1 | /* |
2 | * linux/mm/page_alloc.c |
3 | * |
4 | * Manages the free list, the system allocates free pages here. |
5 | * Note that kmalloc() lives in slab.c |
6 | * |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
8 | * Swap reorganised 29.12.95, Stephen Tweedie |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
15 | */ |
16 | |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> |
19 | #include <linux/swap.h> |
20 | #include <linux/interrupt.h> |
21 | #include <linux/pagemap.h> |
22 | #include <linux/jiffies.h> |
23 | #include <linux/bootmem.h> |
24 | #include <linux/memblock.h> |
25 | #include <linux/compiler.h> |
26 | #include <linux/kernel.h> |
27 | #include <linux/kmemcheck.h> |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> |
30 | #include <linux/pagevec.h> |
31 | #include <linux/blkdev.h> |
32 | #include <linux/slab.h> |
33 | #include <linux/ratelimit.h> |
34 | #include <linux/oom.h> |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> |
37 | #include <linux/sysctl.h> |
38 | #include <linux/cpu.h> |
39 | #include <linux/cpuset.h> |
40 | #include <linux/memory_hotplug.h> |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> |
43 | #include <linux/vmstat.h> |
44 | #include <linux/mempolicy.h> |
45 | #include <linux/stop_machine.h> |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> |
48 | #include <linux/backing-dev.h> |
49 | #include <linux/fault-inject.h> |
50 | #include <linux/page-isolation.h> |
51 | #include <linux/page_cgroup.h> |
52 | #include <linux/debugobjects.h> |
53 | #include <linux/kmemleak.h> |
54 | #include <linux/compaction.h> |
55 | #include <trace/events/kmem.h> |
56 | #include <linux/ftrace_event.h> |
57 | #include <linux/memcontrol.h> |
58 | #include <linux/prefetch.h> |
59 | #include <linux/migrate.h> |
60 | #include <linux/page-debug-flags.h> |
61 | |
62 | #include <asm/tlbflush.h> |
63 | #include <asm/div64.h> |
64 | #include "internal.h" |
65 | |
66 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
67 | DEFINE_PER_CPU(int, numa_node); |
68 | EXPORT_PER_CPU_SYMBOL(numa_node); |
69 | #endif |
70 | |
71 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
72 | /* |
73 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. |
74 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. |
75 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() |
76 | * defined in <linux/topology.h>. |
77 | */ |
78 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ |
79 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); |
80 | #endif |
81 | |
82 | /* |
83 | * Array of node states. |
84 | */ |
85 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
86 | [N_POSSIBLE] = NODE_MASK_ALL, |
87 | [N_ONLINE] = { { [0] = 1UL } }, |
88 | #ifndef CONFIG_NUMA |
89 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, |
90 | #ifdef CONFIG_HIGHMEM |
91 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, |
92 | #endif |
93 | [N_CPU] = { { [0] = 1UL } }, |
94 | #endif /* NUMA */ |
95 | }; |
96 | EXPORT_SYMBOL(node_states); |
97 | |
98 | unsigned long totalram_pages __read_mostly; |
99 | unsigned long totalreserve_pages __read_mostly; |
100 | /* |
101 | * When calculating the number of globally allowed dirty pages, there |
102 | * is a certain number of per-zone reserves that should not be |
103 | * considered dirtyable memory. This is the sum of those reserves |
104 | * over all existing zones that contribute dirtyable memory. |
105 | */ |
106 | unsigned long dirty_balance_reserve __read_mostly; |
107 | |
108 | int percpu_pagelist_fraction; |
109 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
110 | |
111 | #ifdef CONFIG_PM_SLEEP |
112 | /* |
113 | * The following functions are used by the suspend/hibernate code to temporarily |
114 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations |
115 | * while devices are suspended. To avoid races with the suspend/hibernate code, |
116 | * they should always be called with pm_mutex held (gfp_allowed_mask also should |
117 | * only be modified with pm_mutex held, unless the suspend/hibernate code is |
118 | * guaranteed not to run in parallel with that modification). |
119 | */ |
120 | |
121 | static gfp_t saved_gfp_mask; |
122 | |
123 | void pm_restore_gfp_mask(void) |
124 | { |
125 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
126 | if (saved_gfp_mask) { |
127 | gfp_allowed_mask = saved_gfp_mask; |
128 | saved_gfp_mask = 0; |
129 | } |
130 | } |
131 | |
132 | void pm_restrict_gfp_mask(void) |
133 | { |
134 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
135 | WARN_ON(saved_gfp_mask); |
136 | saved_gfp_mask = gfp_allowed_mask; |
137 | gfp_allowed_mask &= ~GFP_IOFS; |
138 | } |
139 | |
140 | bool pm_suspended_storage(void) |
141 | { |
142 | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) |
143 | return false; |
144 | return true; |
145 | } |
146 | #endif /* CONFIG_PM_SLEEP */ |
147 | |
148 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
149 | int pageblock_order __read_mostly; |
150 | #endif |
151 | |
152 | static void __free_pages_ok(struct page *page, unsigned int order); |
153 | |
154 | /* |
155 | * results with 256, 32 in the lowmem_reserve sysctl: |
156 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
157 | * 1G machine -> (16M dma, 784M normal, 224M high) |
158 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
159 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
160 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA |
161 | * |
162 | * TBD: should special case ZONE_DMA32 machines here - in those we normally |
163 | * don't need any ZONE_NORMAL reservation |
164 | */ |
165 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
166 | #ifdef CONFIG_ZONE_DMA |
167 | 256, |
168 | #endif |
169 | #ifdef CONFIG_ZONE_DMA32 |
170 | 256, |
171 | #endif |
172 | #ifdef CONFIG_HIGHMEM |
173 | 32, |
174 | #endif |
175 | 32, |
176 | }; |
177 | |
178 | EXPORT_SYMBOL(totalram_pages); |
179 | |
180 | static char * const zone_names[MAX_NR_ZONES] = { |
181 | #ifdef CONFIG_ZONE_DMA |
182 | "DMA", |
183 | #endif |
184 | #ifdef CONFIG_ZONE_DMA32 |
185 | "DMA32", |
186 | #endif |
187 | "Normal", |
188 | #ifdef CONFIG_HIGHMEM |
189 | "HighMem", |
190 | #endif |
191 | "Movable", |
192 | }; |
193 | |
194 | int min_free_kbytes = 1024; |
195 | |
196 | static unsigned long __meminitdata nr_kernel_pages; |
197 | static unsigned long __meminitdata nr_all_pages; |
198 | static unsigned long __meminitdata dma_reserve; |
199 | |
200 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
201 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; |
202 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; |
203 | static unsigned long __initdata required_kernelcore; |
204 | static unsigned long __initdata required_movablecore; |
205 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; |
206 | |
207 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
208 | int movable_zone; |
209 | EXPORT_SYMBOL(movable_zone); |
210 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
211 | |
212 | #if MAX_NUMNODES > 1 |
213 | int nr_node_ids __read_mostly = MAX_NUMNODES; |
214 | int nr_online_nodes __read_mostly = 1; |
215 | EXPORT_SYMBOL(nr_node_ids); |
216 | EXPORT_SYMBOL(nr_online_nodes); |
217 | #endif |
218 | |
219 | int page_group_by_mobility_disabled __read_mostly; |
220 | |
221 | /* |
222 | * NOTE: |
223 | * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. |
224 | * Instead, use {un}set_pageblock_isolate. |
225 | */ |
226 | void set_pageblock_migratetype(struct page *page, int migratetype) |
227 | { |
228 | |
229 | if (unlikely(page_group_by_mobility_disabled)) |
230 | migratetype = MIGRATE_UNMOVABLE; |
231 | |
232 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
233 | PB_migrate, PB_migrate_end); |
234 | } |
235 | |
236 | bool oom_killer_disabled __read_mostly; |
237 | |
238 | #ifdef CONFIG_DEBUG_VM |
239 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
240 | { |
241 | int ret = 0; |
242 | unsigned seq; |
243 | unsigned long pfn = page_to_pfn(page); |
244 | |
245 | do { |
246 | seq = zone_span_seqbegin(zone); |
247 | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) |
248 | ret = 1; |
249 | else if (pfn < zone->zone_start_pfn) |
250 | ret = 1; |
251 | } while (zone_span_seqretry(zone, seq)); |
252 | |
253 | return ret; |
254 | } |
255 | |
256 | static int page_is_consistent(struct zone *zone, struct page *page) |
257 | { |
258 | if (!pfn_valid_within(page_to_pfn(page))) |
259 | return 0; |
260 | if (zone != page_zone(page)) |
261 | return 0; |
262 | |
263 | return 1; |
264 | } |
265 | /* |
266 | * Temporary debugging check for pages not lying within a given zone. |
267 | */ |
268 | static int bad_range(struct zone *zone, struct page *page) |
269 | { |
270 | if (page_outside_zone_boundaries(zone, page)) |
271 | return 1; |
272 | if (!page_is_consistent(zone, page)) |
273 | return 1; |
274 | |
275 | return 0; |
276 | } |
277 | #else |
278 | static inline int bad_range(struct zone *zone, struct page *page) |
279 | { |
280 | return 0; |
281 | } |
282 | #endif |
283 | |
284 | static void bad_page(struct page *page) |
285 | { |
286 | static unsigned long resume; |
287 | static unsigned long nr_shown; |
288 | static unsigned long nr_unshown; |
289 | |
290 | /* Don't complain about poisoned pages */ |
291 | if (PageHWPoison(page)) { |
292 | reset_page_mapcount(page); /* remove PageBuddy */ |
293 | return; |
294 | } |
295 | |
296 | /* |
297 | * Allow a burst of 60 reports, then keep quiet for that minute; |
298 | * or allow a steady drip of one report per second. |
299 | */ |
300 | if (nr_shown == 60) { |
301 | if (time_before(jiffies, resume)) { |
302 | nr_unshown++; |
303 | goto out; |
304 | } |
305 | if (nr_unshown) { |
306 | printk(KERN_ALERT |
307 | "BUG: Bad page state: %lu messages suppressed\n", |
308 | nr_unshown); |
309 | nr_unshown = 0; |
310 | } |
311 | nr_shown = 0; |
312 | } |
313 | if (nr_shown++ == 0) |
314 | resume = jiffies + 60 * HZ; |
315 | |
316 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
317 | current->comm, page_to_pfn(page)); |
318 | dump_page(page); |
319 | |
320 | print_modules(); |
321 | dump_stack(); |
322 | out: |
323 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
324 | reset_page_mapcount(page); /* remove PageBuddy */ |
325 | add_taint(TAINT_BAD_PAGE); |
326 | } |
327 | |
328 | /* |
329 | * Higher-order pages are called "compound pages". They are structured thusly: |
330 | * |
331 | * The first PAGE_SIZE page is called the "head page". |
332 | * |
333 | * The remaining PAGE_SIZE pages are called "tail pages". |
334 | * |
335 | * All pages have PG_compound set. All tail pages have their ->first_page |
336 | * pointing at the head page. |
337 | * |
338 | * The first tail page's ->lru.next holds the address of the compound page's |
339 | * put_page() function. Its ->lru.prev holds the order of allocation. |
340 | * This usage means that zero-order pages may not be compound. |
341 | */ |
342 | |
343 | static void free_compound_page(struct page *page) |
344 | { |
345 | __free_pages_ok(page, compound_order(page)); |
346 | } |
347 | |
348 | void prep_compound_page(struct page *page, unsigned long order) |
349 | { |
350 | int i; |
351 | int nr_pages = 1 << order; |
352 | |
353 | set_compound_page_dtor(page, free_compound_page); |
354 | set_compound_order(page, order); |
355 | __SetPageHead(page); |
356 | for (i = 1; i < nr_pages; i++) { |
357 | struct page *p = page + i; |
358 | __SetPageTail(p); |
359 | set_page_count(p, 0); |
360 | p->first_page = page; |
361 | } |
362 | } |
363 | |
364 | /* update __split_huge_page_refcount if you change this function */ |
365 | static int destroy_compound_page(struct page *page, unsigned long order) |
366 | { |
367 | int i; |
368 | int nr_pages = 1 << order; |
369 | int bad = 0; |
370 | |
371 | if (unlikely(compound_order(page) != order) || |
372 | unlikely(!PageHead(page))) { |
373 | bad_page(page); |
374 | bad++; |
375 | } |
376 | |
377 | __ClearPageHead(page); |
378 | |
379 | for (i = 1; i < nr_pages; i++) { |
380 | struct page *p = page + i; |
381 | |
382 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
383 | bad_page(page); |
384 | bad++; |
385 | } |
386 | __ClearPageTail(p); |
387 | } |
388 | |
389 | return bad; |
390 | } |
391 | |
392 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
393 | { |
394 | int i; |
395 | |
396 | /* |
397 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO |
398 | * and __GFP_HIGHMEM from hard or soft interrupt context. |
399 | */ |
400 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
401 | for (i = 0; i < (1 << order); i++) |
402 | clear_highpage(page + i); |
403 | } |
404 | |
405 | #ifdef CONFIG_DEBUG_PAGEALLOC |
406 | unsigned int _debug_guardpage_minorder; |
407 | |
408 | static int __init debug_guardpage_minorder_setup(char *buf) |
409 | { |
410 | unsigned long res; |
411 | |
412 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { |
413 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); |
414 | return 0; |
415 | } |
416 | _debug_guardpage_minorder = res; |
417 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); |
418 | return 0; |
419 | } |
420 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); |
421 | |
422 | static inline void set_page_guard_flag(struct page *page) |
423 | { |
424 | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); |
425 | } |
426 | |
427 | static inline void clear_page_guard_flag(struct page *page) |
428 | { |
429 | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); |
430 | } |
431 | #else |
432 | static inline void set_page_guard_flag(struct page *page) { } |
433 | static inline void clear_page_guard_flag(struct page *page) { } |
434 | #endif |
435 | |
436 | static inline void set_page_order(struct page *page, int order) |
437 | { |
438 | set_page_private(page, order); |
439 | __SetPageBuddy(page); |
440 | } |
441 | |
442 | static inline void rmv_page_order(struct page *page) |
443 | { |
444 | __ClearPageBuddy(page); |
445 | set_page_private(page, 0); |
446 | } |
447 | |
448 | /* |
449 | * Locate the struct page for both the matching buddy in our |
450 | * pair (buddy1) and the combined O(n+1) page they form (page). |
451 | * |
452 | * 1) Any buddy B1 will have an order O twin B2 which satisfies |
453 | * the following equation: |
454 | * B2 = B1 ^ (1 << O) |
455 | * For example, if the starting buddy (buddy2) is #8 its order |
456 | * 1 buddy is #10: |
457 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
458 | * |
459 | * 2) Any buddy B will have an order O+1 parent P which |
460 | * satisfies the following equation: |
461 | * P = B & ~(1 << O) |
462 | * |
463 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
464 | */ |
465 | static inline unsigned long |
466 | __find_buddy_index(unsigned long page_idx, unsigned int order) |
467 | { |
468 | return page_idx ^ (1 << order); |
469 | } |
470 | |
471 | /* |
472 | * This function checks whether a page is free && is the buddy |
473 | * we can do coalesce a page and its buddy if |
474 | * (a) the buddy is not in a hole && |
475 | * (b) the buddy is in the buddy system && |
476 | * (c) a page and its buddy have the same order && |
477 | * (d) a page and its buddy are in the same zone. |
478 | * |
479 | * For recording whether a page is in the buddy system, we set ->_mapcount -2. |
480 | * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. |
481 | * |
482 | * For recording page's order, we use page_private(page). |
483 | */ |
484 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
485 | int order) |
486 | { |
487 | if (!pfn_valid_within(page_to_pfn(buddy))) |
488 | return 0; |
489 | |
490 | if (page_zone_id(page) != page_zone_id(buddy)) |
491 | return 0; |
492 | |
493 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
494 | VM_BUG_ON(page_count(buddy) != 0); |
495 | return 1; |
496 | } |
497 | |
498 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
499 | VM_BUG_ON(page_count(buddy) != 0); |
500 | return 1; |
501 | } |
502 | return 0; |
503 | } |
504 | |
505 | /* |
506 | * Freeing function for a buddy system allocator. |
507 | * |
508 | * The concept of a buddy system is to maintain direct-mapped table |
509 | * (containing bit values) for memory blocks of various "orders". |
510 | * The bottom level table contains the map for the smallest allocatable |
511 | * units of memory (here, pages), and each level above it describes |
512 | * pairs of units from the levels below, hence, "buddies". |
513 | * At a high level, all that happens here is marking the table entry |
514 | * at the bottom level available, and propagating the changes upward |
515 | * as necessary, plus some accounting needed to play nicely with other |
516 | * parts of the VM system. |
517 | * At each level, we keep a list of pages, which are heads of continuous |
518 | * free pages of length of (1 << order) and marked with _mapcount -2. Page's |
519 | * order is recorded in page_private(page) field. |
520 | * So when we are allocating or freeing one, we can derive the state of the |
521 | * other. That is, if we allocate a small block, and both were |
522 | * free, the remainder of the region must be split into blocks. |
523 | * If a block is freed, and its buddy is also free, then this |
524 | * triggers coalescing into a block of larger size. |
525 | * |
526 | * -- wli |
527 | */ |
528 | |
529 | static inline void __free_one_page(struct page *page, |
530 | struct zone *zone, unsigned int order, |
531 | int migratetype) |
532 | { |
533 | unsigned long page_idx; |
534 | unsigned long combined_idx; |
535 | unsigned long uninitialized_var(buddy_idx); |
536 | struct page *buddy; |
537 | |
538 | if (unlikely(PageCompound(page))) |
539 | if (unlikely(destroy_compound_page(page, order))) |
540 | return; |
541 | |
542 | VM_BUG_ON(migratetype == -1); |
543 | |
544 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
545 | |
546 | VM_BUG_ON(page_idx & ((1 << order) - 1)); |
547 | VM_BUG_ON(bad_range(zone, page)); |
548 | |
549 | while (order < MAX_ORDER-1) { |
550 | buddy_idx = __find_buddy_index(page_idx, order); |
551 | buddy = page + (buddy_idx - page_idx); |
552 | if (!page_is_buddy(page, buddy, order)) |
553 | break; |
554 | /* |
555 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, |
556 | * merge with it and move up one order. |
557 | */ |
558 | if (page_is_guard(buddy)) { |
559 | clear_page_guard_flag(buddy); |
560 | set_page_private(page, 0); |
561 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); |
562 | } else { |
563 | list_del(&buddy->lru); |
564 | zone->free_area[order].nr_free--; |
565 | rmv_page_order(buddy); |
566 | } |
567 | combined_idx = buddy_idx & page_idx; |
568 | page = page + (combined_idx - page_idx); |
569 | page_idx = combined_idx; |
570 | order++; |
571 | } |
572 | set_page_order(page, order); |
573 | |
574 | /* |
575 | * If this is not the largest possible page, check if the buddy |
576 | * of the next-highest order is free. If it is, it's possible |
577 | * that pages are being freed that will coalesce soon. In case, |
578 | * that is happening, add the free page to the tail of the list |
579 | * so it's less likely to be used soon and more likely to be merged |
580 | * as a higher order page |
581 | */ |
582 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
583 | struct page *higher_page, *higher_buddy; |
584 | combined_idx = buddy_idx & page_idx; |
585 | higher_page = page + (combined_idx - page_idx); |
586 | buddy_idx = __find_buddy_index(combined_idx, order + 1); |
587 | higher_buddy = page + (buddy_idx - combined_idx); |
588 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
589 | list_add_tail(&page->lru, |
590 | &zone->free_area[order].free_list[migratetype]); |
591 | goto out; |
592 | } |
593 | } |
594 | |
595 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); |
596 | out: |
597 | zone->free_area[order].nr_free++; |
598 | } |
599 | |
600 | /* |
601 | * free_page_mlock() -- clean up attempts to free and mlocked() page. |
602 | * Page should not be on lru, so no need to fix that up. |
603 | * free_pages_check() will verify... |
604 | */ |
605 | static inline void free_page_mlock(struct page *page) |
606 | { |
607 | __dec_zone_page_state(page, NR_MLOCK); |
608 | __count_vm_event(UNEVICTABLE_MLOCKFREED); |
609 | } |
610 | |
611 | static inline int free_pages_check(struct page *page) |
612 | { |
613 | if (unlikely(page_mapcount(page) | |
614 | (page->mapping != NULL) | |
615 | (atomic_read(&page->_count) != 0) | |
616 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | |
617 | (mem_cgroup_bad_page_check(page)))) { |
618 | bad_page(page); |
619 | return 1; |
620 | } |
621 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
622 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
623 | return 0; |
624 | } |
625 | |
626 | /* |
627 | * Frees a number of pages from the PCP lists |
628 | * Assumes all pages on list are in same zone, and of same order. |
629 | * count is the number of pages to free. |
630 | * |
631 | * If the zone was previously in an "all pages pinned" state then look to |
632 | * see if this freeing clears that state. |
633 | * |
634 | * And clear the zone's pages_scanned counter, to hold off the "all pages are |
635 | * pinned" detection logic. |
636 | */ |
