |
170 | /* |
171 | * get a list of pages in an address range belonging to the specified process |
172 | * and indicate the VMA that covers each page |
173 | * - this is potentially dodgy as we may end incrementing the page count of a |
174 | * slab page or a secondary page from a compound page |
175 | * - don't permit access to VMAs that don't support it, such as I/O mappings |
176 | */ |
177 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
178 | unsigned long start, int nr_pages, int write, int force, |
179 | struct page **pages, struct vm_area_struct **vmas) |
180 | { |
181 | int flags = 0; |
182 | |
183 | if (write) |
184 | flags |= FOLL_WRITE; |
185 | if (force) |
186 | flags |= FOLL_FORCE; |
187 | |
188 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, |
189 | NULL); |
190 | } |
191 | EXPORT_SYMBOL(get_user_pages); |
192 | |
193 | /** |
194 | * follow_pfn - look up PFN at a user virtual address |
195 | * @vma: memory mapping |
196 | * @address: user virtual address |
197 | * @pfn: location to store found PFN |
198 | * |
199 | * Only IO mappings and raw PFN mappings are allowed. |
200 | * |
201 | * Returns zero and the pfn at @pfn on success, -ve otherwise. |
202 | */ |
203 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, |
204 | unsigned long *pfn) |
205 | { |
206 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
207 | return -EINVAL; |
208 | |
209 | *pfn = address >> PAGE_SHIFT; |
210 | return 0; |
211 | } |
212 | EXPORT_SYMBOL(follow_pfn); |
213 | |
214 | DEFINE_RWLOCK(vmlist_lock); |
215 | struct vm_struct *vmlist; |
216 | |
217 | void vfree(const void *addr) |
218 | { |
219 | kfree(addr); |
220 | } |
221 | EXPORT_SYMBOL(vfree); |
222 | |
223 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
224 | { |
225 | /* |
226 | * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() |
227 | * returns only a logical address. |
228 | */ |
229 | return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); |
230 | } |
231 | EXPORT_SYMBOL(__vmalloc); |
232 | |
233 | void *vmalloc_user(unsigned long size) |
234 | { |
235 | void *ret; |
236 | |
237 | ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, |
238 | PAGE_KERNEL); |
239 | if (ret) { |
240 | struct vm_area_struct *vma; |
241 | |
242 | down_write(¤t->mm->mmap_sem); |
243 | vma = find_vma(current->mm, (unsigned long)ret); |
244 | if (vma) |
245 | vma->vm_flags |= VM_USERMAP; |
246 | up_write(¤t->mm->mmap_sem); |
247 | } |
248 | |
249 | return ret; |
250 | } |
251 | EXPORT_SYMBOL(vmalloc_user); |
252 | |
253 | struct page *vmalloc_to_page(const void *addr) |
254 | { |
255 | return virt_to_page(addr); |
256 | } |
257 | EXPORT_SYMBOL(vmalloc_to_page); |
258 | |
259 | unsigned long vmalloc_to_pfn(const void *addr) |
260 | { |
261 | return page_to_pfn(virt_to_page(addr)); |
262 | } |
263 | EXPORT_SYMBOL(vmalloc_to_pfn); |
264 | |
265 | long vread(char *buf, char *addr, unsigned long count) |
266 | { |
267 | memcpy(buf, addr, count); |
268 | return count; |
269 | } |
270 | |
271 | long vwrite(char *buf, char *addr, unsigned long count) |
272 | { |
273 | /* Don't allow overflow */ |
274 | if ((unsigned long) addr + count < count) |
275 | count = -(unsigned long) addr; |
276 | |
277 | memcpy(addr, buf, count); |
278 | return(count); |
279 | } |
280 | |
281 | /* |
282 | * vmalloc - allocate virtually continguos memory |
283 | * |
284 | * @size: allocation size |
285 | * |
286 | * Allocate enough pages to cover @size from the page level |
287 | * allocator and map them into continguos kernel virtual space. |
288 | * |
289 | * For tight control over page level allocator and protection flags |
290 | * use __vmalloc() instead. |
291 | */ |
292 | void *vmalloc(unsigned long size) |
293 | { |
294 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); |
295 | } |
296 | EXPORT_SYMBOL(vmalloc); |
297 | |
298 | /* |
299 | * vzalloc - allocate virtually continguos memory with zero fill |
300 | * |
301 | * @size: allocation size |
302 | * |
303 | * Allocate enough pages to cover @size from the page level |
304 | * allocator and map them into continguos kernel virtual space. |
305 | * The memory allocated is set to zero. |
306 | * |
307 | * For tight control over page level allocator and protection flags |
308 | * use __vmalloc() instead. |
309 | */ |
310 | void *vzalloc(unsigned long size) |
311 | { |
312 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, |
313 | PAGE_KERNEL); |
314 | } |
315 | EXPORT_SYMBOL(vzalloc); |
316 | |
317 | /** |
318 | * vmalloc_node - allocate memory on a specific node |
319 | * @size: allocation size |
320 | * @node: numa node |
321 | * |
322 | * Allocate enough pages to cover @size from the page level |
323 | * allocator and map them into contiguous kernel virtual space. |
324 | * |
325 | * For tight control over page level allocator and protection flags |
326 | * use __vmalloc() instead. |
327 | */ |
328 | void *vmalloc_node(unsigned long size, int node) |
329 | { |
330 | return vmalloc(size); |
331 | } |
332 | EXPORT_SYMBOL(vmalloc_node); |
333 | |
334 | /** |
335 | * vzalloc_node - allocate memory on a specific node with zero fill |
336 | * @size: allocation size |
337 | * @node: numa node |
338 | * |
339 | * Allocate enough pages to cover @size from the page level |
340 | * allocator and map them into contiguous kernel virtual space. |
341 | * The memory allocated is set to zero. |
342 | * |
343 | * For tight control over page level allocator and protection flags |
344 | * use __vmalloc() instead. |
345 | */ |
346 | void *vzalloc_node(unsigned long size, int node) |
347 | { |
348 | return vzalloc(size); |
349 | } |
350 | EXPORT_SYMBOL(vzalloc_node); |
351 | |
352 | #ifndef PAGE_KERNEL_EXEC |
353 | # define PAGE_KERNEL_EXEC PAGE_KERNEL |
354 | #endif |
355 | |
356 | /** |
357 | * vmalloc_exec - allocate virtually contiguous, executable memory |
358 | * @size: allocation size |
359 | * |
360 | * Kernel-internal function to allocate enough pages to cover @size |
361 | * the page level allocator and map them into contiguous and |
362 | * executable kernel virtual space. |
363 | * |
364 | * For tight control over page level allocator and protection flags |
365 | * use __vmalloc() instead. |
366 | */ |
367 | |
368 | void *vmalloc_exec(unsigned long size) |
369 | { |
370 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); |
371 | } |
372 | |
373 | /** |
374 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
375 | * @size: allocation size |
376 | * |
377 | * Allocate enough 32bit PA addressable pages to cover @size from the |
378 | * page level allocator and map them into continguos kernel virtual space. |
379 | */ |
380 | void *vmalloc_32(unsigned long size) |
381 | { |
382 | return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); |
383 | } |
384 | EXPORT_SYMBOL(vmalloc_32); |
385 | |
386 | /** |
387 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
388 | * @size: allocation size |
389 | * |
390 | * The resulting memory area is 32bit addressable and zeroed so it can be |
391 | * mapped to userspace without leaking data. |
392 | * |
393 | * VM_USERMAP is set on the corresponding VMA so that subsequent calls to |
394 | * remap_vmalloc_range() are permissible. |
395 | */ |
396 | void *vmalloc_32_user(unsigned long size) |
397 | { |
398 | /* |
399 | * We'll have to sort out the ZONE_DMA bits for 64-bit, |
400 | * but for now this can simply use vmalloc_user() directly. |
401 | */ |
402 | return vmalloc_user(size); |
403 | } |
404 | EXPORT_SYMBOL(vmalloc_32_user); |
405 | |
406 | void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) |
407 | { |