637 | static void free_pcppages_bulk(struct zone *zone, int count, |
638 | struct per_cpu_pages *pcp) |
639 | { |
640 | int migratetype = 0; |
641 | int batch_free = 0; |
642 | int to_free = count; |
643 | |
644 | spin_lock(&zone->lock); |
645 | zone->all_unreclaimable = 0; |
646 | zone->pages_scanned = 0; |
647 | |
648 | while (to_free) { |
649 | struct page *page; |
650 | struct list_head *list; |
651 | |
652 | /* |
653 | * Remove pages from lists in a round-robin fashion. A |
654 | * batch_free count is maintained that is incremented when an |
655 | * empty list is encountered. This is so more pages are freed |
656 | * off fuller lists instead of spinning excessively around empty |
657 | * lists |
658 | */ |
659 | do { |
660 | batch_free++; |
661 | if (++migratetype == MIGRATE_PCPTYPES) |
662 | migratetype = 0; |
663 | list = &pcp->lists[migratetype]; |
664 | } while (list_empty(list)); |
665 | |
666 | /* This is the only non-empty list. Free them all. */ |
667 | if (batch_free == MIGRATE_PCPTYPES) |
668 | batch_free = to_free; |
669 | |
670 | do { |
671 | page = list_entry(list->prev, struct page, lru); |
672 | /* must delete as __free_one_page list manipulates */ |
673 | list_del(&page->lru); |
674 | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ |
675 | __free_one_page(page, zone, 0, page_private(page)); |
676 | trace_mm_page_pcpu_drain(page, 0, page_private(page)); |
677 | } while (--to_free && --batch_free && !list_empty(list)); |
678 | } |
679 | __mod_zone_page_state(zone, NR_FREE_PAGES, count); |
680 | spin_unlock(&zone->lock); |
681 | } |
682 | |
683 | static void free_one_page(struct zone *zone, struct page *page, int order, |
684 | int migratetype) |
685 | { |
686 | spin_lock(&zone->lock); |
687 | zone->all_unreclaimable = 0; |
688 | zone->pages_scanned = 0; |
689 | |
690 | __free_one_page(page, zone, order, migratetype); |
691 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); |
692 | spin_unlock(&zone->lock); |
693 | } |
694 | |
695 | static bool free_pages_prepare(struct page *page, unsigned int order) |
696 | { |
697 | int i; |
698 | int bad = 0; |
699 | |
700 | trace_mm_page_free(page, order); |
701 | kmemcheck_free_shadow(page, order); |
702 | |
703 | if (PageAnon(page)) |
704 | page->mapping = NULL; |
705 | for (i = 0; i < (1 << order); i++) |
706 | bad += free_pages_check(page + i); |
707 | if (bad) |
708 | return false; |
709 | |
710 | if (!PageHighMem(page)) { |
711 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
712 | debug_check_no_obj_freed(page_address(page), |
713 | PAGE_SIZE << order); |
714 | } |
715 | arch_free_page(page, order); |
716 | kernel_map_pages(page, 1 << order, 0); |
717 | |
718 | return true; |
719 | } |
720 | |
721 | static void __free_pages_ok(struct page *page, unsigned int order) |
722 | { |
723 | unsigned long flags; |
724 | int wasMlocked = __TestClearPageMlocked(page); |
725 | |
726 | if (!free_pages_prepare(page, order)) |
727 | return; |
728 | |
729 | local_irq_save(flags); |
730 | if (unlikely(wasMlocked)) |
731 | free_page_mlock(page); |
732 | __count_vm_events(PGFREE, 1 << order); |
733 | free_one_page(page_zone(page), page, order, |
734 | get_pageblock_migratetype(page)); |
735 | local_irq_restore(flags); |
736 | } |
737 | |
738 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
739 | { |
740 | unsigned int nr_pages = 1 << order; |
741 | unsigned int loop; |
742 | |
743 | prefetchw(page); |
744 | for (loop = 0; loop < nr_pages; loop++) { |
745 | struct page *p = &page[loop]; |
746 | |
747 | if (loop + 1 < nr_pages) |
748 | prefetchw(p + 1); |
749 | __ClearPageReserved(p); |
750 | set_page_count(p, 0); |
751 | } |
752 | |
753 | set_page_refcounted(page); |
754 | __free_pages(page, order); |
755 | } |
756 | |
757 | #ifdef CONFIG_CMA |
758 | /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ |
759 | void __init init_cma_reserved_pageblock(struct page *page) |
760 | { |
761 | unsigned i = pageblock_nr_pages; |
762 | struct page *p = page; |
763 | |
764 | do { |
765 | __ClearPageReserved(p); |
766 | set_page_count(p, 0); |
767 | } while (++p, --i); |
768 | |
769 | set_page_refcounted(page); |
770 | set_pageblock_migratetype(page, MIGRATE_CMA); |
771 | __free_pages(page, pageblock_order); |
772 | totalram_pages += pageblock_nr_pages; |
773 | } |
774 | #endif |
775 | |
776 | /* |
777 | * The order of subdivision here is critical for the IO subsystem. |
778 | * Please do not alter this order without good reasons and regression |
779 | * testing. Specifically, as large blocks of memory are subdivided, |
780 | * the order in which smaller blocks are delivered depends on the order |
781 | * they're subdivided in this function. This is the primary factor |
782 | * influencing the order in which pages are delivered to the IO |
783 | * subsystem according to empirical testing, and this is also justified |
784 | * by considering the behavior of a buddy system containing a single |
785 | * large block of memory acted on by a series of small allocations. |
786 | * This behavior is a critical factor in sglist merging's success. |
787 | * |
788 | * -- wli |
789 | */ |
790 | static inline void expand(struct zone *zone, struct page *page, |
791 | int low, int high, struct free_area *area, |
792 | int migratetype) |
793 | { |
794 | unsigned long size = 1 << high; |
795 | |
796 | while (high > low) { |
797 | area--; |
798 | high--; |
799 | size >>= 1; |
800 | VM_BUG_ON(bad_range(zone, &page[size])); |
801 | |
802 | #ifdef CONFIG_DEBUG_PAGEALLOC |
803 | if (high < debug_guardpage_minorder()) { |
804 | /* |
805 | * Mark as guard pages (or page), that will allow to |
806 | * merge back to allocator when buddy will be freed. |
807 | * Corresponding page table entries will not be touched, |
808 | * pages will stay not present in virtual address space |
809 | */ |
810 | INIT_LIST_HEAD(&page[size].lru); |
811 | set_page_guard_flag(&page[size]); |
812 | set_page_private(&page[size], high); |
813 | /* Guard pages are not available for any usage */ |
814 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); |
815 | continue; |
816 | } |
817 | #endif |
818 | list_add(&page[size].lru, &area->free_list[migratetype]); |
819 | area->nr_free++; |
820 | set_page_order(&page[size], high); |
821 | } |
822 | } |
823 | |
824 | /* |
825 | * This page is about to be returned from the page allocator |
826 | */ |
827 | static inline int check_new_page(struct page *page) |
828 | { |
829 | if (unlikely(page_mapcount(page) | |
830 | (page->mapping != NULL) | |
831 | (atomic_read(&page->_count) != 0) | |
832 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | |
833 | (mem_cgroup_bad_page_check(page)))) { |
834 | bad_page(page); |
835 | return 1; |
836 | } |
837 | return 0; |
838 | } |
839 | |
840 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) |
841 | { |
842 | int i; |
843 | |
844 | for (i = 0; i < (1 << order); i++) { |
845 | struct page *p = page + i; |
846 | if (unlikely(check_new_page(p))) |
847 | return 1; |
848 | } |
849 | |
850 | set_page_private(page, 0); |
851 | set_page_refcounted(page); |
852 | |
853 | arch_alloc_page(page, order); |
854 | kernel_map_pages(page, 1 << order, 1); |
855 | |
856 | if (gfp_flags & __GFP_ZERO) |
857 | prep_zero_page(page, order, gfp_flags); |
858 | |
859 | if (order && (gfp_flags & __GFP_COMP)) |
860 | prep_compound_page(page, order); |
861 | |
862 | return 0; |
863 | } |
864 | |
865 | /* |
866 | * Go through the free lists for the given migratetype and remove |
867 | * the smallest available page from the freelists |
868 | */ |
869 | static inline |
870 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
871 | int migratetype) |
872 | { |
873 | unsigned int current_order; |
874 | struct free_area * area; |
875 | struct page *page; |
876 | |
877 | /* Find a page of the appropriate size in the preferred list */ |
878 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { |
879 | area = &(zone->free_area[current_order]); |
880 | if (list_empty(&area->free_list[migratetype])) |
881 | continue; |
882 | |
883 | page = list_entry(area->free_list[migratetype].next, |
884 | struct page, lru); |
885 | list_del(&page->lru); |
886 | rmv_page_order(page); |
887 | area->nr_free--; |
888 | expand(zone, page, order, current_order, area, migratetype); |
889 | return page; |
890 | } |
891 | |
892 | return NULL; |
893 | } |
894 | |
895 | |
896 | /* |
897 | * This array describes the order lists are fallen back to when |
898 | * the free lists for the desirable migrate type are depleted |
899 | */ |
900 | static int fallbacks[MIGRATE_TYPES][4] = { |
901 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, |
902 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, |
903 | #ifdef CONFIG_CMA |
904 | [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, |
905 | [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ |
906 | #else |
907 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, |
908 | #endif |
909 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ |
910 | [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ |
911 | }; |
912 | |
913 | /* |
914 | * Move the free pages in a range to the free lists of the requested type. |
915 | * Note that start_page and end_pages are not aligned on a pageblock |
916 | * boundary. If alignment is required, use move_freepages_block() |
917 | */ |
918 | static int move_freepages(struct zone *zone, |
919 | struct page *start_page, struct page *end_page, |
920 | int migratetype) |
921 | { |
922 | struct page *page; |
923 | unsigned long order; |
924 | int pages_moved = 0; |
925 | |
926 | #ifndef CONFIG_HOLES_IN_ZONE |
927 | /* |
928 | * page_zone is not safe to call in this context when |
929 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant |
930 | * anyway as we check zone boundaries in move_freepages_block(). |
931 | * Remove at a later date when no bug reports exist related to |
932 | * grouping pages by mobility |
933 | */ |
934 | BUG_ON(page_zone(start_page) != page_zone(end_page)); |
935 | #endif |
936 | |
937 | for (page = start_page; page <= end_page;) { |
938 | /* Make sure we are not inadvertently changing nodes */ |
939 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); |
940 | |
941 | if (!pfn_valid_within(page_to_pfn(page))) { |
942 | page++; |
943 | continue; |
944 | } |
945 | |
946 | if (!PageBuddy(page)) { |
947 | page++; |
948 | continue; |
949 | } |
950 | |
951 | order = page_order(page); |
952 | list_move(&page->lru, |
953 | &zone->free_area[order].free_list[migratetype]); |
954 | page += 1 << order; |
955 | pages_moved += 1 << order; |
956 | } |
957 | |
958 | return pages_moved; |
959 | } |
960 | |
961 | int move_freepages_block(struct zone *zone, struct page *page, |
962 | int migratetype) |
963 | { |
964 | unsigned long start_pfn, end_pfn; |
965 | struct page *start_page, *end_page; |
966 | |
967 | start_pfn = page_to_pfn(page); |
968 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
969 | start_page = pfn_to_page(start_pfn); |
970 | end_page = start_page + pageblock_nr_pages - 1; |
971 | end_pfn = start_pfn + pageblock_nr_pages - 1; |
972 | |
973 | /* Do not cross zone boundaries */ |
974 | if (start_pfn < zone->zone_start_pfn) |
975 | start_page = page; |
976 | if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) |
977 | return 0; |
978 | |
979 | return move_freepages(zone, start_page, end_page, migratetype); |
980 | } |
981 | |
982 | static void change_pageblock_range(struct page *pageblock_page, |
983 | int start_order, int migratetype) |
984 | { |
985 | int nr_pageblocks = 1 << (start_order - pageblock_order); |
986 | |
987 | while (nr_pageblocks--) { |
988 | set_pageblock_migratetype(pageblock_page, migratetype); |
989 | pageblock_page += pageblock_nr_pages; |
990 | } |
991 | } |
992 | |
993 | /* Remove an element from the buddy allocator from the fallback list */ |
994 | static inline struct page * |
995 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) |
996 | { |
997 | struct free_area * area; |
998 | int current_order; |
999 | struct page *page; |
1000 | int migratetype, i; |
1001 | |
1002 | /* Find the largest possible block of pages in the other list */ |
1003 | for (current_order = MAX_ORDER-1; current_order >= order; |
1004 | --current_order) { |
1005 | for (i = 0;; i++) { |
1006 | migratetype = fallbacks[start_migratetype][i]; |
1007 | |
1008 | /* MIGRATE_RESERVE handled later if necessary */ |
1009 | if (migratetype == MIGRATE_RESERVE) |
1010 | break; |
1011 | |
1012 | area = &(zone->free_area[current_order]); |
1013 | if (list_empty(&area->free_list[migratetype])) |
1014 | continue; |
1015 | |
1016 | page = list_entry(area->free_list[migratetype].next, |
1017 | struct page, lru); |
1018 | area->nr_free--; |
1019 | |
1020 | /* |
1021 | * If breaking a large block of pages, move all free |
1022 | * pages to the preferred allocation list. If falling |
1023 | * back for a reclaimable kernel allocation, be more |
1024 | * aggressive about taking ownership of free pages |
1025 | * |
1026 | * On the other hand, never change migration |
1027 | * type of MIGRATE_CMA pageblocks nor move CMA |
1028 | * pages on different free lists. We don't |
1029 | * want unmovable pages to be allocated from |
1030 | * MIGRATE_CMA areas. |
1031 | */ |
1032 | if (!is_migrate_cma(migratetype) && |
1033 | (unlikely(current_order >= pageblock_order / 2) || |
1034 | start_migratetype == MIGRATE_RECLAIMABLE || |
1035 | page_group_by_mobility_disabled)) { |
1036 | int pages; |
1037 | pages = move_freepages_block(zone, page, |
1038 | start_migratetype); |
1039 | |
1040 | /* Claim the whole block if over half of it is free */ |
1041 | if (pages >= (1 << (pageblock_order-1)) || |
1042 | page_group_by_mobility_disabled) |
1043 | set_pageblock_migratetype(page, |
1044 | start_migratetype); |
1045 | |
1046 | migratetype = start_migratetype; |
1047 | } |
1048 | |
1049 | /* Remove the page from the freelists */ |
1050 | list_del(&page->lru); |
1051 | rmv_page_order(page); |
1052 | |
1053 | /* Take ownership for orders >= pageblock_order */ |
1054 | if (current_order >= pageblock_order && |
1055 | !is_migrate_cma(migratetype)) |
1056 | change_pageblock_range(page, current_order, |
1057 | start_migratetype); |
1058 | |
1059 | expand(zone, page, order, current_order, area, |
1060 | is_migrate_cma(migratetype) |
1061 | ? migratetype : start_migratetype); |
1062 | |
1063 | trace_mm_page_alloc_extfrag(page, order, current_order, |
1064 | start_migratetype, migratetype); |
1065 | |
1066 | return page; |
1067 | } |
1068 | } |
1069 | |
1070 | return NULL; |
1071 | } |
1072 | |
1073 | /* |
1074 | * Do the hard work of removing an element from the buddy allocator. |
1075 | * Call me with the zone->lock already held. |
1076 | */ |
1077 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
1078 | int migratetype) |
1079 | { |
1080 | struct page *page; |
1081 | |
1082 | retry_reserve: |
1083 | page = __rmqueue_smallest(zone, order, migratetype); |
1084 | |
1085 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
1086 | page = __rmqueue_fallback(zone, order, migratetype); |
1087 | |
1088 | /* |
1089 | * Use MIGRATE_RESERVE rather than fail an allocation. goto |
1090 | * is used because __rmqueue_smallest is an inline function |
1091 | * and we want just one call site |
1092 | */ |
1093 | if (!page) { |
1094 | migratetype = MIGRATE_RESERVE; |
1095 | goto retry_reserve; |
1096 | } |
1097 | } |
1098 | |
1099 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
1100 | return page; |
1101 | } |
1102 | |
1103 | /* |
1104 | * Obtain a specified number of elements from the buddy allocator, all under |
1105 | * a single hold of the lock, for efficiency. Add them to the supplied list. |
1106 | * Returns the number of new pages which were placed at *list. |
1107 | */ |
1108 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
1109 | unsigned long count, struct list_head *list, |
1110 | int migratetype, int cold) |
1111 | { |
1112 | int mt = migratetype, i; |
1113 | |
1114 | spin_lock(&zone->lock); |
1115 | for (i = 0; i < count; ++i) { |
1116 | struct page *page = __rmqueue(zone, order, migratetype); |
1117 | if (unlikely(page == NULL)) |
1118 | break; |
1119 | |
1120 | /* |
1121 | * Split buddy pages returned by expand() are received here |
1122 | * in physical page order. The page is added to the callers and |
1123 | * list and the list head then moves forward. From the callers |
1124 | * perspective, the linked list is ordered by page number in |
1125 | * some conditions. This is useful for IO devices that can |
1126 | * merge IO requests if the physical pages are ordered |
1127 | * properly. |
1128 | */ |
1129 | if (likely(cold == 0)) |
1130 | list_add(&page->lru, list); |
1131 | else |
1132 | list_add_tail(&page->lru, list); |
1133 | if (IS_ENABLED(CONFIG_CMA)) { |
1134 | mt = get_pageblock_migratetype(page); |
1135 | if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) |
1136 | mt = migratetype; |
1137 | } |
1138 | set_page_private(page, mt); |
1139 | list = &page->lru; |
1140 | } |
1141 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
1142 | spin_unlock(&zone->lock); |
1143 | return i; |
1144 | } |
1145 | |
1146 | #ifdef CONFIG_NUMA |
1147 | /* |
1148 | * Called from the vmstat counter updater to drain pagesets of this |
1149 | * currently executing processor on remote nodes after they have |
1150 | * expired. |
1151 | * |
1152 | * Note that this function must be called with the thread pinned to |
1153 | * a single processor. |
1154 | */ |
1155 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
1156 | { |
1157 | unsigned long flags; |
1158 | int to_drain; |
1159 | |
1160 | local_irq_save(flags); |
1161 | if (pcp->count >= pcp->batch) |
1162 | to_drain = pcp->batch; |
1163 | else |
1164 | to_drain = pcp->count; |
1165 | if (to_drain > 0) { |
1166 | free_pcppages_bulk(zone, to_drain, pcp); |
1167 | pcp->count -= to_drain; |
1168 | } |
1169 | local_irq_restore(flags); |
1170 | } |
1171 | #endif |
1172 | |
1173 | /* |
1174 | * Drain pages of the indicated processor. |
1175 | * |
1176 | * The processor must either be the current processor and the |
1177 | * thread pinned to the current processor or a processor that |
1178 | * is not online. |
1179 | */ |
1180 | static void drain_pages(unsigned int cpu) |
1181 | { |
1182 | unsigned long flags; |
1183 | struct zone *zone; |
1184 | |
1185 | for_each_populated_zone(zone) { |
1186 | struct per_cpu_pageset *pset; |
1187 | struct per_cpu_pages *pcp; |
1188 | |
1189 | local_irq_save(flags); |
1190 | pset = per_cpu_ptr(zone->pageset, cpu); |
1191 | |
1192 | pcp = &pset->pcp; |
1193 | if (pcp->count) { |
1194 | free_pcppages_bulk(zone, pcp->count, pcp); |
1195 | pcp->count = 0; |
1196 | } |
1197 | local_irq_restore(flags); |
1198 | } |
1199 | } |
1200 | |
1201 | /* |
1202 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
1203 | */ |
1204 | void drain_local_pages(void *arg) |
1205 | { |
1206 | drain_pages(smp_processor_id()); |
1207 | } |
1208 | |
1209 | /* |
1210 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1211 | * |
1212 | * Note that this code is protected against sending an IPI to an offline |
1213 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: |
1214 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but |
1215 | * nothing keeps CPUs from showing up after we populated the cpumask and |
1216 | * before the call to on_each_cpu_mask(). |
1217 | */ |
1218 | void drain_all_pages(void) |
1219 | { |
1220 | int cpu; |
1221 | struct per_cpu_pageset *pcp; |
1222 | struct zone *zone; |
1223 | |
1224 | /* |
1225 | * Allocate in the BSS so we wont require allocation in |
1226 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y |
1227 | */ |
1228 | static cpumask_t cpus_with_pcps; |
1229 | |
1230 | /* |
1231 | * We don't care about racing with CPU hotplug event |
1232 | * as offline notification will cause the notified |
1233 | * cpu to drain that CPU pcps and on_each_cpu_mask |
1234 | * disables preemption as part of its processing |
1235 | */ |
1236 | for_each_online_cpu(cpu) { |
1237 | bool has_pcps = false; |
1238 | for_each_populated_zone(zone) { |
1239 | pcp = per_cpu_ptr(zone->pageset, cpu); |
1240 | if (pcp->pcp.count) { |
1241 | has_pcps = true; |
1242 | break; |
1243 | } |
1244 | } |
1245 | if (has_pcps) |
1246 | cpumask_set_cpu(cpu, &cpus_with_pcps); |
1247 | else |
1248 | cpumask_clear_cpu(cpu, &cpus_with_pcps); |
1249 | } |
1250 | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); |
1251 | } |
1252 | |
1253 | #ifdef CONFIG_HIBERNATION |
1254 | |
1255 | void mark_free_pages(struct zone *zone) |
1256 | { |
1257 | unsigned long pfn, max_zone_pfn; |
1258 | unsigned long flags; |
1259 | int order, t; |
1260 | struct list_head *curr; |
1261 | |
1262 | if (!zone->spanned_pages) |
1263 | return; |
1264 | |
1265 | spin_lock_irqsave(&zone->lock, flags); |
1266 | |
1267 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
1268 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1269 | if (pfn_valid(pfn)) { |
1270 | struct page *page = pfn_to_page(pfn); |
1271 | |
1272 | if (!swsusp_page_is_forbidden(page)) |
1273 | swsusp_unset_page_free(page); |
1274 | } |
1275 | |
1276 | for_each_migratetype_order(order, t) { |
1277 | list_for_each(curr, &zone->free_area[order].free_list[t]) { |
1278 | unsigned long i; |
1279 | |
1280 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1281 | for (i = 0; i < (1UL << order); i++) |
1282 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
1283 | } |
1284 | } |
1285 | spin_unlock_irqrestore(&zone->lock, flags); |
1286 | } |
1287 | #endif /* CONFIG_PM */ |
1288 | |
1289 | /* |
1290 | * Free a 0-order page |
1291 | * cold == 1 ? free a cold page : free a hot page |
1292 | */ |
1293 | void free_hot_cold_page(struct page *page, int cold) |
1294 | { |
1295 | struct zone *zone = page_zone(page); |
1296 | struct per_cpu_pages *pcp; |
1297 | unsigned long flags; |
1298 | int migratetype; |
1299 | int wasMlocked = __TestClearPageMlocked(page); |
1300 | |
1301 | if (!free_pages_prepare(page, 0)) |
1302 | return; |
1303 | |
1304 | migratetype = get_pageblock_migratetype(page); |
1305 | set_page_private(page, migratetype); |
1306 | local_irq_save(flags); |
1307 | if (unlikely(wasMlocked)) |
1308 | free_page_mlock(page); |
1309 | __count_vm_event(PGFREE); |
1310 | |
1311 | /* |
1312 | * We only track unmovable, reclaimable and movable on pcp lists. |
1313 | * Free ISOLATE pages back to the allocator because they are being |
1314 | * offlined but treat RESERVE as movable pages so we can get those |
1315 | * areas back if necessary. Otherwise, we may have to free |
1316 | * excessively into the page allocator |
1317 | */ |
1318 | if (migratetype >= MIGRATE_PCPTYPES) { |
1319 | if (unlikely(migratetype == MIGRATE_ISOLATE)) { |
1320 | free_one_page(zone, page, 0, migratetype); |
1321 | goto out; |
1322 | } |
1323 | migratetype = MIGRATE_MOVABLE; |
1324 | } |
1325 | |
1326 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1327 | if (cold) |
1328 | list_add_tail(&page->lru, &pcp->lists[migratetype]); |
1329 | else |
1330 | list_add(&page->lru, &pcp->lists[migratetype]); |
1331 | pcp->count++; |
1332 | if (pcp->count >= pcp->high) { |
1333 | free_pcppages_bulk(zone, pcp->batch, pcp); |
1334 | pcp->count -= pcp->batch; |
1335 | } |
1336 | |
1337 | out: |
1338 | local_irq_restore(flags); |
1339 | } |
1340 | |
1341 | /* |
1342 | * Free a list of 0-order pages |
1343 | */ |
1344 | void free_hot_cold_page_list(struct list_head *list, int cold) |
1345 | { |
1346 | struct page *page, *next; |
1347 | |
1348 | list_for_each_entry_safe(page, next, list, lru) { |
1349 | trace_mm_page_free_batched(page, cold); |
1350 | free_hot_cold_page(page, cold); |
1351 | } |
1352 | } |
1353 | |
1354 | /* |
1355 | * split_page takes a non-compound higher-order page, and splits it into |
1356 | * n (1<<order) sub-pages: page[0..n] |
1357 | * Each sub-page must be freed individually. |
1358 | * |
1359 | * Note: this is probably too low level an operation for use in drivers. |
1360 | * Please consult with lkml before using this in your driver. |
1361 | */ |
1362 | void split_page(struct page *page, unsigned int order) |
1363 | { |
1364 | int i; |
1365 | |
1366 | VM_BUG_ON(PageCompound(page)); |
1367 | VM_BUG_ON(!page_count(page)); |
1368 | |
1369 | #ifdef CONFIG_KMEMCHECK |
1370 | /* |
1371 | * Split shadow pages too, because free(page[0]) would |
1372 | * otherwise free the whole shadow. |
1373 | */ |
1374 | if (kmemcheck_page_is_tracked(page)) |
1375 | split_page(virt_to_page(page[0].shadow), order); |
1376 | #endif |
1377 | |
1378 | for (i = 1; i < (1 << order); i++) |
1379 | set_page_refcounted(page + i); |
1380 | } |
1381 | |
1382 | /* |
1383 | * Similar to split_page except the page is already free. As this is only |
1384 | * being used for migration, the migratetype of the block also changes. |
1385 | * As this is called with interrupts disabled, the caller is responsible |
1386 | * for calling arch_alloc_page() and kernel_map_page() after interrupts |
1387 | * are enabled. |
1388 | * |
1389 | * Note: this is probably too low level an operation for use in drivers. |
1390 | * Please consult with lkml before using this in your driver. |
1391 | */ |
1392 | int split_free_page(struct page *page) |
1393 | { |
1394 | unsigned int order; |
1395 | unsigned long watermark; |
1396 | struct zone *zone; |
1397 | |
1398 | BUG_ON(!PageBuddy(page)); |
1399 | |
1400 | zone = page_zone(page); |
1401 | order = page_order(page); |
1402 | |
1403 | /* Obey watermarks as if the page was being allocated */ |
1404 | watermark = low_wmark_pages(zone) + (1 << order); |
1405 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) |
1406 | return 0; |
1407 | |
1408 | /* Remove page from free list */ |
1409 | list_del(&page->lru); |
1410 | zone->free_area[order].nr_free--; |
1411 | rmv_page_order(page); |
1412 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); |
1413 | |
1414 | /* Split into individual pages */ |
1415 | set_page_refcounted(page); |
1416 | split_page(page, order); |
1417 | |
1418 | if (order >= pageblock_order - 1) { |
1419 | struct page *endpage = page + (1 << order) - 1; |
1420 | for (; page < endpage; page += pageblock_nr_pages) { |
1421 | int mt = get_pageblock_migratetype(page); |
1422 | if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) |
1423 | set_pageblock_migratetype(page, |
1424 | MIGRATE_MOVABLE); |
1425 | } |
1426 | } |
1427 | |
1428 | return 1 << order; |
1429 | } |
1430 | |
1431 | /* |
1432 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But |
1433 | * we cheat by calling it from here, in the order > 0 path. Saves a branch |
1434 | * or two. |
1435 | */ |
1436 | static inline |
1437 | struct page *buffered_rmqueue(struct zone *preferred_zone, |
1438 | struct zone *zone, int order, gfp_t gfp_flags, |
1439 | int migratetype) |
1440 | { |
1441 | unsigned long flags; |
1442 | struct page *page; |
1443 | int cold = !!(gfp_flags & __GFP_COLD); |
1444 | |
1445 | again: |
1446 | if (likely(order == 0)) { |
1447 | struct per_cpu_pages *pcp; |
1448 | struct list_head *list; |
1449 | |
1450 | local_irq_save(flags); |
1451 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1452 | list = &pcp->lists[migratetype]; |
1453 | if (list_empty(list)) { |
1454 | pcp->count += rmqueue_bulk(zone, 0, |
1455 | pcp->batch, list, |
1456 | migratetype, cold); |
1457 | if (unlikely(list_empty(list))) |
1458 | goto failed; |
1459 | } |
1460 | |
1461 | if (cold) |
1462 | page = list_entry(list->prev, struct page, lru); |
1463 | else |
1464 | page = list_entry(list->next, struct page, lru); |
1465 | |
1466 | list_del(&page->lru); |
1467 | pcp->count--; |
1468 | } else { |
1469 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1470 | /* |
1471 | * __GFP_NOFAIL is not to be used in new code. |
1472 | * |
1473 | * All __GFP_NOFAIL callers should be fixed so that they |
1474 | * properly detect and handle allocation failures. |
1475 | * |
1476 | * We most definitely don't want callers attempting to |
1477 | * allocate greater than order-1 page units with |
1478 | * __GFP_NOFAIL. |
1479 | */ |
1480 | WARN_ON_ONCE(order > 1); |
1481 | } |
1482 | spin_lock_irqsave(&zone->lock, flags); |
1483 | page = __rmqueue(zone, order, migratetype); |
1484 | spin_unlock(&zone->lock); |
1485 | if (!page) |
1486 | goto failed; |
1487 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); |
1488 | } |
1489 | |
1490 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
1491 | zone_statistics(preferred_zone, zone, gfp_flags); |
1492 | local_irq_restore(flags); |
1493 | |
1494 | VM_BUG_ON(bad_range(zone, page)); |
1495 | if (prep_new_page(page, order, gfp_flags)) |
1496 | goto again; |
1497 | return page; |
1498 | |
1499 | failed: |
1500 | local_irq_restore(flags); |
1501 | return NULL; |
1502 | } |
1503 | |
1504 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
1505 | #define ALLOC_WMARK_MIN WMARK_MIN |
1506 | #define ALLOC_WMARK_LOW WMARK_LOW |
1507 | #define ALLOC_WMARK_HIGH WMARK_HIGH |
1508 | #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ |
1509 | |
1510 | /* Mask to get the watermark bits */ |
1511 | #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) |
1512 | |
1513 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ |
1514 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ |
1515 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ |
1516 | |
1517 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1518 | |
1519 | static struct { |
1520 | struct fault_attr attr; |
1521 | |
1522 | u32 ignore_gfp_highmem; |
1523 | u32 ignore_gfp_wait; |
1524 | u32 min_order; |
1525 | } fail_page_alloc = { |
1526 | .attr = FAULT_ATTR_INITIALIZER, |
1527 | .ignore_gfp_wait = 1, |
1528 | .ignore_gfp_highmem = 1, |
1529 | .min_order = 1, |
1530 | }; |
1531 | |
1532 | static int __init setup_fail_page_alloc(char *str) |
1533 | { |
1534 | return setup_fault_attr(&fail_page_alloc.attr, str); |
1535 | } |
1536 | __setup("fail_page_alloc=", setup_fail_page_alloc); |
1537 | |
1538 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
1539 | { |
1540 | if (order < fail_page_alloc.min_order) |
1541 | return false; |
1542 | if (gfp_mask & __GFP_NOFAIL) |
1543 | return false; |
1544 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
1545 | return false; |
1546 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) |
1547 | return false; |
1548 | |
1549 | return should_fail(&fail_page_alloc.attr, 1 << order); |
1550 | } |
1551 | |
1552 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS |
1553 | |
1554 | static int __init fail_page_alloc_debugfs(void) |
1555 | { |
1556 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
1557 | struct dentry *dir; |
1558 | |
1559 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
1560 | &fail_page_alloc.attr); |
1561 | if (IS_ERR(dir)) |
1562 | return PTR_ERR(dir); |
1563 | |
1564 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
1565 | &fail_page_alloc.ignore_gfp_wait)) |
1566 | goto fail; |
1567 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, |
1568 | &fail_page_alloc.ignore_gfp_highmem)) |
1569 | goto fail; |
1570 | if (!debugfs_create_u32("min-order", mode, dir, |
1571 | &fail_page_alloc.min_order)) |
1572 | goto fail; |
1573 | |
1574 | return 0; |
1575 | fail: |
1576 | debugfs_remove_recursive(dir); |
1577 | |
1578 | return -ENOMEM; |
1579 | } |
1580 | |
1581 | late_initcall(fail_page_alloc_debugfs); |
1582 | |
1583 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ |
1584 | |
1585 | #else /* CONFIG_FAIL_PAGE_ALLOC */ |
1586 | |
1587 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
1588 | { |
1589 | return false; |
1590 | } |
1591 | |
1592 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ |
1593 | |
1594 | /* |
1595 | * Return true if free pages are above 'mark'. This takes into account the order |
1596 | * of the allocation. |
1597 | */ |
1598 | static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1599 | int classzone_idx, int alloc_flags, long free_pages) |
1600 | { |
1601 | /* free_pages my go negative - that's OK */ |
1602 | long min = mark; |
1603 | long lowmem_reserve = z->lowmem_reserve[classzone_idx]; |
1604 | int o; |
1605 | |
1606 | free_pages -= (1 << order) - 1; |
1607 | if (alloc_flags & ALLOC_HIGH) |
1608 | min -= min / 2; |
1609 | if (alloc_flags & ALLOC_HARDER) |
1610 | min -= min / 4; |
1611 | |
1612 | if (free_pages <= min + lowmem_reserve) |
1613 | return false; |
1614 | for (o = 0; o < order; o++) { |
1615 | /* At the next order, this order's pages become unavailable */ |
1616 | free_pages -= z->free_area[o].nr_free << o; |
1617 | |
1618 | /* Require fewer higher order pages to be free */ |
1619 | min >>= 1; |
1620 | |
1621 | if (free_pages <= min) |
1622 | return false; |
1623 | } |
1624 | return true; |
1625 | } |
1626 | |
1627 | #ifdef CONFIG_MEMORY_ISOLATION |
1628 | static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) |
1629 | { |
1630 | if (unlikely(zone->nr_pageblock_isolate)) |
1631 | return zone->nr_pageblock_isolate * pageblock_nr_pages; |
1632 | return 0; |
1633 | } |
1634 | #else |
1635 | static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) |
1636 | { |
1637 | return 0; |
1638 | } |
1639 | #endif |
1640 | |
1641 | bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1642 | int classzone_idx, int alloc_flags) |
1643 | { |
1644 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, |
1645 | zone_page_state(z, NR_FREE_PAGES)); |
1646 | } |
1647 | |
1648 | bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, |
1649 | int classzone_idx, int alloc_flags) |
1650 | { |
1651 | long free_pages = zone_page_state(z, NR_FREE_PAGES); |
1652 | |
1653 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) |
1654 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); |
1655 | |
1656 | /* |
1657 | * If the zone has MIGRATE_ISOLATE type free pages, we should consider |
1658 | * it. nr_zone_isolate_freepages is never accurate so kswapd might not |
1659 | * sleep although it could do so. But this is more desirable for memory |
1660 | * hotplug than sleeping which can cause a livelock in the direct |
1661 | * reclaim path. |
1662 | */ |
1663 | free_pages -= nr_zone_isolate_freepages(z); |
1664 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, |
1665 | free_pages); |
1666 | } |
1667 | |
1668 | #ifdef CONFIG_NUMA |
1669 | /* |
1670 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to |
1671 | * skip over zones that are not allowed by the cpuset, or that have |
1672 | * been recently (in last second) found to be nearly full. See further |
1673 | * comments in mmzone.h. Reduces cache footprint of zonelist scans |
1674 | * that have to skip over a lot of full or unallowed zones. |
1675 | * |
1676 | * If the zonelist cache is present in the passed in zonelist, then |
1677 | * returns a pointer to the allowed node mask (either the current |
1678 | * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) |
1679 | * |
1680 | * If the zonelist cache is not available for this zonelist, does |
1681 | * nothing and returns NULL. |
1682 | * |
1683 | * If the fullzones BITMAP in the zonelist cache is stale (more than |
1684 | * a second since last zap'd) then we zap it out (clear its bits.) |
1685 | * |
1686 | * We hold off even calling zlc_setup, until after we've checked the |
1687 | * first zone in the zonelist, on the theory that most allocations will |
1688 | * be satisfied from that first zone, so best to examine that zone as |
1689 | * quickly as we can. |
1690 | */ |
1691 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) |
1692 | { |
1693 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1694 | nodemask_t *allowednodes; /* zonelist_cache approximation */ |
1695 | |
1696 | zlc = zonelist->zlcache_ptr; |
1697 | if (!zlc) |
1698 | return NULL; |
1699 | |
1700 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
1701 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1702 | zlc->last_full_zap = jiffies; |
1703 | } |
1704 | |
1705 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? |
1706 | &cpuset_current_mems_allowed : |
1707 | &node_states[N_HIGH_MEMORY]; |
1708 | return allowednodes; |
1709 | } |
1710 | |
1711 | /* |
1712 | * Given 'z' scanning a zonelist, run a couple of quick checks to see |
1713 | * if it is worth looking at further for free memory: |
1714 | * 1) Check that the zone isn't thought to be full (doesn't have its |
1715 | * bit set in the zonelist_cache fullzones BITMAP). |
1716 | * 2) Check that the zones node (obtained from the zonelist_cache |
1717 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. |
1718 | * Return true (non-zero) if zone is worth looking at further, or |
1719 | * else return false (zero) if it is not. |
1720 | * |
1721 | * This check -ignores- the distinction between various watermarks, |
1722 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is |
1723 | * found to be full for any variation of these watermarks, it will |
1724 | * be considered full for up to one second by all requests, unless |
1725 | * we are so low on memory on all allowed nodes that we are forced |
1726 | * into the second scan of the zonelist. |
1727 | * |
1728 | * In the second scan we ignore this zonelist cache and exactly |
1729 | * apply the watermarks to all zones, even it is slower to do so. |
1730 | * We are low on memory in the second scan, and should leave no stone |
1731 | * unturned looking for a free page. |
1732 | */ |
1733 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
1734 | nodemask_t *allowednodes) |
1735 | { |
1736 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1737 | int i; /* index of *z in zonelist zones */ |
1738 | int n; /* node that zone *z is on */ |
1739 | |
1740 | zlc = zonelist->zlcache_ptr; |
1741 | if (!zlc) |
1742 | return 1; |
1743 | |
1744 | i = z - zonelist->_zonerefs; |
1745 | n = zlc->z_to_n[i]; |
1746 | |
1747 | /* This zone is worth trying if it is allowed but not full */ |
1748 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); |
1749 | } |
1750 | |
1751 | /* |
1752 | * Given 'z' scanning a zonelist, set the corresponding bit in |
1753 | * zlc->fullzones, so that subsequent attempts to allocate a page |
1754 | * from that zone don't waste time re-examining it. |
1755 | */ |
1756 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
1757 | { |
1758 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1759 | int i; /* index of *z in zonelist zones */ |
1760 | |
1761 | zlc = zonelist->zlcache_ptr; |
1762 | if (!zlc) |
1763 | return; |
1764 | |
1765 | i = z - zonelist->_zonerefs; |
1766 | |
1767 | set_bit(i, zlc->fullzones); |
1768 | } |
1769 | |
1770 | /* |
1771 | * clear all zones full, called after direct reclaim makes progress so that |
1772 | * a zone that was recently full is not skipped over for up to a second |
1773 | */ |
1774 | static void zlc_clear_zones_full(struct zonelist *zonelist) |
1775 | { |
1776 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1777 | |
1778 | zlc = zonelist->zlcache_ptr; |
1779 | if (!zlc) |
1780 | return; |
1781 | |
1782 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1783 | } |
1784 | |
1785 | #else /* CONFIG_NUMA */ |
1786 | |
1787 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) |
1788 | { |
1789 | return NULL; |
1790 | } |
1791 | |
1792 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
1793 | nodemask_t *allowednodes) |
1794 | { |
1795 | return 1; |
1796 | } |
1797 | |
1798 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
1799 | { |
1800 | } |
1801 | |
1802 | static void zlc_clear_zones_full(struct zonelist *zonelist) |
1803 | { |
1804 | } |
1805 | #endif /* CONFIG_NUMA */ |
1806 | |
1807 | /* |
1808 | * get_page_from_freelist goes through the zonelist trying to allocate |
1809 | * a page. |
1810 | */ |
1811 | static struct page * |
1812 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
1813 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
1814 | struct zone *preferred_zone, int migratetype) |
1815 | { |
1816 | struct zoneref *z; |
1817 | struct page *page = NULL; |
1818 | int classzone_idx; |
1819 | struct zone *zone; |
1820 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1821 | int zlc_active = 0; /* set if using zonelist_cache */ |
1822 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ |
1823 | |
1824 | classzone_idx = zone_idx(preferred_zone); |
1825 | zonelist_scan: |
1826 | /* |
1827 | * Scan zonelist, looking for a zone with enough free. |
1828 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1829 | */ |
1830 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1831 | high_zoneidx, nodemask) { |
1832 | if (NUMA_BUILD && zlc_active && |
1833 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1834 | continue; |
1835 | if ((alloc_flags & ALLOC_CPUSET) && |
1836 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
1837 | continue; |
1838 | /* |
1839 | * When allocating a page cache page for writing, we |
1840 | * want to get it from a zone that is within its dirty |
1841 | * limit, such that no single zone holds more than its |
1842 | * proportional share of globally allowed dirty pages. |
1843 | * The dirty limits take into account the zone's |
1844 | * lowmem reserves and high watermark so that kswapd |
1845 | * should be able to balance it without having to |
1846 | * write pages from its LRU list. |
1847 | * |
1848 | * This may look like it could increase pressure on |
1849 | * lower zones by failing allocations in higher zones |
1850 | * before they are full. But the pages that do spill |
1851 | * over are limited as the lower zones are protected |
1852 | * by this very same mechanism. It should not become |
1853 | * a practical burden to them. |
1854 | * |
1855 | * XXX: For now, allow allocations to potentially |
1856 | * exceed the per-zone dirty limit in the slowpath |
1857 | * (ALLOC_WMARK_LOW unset) before going into reclaim, |
1858 | * which is important when on a NUMA setup the allowed |
1859 | * zones are together not big enough to reach the |
1860 | * global limit. The proper fix for these situations |
1861 | * will require awareness of zones in the |
1862 | * dirty-throttling and the flusher threads. |
1863 | */ |
1864 | if ((alloc_flags & ALLOC_WMARK_LOW) && |
1865 | (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) |
1866 | goto this_zone_full; |
1867 | |
1868 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
1869 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
1870 | unsigned long mark; |
1871 | int ret; |
1872 | |
1873 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