408 | BUG(); |
409 | return NULL; |
410 | } |
411 | EXPORT_SYMBOL(vmap); |
412 | |
413 | void vunmap(const void *addr) |
414 | { |
415 | BUG(); |
416 | } |
417 | EXPORT_SYMBOL(vunmap); |
418 | |
419 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) |
420 | { |
421 | BUG(); |
422 | return NULL; |
423 | } |
424 | EXPORT_SYMBOL(vm_map_ram); |
425 | |
426 | void vm_unmap_ram(const void *mem, unsigned int count) |
427 | { |
428 | BUG(); |
429 | } |
430 | EXPORT_SYMBOL(vm_unmap_ram); |
431 | |
432 | void vm_unmap_aliases(void) |
433 | { |
434 | } |
435 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); |
436 | |
437 | /* |
438 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to |
439 | * have one. |
440 | */ |
441 | void __attribute__((weak)) vmalloc_sync_all(void) |
442 | { |
443 | } |
444 | |
445 | /** |
446 | * alloc_vm_area - allocate a range of kernel address space |
447 | * @size: size of the area |
448 | * |
449 | * Returns: NULL on failure, vm_struct on success |
450 | * |
451 | * This function reserves a range of kernel address space, and |
452 | * allocates pagetables to map that range. No actual mappings |
453 | * are created. If the kernel address space is not shared |
454 | * between processes, it syncs the pagetable across all |
455 | * processes. |
456 | */ |
457 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
458 | { |
459 | BUG(); |
460 | return NULL; |
461 | } |
462 | EXPORT_SYMBOL_GPL(alloc_vm_area); |
463 | |
464 | void free_vm_area(struct vm_struct *area) |
465 | { |
466 | BUG(); |
467 | } |
468 | EXPORT_SYMBOL_GPL(free_vm_area); |
469 | |
470 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
471 | struct page *page) |
472 | { |
473 | return -EINVAL; |
474 | } |
475 | EXPORT_SYMBOL(vm_insert_page); |
476 | |
477 | /* |
478 | * sys_brk() for the most part doesn't need the global kernel |
479 | * lock, except when an application is doing something nasty |
480 | * like trying to un-brk an area that has already been mapped |
481 | * to a regular file. in this case, the unmapping will need |
482 | * to invoke file system routines that need the global lock. |
483 | */ |
484 | SYSCALL_DEFINE1(brk, unsigned long, brk) |
485 | { |
486 | struct mm_struct *mm = current->mm; |
487 | |
488 | if (brk < mm->start_brk || brk > mm->context.end_brk) |
489 | return mm->brk; |
490 | |
491 | if (mm->brk == brk) |
492 | return mm->brk; |
493 | |
494 | /* |
495 | * Always allow shrinking brk |
496 | */ |
497 | if (brk <= mm->brk) { |
498 | mm->brk = brk; |
499 | return brk; |
500 | } |
501 | |
502 | /* |
503 | * Ok, looks good - let it rip. |
504 | */ |
505 | flush_icache_range(mm->brk, brk); |
506 | return mm->brk = brk; |
507 | } |
508 | |
509 | /* |
510 | * initialise the VMA and region record slabs |
511 | */ |
512 | void __init mmap_init(void) |
513 | { |
514 | int ret; |
515 | |
516 | ret = percpu_counter_init(&vm_committed_as, 0); |
517 | VM_BUG_ON(ret); |
518 | vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); |
519 | } |
520 | |
521 | /* |
522 | * validate the region tree |
523 | * - the caller must hold the region lock |
524 | */ |
525 | #ifdef CONFIG_DEBUG_NOMMU_REGIONS |
526 | static noinline void validate_nommu_regions(void) |
527 | { |
528 | struct vm_region *region, *last; |
529 | struct rb_node *p, *lastp; |
530 | |
531 | lastp = rb_first(&nommu_region_tree); |
532 | if (!lastp) |
533 | return; |
534 | |
535 | last = rb_entry(lastp, struct vm_region, vm_rb); |
536 | BUG_ON(unlikely(last->vm_end <= last->vm_start)); |
537 | BUG_ON(unlikely(last->vm_top < last->vm_end)); |
538 | |
539 | while ((p = rb_next(lastp))) { |
540 | region = rb_entry(p, struct vm_region, vm_rb); |
541 | last = rb_entry(lastp, struct vm_region, vm_rb); |
542 | |
543 | BUG_ON(unlikely(region->vm_end <= region->vm_start)); |
544 | BUG_ON(unlikely(region->vm_top < region->vm_end)); |
545 | BUG_ON(unlikely(region->vm_start < last->vm_top)); |
546 | |
547 | lastp = p; |
548 | } |
549 | } |
550 | #else |
551 | static void validate_nommu_regions(void) |
552 | { |
553 | } |
554 | #endif |
555 | |
556 | /* |
557 | * add a region into the global tree |
558 | */ |
559 | static void add_nommu_region(struct vm_region *region) |
560 | { |
561 | struct vm_region *pregion; |
562 | struct rb_node **p, *parent; |
563 | |
564 | validate_nommu_regions(); |
565 | |
566 | parent = NULL; |
567 | p = &nommu_region_tree.rb_node; |
568 | while (*p) { |
569 | parent = *p; |
570 | pregion = rb_entry(parent, struct vm_region, vm_rb); |
571 | if (region->vm_start < pregion->vm_start) |
572 | p = &(*p)->rb_left; |
573 | else if (region->vm_start > pregion->vm_start) |
574 | p = &(*p)->rb_right; |
575 | else if (pregion == region) |
576 | return; |
577 | else |
578 | BUG(); |
579 | } |
580 | |
581 | rb_link_node(®ion->vm_rb, parent, p); |
582 | rb_insert_color(®ion->vm_rb, &nommu_region_tree); |
583 | |
584 | validate_nommu_regions(); |
585 | } |
586 | |
587 | /* |
588 | * delete a region from the global tree |
589 | */ |
590 | static void delete_nommu_region(struct vm_region *region) |
591 | { |
592 | BUG_ON(!nommu_region_tree.rb_node); |
593 | |
594 | validate_nommu_regions(); |
595 | rb_erase(®ion->vm_rb, &nommu_region_tree); |
596 | validate_nommu_regions(); |
597 | } |
598 | |
599 | /* |
600 | * free a contiguous series of pages |
601 | */ |
602 | static void free_page_series(unsigned long from, unsigned long to) |
603 | { |
604 | for (; from < to; from += PAGE_SIZE) { |
605 | struct page *page = virt_to_page(from); |
606 | |
607 | kdebug("- free %lx", from); |
608 | atomic_long_dec(&mmap_pages_allocated); |
609 | if (page_count(page) != 1) |
610 | kdebug("free page %p: refcount not one: %d", |
611 | page, page_count(page)); |
612 | put_page(page); |
613 | } |
614 | } |
615 | |
616 | /* |
617 | * release a reference to a region |
618 | * - the caller must hold the region semaphore for writing, which this releases |
619 | * - the region may not have been added to the tree yet, in which case vm_top |
620 | * will equal vm_start |
621 | */ |
622 | static void __put_nommu_region(struct vm_region *region) |
623 | __releases(nommu_region_sem) |
624 | { |
625 | kenter("%p{%d}", region, region->vm_usage); |
626 | |
627 | BUG_ON(!nommu_region_tree.rb_node); |
628 | |
629 | if (--region->vm_usage == 0) { |
630 | if (region->vm_top > region->vm_start) |
631 | delete_nommu_region(region); |
632 | up_write(&nommu_region_sem); |
633 | |
634 | if (region->vm_file) |
635 | fput(region->vm_file); |
636 | |
637 | /* IO memory and memory shared directly out of the pagecache |
638 | * from ramfs/tmpfs mustn't be released here */ |
639 | if (region->vm_flags & VM_MAPPED_COPY) { |
640 | kdebug("free series"); |
641 | free_page_series(region->vm_start, region->vm_top); |
642 | } |
643 | kmem_cache_free(vm_region_jar, region); |
644 | } else { |
645 | up_write(&nommu_region_sem); |
646 | } |
647 | } |
648 | |
649 | /* |
650 | * release a reference to a region |
651 | */ |
652 | static void put_nommu_region(struct vm_region *region) |
653 | { |
654 | down_write(&nommu_region_sem); |
655 | __put_nommu_region(region); |
656 | } |
657 | |
658 | /* |
659 | * update protection on a vma |
660 | */ |
661 | static void protect_vma(struct vm_area_struct *vma, unsigned long flags) |
662 | { |
663 | #ifdef CONFIG_MPU |
664 | struct mm_struct *mm = vma->vm_mm; |
665 | long start = vma->vm_start & PAGE_MASK; |
666 | while (start < vma->vm_end) { |
667 | protect_page(mm, start, flags); |
668 | start += PAGE_SIZE; |
669 | } |
670 | update_protections(mm); |
671 | #endif |
672 | } |
673 | |
674 | /* |