1874 | if (zone_watermark_ok(zone, order, mark, |
1875 | classzone_idx, alloc_flags)) |
1876 | goto try_this_zone; |
1877 | |
1878 | if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { |
1879 | /* |
1880 | * we do zlc_setup if there are multiple nodes |
1881 | * and before considering the first zone allowed |
1882 | * by the cpuset. |
1883 | */ |
1884 | allowednodes = zlc_setup(zonelist, alloc_flags); |
1885 | zlc_active = 1; |
1886 | did_zlc_setup = 1; |
1887 | } |
1888 | |
1889 | if (zone_reclaim_mode == 0) |
1890 | goto this_zone_full; |
1891 | |
1892 | /* |
1893 | * As we may have just activated ZLC, check if the first |
1894 | * eligible zone has failed zone_reclaim recently. |
1895 | */ |
1896 | if (NUMA_BUILD && zlc_active && |
1897 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1898 | continue; |
1899 | |
1900 | ret = zone_reclaim(zone, gfp_mask, order); |
1901 | switch (ret) { |
1902 | case ZONE_RECLAIM_NOSCAN: |
1903 | /* did not scan */ |
1904 | continue; |
1905 | case ZONE_RECLAIM_FULL: |
1906 | /* scanned but unreclaimable */ |
1907 | continue; |
1908 | default: |
1909 | /* did we reclaim enough */ |
1910 | if (!zone_watermark_ok(zone, order, mark, |
1911 | classzone_idx, alloc_flags)) |
1912 | goto this_zone_full; |
1913 | } |
1914 | } |
1915 | |
1916 | try_this_zone: |
1917 | page = buffered_rmqueue(preferred_zone, zone, order, |
1918 | gfp_mask, migratetype); |
1919 | if (page) |
1920 | break; |
1921 | this_zone_full: |
1922 | if (NUMA_BUILD) |
1923 | zlc_mark_zone_full(zonelist, z); |
1924 | } |
1925 | |
1926 | if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { |
1927 | /* Disable zlc cache for second zonelist scan */ |
1928 | zlc_active = 0; |
1929 | goto zonelist_scan; |
1930 | } |
1931 | return page; |
1932 | } |
1933 | |
1934 | /* |
1935 | * Large machines with many possible nodes should not always dump per-node |
1936 | * meminfo in irq context. |
1937 | */ |
1938 | static inline bool should_suppress_show_mem(void) |
1939 | { |
1940 | bool ret = false; |
1941 | |
1942 | #if NODES_SHIFT > 8 |
1943 | ret = in_interrupt(); |
1944 | #endif |
1945 | return ret; |
1946 | } |
1947 | |
1948 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
1949 | DEFAULT_RATELIMIT_INTERVAL, |
1950 | DEFAULT_RATELIMIT_BURST); |
1951 | |
1952 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) |
1953 | { |
1954 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
1955 | |
1956 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
1957 | debug_guardpage_minorder() > 0) |
1958 | return; |
1959 | |
1960 | /* |
1961 | * This documents exceptions given to allocations in certain |
1962 | * contexts that are allowed to allocate outside current's set |
1963 | * of allowed nodes. |
1964 | */ |
1965 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
1966 | if (test_thread_flag(TIF_MEMDIE) || |
1967 | (current->flags & (PF_MEMALLOC | PF_EXITING))) |
1968 | filter &= ~SHOW_MEM_FILTER_NODES; |
1969 | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) |
1970 | filter &= ~SHOW_MEM_FILTER_NODES; |
1971 | |
1972 | if (fmt) { |
1973 | struct va_format vaf; |
1974 | va_list args; |
1975 | |
1976 | va_start(args, fmt); |
1977 | |
1978 | vaf.fmt = fmt; |
1979 | vaf.va = &args; |
1980 | |
1981 | pr_warn("%pV", &vaf); |
1982 | |
1983 | va_end(args); |
1984 | } |
1985 | |
1986 | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", |
1987 | current->comm, order, gfp_mask); |
1988 | |
1989 | dump_stack(); |
1990 | if (!should_suppress_show_mem()) |
1991 | show_mem(filter); |
1992 | } |
1993 | |
1994 | static inline int |
1995 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, |
1996 | unsigned long did_some_progress, |
1997 | unsigned long pages_reclaimed) |
1998 | { |
1999 | /* Do not loop if specifically requested */ |
2000 | if (gfp_mask & __GFP_NORETRY) |
2001 | return 0; |
2002 | |
2003 | /* Always retry if specifically requested */ |
2004 | if (gfp_mask & __GFP_NOFAIL) |
2005 | return 1; |
2006 | |
2007 | /* |
2008 | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim |
2009 | * making forward progress without invoking OOM. Suspend also disables |
2010 | * storage devices so kswapd will not help. Bail if we are suspending. |
2011 | */ |
2012 | if (!did_some_progress && pm_suspended_storage()) |
2013 | return 0; |
2014 | |
2015 | /* |
2016 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER |
2017 | * means __GFP_NOFAIL, but that may not be true in other |
2018 | * implementations. |
2019 | */ |
2020 | if (order <= PAGE_ALLOC_COSTLY_ORDER) |
2021 | return 1; |
2022 | |
2023 | /* |
2024 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is |
2025 | * specified, then we retry until we no longer reclaim any pages |
2026 | * (above), or we've reclaimed an order of pages at least as |
2027 | * large as the allocation's order. In both cases, if the |
2028 | * allocation still fails, we stop retrying. |
2029 | */ |
2030 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) |
2031 | return 1; |
2032 | |
2033 | return 0; |
2034 | } |
2035 | |
2036 | static inline struct page * |
2037 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, |
2038 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2039 | nodemask_t *nodemask, struct zone *preferred_zone, |
2040 | int migratetype) |
2041 | { |
2042 | struct page *page; |
2043 | |
2044 | /* Acquire the OOM killer lock for the zones in zonelist */ |
2045 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
2046 | schedule_timeout_uninterruptible(1); |
2047 | return NULL; |
2048 | } |
2049 | |
2050 | /* |
2051 | * Go through the zonelist yet one more time, keep very high watermark |
2052 | * here, this is only to catch a parallel oom killing, we must fail if |
2053 | * we're still under heavy pressure. |
2054 | */ |
2055 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, |
2056 | order, zonelist, high_zoneidx, |
2057 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
2058 | preferred_zone, migratetype); |
2059 | if (page) |
2060 | goto out; |
2061 | |
2062 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2063 | /* The OOM killer will not help higher order allocs */ |
2064 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
2065 | goto out; |
2066 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
2067 | if (high_zoneidx < ZONE_NORMAL) |
2068 | goto out; |
2069 | /* |
2070 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. |
2071 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. |
2072 | * The caller should handle page allocation failure by itself if |
2073 | * it specifies __GFP_THISNODE. |
2074 | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. |
2075 | */ |
2076 | if (gfp_mask & __GFP_THISNODE) |
2077 | goto out; |
2078 | } |
2079 | /* Exhausted what can be done so it's blamo time */ |
2080 | out_of_memory(zonelist, gfp_mask, order, nodemask, false); |
2081 | |
2082 | out: |
2083 | clear_zonelist_oom(zonelist, gfp_mask); |
2084 | return page; |
2085 | } |
2086 | |
2087 | #ifdef CONFIG_COMPACTION |
2088 | /* Try memory compaction for high-order allocations before reclaim */ |
2089 | static struct page * |
2090 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
2091 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2092 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
2093 | int migratetype, bool sync_migration, |
2094 | bool *deferred_compaction, |
2095 | unsigned long *did_some_progress) |
2096 | { |
2097 | struct page *page; |
2098 | |
2099 | if (!order) |
2100 | return NULL; |
2101 | |
2102 | if (compaction_deferred(preferred_zone, order)) { |
2103 | *deferred_compaction = true; |
2104 | return NULL; |
2105 | } |
2106 | |
2107 | current->flags |= PF_MEMALLOC; |
2108 | *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, |
2109 | nodemask, sync_migration); |
2110 | current->flags &= ~PF_MEMALLOC; |
2111 | if (*did_some_progress != COMPACT_SKIPPED) { |
2112 | |
2113 | /* Page migration frees to the PCP lists but we want merging */ |
2114 | drain_pages(get_cpu()); |
2115 | put_cpu(); |
2116 | |
2117 | page = get_page_from_freelist(gfp_mask, nodemask, |
2118 | order, zonelist, high_zoneidx, |
2119 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2120 | preferred_zone, migratetype); |
2121 | if (page) { |
2122 | preferred_zone->compact_considered = 0; |
2123 | preferred_zone->compact_defer_shift = 0; |
2124 | if (order >= preferred_zone->compact_order_failed) |
2125 | preferred_zone->compact_order_failed = order + 1; |
2126 | count_vm_event(COMPACTSUCCESS); |
2127 | return page; |
2128 | } |
2129 | |
2130 | /* |
2131 | * It's bad if compaction run occurs and fails. |
2132 | * The most likely reason is that pages exist, |
2133 | * but not enough to satisfy watermarks. |
2134 | */ |
2135 | count_vm_event(COMPACTFAIL); |
2136 | |
2137 | /* |
2138 | * As async compaction considers a subset of pageblocks, only |
2139 | * defer if the failure was a sync compaction failure. |
2140 | */ |
2141 | if (sync_migration) |
2142 | defer_compaction(preferred_zone, order); |
2143 | |
2144 | cond_resched(); |
2145 | } |
2146 | |
2147 | return NULL; |
2148 | } |
2149 | #else |
2150 | static inline struct page * |
2151 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
2152 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2153 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
2154 | int migratetype, bool sync_migration, |
2155 | bool *deferred_compaction, |
2156 | unsigned long *did_some_progress) |
2157 | { |
2158 | return NULL; |
2159 | } |
2160 | #endif /* CONFIG_COMPACTION */ |
2161 | |
2162 | /* Perform direct synchronous page reclaim */ |
2163 | static int |
2164 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, |
2165 | nodemask_t *nodemask) |
2166 | { |
2167 | struct reclaim_state reclaim_state; |
2168 | int progress; |
2169 | |
2170 | cond_resched(); |
2171 | |
2172 | /* We now go into synchronous reclaim */ |
2173 | cpuset_memory_pressure_bump(); |
2174 | current->flags |= PF_MEMALLOC; |
2175 | lockdep_set_current_reclaim_state(gfp_mask); |
2176 | reclaim_state.reclaimed_slab = 0; |
2177 | current->reclaim_state = &reclaim_state; |
2178 | |
2179 | progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); |
2180 | |
2181 | current->reclaim_state = NULL; |
2182 | lockdep_clear_current_reclaim_state(); |
2183 | current->flags &= ~PF_MEMALLOC; |
2184 | |
2185 | cond_resched(); |
2186 | |
2187 | return progress; |
2188 | } |
2189 | |
2190 | /* The really slow allocator path where we enter direct reclaim */ |
2191 | static inline struct page * |
2192 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, |
2193 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2194 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
2195 | int migratetype, unsigned long *did_some_progress) |
2196 | { |
2197 | struct page *page = NULL; |
2198 | bool drained = false; |
2199 | |
2200 | *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, |
2201 | nodemask); |
2202 | if (unlikely(!(*did_some_progress))) |
2203 | return NULL; |
2204 | |
2205 | /* After successful reclaim, reconsider all zones for allocation */ |
2206 | if (NUMA_BUILD) |
2207 | zlc_clear_zones_full(zonelist); |
2208 | |
2209 | retry: |
2210 | page = get_page_from_freelist(gfp_mask, nodemask, order, |
2211 | zonelist, high_zoneidx, |
2212 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2213 | preferred_zone, migratetype); |
2214 | |
2215 | /* |
2216 | * If an allocation failed after direct reclaim, it could be because |
2217 | * pages are pinned on the per-cpu lists. Drain them and try again |
2218 | */ |
2219 | if (!page && !drained) { |
2220 | drain_all_pages(); |
2221 | drained = true; |
2222 | goto retry; |
2223 | } |
2224 | |
2225 | return page; |
2226 | } |
2227 | |
2228 | /* |
2229 | * This is called in the allocator slow-path if the allocation request is of |
2230 | * sufficient urgency to ignore watermarks and take other desperate measures |
2231 | */ |
2232 | static inline struct page * |
2233 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, |
2234 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2235 | nodemask_t *nodemask, struct zone *preferred_zone, |
2236 | int migratetype) |
2237 | { |
2238 | struct page *page; |
2239 | |
2240 | do { |
2241 | page = get_page_from_freelist(gfp_mask, nodemask, order, |
2242 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
2243 | preferred_zone, migratetype); |
2244 | |
2245 | if (!page && gfp_mask & __GFP_NOFAIL) |
2246 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
2247 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
2248 | |
2249 | return page; |
2250 | } |
2251 | |
2252 | static inline |
2253 | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, |
2254 | enum zone_type high_zoneidx, |
2255 | enum zone_type classzone_idx) |
2256 | { |
2257 | struct zoneref *z; |
2258 | struct zone *zone; |
2259 | |
2260 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) |
2261 | wakeup_kswapd(zone, order, classzone_idx); |
2262 | } |
2263 | |
2264 | static inline int |
2265 | gfp_to_alloc_flags(gfp_t gfp_mask) |
2266 | { |
2267 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
2268 | const gfp_t wait = gfp_mask & __GFP_WAIT; |
2269 | |
2270 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
2271 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
2272 | |
2273 | /* |
2274 | * The caller may dip into page reserves a bit more if the caller |
2275 | * cannot run direct reclaim, or if the caller has realtime scheduling |
2276 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
2277 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). |
2278 | */ |
2279 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
2280 | |
2281 | if (!wait) { |
2282 | /* |
2283 | * Not worth trying to allocate harder for |
2284 | * __GFP_NOMEMALLOC even if it can't schedule. |
2285 | */ |
2286 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
2287 | alloc_flags |= ALLOC_HARDER; |
2288 | /* |
2289 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
2290 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
2291 | */ |
2292 | alloc_flags &= ~ALLOC_CPUSET; |
2293 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
2294 | alloc_flags |= ALLOC_HARDER; |
2295 | |
2296 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2297 | if (gfp_mask & __GFP_MEMALLOC) |
2298 | alloc_flags |= ALLOC_NO_WATERMARKS; |
2299 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2300 | alloc_flags |= ALLOC_NO_WATERMARKS; |
2301 | else if (!in_interrupt() && |
2302 | ((current->flags & PF_MEMALLOC) || |
2303 | unlikely(test_thread_flag(TIF_MEMDIE)))) |
2304 | alloc_flags |= ALLOC_NO_WATERMARKS; |
2305 | } |
2306 | |
2307 | return alloc_flags; |
2308 | } |
2309 | |
2310 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2311 | { |
2312 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
2313 | } |
2314 | |
2315 | static inline struct page * |
2316 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, |
2317 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2318 | nodemask_t *nodemask, struct zone *preferred_zone, |
2319 | int migratetype) |
2320 | { |
2321 | const gfp_t wait = gfp_mask & __GFP_WAIT; |
2322 | struct page *page = NULL; |
2323 | int alloc_flags; |
2324 | unsigned long pages_reclaimed = 0; |
2325 | unsigned long did_some_progress; |
2326 | bool sync_migration = false; |
2327 | bool deferred_compaction = false; |
2328 | |
2329 | /* |
2330 | * In the slowpath, we sanity check order to avoid ever trying to |
2331 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may |
2332 | * be using allocators in order of preference for an area that is |
2333 | * too large. |
2334 | */ |
2335 | if (order >= MAX_ORDER) { |
2336 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); |
2337 | return NULL; |
2338 | } |
2339 | |
2340 | /* |
2341 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and |
2342 | * __GFP_NOWARN set) should not cause reclaim since the subsystem |
2343 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim |
2344 | * using a larger set of nodes after it has established that the |
2345 | * allowed per node queues are empty and that nodes are |
2346 | * over allocated. |
2347 | */ |
2348 | if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) |
2349 | goto nopage; |
2350 | |
2351 | restart: |
2352 | if (!(gfp_mask & __GFP_NO_KSWAPD)) |
2353 | wake_all_kswapd(order, zonelist, high_zoneidx, |
2354 | zone_idx(preferred_zone)); |
2355 | |
2356 | /* |
2357 | * OK, we're below the kswapd watermark and have kicked background |
2358 | * reclaim. Now things get more complex, so set up alloc_flags according |
2359 | * to how we want to proceed. |
2360 | */ |
2361 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
2362 | |
2363 | /* |
2364 | * Find the true preferred zone if the allocation is unconstrained by |
2365 | * cpusets. |
2366 | */ |
2367 | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) |
2368 | first_zones_zonelist(zonelist, high_zoneidx, NULL, |
2369 | &preferred_zone); |
2370 | |
2371 | rebalance: |
2372 | /* This is the last chance, in general, before the goto nopage. */ |
2373 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
2374 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
2375 | preferred_zone, migratetype); |
2376 | if (page) |
2377 | goto got_pg; |
2378 | |
2379 | /* Allocate without watermarks if the context allows */ |
2380 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
2381 | /* |
2382 | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds |
2383 | * the allocation is high priority and these type of |
2384 | * allocations are system rather than user orientated |
2385 | */ |
2386 | zonelist = node_zonelist(numa_node_id(), gfp_mask); |
2387 | |
2388 | page = __alloc_pages_high_priority(gfp_mask, order, |
2389 | zonelist, high_zoneidx, nodemask, |
2390 | preferred_zone, migratetype); |
2391 | if (page) { |
2392 | /* |
2393 | * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was |
2394 | * necessary to allocate the page. The expectation is |
2395 | * that the caller is taking steps that will free more |
2396 | * memory. The caller should avoid the page being used |
2397 | * for !PFMEMALLOC purposes. |
2398 | */ |
2399 | page->pfmemalloc = true; |
2400 | goto got_pg; |
2401 | } |
2402 | } |
2403 | |
2404 | /* Atomic allocations - we can't balance anything */ |
2405 | if (!wait) |
2406 | goto nopage; |
2407 | |
2408 | /* Avoid recursion of direct reclaim */ |
2409 | if (current->flags & PF_MEMALLOC) |
2410 | goto nopage; |
2411 | |
2412 | /* Avoid allocations with no watermarks from looping endlessly */ |
2413 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) |
2414 | goto nopage; |
2415 | |
2416 | /* |
2417 | * Try direct compaction. The first pass is asynchronous. Subsequent |
2418 | * attempts after direct reclaim are synchronous |
2419 | */ |
2420 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2421 | zonelist, high_zoneidx, |
2422 | nodemask, |
2423 | alloc_flags, preferred_zone, |
2424 | migratetype, sync_migration, |
2425 | &deferred_compaction, |
2426 | &did_some_progress); |
2427 | if (page) |
2428 | goto got_pg; |
2429 | sync_migration = true; |
2430 | |
2431 | /* |
2432 | * If compaction is deferred for high-order allocations, it is because |
2433 | * sync compaction recently failed. In this is the case and the caller |
2434 | * has requested the system not be heavily disrupted, fail the |
2435 | * allocation now instead of entering direct reclaim |
2436 | */ |
2437 | if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) |
2438 | goto nopage; |
2439 | |
2440 | /* Try direct reclaim and then allocating */ |
2441 | page = __alloc_pages_direct_reclaim(gfp_mask, order, |
2442 | zonelist, high_zoneidx, |
2443 | nodemask, |
2444 | alloc_flags, preferred_zone, |
2445 | migratetype, &did_some_progress); |
2446 | if (page) |
2447 | goto got_pg; |
2448 | |
2449 | /* |
2450 | * If we failed to make any progress reclaiming, then we are |
2451 | * running out of options and have to consider going OOM |
2452 | */ |
2453 | if (!did_some_progress) { |
2454 | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { |
2455 | if (oom_killer_disabled) |
2456 | goto nopage; |
2457 | /* Coredumps can quickly deplete all memory reserves */ |
2458 | if ((current->flags & PF_DUMPCORE) && |
2459 | !(gfp_mask & __GFP_NOFAIL)) |
2460 | goto nopage; |
2461 | page = __alloc_pages_may_oom(gfp_mask, order, |
2462 | zonelist, high_zoneidx, |
2463 | nodemask, preferred_zone, |
2464 | migratetype); |
2465 | if (page) |
2466 | goto got_pg; |
2467 | |
2468 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2469 | /* |
2470 | * The oom killer is not called for high-order |
2471 | * allocations that may fail, so if no progress |
2472 | * is being made, there are no other options and |
2473 | * retrying is unlikely to help. |
2474 | */ |
2475 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
2476 | goto nopage; |
2477 | /* |
2478 | * The oom killer is not called for lowmem |
2479 | * allocations to prevent needlessly killing |
2480 | * innocent tasks. |
2481 | */ |
2482 | if (high_zoneidx < ZONE_NORMAL) |
2483 | goto nopage; |
2484 | } |
2485 | |
2486 | goto restart; |