675 | * add a VMA into a process's mm_struct in the appropriate place in the list |
676 | * and tree and add to the address space's page tree also if not an anonymous |
677 | * page |
678 | * - should be called with mm->mmap_sem held writelocked |
679 | */ |
680 | static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) |
681 | { |
682 | struct vm_area_struct *pvma, *prev; |
683 | struct address_space *mapping; |
684 | struct rb_node **p, *parent, *rb_prev; |
685 | |
686 | kenter(",%p", vma); |
687 | |
688 | BUG_ON(!vma->vm_region); |
689 | |
690 | mm->map_count++; |
691 | vma->vm_mm = mm; |
692 | |
693 | protect_vma(vma, vma->vm_flags); |
694 | |
695 | /* add the VMA to the mapping */ |
696 | if (vma->vm_file) { |
697 | mapping = vma->vm_file->f_mapping; |
698 | |
699 | mutex_lock(&mapping->i_mmap_mutex); |
700 | flush_dcache_mmap_lock(mapping); |
701 | vma_prio_tree_insert(vma, &mapping->i_mmap); |
702 | flush_dcache_mmap_unlock(mapping); |
703 | mutex_unlock(&mapping->i_mmap_mutex); |
704 | } |
705 | |
706 | /* add the VMA to the tree */ |
707 | parent = rb_prev = NULL; |
708 | p = &mm->mm_rb.rb_node; |
709 | while (*p) { |
710 | parent = *p; |
711 | pvma = rb_entry(parent, struct vm_area_struct, vm_rb); |
712 | |
713 | /* sort by: start addr, end addr, VMA struct addr in that order |
714 | * (the latter is necessary as we may get identical VMAs) */ |
715 | if (vma->vm_start < pvma->vm_start) |
716 | p = &(*p)->rb_left; |
717 | else if (vma->vm_start > pvma->vm_start) { |
718 | rb_prev = parent; |
719 | p = &(*p)->rb_right; |
720 | } else if (vma->vm_end < pvma->vm_end) |
721 | p = &(*p)->rb_left; |
722 | else if (vma->vm_end > pvma->vm_end) { |
723 | rb_prev = parent; |
724 | p = &(*p)->rb_right; |
725 | } else if (vma < pvma) |
726 | p = &(*p)->rb_left; |
727 | else if (vma > pvma) { |
728 | rb_prev = parent; |
729 | p = &(*p)->rb_right; |
730 | } else |
731 | BUG(); |
732 | } |
733 | |
734 | rb_link_node(&vma->vm_rb, parent, p); |
735 | rb_insert_color(&vma->vm_rb, &mm->mm_rb); |
736 | |
737 | /* add VMA to the VMA list also */ |
738 | prev = NULL; |
739 | if (rb_prev) |
740 | prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); |
741 | |
742 | __vma_link_list(mm, vma, prev, parent); |
743 | } |
744 | |
745 | /* |
746 | * delete a VMA from its owning mm_struct and address space |
747 | */ |
748 | static void delete_vma_from_mm(struct vm_area_struct *vma) |
749 | { |
750 | struct address_space *mapping; |
751 | struct mm_struct *mm = vma->vm_mm; |
752 | |
753 | kenter("%p", vma); |
754 | |
755 | protect_vma(vma, 0); |
756 | |
757 | mm->map_count--; |
758 | if (mm->mmap_cache == vma) |
759 | mm->mmap_cache = NULL; |
760 | |
761 | /* remove the VMA from the mapping */ |
762 | if (vma->vm_file) { |
763 | mapping = vma->vm_file->f_mapping; |
764 | |
765 | mutex_lock(&mapping->i_mmap_mutex); |
766 | flush_dcache_mmap_lock(mapping); |
767 | vma_prio_tree_remove(vma, &mapping->i_mmap); |
768 | flush_dcache_mmap_unlock(mapping); |
769 | mutex_unlock(&mapping->i_mmap_mutex); |
770 | } |
771 | |
772 | /* remove from the MM's tree and list */ |
773 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
774 | |
775 | if (vma->vm_prev) |
776 | vma->vm_prev->vm_next = vma->vm_next; |
777 | else |
778 | mm->mmap = vma->vm_next; |
779 | |
780 | if (vma->vm_next) |
781 | vma->vm_next->vm_prev = vma->vm_prev; |
782 | } |
783 | |
784 | /* |
785 | * destroy a VMA record |
786 | */ |
787 | static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) |
788 | { |
789 | kenter("%p", vma); |
790 | if (vma->vm_ops && vma->vm_ops->close) |
791 | vma->vm_ops->close(vma); |
792 | if (vma->vm_file) { |
793 | fput(vma->vm_file); |
794 | if (vma->vm_flags & VM_EXECUTABLE) |
795 | removed_exe_file_vma(mm); |
796 | } |
797 | put_nommu_region(vma->vm_region); |
798 | kmem_cache_free(vm_area_cachep, vma); |
799 | } |
800 | |
801 | /* |
802 | * look up the first VMA in which addr resides, NULL if none |
803 | * - should be called with mm->mmap_sem at least held readlocked |
804 | */ |
805 | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) |
806 | { |
807 | struct vm_area_struct *vma; |
808 | |
809 | /* check the cache first */ |
810 | vma = mm->mmap_cache; |
811 | if (vma && vma->vm_start <= addr && vma->vm_end > addr) |
812 | return vma; |
813 | |
814 | /* trawl the list (there may be multiple mappings in which addr |
815 | * resides) */ |
816 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
817 | if (vma->vm_start > addr) |
818 | return NULL; |
819 | if (vma->vm_end > addr) { |
820 | mm->mmap_cache = vma; |
821 | return vma; |
822 | } |
823 | } |
824 | |
825 | return NULL; |
826 | } |
827 | EXPORT_SYMBOL(find_vma); |
828 | |
829 | /* |
830 | * find a VMA |
831 | * - we don't extend stack VMAs under NOMMU conditions |
832 | */ |
833 | struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) |
834 | { |
835 | return find_vma(mm, addr); |
836 | } |
837 | |
838 | /* |
839 | * expand a stack to a given address |
840 | * - not supported under NOMMU conditions |
841 | */ |
842 | int expand_stack(struct vm_area_struct *vma, unsigned long address) |
843 | { |
844 | return -ENOMEM; |
845 | } |
846 | |
847 | /* |
848 | * look up the first VMA exactly that exactly matches addr |
849 | * - should be called with mm->mmap_sem at least held readlocked |
850 | */ |
851 | static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, |
852 | unsigned long addr, |
853 | unsigned long len) |
854 | { |
855 | struct vm_area_struct *vma; |
856 | unsigned long end = addr + len; |
857 | |
858 | /* check the cache first */ |
859 | vma = mm->mmap_cache; |
860 | if (vma && vma->vm_start == addr && vma->vm_end == end) |
861 | return vma; |
862 | |
863 | /* trawl the list (there may be multiple mappings in which addr |
864 | * resides) */ |
865 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
866 | if (vma->vm_start < addr) |
867 | continue; |
868 | if (vma->vm_start > addr) |
869 | return NULL; |
870 | if (vma->vm_end == end) { |
871 | mm->mmap_cache = vma; |
872 | return vma; |
873 | } |
874 | } |
875 | |
876 | return NULL; |
877 | } |
878 | |
879 | /* |
880 | * determine whether a mapping should be permitted and, if so, what sort of |
881 | * mapping we're capable of supporting |
882 | */ |
883 | static int validate_mmap_request(struct file *file, |
884 | unsigned long addr, |
885 | unsigned long len, |
886 | unsigned long prot, |
887 | unsigned long flags, |
888 | unsigned long pgoff, |
889 | unsigned long *_capabilities) |
890 | { |
891 | unsigned long capabilities, rlen; |
892 | int ret; |
893 | |
894 | /* do the simple checks first */ |
895 | if (flags & MAP_FIXED) { |
896 | printk(KERN_DEBUG |
897 | "%d: Can't do fixed-address/overlay mmap of RAM\n", |
898 | current->pid); |
899 | return -EINVAL; |
900 | } |
901 | |
902 | if ((flags & MAP_TYPE) != MAP_PRIVATE && |
903 | (flags & MAP_TYPE) != MAP_SHARED) |
904 | return -EINVAL; |
905 | |
906 | if (!len) |
907 | return -EINVAL; |
908 | |
909 | /* Careful about overflows.. */ |
910 | rlen = PAGE_ALIGN(len); |
911 | if (!rlen || rlen > TASK_SIZE) |
912 | return -ENOMEM; |
913 | |
914 | /* offset overflow? */ |
915 | if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) |
916 | return -EOVERFLOW; |
917 | |
918 | if (file) { |
919 | /* validate file mapping requests */ |
920 | struct address_space *mapping; |
921 | |
922 | /* files must support mmap */ |
923 | if (!file->f_op || !file->f_op->mmap) |
924 | return -ENODEV; |
925 | |
926 | /* work out if what we've got could possibly be shared |
927 | * - we support chardevs that provide their own "memory" |
928 | * - we support files/blockdevs that are memory backed |
929 | */ |
930 | mapping = file->f_mapping; |
931 | if (!mapping) |
932 | mapping = file->f_path.dentry->d_inode->i_mapping; |
933 | |
934 | capabilities = 0; |
935 | if (mapping && mapping->backing_dev_info) |
936 | capabilities = mapping->backing_dev_info->capabilities; |
937 | |
938 | if (!capabilities) { |
939 | /* no explicit capabilities set, so assume some |
940 | * defaults */ |
941 | switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { |
942 | case S_IFREG: |
943 | case S_IFBLK: |
944 | capabilities = BDI_CAP_MAP_COPY; |
945 | break; |
946 | |
947 | case S_IFCHR: |
948 | capabilities = |
949 | BDI_CAP_MAP_DIRECT | |
950 | BDI_CAP_READ_MAP | |
951 | BDI_CAP_WRITE_MAP; |
952 | break; |
953 | |
954 | default: |
955 | return -EINVAL; |
956 | } |
957 | } |
958 | |
959 | /* eliminate any capabilities that we can't support on this |
960 | * device */ |
961 | if (!file->f_op->get_unmapped_area) |
962 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
963 | if (!file->f_op->read) |
964 | capabilities &= ~BDI_CAP_MAP_COPY; |
965 | |
966 | /* The file shall have been opened with read permission. */ |
967 | if (!(file->f_mode & FMODE_READ)) |
968 | return -EACCES; |
969 | |
970 | if (flags & MAP_SHARED) { |
971 | /* do checks for writing, appending and locking */ |
972 | if ((prot & PROT_WRITE) && |
973 | !(file->f_mode & FMODE_WRITE)) |
974 | return -EACCES; |
975 | |
976 | if (IS_APPEND(file->f_path.dentry->d_inode) && |
977 | (file->f_mode & FMODE_WRITE)) |
978 | return -EACCES; |
979 | |
980 | if (locks_verify_locked(file->f_path.dentry->d_inode)) |
981 | return -EAGAIN; |
982 | |
983 | if (!(capabilities & BDI_CAP_MAP_DIRECT)) |
984 | return -ENODEV; |
985 | |
986 | /* we mustn't privatise shared mappings */ |
987 | capabilities &= ~BDI_CAP_MAP_COPY; |
988 | } |
989 | else { |
990 | /* we're going to read the file into private memory we |
991 | * allocate */ |
992 | if (!(capabilities & BDI_CAP_MAP_COPY)) |
993 | return -ENODEV; |
994 | |
995 | /* we don't permit a private writable mapping to be |
996 | * shared with the backing device */ |
997 | if (prot & PROT_WRITE) |
998 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
999 | } |
1000 | |
1001 | if (capabilities & BDI_CAP_MAP_DIRECT) { |
1002 | if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || |
1003 | ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || |
1004 | ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) |
1005 | ) { |
1006 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1007 | if (flags & MAP_SHARED) { |
1008 | printk(KERN_WARNING |
1009 | "MAP_SHARED not completely supported on !MMU\n"); |
1010 | return -EINVAL; |
1011 | } |
1012 | } |
1013 | } |
1014 | |
1015 | /* handle executable mappings and implied executable |
1016 | * mappings */ |
1017 | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { |
1018 | if (prot & PROT_EXEC) |
1019 | return -EPERM; |
1020 | } |
1021 | else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { |
1022 | /* handle implication of PROT_EXEC by PROT_READ */ |
1023 | if (current->personality & READ_IMPLIES_EXEC) { |
1024 | if (capabilities & BDI_CAP_EXEC_MAP) |
1025 | prot |= PROT_EXEC; |
1026 | } |
1027 | } |
1028 | else if ((prot & PROT_READ) && |
1029 | (prot & PROT_EXEC) && |
1030 | !(capabilities & BDI_CAP_EXEC_MAP) |
1031 | ) { |
1032 | /* backing file is not executable, try to copy */ |
1033 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1034 | } |
1035 | } |
1036 | else { |
1037 | /* anonymous mappings are always memory backed and can be |
1038 | * privately mapped |
1039 | */ |
1040 | capabilities = BDI_CAP_MAP_COPY; |
1041 | |
1042 | /* handle PROT_EXEC implication by PROT_READ */ |
1043 | if ((prot & PROT_READ) && |
1044 | (current->personality & READ_IMPLIES_EXEC)) |
1045 | prot |= PROT_EXEC; |
1046 | } |
1047 | |
1048 | /* allow the security API to have its say */ |
1049 | ret = security_mmap_addr(addr); |
1050 | if (ret < 0) |
1051 | return ret; |
1052 | |
1053 | /* looks okay */ |
1054 | *_capabilities = capabilities; |
1055 | return 0; |
1056 | } |
1057 | |
1058 | /* |
1059 | * we've determined that we can make the mapping, now translate what we |
1060 | * now know into VMA flags |
1061 | */ |
1062 | static unsigned long determine_vm_flags(struct file *file, |
1063 | unsigned long prot, |
1064 | unsigned long flags, |
1065 | unsigned long capabilities) |
1066 | { |
1067 | unsigned long vm_flags; |
1068 | |
1069 | vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); |
1070 | /* vm_flags |= mm->def_flags; */ |
1071 | |
1072 | if (!(capabilities & BDI_CAP_MAP_DIRECT)) { |
1073 | /* attempt to share read-only copies of mapped file chunks */ |
1074 | vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; |
1075 | if (file && !(prot & PROT_WRITE)) |
1076 | vm_flags |= VM_MAYSHARE; |
1077 | } else { |
1078 | /* overlay a shareable mapping on the backing device or inode |
1079 | * if possible - used for chardevs, ramfs/tmpfs/shmfs and |
1080 | * romfs/cramfs */ |
1081 | vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); |
1082 | if (flags & MAP_SHARED) |
1083 | vm_flags |= VM_SHARED; |
1084 | } |
1085 | |
1086 | /* refuse to let anyone share private mappings with this process if |
1087 | * it's being traced - otherwise breakpoints set in it may interfere |
1088 | * with another untraced process |
1089 | */ |
1090 | if ((flags & MAP_PRIVATE) && current->ptrace) |
1091 | vm_flags &= ~VM_MAYSHARE; |
1092 | |
1093 | return vm_flags; |
1094 | } |
1095 | |
1096 | /* |
1097 | * set up a shared mapping on a file (the driver or filesystem provides and |
1098 | * pins the storage) |
1099 | */ |
1100 | static int do_mmap_shared_file(struct vm_area_struct *vma) |
1101 | { |
1102 | int ret; |
1103 | |
1104 | ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); |
1105 | if (ret == 0) { |
1106 | vma->vm_region->vm_top = vma->vm_region->vm_end; |
1107 | return 0; |
1108 | } |
1109 | if (ret != -ENOSYS) |
1110 | return ret; |
1111 | |
1112 | /* getting -ENOSYS indicates that direct mmap isn't possible (as |
1113 | * opposed to tried but failed) so we can only give a suitable error as |
1114 | * it's not possible to make a private copy if MAP_SHARED was given */ |
1115 | return -ENODEV; |
1116 | } |
1117 | |
1118 | /* |
1119 | * set up a private mapping or an anonymous shared mapping |
1120 | */ |
1121 | static int do_mmap_private(struct vm_area_struct *vma, |
1122 | struct vm_region *region, |
1123 | unsigned long len, |
1124 | unsigned long capabilities) |
1125 | { |
1126 | struct page *pages; |
1127 | unsigned long total, point, n; |
1128 | void *base; |
1129 | int ret, order; |
1130 | |
1131 | /* invoke the file's mapping function so that it can keep track of |
1132 | * shared mappings on devices or memory |
1133 | * - VM_MAYSHARE will be set if it may attempt to share |
1134 | */ |
1135 | if (capabilities & BDI_CAP_MAP_DIRECT) { |
1136 | ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); |
1137 | if (ret == 0) { |
1138 | /* shouldn't return success if we're not sharing */ |
1139 | BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); |
1140 | vma->vm_region->vm_top = vma->vm_region->vm_end; |
1141 | return 0; |
1142 | } |
1143 | if (ret != -ENOSYS) |
1144 | return ret; |
1145 | |
1146 | /* getting an ENOSYS error indicates that direct mmap isn't |
1147 | * possible (as opposed to tried but failed) so we'll try to |
1148 | * make a private copy of the data and map that instead */ |
1149 | } |
1150 | |