2487 | } |
2488 | } |
2489 | |
2490 | /* Check if we should retry the allocation */ |
2491 | pages_reclaimed += did_some_progress; |
2492 | if (should_alloc_retry(gfp_mask, order, did_some_progress, |
2493 | pages_reclaimed)) { |
2494 | /* Wait for some write requests to complete then retry */ |
2495 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
2496 | goto rebalance; |
2497 | } else { |
2498 | /* |
2499 | * High-order allocations do not necessarily loop after |
2500 | * direct reclaim and reclaim/compaction depends on compaction |
2501 | * being called after reclaim so call directly if necessary |
2502 | */ |
2503 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2504 | zonelist, high_zoneidx, |
2505 | nodemask, |
2506 | alloc_flags, preferred_zone, |
2507 | migratetype, sync_migration, |
2508 | &deferred_compaction, |
2509 | &did_some_progress); |
2510 | if (page) |
2511 | goto got_pg; |
2512 | } |
2513 | |
2514 | nopage: |
2515 | warn_alloc_failed(gfp_mask, order, NULL); |
2516 | return page; |
2517 | got_pg: |
2518 | if (kmemcheck_enabled) |
2519 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); |
2520 | |
2521 | return page; |
2522 | } |
2523 | |
2524 | /* |
2525 | * This is the 'heart' of the zoned buddy allocator. |
2526 | */ |
2527 | struct page * |
2528 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, |
2529 | struct zonelist *zonelist, nodemask_t *nodemask) |
2530 | { |
2531 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); |
2532 | struct zone *preferred_zone; |
2533 | struct page *page = NULL; |
2534 | int migratetype = allocflags_to_migratetype(gfp_mask); |
2535 | unsigned int cpuset_mems_cookie; |
2536 | |
2537 | gfp_mask &= gfp_allowed_mask; |
2538 | |
2539 | lockdep_trace_alloc(gfp_mask); |
2540 | |
2541 | might_sleep_if(gfp_mask & __GFP_WAIT); |
2542 | |
2543 | if (should_fail_alloc_page(gfp_mask, order)) |
2544 | return NULL; |
2545 | |
2546 | /* |
2547 | * Check the zones suitable for the gfp_mask contain at least one |
2548 | * valid zone. It's possible to have an empty zonelist as a result |
2549 | * of GFP_THISNODE and a memoryless node |
2550 | */ |
2551 | if (unlikely(!zonelist->_zonerefs->zone)) |
2552 | return NULL; |
2553 | |
2554 | retry_cpuset: |
2555 | cpuset_mems_cookie = get_mems_allowed(); |
2556 | |
2557 | /* The preferred zone is used for statistics later */ |
2558 | first_zones_zonelist(zonelist, high_zoneidx, |
2559 | nodemask ? : &cpuset_current_mems_allowed, |
2560 | &preferred_zone); |
2561 | if (!preferred_zone) |
2562 | goto out; |
2563 | |
2564 | /* First allocation attempt */ |
2565 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
2566 | zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, |
2567 | preferred_zone, migratetype); |
2568 | if (unlikely(!page)) |
2569 | page = __alloc_pages_slowpath(gfp_mask, order, |
2570 | zonelist, high_zoneidx, nodemask, |
2571 | preferred_zone, migratetype); |
2572 | else |
2573 | page->pfmemalloc = false; |
2574 | |
2575 | trace_mm_page_alloc(page, order, gfp_mask, migratetype); |
2576 | |
2577 | out: |
2578 | /* |
2579 | * When updating a task's mems_allowed, it is possible to race with |
2580 | * parallel threads in such a way that an allocation can fail while |
2581 | * the mask is being updated. If a page allocation is about to fail, |
2582 | * check if the cpuset changed during allocation and if so, retry. |
2583 | */ |
2584 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
2585 | goto retry_cpuset; |
2586 | |
2587 | return page; |
2588 | } |
2589 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
2590 | |
2591 | /* |
2592 | * Common helper functions. |
2593 | */ |
2594 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
2595 | { |
2596 | struct page *page; |
2597 | |
2598 | /* |
2599 | * __get_free_pages() returns a 32-bit address, which cannot represent |
2600 | * a highmem page |
2601 | */ |
2602 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); |
2603 | |
2604 | page = alloc_pages(gfp_mask, order); |
2605 | if (!page) |
2606 | return 0; |
2607 | return (unsigned long) page_address(page); |
2608 | } |
2609 | EXPORT_SYMBOL(__get_free_pages); |
2610 | |
2611 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
2612 | { |
2613 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
2614 | } |
2615 | EXPORT_SYMBOL(get_zeroed_page); |
2616 | |
2617 | void __free_pages(struct page *page, unsigned int order) |
2618 | { |
2619 | if (put_page_testzero(page)) { |
2620 | if (order == 0) |
2621 | free_hot_cold_page(page, 0); |
2622 | else |
2623 | __free_pages_ok(page, order); |
2624 | } |
2625 | } |
2626 | |
2627 | EXPORT_SYMBOL(__free_pages); |
2628 | |
2629 | void free_pages(unsigned long addr, unsigned int order) |
2630 | { |
2631 | if (addr != 0) { |
2632 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
2633 | __free_pages(virt_to_page((void *)addr), order); |
2634 | } |
2635 | } |
2636 | |
2637 | EXPORT_SYMBOL(free_pages); |
2638 | |
2639 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) |
2640 | { |
2641 | if (addr) { |
2642 | unsigned long alloc_end = addr + (PAGE_SIZE << order); |
2643 | unsigned long used = addr + PAGE_ALIGN(size); |
2644 | |
2645 | split_page(virt_to_page((void *)addr), order); |
2646 | while (used < alloc_end) { |
2647 | free_page(used); |
2648 | used += PAGE_SIZE; |
2649 | } |
2650 | } |
2651 | return (void *)addr; |
2652 | } |
2653 | |
2654 | /** |
2655 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. |
2656 | * @size: the number of bytes to allocate |
2657 | * @gfp_mask: GFP flags for the allocation |
2658 | * |
2659 | * This function is similar to alloc_pages(), except that it allocates the |
2660 | * minimum number of pages to satisfy the request. alloc_pages() can only |
2661 | * allocate memory in power-of-two pages. |
2662 | * |
2663 | * This function is also limited by MAX_ORDER. |
2664 | * |
2665 | * Memory allocated by this function must be released by free_pages_exact(). |
2666 | */ |
2667 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) |
2668 | { |
2669 | unsigned int order = get_order(size); |
2670 | unsigned long addr; |
2671 | |
2672 | addr = __get_free_pages(gfp_mask, order); |
2673 | return make_alloc_exact(addr, order, size); |
2674 | } |
2675 | EXPORT_SYMBOL(alloc_pages_exact); |
2676 | |
2677 | /** |
2678 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous |
2679 | * pages on a node. |
2680 | * @nid: the preferred node ID where memory should be allocated |
2681 | * @size: the number of bytes to allocate |
2682 | * @gfp_mask: GFP flags for the allocation |
2683 | * |
2684 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling |
2685 | * back. |
2686 | * Note this is not alloc_pages_exact_node() which allocates on a specific node, |
2687 | * but is not exact. |
2688 | */ |
2689 | void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
2690 | { |
2691 | unsigned order = get_order(size); |
2692 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
2693 | if (!p) |
2694 | return NULL; |
2695 | return make_alloc_exact((unsigned long)page_address(p), order, size); |
2696 | } |
2697 | EXPORT_SYMBOL(alloc_pages_exact_nid); |
2698 | |
2699 | /** |
2700 | * free_pages_exact - release memory allocated via alloc_pages_exact() |
2701 | * @virt: the value returned by alloc_pages_exact. |
2702 | * @size: size of allocation, same value as passed to alloc_pages_exact(). |
2703 | * |
2704 | * Release the memory allocated by a previous call to alloc_pages_exact. |
2705 | */ |
2706 | void free_pages_exact(void *virt, size_t size) |
2707 | { |
2708 | unsigned long addr = (unsigned long)virt; |
2709 | unsigned long end = addr + PAGE_ALIGN(size); |
2710 | |
2711 | while (addr < end) { |
2712 | free_page(addr); |
2713 | addr += PAGE_SIZE; |
2714 | } |
2715 | } |
2716 | EXPORT_SYMBOL(free_pages_exact); |
2717 | |
2718 | static unsigned int nr_free_zone_pages(int offset) |
2719 | { |
2720 | struct zoneref *z; |
2721 | struct zone *zone; |
2722 | |
2723 | /* Just pick one node, since fallback list is circular */ |
2724 | unsigned int sum = 0; |
2725 | |
2726 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
2727 | |
2728 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
2729 | unsigned long size = zone->present_pages; |
2730 | unsigned long high = high_wmark_pages(zone); |
2731 | if (size > high) |
2732 | sum += size - high; |
2733 | } |
2734 | |
2735 | return sum; |
2736 | } |
2737 | |
2738 | /* |
2739 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL |
2740 | */ |
2741 | unsigned int nr_free_buffer_pages(void) |
2742 | { |
2743 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
2744 | } |
2745 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
2746 | |
2747 | /* |
2748 | * Amount of free RAM allocatable within all zones |
2749 | */ |
2750 | unsigned int nr_free_pagecache_pages(void) |
2751 | { |
2752 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
2753 | } |
2754 | |
2755 | static inline void show_node(struct zone *zone) |
2756 | { |
2757 | if (NUMA_BUILD) |
2758 | printk("Node %d ", zone_to_nid(zone)); |
2759 | } |
2760 | |
2761 | void si_meminfo(struct sysinfo *val) |
2762 | { |
2763 | val->totalram = totalram_pages; |
2764 | val->sharedram = 0; |
2765 | val->freeram = global_page_state(NR_FREE_PAGES); |
2766 | val->bufferram = nr_blockdev_pages(); |
2767 | val->totalhigh = totalhigh_pages; |
2768 | val->freehigh = nr_free_highpages(); |
2769 | val->mem_unit = PAGE_SIZE; |
2770 | } |
2771 | |
2772 | EXPORT_SYMBOL(si_meminfo); |
2773 | |
2774 | #ifdef CONFIG_NUMA |
2775 | void si_meminfo_node(struct sysinfo *val, int nid) |
2776 | { |
2777 | pg_data_t *pgdat = NODE_DATA(nid); |
2778 | |
2779 | val->totalram = pgdat->node_present_pages; |
2780 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
2781 | #ifdef CONFIG_HIGHMEM |
2782 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; |
2783 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
2784 | NR_FREE_PAGES); |
2785 | #else |
2786 | val->totalhigh = 0; |
2787 | val->freehigh = 0; |
2788 | #endif |
2789 | val->mem_unit = PAGE_SIZE; |
2790 | } |
2791 | #endif |
2792 | |
2793 | /* |
2794 | * Determine whether the node should be displayed or not, depending on whether |
2795 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). |
2796 | */ |
2797 | bool skip_free_areas_node(unsigned int flags, int nid) |
2798 | { |
2799 | bool ret = false; |
2800 | unsigned int cpuset_mems_cookie; |
2801 | |
2802 | if (!(flags & SHOW_MEM_FILTER_NODES)) |
2803 | goto out; |
2804 | |
2805 | do { |
2806 | cpuset_mems_cookie = get_mems_allowed(); |
2807 | ret = !node_isset(nid, cpuset_current_mems_allowed); |
2808 | } while (!put_mems_allowed(cpuset_mems_cookie)); |
2809 | out: |
2810 | return ret; |
2811 | } |
2812 | |
2813 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
2814 | |
2815 | /* |
2816 | * Show free area list (used inside shift_scroll-lock stuff) |
2817 | * We also calculate the percentage fragmentation. We do this by counting the |
2818 | * memory on each free list with the exception of the first item on the list. |
2819 | * Suppresses nodes that are not allowed by current's cpuset if |
2820 | * SHOW_MEM_FILTER_NODES is passed. |
2821 | */ |
2822 | void show_free_areas(unsigned int filter) |
2823 | { |
2824 | int cpu; |
2825 | struct zone *zone; |
2826 | |
2827 | for_each_populated_zone(zone) { |
2828 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
2829 | continue; |
2830 | show_node(zone); |
2831 | printk("%s per-cpu:\n", zone->name); |
2832 | |
2833 | for_each_online_cpu(cpu) { |
2834 | struct per_cpu_pageset *pageset; |
2835 | |
2836 | pageset = per_cpu_ptr(zone->pageset, cpu); |
2837 | |
2838 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
2839 | cpu, pageset->pcp.high, |
2840 | pageset->pcp.batch, pageset->pcp.count); |
2841 | } |
2842 | } |
2843 | |
2844 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
2845 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" |
2846 | " unevictable:%lu" |
2847 | " dirty:%lu writeback:%lu unstable:%lu\n" |
2848 | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
2849 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", |
2850 | global_page_state(NR_ACTIVE_ANON), |
2851 | global_page_state(NR_INACTIVE_ANON), |
2852 | global_page_state(NR_ISOLATED_ANON), |
2853 | global_page_state(NR_ACTIVE_FILE), |
2854 | global_page_state(NR_INACTIVE_FILE), |
2855 | global_page_state(NR_ISOLATED_FILE), |
2856 | global_page_state(NR_UNEVICTABLE), |
2857 | global_page_state(NR_FILE_DIRTY), |
2858 | global_page_state(NR_WRITEBACK), |
2859 | global_page_state(NR_UNSTABLE_NFS), |
2860 | global_page_state(NR_FREE_PAGES), |
2861 | global_page_state(NR_SLAB_RECLAIMABLE), |
2862 | global_page_state(NR_SLAB_UNRECLAIMABLE), |
2863 | global_page_state(NR_FILE_MAPPED), |
2864 | global_page_state(NR_SHMEM), |
2865 | global_page_state(NR_PAGETABLE), |
2866 | global_page_state(NR_BOUNCE)); |
2867 | |
2868 | for_each_populated_zone(zone) { |
2869 | int i; |
2870 | |
2871 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
2872 | continue; |
2873 | show_node(zone); |
2874 | printk("%s" |
2875 | " free:%lukB" |
2876 | " min:%lukB" |
2877 | " low:%lukB" |
2878 | " high:%lukB" |
2879 | " active_anon:%lukB" |
2880 | " inactive_anon:%lukB" |
2881 | " active_file:%lukB" |
2882 | " inactive_file:%lukB" |
2883 | " unevictable:%lukB" |
2884 | " isolated(anon):%lukB" |
2885 | " isolated(file):%lukB" |
2886 | " present:%lukB" |
2887 | " mlocked:%lukB" |
2888 | " dirty:%lukB" |
2889 | " writeback:%lukB" |
2890 | " mapped:%lukB" |
2891 | " shmem:%lukB" |
2892 | " slab_reclaimable:%lukB" |
2893 | " slab_unreclaimable:%lukB" |
2894 | " kernel_stack:%lukB" |
2895 | " pagetables:%lukB" |
2896 | " unstable:%lukB" |
2897 | " bounce:%lukB" |
2898 | " writeback_tmp:%lukB" |
2899 | " pages_scanned:%lu" |
2900 | " all_unreclaimable? %s" |
2901 | "\n", |
2902 | zone->name, |
2903 | K(zone_page_state(zone, NR_FREE_PAGES)), |
2904 | K(min_wmark_pages(zone)), |
2905 | K(low_wmark_pages(zone)), |
2906 | K(high_wmark_pages(zone)), |
2907 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
2908 | K(zone_page_state(zone, NR_INACTIVE_ANON)), |
2909 | K(zone_page_state(zone, NR_ACTIVE_FILE)), |
2910 | K(zone_page_state(zone, NR_INACTIVE_FILE)), |
2911 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
2912 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
2913 | K(zone_page_state(zone, NR_ISOLATED_FILE)), |
2914 | K(zone->present_pages), |
2915 | K(zone_page_state(zone, NR_MLOCK)), |
2916 | K(zone_page_state(zone, NR_FILE_DIRTY)), |
2917 | K(zone_page_state(zone, NR_WRITEBACK)), |
2918 | K(zone_page_state(zone, NR_FILE_MAPPED)), |
2919 | K(zone_page_state(zone, NR_SHMEM)), |
2920 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
2921 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), |
2922 | zone_page_state(zone, NR_KERNEL_STACK) * |
2923 | THREAD_SIZE / 1024, |
2924 | K(zone_page_state(zone, NR_PAGETABLE)), |
2925 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), |
2926 | K(zone_page_state(zone, NR_BOUNCE)), |
2927 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), |
2928 | zone->pages_scanned, |
2929 | (zone->all_unreclaimable ? "yes" : "no") |
2930 | ); |
2931 | printk("lowmem_reserve[]:"); |
2932 | for (i = 0; i < MAX_NR_ZONES; i++) |
2933 | printk(" %lu", zone->lowmem_reserve[i]); |
2934 | printk("\n"); |
2935 | } |
2936 | |
2937 | for_each_populated_zone(zone) { |
2938 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
2939 | |
2940 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
2941 | continue; |
2942 | show_node(zone); |
2943 | printk("%s: ", zone->name); |
2944 | |
2945 | spin_lock_irqsave(&zone->lock, flags); |
2946 | for (order = 0; order < MAX_ORDER; order++) { |
2947 | nr[order] = zone->free_area[order].nr_free; |
2948 | total += nr[order] << order; |
2949 | } |
2950 | spin_unlock_irqrestore(&zone->lock, flags); |
2951 | for (order = 0; order < MAX_ORDER; order++) |
2952 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
2953 | printk("= %lukB\n", K(total)); |
2954 | } |
2955 | |
2956 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
2957 | |
2958 | show_swap_cache_info(); |
2959 | } |
2960 | |
2961 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
2962 | { |
2963 | zoneref->zone = zone; |
2964 | zoneref->zone_idx = zone_idx(zone); |
2965 | } |
2966 | |
2967 | /* |
2968 | * Builds allocation fallback zone lists. |
2969 | * |
2970 | * Add all populated zones of a node to the zonelist. |
2971 | */ |
2972 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
2973 | int nr_zones, enum zone_type zone_type) |
2974 | { |
2975 | struct zone *zone; |
2976 | |
2977 | BUG_ON(zone_type >= MAX_NR_ZONES); |
2978 | zone_type++; |
2979 | |
2980 | do { |
2981 | zone_type--; |
2982 | zone = pgdat->node_zones + zone_type; |
2983 | if (populated_zone(zone)) { |
2984 | zoneref_set_zone(zone, |
2985 | &zonelist->_zonerefs[nr_zones++]); |
2986 | check_highest_zone(zone_type); |
2987 | } |
2988 | |
2989 | } while (zone_type); |
2990 | return nr_zones; |
2991 | } |
2992 | |
2993 | |
2994 | /* |
2995 | * zonelist_order: |
2996 | * 0 = automatic detection of better ordering. |
2997 | * 1 = order by ([node] distance, -zonetype) |
2998 | * 2 = order by (-zonetype, [node] distance) |
2999 | * |
3000 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create |
3001 | * the same zonelist. So only NUMA can configure this param. |
3002 | */ |
3003 | #define ZONELIST_ORDER_DEFAULT 0 |
3004 | #define ZONELIST_ORDER_NODE 1 |
3005 | #define ZONELIST_ORDER_ZONE 2 |
3006 | |
3007 | /* zonelist order in the kernel. |
3008 | * set_zonelist_order() will set this to NODE or ZONE. |
3009 | */ |
3010 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; |
3011 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; |
3012 | |
3013 | |
3014 | #ifdef CONFIG_NUMA |
3015 | /* The value user specified ....changed by config */ |
3016 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; |
3017 | /* string for sysctl */ |
3018 | #define NUMA_ZONELIST_ORDER_LEN 16 |
3019 | char numa_zonelist_order[16] = "default"; |
3020 | |
3021 | /* |
3022 | * interface for configure zonelist ordering. |
3023 | * command line option "numa_zonelist_order" |
3024 | * = "[dD]efault - default, automatic configuration. |
3025 | * = "[nN]ode - order by node locality, then by zone within node |
3026 | * = "[zZ]one - order by zone, then by locality within zone |
3027 | */ |
3028 | |
3029 | static int __parse_numa_zonelist_order(char *s) |
3030 | { |
3031 | if (*s == 'd' || *s == 'D') { |
3032 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; |
3033 | } else if (*s == 'n' || *s == 'N') { |
3034 | user_zonelist_order = ZONELIST_ORDER_NODE; |
3035 | } else if (*s == 'z' || *s == 'Z') { |
3036 | user_zonelist_order = ZONELIST_ORDER_ZONE; |
3037 | } else { |
3038 | printk(KERN_WARNING |
3039 | "Ignoring invalid numa_zonelist_order value: " |
3040 | "%s\n", s); |
3041 | return -EINVAL; |
3042 | } |
3043 | return 0; |
3044 | } |
3045 | |
3046 | static __init int setup_numa_zonelist_order(char *s) |
3047 | { |
3048 | int ret; |
3049 | |
3050 | if (!s) |
3051 | return 0; |
3052 | |
3053 | ret = __parse_numa_zonelist_order(s); |
3054 | if (ret == 0) |
3055 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); |
3056 | |
3057 | return ret; |
3058 | } |
3059 | early_param("numa_zonelist_order", setup_numa_zonelist_order); |
3060 | |
3061 | /* |
3062 | * sysctl handler for numa_zonelist_order |
3063 | */ |
3064 | int numa_zonelist_order_handler(ctl_table *table, int write, |
3065 | void __user *buffer, size_t *length, |
3066 | loff_t *ppos) |
3067 | { |
3068 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; |
3069 | int ret; |
3070 | static DEFINE_MUTEX(zl_order_mutex); |
3071 | |
3072 | mutex_lock(&zl_order_mutex); |
3073 | if (write) |
3074 | strcpy(saved_string, (char*)table->data); |
3075 | ret = proc_dostring(table, write, buffer, length, ppos); |
3076 | if (ret) |
3077 | goto out; |
3078 | if (write) { |
3079 | int oldval = user_zonelist_order; |
3080 | if (__parse_numa_zonelist_order((char*)table->data)) { |
3081 | /* |
3082 | * bogus value. restore saved string |
3083 | */ |
3084 | strncpy((char*)table->data, saved_string, |
3085 | NUMA_ZONELIST_ORDER_LEN); |
3086 | user_zonelist_order = oldval; |
3087 | } else if (oldval != user_zonelist_order) { |
3088 | mutex_lock(&zonelists_mutex); |
3089 | build_all_zonelists(NULL, NULL); |
3090 | mutex_unlock(&zonelists_mutex); |
3091 | } |
3092 | } |
3093 | out: |
3094 | mutex_unlock(&zl_order_mutex); |
3095 | return ret; |
3096 | } |
3097 | |
3098 | |
3099 | #define MAX_NODE_LOAD (nr_online_nodes) |
3100 | static int node_load[MAX_NUMNODES]; |
3101 | |
3102 | /** |
3103 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
3104 | * @node: node whose fallback list we're appending |
3105 | * @used_node_mask: nodemask_t of already used nodes |
3106 | * |
3107 | * We use a number of factors to determine which is the next node that should |
3108 | * appear on a given node's fallback list. The node should not have appeared |
3109 | * already in @node's fallback list, and it should be the next closest node |
3110 | * according to the distance array (which contains arbitrary distance values |