1151 | |
1152 | /* allocate some memory to hold the mapping |
1153 | * - note that this may not return a page-aligned address if the object |
1154 | * we're allocating is smaller than a page |
1155 | */ |
1156 | order = get_order(len); |
1157 | kdebug("alloc order %d for %lx", order, len); |
1158 | |
1159 | pages = alloc_pages(GFP_KERNEL, order); |
1160 | if (!pages) |
1161 | goto enomem; |
1162 | |
1163 | total = 1 << order; |
1164 | atomic_long_add(total, &mmap_pages_allocated); |
1165 | |
1166 | point = len >> PAGE_SHIFT; |
1167 | |
1168 | /* we allocated a power-of-2 sized page set, so we may want to trim off |
1169 | * the excess */ |
1170 | if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { |
1171 | while (total > point) { |
1172 | order = ilog2(total - point); |
1173 | n = 1 << order; |
1174 | kdebug("shave %lu/%lu @%lu", n, total - point, total); |
1175 | atomic_long_sub(n, &mmap_pages_allocated); |
1176 | total -= n; |
1177 | set_page_refcounted(pages + total); |
1178 | __free_pages(pages + total, order); |
1179 | } |
1180 | } |
1181 | |
1182 | for (point = 1; point < total; point++) |
1183 | set_page_refcounted(&pages[point]); |
1184 | |
1185 | base = page_address(pages); |
1186 | region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; |
1187 | region->vm_start = (unsigned long) base; |
1188 | region->vm_end = region->vm_start + len; |
1189 | region->vm_top = region->vm_start + (total << PAGE_SHIFT); |
1190 | |
1191 | vma->vm_start = region->vm_start; |
1192 | vma->vm_end = region->vm_start + len; |
1193 | |
1194 | if (vma->vm_file) { |
1195 | /* read the contents of a file into the copy */ |
1196 | mm_segment_t old_fs; |
1197 | loff_t fpos; |
1198 | |
1199 | fpos = vma->vm_pgoff; |
1200 | fpos <<= PAGE_SHIFT; |
1201 | |
1202 | old_fs = get_fs(); |
1203 | set_fs(KERNEL_DS); |
1204 | ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); |
1205 | set_fs(old_fs); |
1206 | |
1207 | if (ret < 0) |
1208 | goto error_free; |
1209 | |
1210 | /* clear the last little bit */ |
1211 | if (ret < len) |
1212 | memset(base + ret, 0, len - ret); |
1213 | |
1214 | } |
1215 | |
1216 | return 0; |
1217 | |
1218 | error_free: |
1219 | free_page_series(region->vm_start, region->vm_top); |
1220 | region->vm_start = vma->vm_start = 0; |
1221 | region->vm_end = vma->vm_end = 0; |
1222 | region->vm_top = 0; |
1223 | return ret; |
1224 | |
1225 | enomem: |
1226 | printk("Allocation of length %lu from process %d (%s) failed\n", |
1227 | len, current->pid, current->comm); |
1228 | show_free_areas(0); |
1229 | return -ENOMEM; |
1230 | } |
1231 | |
1232 | /* |
1233 | * handle mapping creation for uClinux |
1234 | */ |
1235 | unsigned long do_mmap_pgoff(struct file *file, |
1236 | unsigned long addr, |
1237 | unsigned long len, |
1238 | unsigned long prot, |
1239 | unsigned long flags, |
1240 | unsigned long pgoff) |
1241 | { |
1242 | struct vm_area_struct *vma; |
1243 | struct vm_region *region; |
1244 | struct rb_node *rb; |
1245 | unsigned long capabilities, vm_flags, result; |
1246 | int ret; |
1247 | |
1248 | kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); |
1249 | |
1250 | /* decide whether we should attempt the mapping, and if so what sort of |
1251 | * mapping */ |
1252 | ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, |
1253 | &capabilities); |
1254 | if (ret < 0) { |
1255 | kleave(" = %d [val]", ret); |
1256 | return ret; |
1257 | } |
1258 | |
1259 | /* we ignore the address hint */ |
1260 | addr = 0; |
1261 | len = PAGE_ALIGN(len); |
1262 | |
1263 | /* we've determined that we can make the mapping, now translate what we |
1264 | * now know into VMA flags */ |
1265 | vm_flags = determine_vm_flags(file, prot, flags, capabilities); |
1266 | |
1267 | /* we're going to need to record the mapping */ |
1268 | region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); |
1269 | if (!region) |
1270 | goto error_getting_region; |
1271 | |
1272 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1273 | if (!vma) |
1274 | goto error_getting_vma; |
1275 | |
1276 | region->vm_usage = 1; |
1277 | region->vm_flags = vm_flags; |
1278 | region->vm_pgoff = pgoff; |
1279 | |
1280 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1281 | vma->vm_flags = vm_flags; |
1282 | vma->vm_pgoff = pgoff; |
1283 | |
1284 | if (file) { |
1285 | region->vm_file = file; |
1286 | get_file(file); |
1287 | vma->vm_file = file; |
1288 | get_file(file); |
1289 | if (vm_flags & VM_EXECUTABLE) { |
1290 | added_exe_file_vma(current->mm); |
1291 | vma->vm_mm = current->mm; |
1292 | } |
1293 | } |
1294 | |
1295 | down_write(&nommu_region_sem); |
1296 | |
1297 | /* if we want to share, we need to check for regions created by other |
1298 | * mmap() calls that overlap with our proposed mapping |
1299 | * - we can only share with a superset match on most regular files |
1300 | * - shared mappings on character devices and memory backed files are |
1301 | * permitted to overlap inexactly as far as we are concerned for in |
1302 | * these cases, sharing is handled in the driver or filesystem rather |
1303 | * than here |
1304 | */ |
1305 | if (vm_flags & VM_MAYSHARE) { |
1306 | struct vm_region *pregion; |
1307 | unsigned long pglen, rpglen, pgend, rpgend, start; |
1308 | |
1309 | pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1310 | pgend = pgoff + pglen; |
1311 | |
1312 | for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { |
1313 | pregion = rb_entry(rb, struct vm_region, vm_rb); |
1314 | |
1315 | if (!(pregion->vm_flags & VM_MAYSHARE)) |
1316 | continue; |
1317 | |
1318 | /* search for overlapping mappings on the same file */ |
1319 | if (pregion->vm_file->f_path.dentry->d_inode != |
1320 | file->f_path.dentry->d_inode) |
1321 | continue; |
1322 | |
1323 | if (pregion->vm_pgoff >= pgend) |
1324 | continue; |
1325 | |
1326 | rpglen = pregion->vm_end - pregion->vm_start; |
1327 | rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1328 | rpgend = pregion->vm_pgoff + rpglen; |
1329 | if (pgoff >= rpgend) |
1330 | continue; |
1331 | |
1332 | /* handle inexactly overlapping matches between |
1333 | * mappings */ |
1334 | if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && |
1335 | !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { |
1336 | /* new mapping is not a subset of the region */ |
1337 | if (!(capabilities & BDI_CAP_MAP_DIRECT)) |
1338 | goto sharing_violation; |
1339 | continue; |
1340 | } |
1341 | |
1342 | /* we've found a region we can share */ |
1343 | pregion->vm_usage++; |
1344 | vma->vm_region = pregion; |
1345 | start = pregion->vm_start; |
1346 | start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; |
1347 | vma->vm_start = start; |
1348 | vma->vm_end = start + len; |
1349 | |
1350 | if (pregion->vm_flags & VM_MAPPED_COPY) { |
1351 | kdebug("share copy"); |
1352 | vma->vm_flags |= VM_MAPPED_COPY; |
1353 | } else { |
1354 | kdebug("share mmap"); |
1355 | ret = do_mmap_shared_file(vma); |
1356 | if (ret < 0) { |
1357 | vma->vm_region = NULL; |
1358 | vma->vm_start = 0; |
1359 | vma->vm_end = 0; |
1360 | pregion->vm_usage--; |
1361 | pregion = NULL; |
1362 | goto error_just_free; |
1363 | } |
1364 | } |
1365 | fput(region->vm_file); |
1366 | kmem_cache_free(vm_region_jar, region); |
1367 | region = pregion; |
1368 | result = start; |
1369 | goto share; |
1370 | } |
1371 | |
1372 | /* obtain the address at which to make a shared mapping |
1373 | * - this is the hook for quasi-memory character devices to |
1374 | * tell us the location of a shared mapping |
1375 | */ |
1376 | if (capabilities & BDI_CAP_MAP_DIRECT) { |
1377 | addr = file->f_op->get_unmapped_area(file, addr, len, |
1378 | pgoff, flags); |
1379 | if (IS_ERR_VALUE(addr)) { |
1380 | ret = addr; |
1381 | if (ret != -ENOSYS) |
1382 | goto error_just_free; |
1383 | |
1384 | /* the driver refused to tell us where to site |
1385 | * the mapping so we'll have to attempt to copy |
1386 | * it */ |
1387 | ret = -ENODEV; |
1388 | if (!(capabilities & BDI_CAP_MAP_COPY)) |
1389 | goto error_just_free; |
1390 | |
1391 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1392 | } else { |
1393 | vma->vm_start = region->vm_start = addr; |
1394 | vma->vm_end = region->vm_end = addr + len; |
1395 | } |
1396 | } |
1397 | } |
1398 | |
1399 | vma->vm_region = region; |
1400 | |
1401 | /* set up the mapping |
1402 | * - the region is filled in if BDI_CAP_MAP_DIRECT is still set |
1403 | */ |
1404 | if (file && vma->vm_flags & VM_SHARED) |
1405 | ret = do_mmap_shared_file(vma); |
1406 | else |
1407 | ret = do_mmap_private(vma, region, len, capabilities); |
1408 | if (ret < 0) |
1409 | goto error_just_free; |
1410 | add_nommu_region(region); |
1411 | |
1412 | /* clear anonymous mappings that don't ask for uninitialized data */ |
1413 | if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) |
1414 | memset((void *)region->vm_start, 0, |
1415 | region->vm_end - region->vm_start); |
1416 | |
1417 | /* okay... we have a mapping; now we have to register it */ |
1418 | result = vma->vm_start; |
1419 | |
1420 | current->mm->total_vm += len >> PAGE_SHIFT; |
1421 | |
1422 | share: |
1423 | add_vma_to_mm(current->mm, vma); |
1424 | |
1425 | /* we flush the region from the icache only when the first executable |
1426 | * mapping of it is made */ |
1427 | if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { |
1428 | flush_icache_range(region->vm_start, region->vm_end); |
1429 | region->vm_icache_flushed = true; |
1430 | } |
1431 | |
1432 | up_write(&nommu_region_sem); |
1433 | |
1434 | kleave(" = %lx", result); |
1435 | return result; |
1436 | |
1437 | error_just_free: |
1438 | up_write(&nommu_region_sem); |
1439 | error: |
1440 | if (region->vm_file) |
1441 | fput(region->vm_file); |
1442 | kmem_cache_free(vm_region_jar, region); |
1443 | if (vma->vm_file) |
1444 | fput(vma->vm_file); |
1445 | if (vma->vm_flags & VM_EXECUTABLE) |
1446 | removed_exe_file_vma(vma->vm_mm); |
1447 | kmem_cache_free(vm_area_cachep, vma); |
1448 | kleave(" = %d", ret); |
1449 | return ret; |
1450 | |
1451 | sharing_violation: |
1452 | up_write(&nommu_region_sem); |
1453 | printk(KERN_WARNING "Attempt to share mismatched mappings\n"); |
1454 | ret = -EINVAL; |
1455 | goto error; |
1456 | |
1457 | error_getting_vma: |
1458 | kmem_cache_free(vm_region_jar, region); |
1459 | printk(KERN_WARNING "Allocation of vma for %lu byte allocation" |
1460 | " from process %d failed\n", |
1461 | len, current->pid); |
1462 | show_free_areas(0); |
1463 | return -ENOMEM; |
1464 | |
1465 | error_getting_region: |
1466 | printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" |
1467 | " from process %d failed\n", |
1468 | len, current->pid); |
1469 | show_free_areas(0); |
1470 | return -ENOMEM; |
1471 | } |
1472 | |
1473 | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, |
1474 | unsigned long, prot, unsigned long, flags, |
1475 | unsigned long, fd, unsigned long, pgoff) |
1476 | { |
1477 | struct file *file = NULL; |
1478 | unsigned long retval = -EBADF; |
1479 | |
1480 | audit_mmap_fd(fd, flags); |
1481 | if (!(flags & MAP_ANONYMOUS)) { |
1482 | file = fget(fd); |
1483 | if (!file) |
1484 | goto out; |
1485 | } |
1486 | |
1487 | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); |
1488 | |
1489 | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); |
1490 | |
1491 | if (file) |
1492 | fput(file); |
1493 | out: |
1494 | return retval; |
1495 | } |
1496 | |
1497 | #ifdef __ARCH_WANT_SYS_OLD_MMAP |
1498 | struct mmap_arg_struct { |
1499 | unsigned long addr; |
1500 | unsigned long len; |
1501 | unsigned long prot; |
1502 | unsigned long flags; |
1503 | unsigned long fd; |
1504 | unsigned long offset; |
1505 | }; |
1506 | |
1507 | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) |
1508 | { |
1509 | struct mmap_arg_struct a; |
1510 | |
1511 | if (copy_from_user(&a, arg, sizeof(a))) |
1512 | return -EFAULT; |
1513 | if (a.offset & ~PAGE_MASK) |
1514 | return -EINVAL; |
1515 | |
1516 | return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, |
1517 | a.offset >> PAGE_SHIFT); |
1518 | } |
1519 | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ |
1520 | |
1521 | /* |
1522 | * split a vma into two pieces at address 'addr', a new vma is allocated either |
1523 | * for the first part or the tail. |
1524 | */ |
1525 | int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, |
1526 | unsigned long addr, int new_below) |
1527 | { |
1528 | struct vm_area_struct *new; |
1529 | struct vm_region *region; |
1530 | unsigned long npages; |
1531 | |
1532 | kenter(""); |
1533 | |
1534 | /* we're only permitted to split anonymous regions (these should have |
1535 | * only a single usage on the region) */ |
1536 | if (vma->vm_file) |
1537 | return -ENOMEM; |
1538 | |
1539 | if (mm->map_count >= sysctl_max_map_count) |
1540 | return -ENOMEM; |
1541 | |
1542 | region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); |
1543 | if (!region) |
1544 | return -ENOMEM; |
1545 | |
1546 | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
1547 | if (!new) { |
1548 | kmem_cache_free(vm_region_jar, region); |
1549 | return -ENOMEM; |
1550 | } |
1551 | |
1552 | /* most fields are the same, copy all, and then fixup */ |
1553 | *new = *vma; |
1554 | *region = *vma->vm_region; |
1555 | new->vm_region = region; |
1556 | |
1557 | npages = (addr - vma->vm_start) >> PAGE_SHIFT; |
1558 | |
1559 | if (new_below) { |
1560 | region->vm_top = region->vm_end = new->vm_end = addr; |
1561 | } else { |
1562 | region->vm_start = new->vm_start = addr; |
1563 | region->vm_pgoff = new->vm_pgoff += npages; |
1564 | } |
1565 | |
1566 | if (new->vm_ops && new->vm_ops->open) |
1567 | new->vm_ops->open(new); |
1568 | |
1569 | delete_vma_from_mm(vma); |
1570 | down_write(&nommu_region_sem); |
1571 | delete_nommu_region(vma->vm_region); |
1572 | if (new_below) { |
1573 | vma->vm_region->vm_start = vma->vm_start = addr; |
1574 | vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; |
1575 | } else { |
1576 | vma->vm_region->vm_end = vma->vm_end = addr; |
1577 | vma->vm_region->vm_top = addr; |
1578 | } |
1579 | add_nommu_region(vma->vm_region); |
1580 | add_nommu_region(new->vm_region); |
1581 | up_write(&nommu_region_sem); |
1582 | add_vma_to_mm(mm, vma); |
1583 | add_vma_to_mm(mm, new); |
1584 | return 0; |
1585 | } |
1586 | |
1587 | /* |
1588 | * shrink a VMA by removing the specified chunk from either the beginning or |
1589 | * the end |
1590 | */ |
1591 | static int shrink_vma(struct mm_struct *mm, |
1592 | struct vm_area_struct *vma, |
1593 | unsigned long from, unsigned long to) |
1594 | { |
1595 | struct vm_region *region; |
1596 | |
1597 | kenter(""); |
1598 | |
1599 | /* adjust the VMA's pointers, which may reposition it in the MM's tree |
1600 | * and list */ |
1601 | delete_vma_from_mm(vma); |
1602 | if (from > vma->vm_start) |
1603 | vma->vm_end = from; |
1604 | else |
1605 | vma->vm_start = to; |
1606 | add_vma_to_mm(mm, vma); |
1607 | |
1608 | /* cut the backing region down to size */ |
1609 | region = vma->vm_region; |
1610 | BUG_ON(region->vm_usage != 1); |
1611 | |
1612 | down_write(&nommu_region_sem); |
1613 | delete_nommu_region(region); |
1614 | if (from > region->vm_start) { |