3111 | * from each node to each node in the system), and should also prefer nodes |
3112 | * with no CPUs, since presumably they'll have very little allocation pressure |
3113 | * on them otherwise. |
3114 | * It returns -1 if no node is found. |
3115 | */ |
3116 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
3117 | { |
3118 | int n, val; |
3119 | int min_val = INT_MAX; |
3120 | int best_node = -1; |
3121 | const struct cpumask *tmp = cpumask_of_node(0); |
3122 | |
3123 | /* Use the local node if we haven't already */ |
3124 | if (!node_isset(node, *used_node_mask)) { |
3125 | node_set(node, *used_node_mask); |
3126 | return node; |
3127 | } |
3128 | |
3129 | for_each_node_state(n, N_HIGH_MEMORY) { |
3130 | |
3131 | /* Don't want a node to appear more than once */ |
3132 | if (node_isset(n, *used_node_mask)) |
3133 | continue; |
3134 | |
3135 | /* Use the distance array to find the distance */ |
3136 | val = node_distance(node, n); |
3137 | |
3138 | /* Penalize nodes under us ("prefer the next node") */ |
3139 | val += (n < node); |
3140 | |
3141 | /* Give preference to headless and unused nodes */ |
3142 | tmp = cpumask_of_node(n); |
3143 | if (!cpumask_empty(tmp)) |
3144 | val += PENALTY_FOR_NODE_WITH_CPUS; |
3145 | |
3146 | /* Slight preference for less loaded node */ |
3147 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); |
3148 | val += node_load[n]; |
3149 | |
3150 | if (val < min_val) { |
3151 | min_val = val; |
3152 | best_node = n; |
3153 | } |
3154 | } |
3155 | |
3156 | if (best_node >= 0) |
3157 | node_set(best_node, *used_node_mask); |
3158 | |
3159 | return best_node; |
3160 | } |
3161 | |
3162 | |
3163 | /* |
3164 | * Build zonelists ordered by node and zones within node. |
3165 | * This results in maximum locality--normal zone overflows into local |
3166 | * DMA zone, if any--but risks exhausting DMA zone. |
3167 | */ |
3168 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) |
3169 | { |
3170 | int j; |
3171 | struct zonelist *zonelist; |
3172 | |
3173 | zonelist = &pgdat->node_zonelists[0]; |
3174 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
3175 | ; |
3176 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, |
3177 | MAX_NR_ZONES - 1); |
3178 | zonelist->_zonerefs[j].zone = NULL; |
3179 | zonelist->_zonerefs[j].zone_idx = 0; |
3180 | } |
3181 | |
3182 | /* |
3183 | * Build gfp_thisnode zonelists |
3184 | */ |
3185 | static void build_thisnode_zonelists(pg_data_t *pgdat) |
3186 | { |
3187 | int j; |
3188 | struct zonelist *zonelist; |
3189 | |
3190 | zonelist = &pgdat->node_zonelists[1]; |
3191 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); |
3192 | zonelist->_zonerefs[j].zone = NULL; |
3193 | zonelist->_zonerefs[j].zone_idx = 0; |
3194 | } |
3195 | |
3196 | /* |
3197 | * Build zonelists ordered by zone and nodes within zones. |
3198 | * This results in conserving DMA zone[s] until all Normal memory is |
3199 | * exhausted, but results in overflowing to remote node while memory |
3200 | * may still exist in local DMA zone. |
3201 | */ |
3202 | static int node_order[MAX_NUMNODES]; |
3203 | |
3204 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) |
3205 | { |
3206 | int pos, j, node; |
3207 | int zone_type; /* needs to be signed */ |
3208 | struct zone *z; |
3209 | struct zonelist *zonelist; |
3210 | |
3211 | zonelist = &pgdat->node_zonelists[0]; |
3212 | pos = 0; |
3213 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { |
3214 | for (j = 0; j < nr_nodes; j++) { |
3215 | node = node_order[j]; |
3216 | z = &NODE_DATA(node)->node_zones[zone_type]; |
3217 | if (populated_zone(z)) { |
3218 | zoneref_set_zone(z, |
3219 | &zonelist->_zonerefs[pos++]); |
3220 | check_highest_zone(zone_type); |
3221 | } |
3222 | } |
3223 | } |
3224 | zonelist->_zonerefs[pos].zone = NULL; |
3225 | zonelist->_zonerefs[pos].zone_idx = 0; |
3226 | } |
3227 | |
3228 | static int default_zonelist_order(void) |
3229 | { |
3230 | int nid, zone_type; |
3231 | unsigned long low_kmem_size,total_size; |
3232 | struct zone *z; |
3233 | int average_size; |
3234 | /* |
3235 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
3236 | * If they are really small and used heavily, the system can fall |
3237 | * into OOM very easily. |
3238 | * This function detect ZONE_DMA/DMA32 size and configures zone order. |
3239 | */ |
3240 | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ |
3241 | low_kmem_size = 0; |
3242 | total_size = 0; |
3243 | for_each_online_node(nid) { |
3244 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
3245 | z = &NODE_DATA(nid)->node_zones[zone_type]; |
3246 | if (populated_zone(z)) { |
3247 | if (zone_type < ZONE_NORMAL) |
3248 | low_kmem_size += z->present_pages; |
3249 | total_size += z->present_pages; |
3250 | } else if (zone_type == ZONE_NORMAL) { |
3251 | /* |
3252 | * If any node has only lowmem, then node order |
3253 | * is preferred to allow kernel allocations |
3254 | * locally; otherwise, they can easily infringe |
3255 | * on other nodes when there is an abundance of |
3256 | * lowmem available to allocate from. |
3257 | */ |
3258 | return ZONELIST_ORDER_NODE; |
3259 | } |
3260 | } |
3261 | } |
3262 | if (!low_kmem_size || /* there are no DMA area. */ |
3263 | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ |
3264 | return ZONELIST_ORDER_NODE; |
3265 | /* |
3266 | * look into each node's config. |
3267 | * If there is a node whose DMA/DMA32 memory is very big area on |
3268 | * local memory, NODE_ORDER may be suitable. |
3269 | */ |
3270 | average_size = total_size / |
3271 | (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); |
3272 | for_each_online_node(nid) { |
3273 | low_kmem_size = 0; |
3274 | total_size = 0; |
3275 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
3276 | z = &NODE_DATA(nid)->node_zones[zone_type]; |
3277 | if (populated_zone(z)) { |
3278 | if (zone_type < ZONE_NORMAL) |
3279 | low_kmem_size += z->present_pages; |
3280 | total_size += z->present_pages; |
3281 | } |
3282 | } |
3283 | if (low_kmem_size && |
3284 | total_size > average_size && /* ignore small node */ |
3285 | low_kmem_size > total_size * 70/100) |
3286 | return ZONELIST_ORDER_NODE; |
3287 | } |
3288 | return ZONELIST_ORDER_ZONE; |
3289 | } |
3290 | |
3291 | static void set_zonelist_order(void) |
3292 | { |
3293 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) |
3294 | current_zonelist_order = default_zonelist_order(); |
3295 | else |
3296 | current_zonelist_order = user_zonelist_order; |
3297 | } |
3298 | |
3299 | static void build_zonelists(pg_data_t *pgdat) |
3300 | { |
3301 | int j, node, load; |
3302 | enum zone_type i; |
3303 | nodemask_t used_mask; |
3304 | int local_node, prev_node; |
3305 | struct zonelist *zonelist; |
3306 | int order = current_zonelist_order; |
3307 | |
3308 | /* initialize zonelists */ |
3309 | for (i = 0; i < MAX_ZONELISTS; i++) { |
3310 | zonelist = pgdat->node_zonelists + i; |
3311 | zonelist->_zonerefs[0].zone = NULL; |
3312 | zonelist->_zonerefs[0].zone_idx = 0; |
3313 | } |
3314 | |
3315 | /* NUMA-aware ordering of nodes */ |
3316 | local_node = pgdat->node_id; |
3317 | load = nr_online_nodes; |
3318 | prev_node = local_node; |
3319 | nodes_clear(used_mask); |
3320 | |
3321 | memset(node_order, 0, sizeof(node_order)); |
3322 | j = 0; |
3323 | |
3324 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
3325 | int distance = node_distance(local_node, node); |
3326 | |
3327 | /* |
3328 | * If another node is sufficiently far away then it is better |
3329 | * to reclaim pages in a zone before going off node. |
3330 | */ |
3331 | if (distance > RECLAIM_DISTANCE) |
3332 | zone_reclaim_mode = 1; |
3333 | |
3334 | /* |
3335 | * We don't want to pressure a particular node. |
3336 | * So adding penalty to the first node in same |
3337 | * distance group to make it round-robin. |
3338 | */ |
3339 | if (distance != node_distance(local_node, prev_node)) |
3340 | node_load[node] = load; |
3341 | |
3342 | prev_node = node; |
3343 | load--; |
3344 | if (order == ZONELIST_ORDER_NODE) |
3345 | build_zonelists_in_node_order(pgdat, node); |
3346 | else |
3347 | node_order[j++] = node; /* remember order */ |
3348 | } |
3349 | |
3350 | if (order == ZONELIST_ORDER_ZONE) { |
3351 | /* calculate node order -- i.e., DMA last! */ |
3352 | build_zonelists_in_zone_order(pgdat, j); |
3353 | } |
3354 | |
3355 | build_thisnode_zonelists(pgdat); |
3356 | } |
3357 | |
3358 | /* Construct the zonelist performance cache - see further mmzone.h */ |
3359 | static void build_zonelist_cache(pg_data_t *pgdat) |
3360 | { |
3361 | struct zonelist *zonelist; |
3362 | struct zonelist_cache *zlc; |
3363 | struct zoneref *z; |
3364 | |
3365 | zonelist = &pgdat->node_zonelists[0]; |
3366 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; |
3367 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
3368 | for (z = zonelist->_zonerefs; z->zone; z++) |
3369 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); |
3370 | } |
3371 | |
3372 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3373 | /* |
3374 | * Return node id of node used for "local" allocations. |
3375 | * I.e., first node id of first zone in arg node's generic zonelist. |
3376 | * Used for initializing percpu 'numa_mem', which is used primarily |
3377 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. |
3378 | */ |
3379 | int local_memory_node(int node) |
3380 | { |
3381 | struct zone *zone; |
3382 | |
3383 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
3384 | gfp_zone(GFP_KERNEL), |
3385 | NULL, |
3386 | &zone); |
3387 | return zone->node; |
3388 | } |
3389 | #endif |
3390 | |
3391 | #else /* CONFIG_NUMA */ |
3392 | |
3393 | static void set_zonelist_order(void) |
3394 | { |
3395 | current_zonelist_order = ZONELIST_ORDER_ZONE; |
3396 | } |
3397 | |
3398 | static void build_zonelists(pg_data_t *pgdat) |
3399 | { |
3400 | int node, local_node; |
3401 | enum zone_type j; |
3402 | struct zonelist *zonelist; |
3403 | |
3404 | local_node = pgdat->node_id; |
3405 | |
3406 | zonelist = &pgdat->node_zonelists[0]; |
3407 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); |
3408 | |
3409 | /* |
3410 | * Now we build the zonelist so that it contains the zones |
3411 | * of all the other nodes. |
3412 | * We don't want to pressure a particular node, so when |
3413 | * building the zones for node N, we make sure that the |
3414 | * zones coming right after the local ones are those from |
3415 | * node N+1 (modulo N) |
3416 | */ |
3417 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { |
3418 | if (!node_online(node)) |
3419 | continue; |
3420 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, |
3421 | MAX_NR_ZONES - 1); |
3422 | } |
3423 | for (node = 0; node < local_node; node++) { |
3424 | if (!node_online(node)) |
3425 | continue; |
3426 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, |
3427 | MAX_NR_ZONES - 1); |
3428 | } |
3429 | |
3430 | zonelist->_zonerefs[j].zone = NULL; |
3431 | zonelist->_zonerefs[j].zone_idx = 0; |
3432 | } |
3433 | |
3434 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
3435 | static void build_zonelist_cache(pg_data_t *pgdat) |
3436 | { |
3437 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
3438 | } |
3439 | |
3440 | #endif /* CONFIG_NUMA */ |
3441 | |
3442 | /* |
3443 | * Boot pageset table. One per cpu which is going to be used for all |
3444 | * zones and all nodes. The parameters will be set in such a way |
3445 | * that an item put on a list will immediately be handed over to |
3446 | * the buddy list. This is safe since pageset manipulation is done |
3447 | * with interrupts disabled. |
3448 | * |
3449 | * The boot_pagesets must be kept even after bootup is complete for |
3450 | * unused processors and/or zones. They do play a role for bootstrapping |
3451 | * hotplugged processors. |
3452 | * |
3453 | * zoneinfo_show() and maybe other functions do |
3454 | * not check if the processor is online before following the pageset pointer. |
3455 | * Other parts of the kernel may not check if the zone is available. |
3456 | */ |
3457 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); |
3458 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); |
3459 | static void setup_zone_pageset(struct zone *zone); |
3460 | |
3461 | /* |
3462 | * Global mutex to protect against size modification of zonelists |
3463 | * as well as to serialize pageset setup for the new populated zone. |
3464 | */ |
3465 | DEFINE_MUTEX(zonelists_mutex); |
3466 | |
3467 | /* return values int ....just for stop_machine() */ |
3468 | static int __build_all_zonelists(void *data) |
3469 | { |
3470 | int nid; |
3471 | int cpu; |
3472 | pg_data_t *self = data; |
3473 | |
3474 | #ifdef CONFIG_NUMA |
3475 | memset(node_load, 0, sizeof(node_load)); |
3476 | #endif |
3477 | |
3478 | if (self && !node_online(self->node_id)) { |
3479 | build_zonelists(self); |
3480 | build_zonelist_cache(self); |
3481 | } |
3482 | |
3483 | for_each_online_node(nid) { |
3484 | pg_data_t *pgdat = NODE_DATA(nid); |
3485 | |
3486 | build_zonelists(pgdat); |
3487 | build_zonelist_cache(pgdat); |
3488 | } |
3489 | |
3490 | /* |
3491 | * Initialize the boot_pagesets that are going to be used |
3492 | * for bootstrapping processors. The real pagesets for |
3493 | * each zone will be allocated later when the per cpu |
3494 | * allocator is available. |
3495 | * |
3496 | * boot_pagesets are used also for bootstrapping offline |
3497 | * cpus if the system is already booted because the pagesets |
3498 | * are needed to initialize allocators on a specific cpu too. |
3499 | * F.e. the percpu allocator needs the page allocator which |
3500 | * needs the percpu allocator in order to allocate its pagesets |
3501 | * (a chicken-egg dilemma). |
3502 | */ |
3503 | for_each_possible_cpu(cpu) { |
3504 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
3505 | |
3506 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3507 | /* |
3508 | * We now know the "local memory node" for each node-- |
3509 | * i.e., the node of the first zone in the generic zonelist. |
3510 | * Set up numa_mem percpu variable for on-line cpus. During |
3511 | * boot, only the boot cpu should be on-line; we'll init the |
3512 | * secondary cpus' numa_mem as they come on-line. During |
3513 | * node/memory hotplug, we'll fixup all on-line cpus. |
3514 | */ |
3515 | if (cpu_online(cpu)) |
3516 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
3517 | #endif |
3518 | } |
3519 | |
3520 | return 0; |
3521 | } |
3522 | |
3523 | /* |
3524 | * Called with zonelists_mutex held always |
3525 | * unless system_state == SYSTEM_BOOTING. |
3526 | */ |
3527 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
3528 | { |
3529 | set_zonelist_order(); |
3530 | |
3531 | if (system_state == SYSTEM_BOOTING) { |
3532 | __build_all_zonelists(NULL); |
3533 | mminit_verify_zonelist(); |
3534 | cpuset_init_current_mems_allowed(); |
3535 | } else { |
3536 | /* we have to stop all cpus to guarantee there is no user |
3537 | of zonelist */ |
3538 | #ifdef CONFIG_MEMORY_HOTPLUG |
3539 | if (zone) |
3540 | setup_zone_pageset(zone); |
3541 | #endif |
3542 | stop_machine(__build_all_zonelists, pgdat, NULL); |
3543 | /* cpuset refresh routine should be here */ |
3544 | } |
3545 | vm_total_pages = nr_free_pagecache_pages(); |
3546 | /* |
3547 | * Disable grouping by mobility if the number of pages in the |
3548 | * system is too low to allow the mechanism to work. It would be |
3549 | * more accurate, but expensive to check per-zone. This check is |
3550 | * made on memory-hotadd so a system can start with mobility |
3551 | * disabled and enable it later |
3552 | */ |
3553 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
3554 | page_group_by_mobility_disabled = 1; |
3555 | else |
3556 | page_group_by_mobility_disabled = 0; |
3557 | |
3558 | printk("Built %i zonelists in %s order, mobility grouping %s. " |
3559 | "Total pages: %ld\n", |
3560 | nr_online_nodes, |
3561 | zonelist_order_name[current_zonelist_order], |
3562 | page_group_by_mobility_disabled ? "off" : "on", |
3563 | vm_total_pages); |
3564 | #ifdef CONFIG_NUMA |
3565 | printk("Policy zone: %s\n", zone_names[policy_zone]); |
3566 | #endif |
3567 | } |
3568 | |
3569 | /* |
3570 | * Helper functions to size the waitqueue hash table. |
3571 | * Essentially these want to choose hash table sizes sufficiently |
3572 | * large so that collisions trying to wait on pages are rare. |
3573 | * But in fact, the number of active page waitqueues on typical |
3574 | * systems is ridiculously low, less than 200. So this is even |
3575 | * conservative, even though it seems large. |
3576 | * |
3577 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to |
3578 | * waitqueues, i.e. the size of the waitq table given the number of pages. |
3579 | */ |
3580 | #define PAGES_PER_WAITQUEUE 256 |
3581 | |
3582 | #ifndef CONFIG_MEMORY_HOTPLUG |
3583 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
3584 | { |
3585 | unsigned long size = 1; |
3586 | |
3587 | pages /= PAGES_PER_WAITQUEUE; |
3588 | |
3589 | while (size < pages) |
3590 | size <<= 1; |
3591 | |
3592 | /* |
3593 | * Once we have dozens or even hundreds of threads sleeping |
3594 | * on IO we've got bigger problems than wait queue collision. |
3595 | * Limit the size of the wait table to a reasonable size. |
3596 | */ |
3597 | size = min(size, 4096UL); |
3598 | |
3599 | return max(size, 4UL); |
3600 | } |
3601 | #else |
3602 | /* |
3603 | * A zone's size might be changed by hot-add, so it is not possible to determine |
3604 | * a suitable size for its wait_table. So we use the maximum size now. |
3605 | * |
3606 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: |
3607 | * |
3608 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. |
3609 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. |
3610 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. |
3611 | * |
3612 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages |
3613 | * or more by the traditional way. (See above). It equals: |
3614 | * |
3615 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. |
3616 | * ia64(16K page size) : = ( 8G + 4M)byte. |
3617 | * powerpc (64K page size) : = (32G +16M)byte. |
3618 | */ |
3619 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
3620 | { |
3621 | return 4096UL; |
3622 | } |
3623 | #endif |
3624 | |
3625 | /* |
3626 | * This is an integer logarithm so that shifts can be used later |
3627 | * to extract the more random high bits from the multiplicative |
3628 | * hash function before the remainder is taken. |
3629 | */ |
3630 | static inline unsigned long wait_table_bits(unsigned long size) |
3631 | { |
3632 | return ffz(~size); |
3633 | } |
3634 | |
3635 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) |
3636 | |
3637 | /* |
3638 | * Check if a pageblock contains reserved pages |
3639 | */ |
3640 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) |
3641 | { |
3642 | unsigned long pfn; |
3643 | |
3644 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
3645 | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) |
3646 | return 1; |
3647 | } |
3648 | return 0; |
3649 | } |
3650 | |
3651 | /* |
3652 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
3653 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
3654 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes |
3655 | * higher will lead to a bigger reserve which will get freed as contiguous |
3656 | * blocks as reclaim kicks in |
3657 | */ |
3658 | static void setup_zone_migrate_reserve(struct zone *zone) |
3659 | { |
3660 | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; |
3661 | struct page *page; |
3662 | unsigned long block_migratetype; |
3663 | int reserve; |
3664 | |
3665 | /* |
3666 | * Get the start pfn, end pfn and the number of blocks to reserve |
3667 | * We have to be careful to be aligned to pageblock_nr_pages to |
3668 | * make sure that we always check pfn_valid for the first page in |
3669 | * the block. |
3670 | */ |
3671 | start_pfn = zone->zone_start_pfn; |
3672 | end_pfn = start_pfn + zone->spanned_pages; |
3673 | start_pfn = roundup(start_pfn, pageblock_nr_pages); |
3674 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
3675 | pageblock_order; |
3676 | |
3677 | /* |
3678 | * Reserve blocks are generally in place to help high-order atomic |
3679 | * allocations that are short-lived. A min_free_kbytes value that |
3680 | * would result in more than 2 reserve blocks for atomic allocations |
3681 | * is assumed to be in place to help anti-fragmentation for the |
3682 | * future allocation of hugepages at runtime. |
3683 | */ |
3684 | reserve = min(2, reserve); |
3685 | |
3686 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
3687 | if (!pfn_valid(pfn)) |
3688 | continue; |
3689 | page = pfn_to_page(pfn); |
3690 | |
3691 | /* Watch out for overlapping nodes */ |
3692 | if (page_to_nid(page) != zone_to_nid(zone)) |
3693 | continue; |
3694 | |
3695 | block_migratetype = get_pageblock_migratetype(page); |
3696 | |
3697 | /* Only test what is necessary when the reserves are not met */ |
3698 | if (reserve > 0) { |
3699 | /* |
3700 | * Blocks with reserved pages will never free, skip |
3701 | * them. |
3702 | */ |