1615 | to = region->vm_top; |
1616 | region->vm_top = region->vm_end = from; |
1617 | } else { |
1618 | region->vm_start = to; |
1619 | } |
1620 | add_nommu_region(region); |
1621 | up_write(&nommu_region_sem); |
1622 | |
1623 | free_page_series(from, to); |
1624 | return 0; |
1625 | } |
1626 | |
1627 | /* |
1628 | * release a mapping |
1629 | * - under NOMMU conditions the chunk to be unmapped must be backed by a single |
1630 | * VMA, though it need not cover the whole VMA |
1631 | */ |
1632 | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) |
1633 | { |
1634 | struct vm_area_struct *vma; |
1635 | unsigned long end; |
1636 | int ret; |
1637 | |
1638 | kenter(",%lx,%zx", start, len); |
1639 | |
1640 | len = PAGE_ALIGN(len); |
1641 | if (len == 0) |
1642 | return -EINVAL; |
1643 | |
1644 | end = start + len; |
1645 | |
1646 | /* find the first potentially overlapping VMA */ |
1647 | vma = find_vma(mm, start); |
1648 | if (!vma) { |
1649 | static int limit = 0; |
1650 | if (limit < 5) { |
1651 | printk(KERN_WARNING |
1652 | "munmap of memory not mmapped by process %d" |
1653 | " (%s): 0x%lx-0x%lx\n", |
1654 | current->pid, current->comm, |
1655 | start, start + len - 1); |
1656 | limit++; |
1657 | } |
1658 | return -EINVAL; |
1659 | } |
1660 | |
1661 | /* we're allowed to split an anonymous VMA but not a file-backed one */ |
1662 | if (vma->vm_file) { |
1663 | do { |
1664 | if (start > vma->vm_start) { |
1665 | kleave(" = -EINVAL [miss]"); |
1666 | return -EINVAL; |
1667 | } |
1668 | if (end == vma->vm_end) |
1669 | goto erase_whole_vma; |
1670 | vma = vma->vm_next; |
1671 | } while (vma); |
1672 | kleave(" = -EINVAL [split file]"); |
1673 | return -EINVAL; |
1674 | } else { |
1675 | /* the chunk must be a subset of the VMA found */ |
1676 | if (start == vma->vm_start && end == vma->vm_end) |
1677 | goto erase_whole_vma; |
1678 | if (start < vma->vm_start || end > vma->vm_end) { |
1679 | kleave(" = -EINVAL [superset]"); |
1680 | return -EINVAL; |
1681 | } |
1682 | if (start & ~PAGE_MASK) { |
1683 | kleave(" = -EINVAL [unaligned start]"); |
1684 | return -EINVAL; |
1685 | } |
1686 | if (end != vma->vm_end && end & ~PAGE_MASK) { |
1687 | kleave(" = -EINVAL [unaligned split]"); |
1688 | return -EINVAL; |
1689 | } |
1690 | if (start != vma->vm_start && end != vma->vm_end) { |
1691 | ret = split_vma(mm, vma, start, 1); |
1692 | if (ret < 0) { |
1693 | kleave(" = %d [split]", ret); |
1694 | return ret; |
1695 | } |
1696 | } |
1697 | return shrink_vma(mm, vma, start, end); |
1698 | } |
1699 | |
1700 | erase_whole_vma: |
1701 | delete_vma_from_mm(vma); |
1702 | delete_vma(mm, vma); |
1703 | kleave(" = 0"); |
1704 | return 0; |
1705 | } |
1706 | EXPORT_SYMBOL(do_munmap); |
1707 | |
1708 | int vm_munmap(unsigned long addr, size_t len) |
1709 | { |
1710 | struct mm_struct *mm = current->mm; |
1711 | int ret; |
1712 | |
1713 | down_write(&mm->mmap_sem); |
1714 | ret = do_munmap(mm, addr, len); |
1715 | up_write(&mm->mmap_sem); |
1716 | return ret; |
1717 | } |
1718 | EXPORT_SYMBOL(vm_munmap); |
1719 | |
1720 | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) |
1721 | { |
1722 | return vm_munmap(addr, len); |
1723 | } |
1724 | |
1725 | /* |
1726 | * release all the mappings made in a process's VM space |
1727 | */ |
1728 | void exit_mmap(struct mm_struct *mm) |
1729 | { |
1730 | struct vm_area_struct *vma; |
1731 | |
1732 | if (!mm) |
1733 | return; |
1734 | |
1735 | kenter(""); |
1736 | |
1737 | mm->total_vm = 0; |
1738 | |
1739 | while ((vma = mm->mmap)) { |
1740 | mm->mmap = vma->vm_next; |
1741 | delete_vma_from_mm(vma); |
1742 | delete_vma(mm, vma); |
1743 | cond_resched(); |
1744 | } |
1745 | |
1746 | kleave(""); |
1747 | } |
1748 | |
1749 | unsigned long vm_brk(unsigned long addr, unsigned long len) |
1750 | { |
1751 | return -ENOMEM; |
1752 | } |
1753 | |
1754 | /* |
1755 | * expand (or shrink) an existing mapping, potentially moving it at the same |
1756 | * time (controlled by the MREMAP_MAYMOVE flag and available VM space) |
1757 | * |
1758 | * under NOMMU conditions, we only permit changing a mapping's size, and only |
1759 | * as long as it stays within the region allocated by do_mmap_private() and the |
1760 | * block is not shareable |
1761 | * |
1762 | * MREMAP_FIXED is not supported under NOMMU conditions |
1763 | */ |
1764 | unsigned long do_mremap(unsigned long addr, |
1765 | unsigned long old_len, unsigned long new_len, |
1766 | unsigned long flags, unsigned long new_addr) |
1767 | { |
1768 | struct vm_area_struct *vma; |
1769 | |
1770 | /* insanity checks first */ |
1771 | old_len = PAGE_ALIGN(old_len); |
1772 | new_len = PAGE_ALIGN(new_len); |
1773 | if (old_len == 0 || new_len == 0) |
1774 | return (unsigned long) -EINVAL; |
1775 | |
1776 | if (addr & ~PAGE_MASK) |
1777 | return -EINVAL; |
1778 | |
1779 | if (flags & MREMAP_FIXED && new_addr != addr) |
1780 | return (unsigned long) -EINVAL; |
1781 | |
1782 | vma = find_vma_exact(current->mm, addr, old_len); |
1783 | if (!vma) |
1784 | return (unsigned long) -EINVAL; |
1785 | |
1786 | if (vma->vm_end != vma->vm_start + old_len) |
1787 | return (unsigned long) -EFAULT; |
1788 | |
1789 | if (vma->vm_flags & VM_MAYSHARE) |
1790 | return (unsigned long) -EPERM; |
1791 | |
1792 | if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) |
1793 | return (unsigned long) -ENOMEM; |
1794 | |
1795 | /* all checks complete - do it */ |
1796 | vma->vm_end = vma->vm_start + new_len; |
1797 | return vma->vm_start; |
1798 | } |
1799 | EXPORT_SYMBOL(do_mremap); |
1800 | |
1801 | SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, |
1802 | unsigned long, new_len, unsigned long, flags, |
1803 | unsigned long, new_addr) |
1804 | { |
1805 | unsigned long ret; |
1806 | |
1807 | down_write(¤t->mm->mmap_sem); |
1808 | ret = do_mremap(addr, old_len, new_len, flags, new_addr); |
1809 | up_write(¤t->mm->mmap_sem); |
1810 | return ret; |
1811 | } |
1812 | |
1813 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
1814 | unsigned int foll_flags) |
1815 | { |
1816 | return NULL; |
1817 | } |
1818 | |
1819 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1820 | unsigned long pfn, unsigned long size, pgprot_t prot) |
1821 | { |
1822 | if (addr != (pfn << PAGE_SHIFT)) |
1823 | return -EINVAL; |
1824 | |
1825 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1826 | return 0; |
1827 | } |
1828 | EXPORT_SYMBOL(remap_pfn_range); |
1829 | |
1830 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, |
1831 | unsigned long pgoff) |
1832 | { |
1833 | unsigned int size = vma->vm_end - vma->vm_start; |
1834 | |
1835 | if (!(vma->vm_flags & VM_USERMAP)) |
1836 | return -EINVAL; |
1837 | |
1838 | vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); |
1839 | vma->vm_end = vma->vm_start + size; |
1840 | |
1841 | return 0; |
1842 | } |
1843 | EXPORT_SYMBOL(remap_vmalloc_range); |
1844 | |
1845 | unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, |
1846 | unsigned long len, unsigned long pgoff, unsigned long flags) |
1847 | { |
1848 | return -ENOMEM; |
1849 | } |
1850 | |
1851 | void arch_unmap_area(struct mm_struct *mm, unsigned long addr) |
1852 | { |
1853 | } |
1854 | |
1855 | void unmap_mapping_range(struct address_space *mapping, |
1856 | loff_t const holebegin, loff_t const holelen, |
1857 | int even_cows) |
1858 | { |
1859 | } |
1860 | EXPORT_SYMBOL(unmap_mapping_range); |
1861 | |
1862 | /* |
1863 | * Check that a process has enough memory to allocate a new virtual |
1864 | * mapping. 0 means there is enough memory for the allocation to |
1865 | * succeed and -ENOMEM implies there is not. |
1866 | * |
1867 | * We currently support three overcommit policies, which are set via the |
1868 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting |
1869 | * |
1870 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. |
1871 | * Additional code 2002 Jul 20 by Robert Love. |
1872 | * |
1873 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. |
1874 | * |
1875 | * Note this is a helper function intended to be used by LSMs which |
1876 | * wish to use this logic. |
1877 | */ |
1878 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) |
1879 | { |
1880 | unsigned long free, allowed; |
1881 | |
1882 | vm_acct_memory(pages); |
1883 | |
1884 | /* |
1885 | * Sometimes we want to use more memory than we have |
1886 | */ |
1887 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) |
1888 | return 0; |
1889 | |
1890 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { |
1891 | free = global_page_state(NR_FREE_PAGES); |
1892 | free += global_page_state(NR_FILE_PAGES); |
1893 | |
1894 | /* |
1895 | * shmem pages shouldn't be counted as free in this |
1896 | * case, they can't be purged, only swapped out, and |
1897 | * that won't affect the overall amount of available |
1898 | * memory in the system. |
1899 | */ |
1900 | free -= global_page_state(NR_SHMEM); |
1901 | |
1902 | free += nr_swap_pages; |
1903 | |
1904 | /* |
1905 | * Any slabs which are created with the |
1906 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents |
1907 | * which are reclaimable, under pressure. The dentry |
1908 | * cache and most inode caches should fall into this |
1909 | */ |
1910 | free += global_page_state(NR_SLAB_RECLAIMABLE); |
1911 | |
1912 | /* |
1913 | * Leave reserved pages. The pages are not for anonymous pages. |
1914 | */ |
1915 | if (free <= totalreserve_pages) |
1916 | goto error; |
1917 | else |
1918 | free -= totalreserve_pages; |
1919 | |
1920 | /* |
1921 | * Leave the last 3% for root |
1922 | */ |
1923 | if (!cap_sys_admin) |
1924 | free -= free / 32; |
1925 | |
1926 | if (free > pages) |
1927 | return 0; |
1928 | |
1929 | goto error; |
1930 | } |
1931 | |
1932 | allowed = totalram_pages * sysctl_overcommit_ratio / 100; |
1933 | /* |
1934 | * Leave the last 3% for root |
1935 | */ |
1936 | if (!cap_sys_admin) |
1937 | allowed -= allowed / 32; |
1938 | allowed += total_swap_pages; |
1939 | |
1940 | /* Don't let a single process grow too big: |
1941 | leave 3% of the size of this process for other processes */ |
1942 | if (mm) |
1943 | allowed -= mm->total_vm / 32; |
1944 | |
1945 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) |
1946 | return 0; |
1947 | |
1948 | error: |
1949 | vm_unacct_memory(pages); |
1950 | |
1951 | return -ENOMEM; |
1952 | } |
1953 | |
1954 | int in_gate_area_no_mm(unsigned long addr) |
1955 | { |
1956 | return 0; |
1957 | } |
1958 | |
1959 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1960 | { |
1961 | BUG(); |
1962 | return 0; |
1963 | } |
1964 | EXPORT_SYMBOL(filemap_fault); |
1965 | |
1966 | static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
1967 | unsigned long addr, void *buf, int len, int write) |
1968 | { |
1969 | struct vm_area_struct *vma; |
1970 | |
1971 | down_read(&mm->mmap_sem); |
1972 | |
1973 | /* the access must start within one of the target process's mappings */ |
1974 | vma = find_vma(mm, addr); |
1975 | if (vma) { |
1976 | /* don't overrun this mapping */ |
1977 | if (addr + len >= vma->vm_end) |
1978 | len = vma->vm_end - addr; |
1979 | |
1980 | /* only read or write mappings where it is permitted */ |
1981 | if (write && vma->vm_flags & VM_MAYWRITE) |
1982 | copy_to_user_page(vma, NULL, addr, |
1983 | (void *) addr, buf, len); |
1984 | else if (!write && vma->vm_flags & VM_MAYREAD) |
1985 | copy_from_user_page(vma, NULL, addr, |
1986 | buf, (void *) addr, len); |
1987 | else |
1988 | len = 0; |
1989 | } else { |
1990 | len = 0; |
1991 | } |
1992 | |
1993 | up_read(&mm->mmap_sem); |
1994 | |
1995 | return len; |
1996 | } |
1997 | |
1998 | /** |
1999 | * @access_remote_vm - access another process' address space |
2000 | * @mm: the mm_struct of the target address space |
2001 | * @addr: start address to access |
2002 | * @buf: source or destination buffer |
2003 | * @len: number of bytes to transfer |
2004 | * @write: whether the access is a write |
2005 | * |
2006 | * The caller must hold a reference on @mm. |
2007 | */ |
2008 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
2009 | void *buf, int len, int write) |
2010 | { |
2011 | return __access_remote_vm(NULL, mm, addr, buf, len, write); |
2012 | } |
2013 | |
2014 | /* |
2015 | * Access another process' address space. |
2016 | * - source/target buffer must be kernel space |
2017 | */ |
2018 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) |
2019 | { |
2020 | struct mm_struct *mm; |
2021 | |
2022 | if (addr + len < addr) |
2023 | return 0; |
2024 | |
2025 | mm = get_task_mm(tsk); |
2026 | if (!mm) |
2027 | return 0; |
2028 | |
2029 | len = __access_remote_vm(tsk, mm, addr, buf, len, write); |
2030 | |
2031 | mmput(mm); |
2032 | return len; |
2033 | } |
2034 | |
2035 | /** |
2036 | * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode |
2037 | * @inode: The inode to check |
2038 | * @size: The current filesize of the inode |
2039 | * @newsize: The proposed filesize of the inode |
2040 | * |
2041 | * Check the shared mappings on an inode on behalf of a shrinking truncate to |
2042 | * make sure that that any outstanding VMAs aren't broken and then shrink the |
2043 | * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't |
2044 | * automatically grant mappings that are too large. |
2045 | */ |
2046 | int nommu_shrink_inode_mappings(struct inode *inode, size_t size, |
2047 | size_t newsize) |
2048 | { |
2049 | struct vm_area_struct *vma; |
2050 | struct prio_tree_iter iter; |
2051 | struct vm_region *region; |
2052 | pgoff_t low, high; |
2053 | size_t r_size, r_top; |
2054 | |
2055 | low = newsize >> PAGE_SHIFT; |
2056 | high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
2057 | |
2058 | down_write(&nommu_region_sem); |
2059 | mutex_lock(&inode->i_mapping->i_mmap_mutex); |
2060 | |
2061 | /* search for VMAs that fall within the dead zone */ |
2062 | vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, |
2063 | low, high) { |
2064 | /* found one - only interested if it's shared out of the page |
2065 | * cache */ |
2066 | if (vma->vm_flags & VM_SHARED) { |
2067 | mutex_unlock(&inode->i_mapping->i_mmap_mutex); |
2068 | up_write(&nommu_region_sem); |
2069 | return -ETXTBSY; /* not quite true, but near enough */ |
2070 | } |
2071 | } |
2072 | |
2073 | /* reduce any regions that overlap the dead zone - if in existence, |
2074 | * these will be pointed to by VMAs that don't overlap the dead zone |
2075 | * |
2076 | * we don't check for any regions that start beyond the EOF as there |
2077 | * shouldn't be any |
2078 | */ |
2079 | vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, |
2080 | 0, ULONG_MAX) { |
2081 | if (!(vma->vm_flags & VM_SHARED)) |
2082 | continue; |
2083 | |
2084 | region = vma->vm_region; |
2085 | r_size = region->vm_top - region->vm_start; |
2086 | r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; |
2087 | |
2088 | if (r_top > newsize) { |
2089 | region->vm_top -= r_top - newsize; |
2090 | if (region->vm_end > region->vm_top) |
2091 | region->vm_end = region->vm_top; |
2092 | } |
2093 | } |
2094 | |
2095 | mutex_unlock(&inode->i_mapping->i_mmap_mutex); |
2096 | up_write(&nommu_region_sem); |
2097 | return 0; |
2098 | } |
2099 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9