3703 | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); |
3704 | if (pageblock_is_reserved(pfn, block_end_pfn)) |
3705 | continue; |
3706 | |
3707 | /* If this block is reserved, account for it */ |
3708 | if (block_migratetype == MIGRATE_RESERVE) { |
3709 | reserve--; |
3710 | continue; |
3711 | } |
3712 | |
3713 | /* Suitable for reserving if this block is movable */ |
3714 | if (block_migratetype == MIGRATE_MOVABLE) { |
3715 | set_pageblock_migratetype(page, |
3716 | MIGRATE_RESERVE); |
3717 | move_freepages_block(zone, page, |
3718 | MIGRATE_RESERVE); |
3719 | reserve--; |
3720 | continue; |
3721 | } |
3722 | } |
3723 | |
3724 | /* |
3725 | * If the reserve is met and this is a previous reserved block, |
3726 | * take it back |
3727 | */ |
3728 | if (block_migratetype == MIGRATE_RESERVE) { |
3729 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
3730 | move_freepages_block(zone, page, MIGRATE_MOVABLE); |
3731 | } |
3732 | } |
3733 | } |
3734 | |
3735 | /* |
3736 | * Initially all pages are reserved - free ones are freed |
3737 | * up by free_all_bootmem() once the early boot process is |
3738 | * done. Non-atomic initialization, single-pass. |
3739 | */ |
3740 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
3741 | unsigned long start_pfn, enum memmap_context context) |
3742 | { |
3743 | struct page *page; |
3744 | unsigned long end_pfn = start_pfn + size; |
3745 | unsigned long pfn; |
3746 | struct zone *z; |
3747 | |
3748 | if (highest_memmap_pfn < end_pfn - 1) |
3749 | highest_memmap_pfn = end_pfn - 1; |
3750 | |
3751 | z = &NODE_DATA(nid)->node_zones[zone]; |
3752 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
3753 | /* |
3754 | * There can be holes in boot-time mem_map[]s |
3755 | * handed to this function. They do not |
3756 | * exist on hotplugged memory. |
3757 | */ |
3758 | if (context == MEMMAP_EARLY) { |
3759 | if (!early_pfn_valid(pfn)) |
3760 | continue; |
3761 | if (!early_pfn_in_nid(pfn, nid)) |
3762 | continue; |
3763 | } |
3764 | page = pfn_to_page(pfn); |
3765 | set_page_links(page, zone, nid, pfn); |
3766 | mminit_verify_page_links(page, zone, nid, pfn); |
3767 | init_page_count(page); |
3768 | reset_page_mapcount(page); |
3769 | SetPageReserved(page); |
3770 | /* |
3771 | * Mark the block movable so that blocks are reserved for |
3772 | * movable at startup. This will force kernel allocations |
3773 | * to reserve their blocks rather than leaking throughout |
3774 | * the address space during boot when many long-lived |
3775 | * kernel allocations are made. Later some blocks near |
3776 | * the start are marked MIGRATE_RESERVE by |
3777 | * setup_zone_migrate_reserve() |
3778 | * |
3779 | * bitmap is created for zone's valid pfn range. but memmap |
3780 | * can be created for invalid pages (for alignment) |
3781 | * check here not to call set_pageblock_migratetype() against |
3782 | * pfn out of zone. |
3783 | */ |
3784 | if ((z->zone_start_pfn <= pfn) |
3785 | && (pfn < z->zone_start_pfn + z->spanned_pages) |
3786 | && !(pfn & (pageblock_nr_pages - 1))) |
3787 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
3788 | |
3789 | INIT_LIST_HEAD(&page->lru); |
3790 | #ifdef WANT_PAGE_VIRTUAL |
3791 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ |
3792 | if (!is_highmem_idx(zone)) |
3793 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
3794 | #endif |
3795 | } |
3796 | } |
3797 | |
3798 | static void __meminit zone_init_free_lists(struct zone *zone) |
3799 | { |
3800 | int order, t; |
3801 | for_each_migratetype_order(order, t) { |
3802 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); |
3803 | zone->free_area[order].nr_free = 0; |
3804 | } |
3805 | } |
3806 | |
3807 | #ifndef __HAVE_ARCH_MEMMAP_INIT |
3808 | #define memmap_init(size, nid, zone, start_pfn) \ |
3809 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
3810 | #endif |
3811 | |
3812 | static int __meminit zone_batchsize(struct zone *zone) |
3813 | { |
3814 | #ifdef CONFIG_MMU |
3815 | int batch; |
3816 | |
3817 | /* |
3818 | * The per-cpu-pages pools are set to around 1000th of the |
3819 | * size of the zone. But no more than 1/2 of a meg. |
3820 | * |
3821 | * OK, so we don't know how big the cache is. So guess. |
3822 | */ |
3823 | batch = zone->present_pages / 1024; |
3824 | if (batch * PAGE_SIZE > 512 * 1024) |
3825 | batch = (512 * 1024) / PAGE_SIZE; |
3826 | batch /= 4; /* We effectively *= 4 below */ |
3827 | if (batch < 1) |
3828 | batch = 1; |
3829 | |
3830 | /* |
3831 | * Clamp the batch to a 2^n - 1 value. Having a power |
3832 | * of 2 value was found to be more likely to have |
3833 | * suboptimal cache aliasing properties in some cases. |
3834 | * |
3835 | * For example if 2 tasks are alternately allocating |
3836 | * batches of pages, one task can end up with a lot |
3837 | * of pages of one half of the possible page colors |
3838 | * and the other with pages of the other colors. |
3839 | */ |
3840 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
3841 | |
3842 | return batch; |
3843 | |
3844 | #else |
3845 | /* The deferral and batching of frees should be suppressed under NOMMU |
3846 | * conditions. |
3847 | * |
3848 | * The problem is that NOMMU needs to be able to allocate large chunks |
3849 | * of contiguous memory as there's no hardware page translation to |
3850 | * assemble apparent contiguous memory from discontiguous pages. |
3851 | * |
3852 | * Queueing large contiguous runs of pages for batching, however, |
3853 | * causes the pages to actually be freed in smaller chunks. As there |
3854 | * can be a significant delay between the individual batches being |
3855 | * recycled, this leads to the once large chunks of space being |
3856 | * fragmented and becoming unavailable for high-order allocations. |
3857 | */ |
3858 | return 0; |
3859 | #endif |
3860 | } |
3861 | |
3862 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
3863 | { |
3864 | struct per_cpu_pages *pcp; |
3865 | int migratetype; |
3866 | |
3867 | memset(p, 0, sizeof(*p)); |
3868 | |
3869 | pcp = &p->pcp; |
3870 | pcp->count = 0; |
3871 | pcp->high = 6 * batch; |
3872 | pcp->batch = max(1UL, 1 * batch); |
3873 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
3874 | INIT_LIST_HEAD(&pcp->lists[migratetype]); |
3875 | } |
3876 | |
3877 | /* |
3878 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist |
3879 | * to the value high for the pageset p. |
3880 | */ |
3881 | |
3882 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, |
3883 | unsigned long high) |
3884 | { |
3885 | struct per_cpu_pages *pcp; |
3886 | |
3887 | pcp = &p->pcp; |
3888 | pcp->high = high; |
3889 | pcp->batch = max(1UL, high/4); |
3890 | if ((high/4) > (PAGE_SHIFT * 8)) |
3891 | pcp->batch = PAGE_SHIFT * 8; |
3892 | } |
3893 | |
3894 | static void __meminit setup_zone_pageset(struct zone *zone) |
3895 | { |
3896 | int cpu; |
3897 | |
3898 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
3899 | |
3900 | for_each_possible_cpu(cpu) { |
3901 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); |
3902 | |
3903 | setup_pageset(pcp, zone_batchsize(zone)); |
3904 | |
3905 | if (percpu_pagelist_fraction) |
3906 | setup_pagelist_highmark(pcp, |
3907 | (zone->present_pages / |
3908 | percpu_pagelist_fraction)); |
3909 | } |
3910 | } |
3911 | |
3912 | /* |
3913 | * Allocate per cpu pagesets and initialize them. |
3914 | * Before this call only boot pagesets were available. |
3915 | */ |
3916 | void __init setup_per_cpu_pageset(void) |
3917 | { |
3918 | struct zone *zone; |
3919 | |
3920 | for_each_populated_zone(zone) |
3921 | setup_zone_pageset(zone); |
3922 | } |
3923 | |
3924 | static noinline __init_refok |
3925 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
3926 | { |
3927 | int i; |
3928 | struct pglist_data *pgdat = zone->zone_pgdat; |
3929 | size_t alloc_size; |
3930 | |
3931 | /* |
3932 | * The per-page waitqueue mechanism uses hashed waitqueues |
3933 | * per zone. |
3934 | */ |
3935 | zone->wait_table_hash_nr_entries = |
3936 | wait_table_hash_nr_entries(zone_size_pages); |
3937 | zone->wait_table_bits = |
3938 | wait_table_bits(zone->wait_table_hash_nr_entries); |
3939 | alloc_size = zone->wait_table_hash_nr_entries |
3940 | * sizeof(wait_queue_head_t); |
3941 | |
3942 | if (!slab_is_available()) { |
3943 | zone->wait_table = (wait_queue_head_t *) |
3944 | alloc_bootmem_node_nopanic(pgdat, alloc_size); |
3945 | } else { |
3946 | /* |
3947 | * This case means that a zone whose size was 0 gets new memory |
3948 | * via memory hot-add. |
3949 | * But it may be the case that a new node was hot-added. In |
3950 | * this case vmalloc() will not be able to use this new node's |
3951 | * memory - this wait_table must be initialized to use this new |
3952 | * node itself as well. |
3953 | * To use this new node's memory, further consideration will be |
3954 | * necessary. |
3955 | */ |
3956 | zone->wait_table = vmalloc(alloc_size); |
3957 | } |
3958 | if (!zone->wait_table) |
3959 | return -ENOMEM; |
3960 | |
3961 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
3962 | init_waitqueue_head(zone->wait_table + i); |
3963 | |
3964 | return 0; |
3965 | } |
3966 | |
3967 | static __meminit void zone_pcp_init(struct zone *zone) |
3968 | { |
3969 | /* |
3970 | * per cpu subsystem is not up at this point. The following code |
3971 | * relies on the ability of the linker to provide the |
3972 | * offset of a (static) per cpu variable into the per cpu area. |
3973 | */ |
3974 | zone->pageset = &boot_pageset; |
3975 | |
3976 | if (zone->present_pages) |
3977 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
3978 | zone->name, zone->present_pages, |
3979 | zone_batchsize(zone)); |
3980 | } |
3981 | |
3982 | int __meminit init_currently_empty_zone(struct zone *zone, |
3983 | unsigned long zone_start_pfn, |
3984 | unsigned long size, |
3985 | enum memmap_context context) |
3986 | { |
3987 | struct pglist_data *pgdat = zone->zone_pgdat; |
3988 | int ret; |
3989 | ret = zone_wait_table_init(zone, size); |
3990 | if (ret) |
3991 | return ret; |
3992 | pgdat->nr_zones = zone_idx(zone) + 1; |
3993 | |
3994 | zone->zone_start_pfn = zone_start_pfn; |
3995 | |
3996 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3997 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", |
3998 | pgdat->node_id, |
3999 | (unsigned long)zone_idx(zone), |
4000 | zone_start_pfn, (zone_start_pfn + size)); |
4001 | |
4002 | zone_init_free_lists(zone); |
4003 | |
4004 | return 0; |
4005 | } |
4006 | |
4007 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4008 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
4009 | /* |
4010 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. |
4011 | * Architectures may implement their own version but if add_active_range() |
4012 | * was used and there are no special requirements, this is a convenient |
4013 | * alternative |
4014 | */ |
4015 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
4016 | { |
4017 | unsigned long start_pfn, end_pfn; |
4018 | int i, nid; |
4019 | |
4020 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
4021 | if (start_pfn <= pfn && pfn < end_pfn) |
4022 | return nid; |
4023 | /* This is a memory hole */ |
4024 | return -1; |
4025 | } |
4026 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ |
4027 | |
4028 | int __meminit early_pfn_to_nid(unsigned long pfn) |
4029 | { |
4030 | int nid; |
4031 | |
4032 | nid = __early_pfn_to_nid(pfn); |
4033 | if (nid >= 0) |
4034 | return nid; |
4035 | /* just returns 0 */ |
4036 | return 0; |
4037 | } |
4038 | |
4039 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
4040 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) |
4041 | { |
4042 | int nid; |
4043 | |
4044 | nid = __early_pfn_to_nid(pfn); |
4045 | if (nid >= 0 && nid != node) |
4046 | return false; |
4047 | return true; |
4048 | } |
4049 | #endif |
4050 | |
4051 | /** |
4052 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range |
4053 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
4054 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node |
4055 | * |
4056 | * If an architecture guarantees that all ranges registered with |
4057 | * add_active_ranges() contain no holes and may be freed, this |
4058 | * this function may be used instead of calling free_bootmem() manually. |
4059 | */ |
4060 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
4061 | { |
4062 | unsigned long start_pfn, end_pfn; |
4063 | int i, this_nid; |
4064 | |
4065 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4066 | start_pfn = min(start_pfn, max_low_pfn); |
4067 | end_pfn = min(end_pfn, max_low_pfn); |
4068 | |
4069 | if (start_pfn < end_pfn) |
4070 | free_bootmem_node(NODE_DATA(this_nid), |
4071 | PFN_PHYS(start_pfn), |
4072 | (end_pfn - start_pfn) << PAGE_SHIFT); |
4073 | } |
4074 | } |
4075 | |
4076 | /** |
4077 | * sparse_memory_present_with_active_regions - Call memory_present for each active range |
4078 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
4079 | * |
4080 | * If an architecture guarantees that all ranges registered with |
4081 | * add_active_ranges() contain no holes and may be freed, this |
4082 | * function may be used instead of calling memory_present() manually. |
4083 | */ |
4084 | void __init sparse_memory_present_with_active_regions(int nid) |
4085 | { |
4086 | unsigned long start_pfn, end_pfn; |
4087 | int i, this_nid; |
4088 | |
4089 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4090 | memory_present(this_nid, start_pfn, end_pfn); |
4091 | } |
4092 | |
4093 | /** |
4094 | * get_pfn_range_for_nid - Return the start and end page frames for a node |
4095 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4096 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. |
4097 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. |
4098 | * |
4099 | * It returns the start and end page frame of a node based on information |
4100 | * provided by an arch calling add_active_range(). If called for a node |
4101 | * with no available memory, a warning is printed and the start and end |
4102 | * PFNs will be 0. |
4103 | */ |
4104 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
4105 | unsigned long *start_pfn, unsigned long *end_pfn) |
4106 | { |
4107 | unsigned long this_start_pfn, this_end_pfn; |
4108 | int i; |
4109 | |
4110 | *start_pfn = -1UL; |
4111 | *end_pfn = 0; |
4112 | |
4113 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4114 | *start_pfn = min(*start_pfn, this_start_pfn); |
4115 | *end_pfn = max(*end_pfn, this_end_pfn); |
4116 | } |
4117 | |
4118 | if (*start_pfn == -1UL) |
4119 | *start_pfn = 0; |
4120 | } |
4121 | |
4122 | /* |
4123 | * This finds a zone that can be used for ZONE_MOVABLE pages. The |
4124 | * assumption is made that zones within a node are ordered in monotonic |
4125 | * increasing memory addresses so that the "highest" populated zone is used |
4126 | */ |
4127 | static void __init find_usable_zone_for_movable(void) |
4128 | { |
4129 | int zone_index; |
4130 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { |
4131 | if (zone_index == ZONE_MOVABLE) |
4132 | continue; |
4133 | |
4134 | if (arch_zone_highest_possible_pfn[zone_index] > |
4135 | arch_zone_lowest_possible_pfn[zone_index]) |
4136 | break; |
4137 | } |
4138 | |
4139 | VM_BUG_ON(zone_index == -1); |
4140 | movable_zone = zone_index; |
4141 | } |
4142 | |
4143 | /* |
4144 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE |
4145 | * because it is sized independent of architecture. Unlike the other zones, |
4146 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4147 | * in each node depending on the size of each node and how evenly kernelcore |
4148 | * is distributed. This helper function adjusts the zone ranges |
4149 | * provided by the architecture for a given node by using the end of the |
4150 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that |
4151 | * zones within a node are in order of monotonic increases memory addresses |
4152 | */ |
4153 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
4154 | unsigned long zone_type, |
4155 | unsigned long node_start_pfn, |
4156 | unsigned long node_end_pfn, |
4157 | unsigned long *zone_start_pfn, |
4158 | unsigned long *zone_end_pfn) |
4159 | { |
4160 | /* Only adjust if ZONE_MOVABLE is on this node */ |
4161 | if (zone_movable_pfn[nid]) { |
4162 | /* Size ZONE_MOVABLE */ |
4163 | if (zone_type == ZONE_MOVABLE) { |
4164 | *zone_start_pfn = zone_movable_pfn[nid]; |
4165 | *zone_end_pfn = min(node_end_pfn, |
4166 | arch_zone_highest_possible_pfn[movable_zone]); |
4167 | |
4168 | /* Adjust for ZONE_MOVABLE starting within this range */ |
4169 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && |
4170 | *zone_end_pfn > zone_movable_pfn[nid]) { |
4171 | *zone_end_pfn = zone_movable_pfn[nid]; |
4172 | |
4173 | /* Check if this whole range is within ZONE_MOVABLE */ |
4174 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) |
4175 | *zone_start_pfn = *zone_end_pfn; |
4176 | } |
4177 | } |
4178 | |
4179 | /* |
4180 | * Return the number of pages a zone spans in a node, including holes |
4181 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() |
4182 | */ |
4183 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
4184 | unsigned long zone_type, |
4185 | unsigned long *ignored) |
4186 | { |
4187 | unsigned long node_start_pfn, node_end_pfn; |
4188 | unsigned long zone_start_pfn, zone_end_pfn; |
4189 | |
4190 | /* Get the start and end of the node and zone */ |
4191 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); |
4192 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
4193 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; |
4194 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4195 | node_start_pfn, node_end_pfn, |
4196 | &zone_start_pfn, &zone_end_pfn); |
4197 | |
4198 | /* Check that this node has pages within the zone's required range */ |
4199 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) |
4200 | return 0; |
4201 | |
4202 | /* Move the zone boundaries inside the node if necessary */ |
4203 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); |
4204 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); |
4205 | |
4206 | /* Return the spanned pages */ |
4207 | return zone_end_pfn - zone_start_pfn; |
4208 | } |
4209 | |
4210 | /* |
4211 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
4212 | * then all holes in the requested range will be accounted for. |
4213 | */ |
4214 | unsigned long __meminit __absent_pages_in_range(int nid, |
4215 | unsigned long range_start_pfn, |
4216 | unsigned long range_end_pfn) |
4217 | { |
4218 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4219 | unsigned long start_pfn, end_pfn; |
4220 | int i; |
4221 | |
4222 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4223 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); |
4224 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); |
4225 | nr_absent -= end_pfn - start_pfn; |
4226 | } |
4227 | return nr_absent; |
4228 | } |
4229 | |
4230 | /** |
4231 | * absent_pages_in_range - Return number of page frames in holes within a range |
4232 | * @start_pfn: The start PFN to start searching for holes |
4233 | * @end_pfn: The end PFN to stop searching for holes |
4234 | * |
4235 | * It returns the number of pages frames in memory holes within a range. |
4236 | */ |
4237 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, |
4238 | unsigned long end_pfn) |
4239 | { |
4240 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); |
4241 | } |
4242 | |
4243 | /* Return the number of page frames in holes in a zone on a node */ |
4244 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
4245 | unsigned long zone_type, |
4246 | unsigned long *ignored) |
4247 | { |
4248 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4249 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; |
4250 | unsigned long node_start_pfn, node_end_pfn; |
4251 | unsigned long zone_start_pfn, zone_end_pfn; |
4252 | |
4253 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); |
4254 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4255 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); |
4256 | |
4257 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4258 | node_start_pfn, node_end_pfn, |
4259 | &zone_start_pfn, &zone_end_pfn); |
4260 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
4261 | } |
4262 | |
4263 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4264 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
4265 | unsigned long zone_type, |
4266 | unsigned long *zones_size) |
4267 | { |
4268 | return zones_size[zone_type]; |
4269 | } |
4270 | |
4271 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
4272 | unsigned long zone_type, |
4273 | unsigned long *zholes_size) |
4274 | { |
4275 | if (!zholes_size) |
4276 | return 0; |
4277 | |
4278 | return zholes_size[zone_type]; |
4279 | } |
4280 | |
4281 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4282 | |
4283 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
4284 | unsigned long *zones_size, unsigned long *zholes_size) |
4285 | { |
4286 | unsigned long realtotalpages, totalpages = 0; |
4287 | enum zone_type i; |
4288 | |
4289 | for (i = 0; i < MAX_NR_ZONES; i++) |
4290 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, |
4291 | zones_size); |
4292 | pgdat->node_spanned_pages = totalpages; |
4293 | |
4294 | realtotalpages = totalpages; |
4295 | for (i = 0; i < MAX_NR_ZONES; i++) |
4296 | realtotalpages -= |
4297 | zone_absent_pages_in_node(pgdat->node_id, i, |
4298 | zholes_size); |
4299 | pgdat->node_present_pages = realtotalpages; |
4300 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, |
4301 | realtotalpages); |
4302 | } |
4303 | |
4304 | #ifndef CONFIG_SPARSEMEM |
4305 | /* |
4306 | * Calculate the size of the zone->blockflags rounded to an unsigned long |
4307 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
4308 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally |
4309 | * round what is now in bits to nearest long in bits, then return it in |
4310 | * bytes. |
4311 | */ |
4312 | static unsigned long __init usemap_size(unsigned long zonesize) |
4313 | { |
4314 | unsigned long usemapsize; |
4315 | |
4316 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
4317 | usemapsize = usemapsize >> pageblock_order; |
4318 | usemapsize *= NR_PAGEBLOCK_BITS; |
4319 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); |
4320 | |
4321 | return usemapsize / 8; |
4322 | } |
4323 | |
4324 | static void __init setup_usemap(struct pglist_data *pgdat, |
4325 | struct zone *zone, unsigned long zonesize) |
4326 | { |
4327 | unsigned long usemapsize = usemap_size(zonesize); |
4328 | zone->pageblock_flags = NULL; |
4329 | if (usemapsize) |
4330 | zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, |
4331 | usemapsize); |
4332 | } |
4333 | #else |
4334 | static inline void setup_usemap(struct pglist_data *pgdat, |
4335 | struct zone *zone, unsigned long zonesize) {} |
4336 | #endif /* CONFIG_SPARSEMEM */ |
4337 | |
4338 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
4339 | |
4340 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
4341 | void __init set_pageblock_order(void) |
4342 | { |
4343 | unsigned int order; |
4344 | |
4345 | /* Check that pageblock_nr_pages has not already been setup */ |
4346 | if (pageblock_order) |
4347 | return; |
4348 | |
4349 | if (HPAGE_SHIFT > PAGE_SHIFT) |
4350 | order = HUGETLB_PAGE_ORDER; |
4351 | else |
4352 | order = MAX_ORDER - 1; |
4353 | |
4354 | /* |
4355 | * Assume the largest contiguous order of interest is a huge page. |
4356 | * This value may be variable depending on boot parameters on IA64 and |
4357 | * powerpc. |
4358 | */ |
4359 | pageblock_order = order; |
4360 | } |
4361 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
4362 | |
4363 | /* |
4364 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() |
4365 | * is unused as pageblock_order is set at compile-time. See |
4366 | * include/linux/pageblock-flags.h for the values of pageblock_order based on |
4367 | * the kernel config |
4368 | */ |
4369 | void __init set_pageblock_order(void) |
4370 | { |
4371 | } |
4372 | |
4373 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
4374 | |
4375 | /* |
4376 | * Set up the zone data structures: |
4377 | * - mark all pages reserved |
4378 | * - mark all memory queues empty |
4379 | * - clear the memory bitmaps |
4380 | * |
4381 | * NOTE: pgdat should get zeroed by caller. |
4382 | */ |
4383 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
4384 | unsigned long *zones_size, unsigned long *zholes_size) |
4385 | { |
4386 | enum zone_type j; |
4387 | int nid = pgdat->node_id; |
4388 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
4389 | int ret; |
4390 | |
4391 | pgdat_resize_init(pgdat); |
4392 | init_waitqueue_head(&pgdat->kswapd_wait); |
4393 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
4394 | pgdat_page_cgroup_init(pgdat); |
4395 | |
4396 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4397 | struct zone *zone = pgdat->node_zones + j; |
4398 | unsigned long size, realsize, memmap_pages; |
4399 | |
4400 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
4401 | realsize = size - zone_absent_pages_in_node(nid, j, |
4402 | zholes_size); |
4403 | |
4404 | /* |
4405 | * Adjust realsize so that it accounts for how much memory |
4406 | * is used by this zone for memmap. This affects the watermark |
4407 | * and per-cpu initialisations |
4408 | */ |
4409 | memmap_pages = |
4410 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; |
4411 | if (realsize >= memmap_pages) { |
4412 | realsize -= memmap_pages; |
4413 | if (memmap_pages) |
4414 | printk(KERN_DEBUG |
4415 | " %s zone: %lu pages used for memmap\n", |
4416 | zone_names[j], memmap_pages); |
4417 | } else |
4418 | printk(KERN_WARNING |
4419 | " %s zone: %lu pages exceeds realsize %lu\n", |
4420 | zone_names[j], memmap_pages, realsize); |
4421 | |
4422 | /* Account for reserved pages */ |
4423 | if (j == 0 && realsize > dma_reserve) { |
4424 | realsize -= dma_reserve; |
4425 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
4426 | zone_names[0], dma_reserve); |
4427 | } |
4428 | |
4429 | if (!is_highmem_idx(j)) |
4430 | nr_kernel_pages += realsize; |
4431 | nr_all_pages += realsize; |
4432 | |
4433 | zone->spanned_pages = size; |
4434 | zone->present_pages = realsize; |
4435 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
4436 | zone->compact_cached_free_pfn = zone->zone_start_pfn + |
4437 | zone->spanned_pages; |
4438 | zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1); |
4439 | #endif |
4440 | #ifdef CONFIG_NUMA |
4441 | zone->node = nid; |
4442 | zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) |
4443 | / 100; |
4444 | zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; |
4445 | #endif |
4446 | zone->name = zone_names[j]; |
4447 | spin_lock_init(&zone->lock); |
4448 | spin_lock_init(&zone->lru_lock); |
4449 | zone_seqlock_init(zone); |
4450 | zone->zone_pgdat = pgdat; |
4451 | |
4452 | zone_pcp_init(zone); |
4453 | lruvec_init(&zone->lruvec, zone); |
4454 | if (!size) |
4455 | continue; |
4456 | |
4457 | set_pageblock_order(); |
4458 | setup_usemap(pgdat, zone, size); |
4459 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
4460 | size, MEMMAP_EARLY); |
4461 | BUG_ON(ret); |
4462 | memmap_init(size, nid, j, zone_start_pfn); |
4463 | zone_start_pfn += size; |
4464 | } |
4465 | } |
4466 | |
4467 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
4468 | { |
4469 | /* Skip empty nodes */ |
4470 | if (!pgdat->node_spanned_pages) |
4471 | return; |
4472 | |
4473 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4474 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
4475 | if (!pgdat->node_mem_map) { |
4476 | unsigned long size, start, end; |
4477 | struct page *map; |
4478 | |
4479 | /* |
4480 | * The zone's endpoints aren't required to be MAX_ORDER |
4481 | * aligned but the node_mem_map endpoints must be in order |
4482 | * for the buddy allocator to function correctly. |
4483 | */ |
4484 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
4485 | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; |
4486 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
4487 | size = (end - start) * sizeof(struct page); |
4488 | map = alloc_remap(pgdat->node_id, size); |
4489 | if (!map) |
4490 | map = alloc_bootmem_node_nopanic(pgdat, size); |
4491 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
4492 | } |
4493 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
4494 | /* |
4495 | * With no DISCONTIG, the global mem_map is just set as node 0's |
4496 | */ |
4497 | if (pgdat == NODE_DATA(0)) { |
4498 | mem_map = NODE_DATA(0)->node_mem_map; |
4499 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4500 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
4501 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
4502 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4503 | } |
4504 | #endif |
4505 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
4506 | } |
4507 | |
4508 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
4509 | unsigned long node_start_pfn, unsigned long *zholes_size) |
4510 | { |
4511 | pg_data_t *pgdat = NODE_DATA(nid); |
4512 | |
4513 | /* pg_data_t should be reset to zero when it's allocated */ |
4514 | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); |
4515 | |
4516 | pgdat->node_id = nid; |
4517 | pgdat->node_start_pfn = node_start_pfn; |
4518 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
4519 | |
4520 | alloc_node_mem_map(pgdat); |
4521 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4522 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", |
4523 | nid, (unsigned long)pgdat, |
4524 | (unsigned long)pgdat->node_mem_map); |
4525 | #endif |
4526 | |
4527 | free_area_init_core(pgdat, zones_size, zholes_size); |
4528 | } |
4529 | |
4530 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4531 | |
4532 | #if MAX_NUMNODES > 1 |
4533 | /* |
4534 | * Figure out the number of possible node ids. |
4535 | */ |
4536 | static void __init setup_nr_node_ids(void) |
4537 | { |
4538 | unsigned int node; |
4539 | unsigned int highest = 0; |
4540 | |
4541 | for_each_node_mask(node, node_possible_map) |
4542 | highest = node; |
4543 | nr_node_ids = highest + 1; |
4544 | } |
4545 | #else |
4546 | static inline void setup_nr_node_ids(void) |
4547 | { |
4548 | } |
4549 | #endif |
4550 | |
4551 | /** |
4552 | * node_map_pfn_alignment - determine the maximum internode alignment |
4553 | * |
4554 | * This function should be called after node map is populated and sorted. |
4555 | * It calculates the maximum power of two alignment which can distinguish |
4556 | * all the nodes. |
4557 | * |
4558 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value |
4559 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the |
4560 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is |
4561 | * shifted, 1GiB is enough and this function will indicate so. |
4562 | * |
4563 | * This is used to test whether pfn -> nid mapping of the chosen memory |
4564 | * model has fine enough granularity to avoid incorrect mapping for the |
4565 | * populated node map. |
4566 | * |
4567 | * Returns the determined alignment in pfn's. 0 if there is no alignment |
4568 | * requirement (single node). |
4569 | */ |
4570 | unsigned long __init node_map_pfn_alignment(void) |
4571 | { |
4572 | unsigned long accl_mask = 0, last_end = 0; |
4573 | unsigned long start, end, mask; |
4574 | int last_nid = -1; |
4575 | int i, nid; |
4576 | |
4577 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
4578 | if (!start || last_nid < 0 || last_nid == nid) { |
4579 | last_nid = nid; |
4580 | last_end = end; |
4581 | continue; |
4582 | } |
4583 | |
4584 | /* |
4585 | * Start with a mask granular enough to pin-point to the |
4586 | * start pfn and tick off bits one-by-one until it becomes |
4587 | * too coarse to separate the current node from the last. |
4588 | */ |
4589 | mask = ~((1 << __ffs(start)) - 1); |
4590 | while (mask && last_end <= (start & (mask << 1))) |
4591 | mask <<= 1; |
4592 | |
4593 | /* accumulate all internode masks */ |
4594 | accl_mask |= mask; |
4595 | } |
4596 | |
4597 | /* convert mask to number of pages */ |
4598 | return ~accl_mask + 1; |
4599 | } |
4600 | |
4601 | /* Find the lowest pfn for a node */ |
4602 | static unsigned long __init find_min_pfn_for_node(int nid) |
4603 | { |
4604 | unsigned long min_pfn = ULONG_MAX; |
4605 | unsigned long start_pfn; |
4606 | int i; |
4607 | |
4608 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
4609 | min_pfn = min(min_pfn, start_pfn); |
4610 | |
4611 | if (min_pfn == ULONG_MAX) { |
4612 | printk(KERN_WARNING |
4613 | "Could not find start_pfn for node %d\n", nid); |
4614 | return 0; |
4615 | } |
4616 | |
4617 | return min_pfn; |
4618 | } |
4619 | |
4620 | /** |
4621 | * find_min_pfn_with_active_regions - Find the minimum PFN registered |
4622 | * |
4623 | * It returns the minimum PFN based on information provided via |
4624 | * add_active_range(). |
4625 | */ |
4626 | unsigned long __init find_min_pfn_with_active_regions(void) |
4627 | { |
4628 | return find_min_pfn_for_node(MAX_NUMNODES); |
4629 | } |
4630 | |
4631 | /* |
4632 | * early_calculate_totalpages() |
4633 | * Sum pages in active regions for movable zone. |
4634 | * Populate N_HIGH_MEMORY for calculating usable_nodes. |
4635 | */ |
4636 | static unsigned long __init early_calculate_totalpages(void) |
4637 | { |
4638 | unsigned long totalpages = 0; |
4639 | unsigned long start_pfn, end_pfn; |
4640 | int i, nid; |
4641 | |
4642 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
4643 | unsigned long pages = end_pfn - start_pfn; |
4644 | |
4645 | totalpages += pages; |
4646 | if (pages) |
4647 | node_set_state(nid, N_HIGH_MEMORY); |
4648 | } |
4649 | return totalpages; |
4650 | } |
4651 | |
4652 | /* |
4653 | * Find the PFN the Movable zone begins in each node. Kernel memory |
4654 | * is spread evenly between nodes as long as the nodes have enough |
4655 | * memory. When they don't, some nodes will have more kernelcore than |
4656 | * others |
4657 | */ |
4658 | static void __init find_zone_movable_pfns_for_nodes(void) |
4659 | { |
4660 | int i, nid; |
4661 | unsigned long usable_startpfn; |
4662 | unsigned long kernelcore_node, kernelcore_remaining; |
4663 | /* save the state before borrow the nodemask */ |
4664 | nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; |
4665 | unsigned long totalpages = early_calculate_totalpages(); |
4666 | int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); |
4667 | |
4668 | /* |
4669 | * If movablecore was specified, calculate what size of |
4670 | * kernelcore that corresponds so that memory usable for |
4671 | * any allocation type is evenly spread. If both kernelcore |
4672 | * and movablecore are specified, then the value of kernelcore |
4673 | * will be used for required_kernelcore if it's greater than |
4674 | * what movablecore would have allowed. |
4675 | */ |
4676 | if (required_movablecore) { |
4677 | unsigned long corepages; |
4678 | |
4679 | /* |
4680 | * Round-up so that ZONE_MOVABLE is at least as large as what |
4681 | * was requested by the user |
4682 | */ |
4683 | required_movablecore = |
4684 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); |
4685 | corepages = totalpages - required_movablecore; |
4686 | |
4687 | required_kernelcore = max(required_kernelcore, corepages); |
4688 | } |
4689 | |
4690 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
4691 | if (!required_kernelcore) |
4692 | goto out; |
4693 | |
4694 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ |
4695 | find_usable_zone_for_movable(); |
4696 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
4697 | |
4698 | restart: |
4699 | /* Spread kernelcore memory as evenly as possible throughout nodes */ |
4700 | kernelcore_node = required_kernelcore / usable_nodes; |
4701 | for_each_node_state(nid, N_HIGH_MEMORY) { |
4702 | unsigned long start_pfn, end_pfn; |
4703 | |
4704 | /* |
4705 | * Recalculate kernelcore_node if the division per node |
4706 | * now exceeds what is necessary to satisfy the requested |
4707 | * amount of memory for the kernel |
4708 | */ |
4709 | if (required_kernelcore < kernelcore_node) |
4710 | kernelcore_node = required_kernelcore / usable_nodes; |
4711 | |
4712 | /* |
4713 | * As the map is walked, we track how much memory is usable |
4714 | * by the kernel using kernelcore_remaining. When it is |
4715 | * 0, the rest of the node is usable by ZONE_MOVABLE |
4716 | */ |
4717 | kernelcore_remaining = kernelcore_node; |
4718 | |
4719 | /* Go through each range of PFNs within this node */ |
4720 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4721 | unsigned long size_pages; |
4722 | |
4723 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
4724 | if (start_pfn >= end_pfn) |
4725 | continue; |
4726 | |
4727 | /* Account for what is only usable for kernelcore */ |
4728 | if (start_pfn < usable_startpfn) { |
4729 | unsigned long kernel_pages; |
4730 | kernel_pages = min(end_pfn, usable_startpfn) |
4731 | - start_pfn; |
4732 | |
4733 | kernelcore_remaining -= min(kernel_pages, |
4734 | kernelcore_remaining); |
4735 | required_kernelcore -= min(kernel_pages, |
4736 | required_kernelcore); |
4737 | |
4738 | /* Continue if range is now fully accounted */ |
4739 | if (end_pfn <= usable_startpfn) { |
4740 | |
4741 | /* |
4742 | * Push zone_movable_pfn to the end so |
4743 | * that if we have to rebalance |
4744 | * kernelcore across nodes, we will |
4745 | * not double account here |
4746 | */ |
4747 | zone_movable_pfn[nid] = end_pfn; |
4748 | continue; |
4749 | } |
4750 | start_pfn = usable_startpfn; |
4751 | } |
4752 | |
4753 | /* |
4754 | * The usable PFN range for ZONE_MOVABLE is from |
4755 | * start_pfn->end_pfn. Calculate size_pages as the |
4756 | * number of pages used as kernelcore |
4757 | */ |
4758 | size_pages = end_pfn - start_pfn; |
4759 | if (size_pages > kernelcore_remaining) |
4760 | size_pages = kernelcore_remaining; |
4761 | zone_movable_pfn[nid] = start_pfn + size_pages; |
4762 | |
4763 | /* |
4764 | * Some kernelcore has been met, update counts and |
4765 | * break if the kernelcore for this node has been |
4766 | * satisified |
4767 | */ |
4768 | required_kernelcore -= min(required_kernelcore, |
4769 | size_pages); |
4770 | kernelcore_remaining -= size_pages; |
4771 | if (!kernelcore_remaining) |
4772 | break; |
4773 | } |
4774 | } |
4775 | |
4776 | /* |
4777 | * If there is still required_kernelcore, we do another pass with one |
4778 | * less node in the count. This will push zone_movable_pfn[nid] further |
4779 | * along on the nodes that still have memory until kernelcore is |
4780 | * satisified |
4781 | */ |
4782 | usable_nodes--; |
4783 | if (usable_nodes && required_kernelcore > usable_nodes) |
4784 | goto restart; |
4785 | |
4786 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
4787 | for (nid = 0; nid < MAX_NUMNODES; nid++) |
4788 | zone_movable_pfn[nid] = |
4789 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); |
4790 | |
4791 | out: |
4792 | /* restore the node_state */ |
4793 | node_states[N_HIGH_MEMORY] = saved_node_state; |
4794 | } |
4795 | |
4796 | /* Any regular memory on that node ? */ |
4797 | static void __init check_for_regular_memory(pg_data_t *pgdat) |
4798 | { |
4799 | #ifdef CONFIG_HIGHMEM |
4800 | enum zone_type zone_type; |
4801 | |
4802 | for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { |
4803 | struct zone *zone = &pgdat->node_zones[zone_type]; |
4804 | if (zone->present_pages) { |
4805 | node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); |
4806 | break; |
4807 | } |
4808 | } |
4809 | #endif |
4810 | } |
4811 | |
4812 | /** |
4813 | * free_area_init_nodes - Initialise all pg_data_t and zone data |
4814 | * @max_zone_pfn: an array of max PFNs for each zone |
4815 | * |
4816 | * This will call free_area_init_node() for each active node in the system. |
4817 | * Using the page ranges provided by add_active_range(), the size of each |
4818 | * zone in each node and their holes is calculated. If the maximum PFN |
4819 | * between two adjacent zones match, it is assumed that the zone is empty. |
4820 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed |
4821 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone |
4822 | * starts where the previous one ended. For example, ZONE_DMA32 starts |
4823 | * at arch_max_dma_pfn. |
4824 | */ |
4825 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) |
4826 | { |
4827 | unsigned long start_pfn, end_pfn; |
4828 | int i, nid; |
4829 | |
4830 | /* Record where the zone boundaries are */ |
4831 | memset(arch_zone_lowest_possible_pfn, 0, |
4832 | sizeof(arch_zone_lowest_possible_pfn)); |
4833 | memset(arch_zone_highest_possible_pfn, 0, |
4834 | sizeof(arch_zone_highest_possible_pfn)); |
4835 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); |
4836 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; |
4837 | for (i = 1; i < MAX_NR_ZONES; i++) { |
4838 | if (i == ZONE_MOVABLE) |
4839 | continue; |
4840 | arch_zone_lowest_possible_pfn[i] = |
4841 | arch_zone_highest_possible_pfn[i-1]; |
4842 | arch_zone_highest_possible_pfn[i] = |
4843 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); |
4844 | } |
4845 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
4846 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; |
4847 | |
4848 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ |
4849 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); |
4850 | find_zone_movable_pfns_for_nodes(); |
4851 | |
4852 | /* Print out the zone ranges */ |
4853 | printk("Zone ranges:\n"); |
4854 | for (i = 0; i < MAX_NR_ZONES; i++) { |
4855 | if (i == ZONE_MOVABLE) |
4856 | continue; |
4857 | printk(KERN_CONT " %-8s ", zone_names[i]); |
4858 | if (arch_zone_lowest_possible_pfn[i] == |
4859 | arch_zone_highest_possible_pfn[i]) |
4860 | printk(KERN_CONT "empty\n"); |
4861 | else |
4862 | printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", |
4863 | arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, |
4864 | (arch_zone_highest_possible_pfn[i] |
4865 | << PAGE_SHIFT) - 1); |
4866 | } |
4867 | |
4868 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ |
4869 | printk("Movable zone start for each node\n"); |
4870 | for (i = 0; i < MAX_NUMNODES; i++) { |
4871 | if (zone_movable_pfn[i]) |
4872 | printk(" Node %d: %#010lx\n", i, |
4873 | zone_movable_pfn[i] << PAGE_SHIFT); |
4874 | } |
4875 | |
4876 | /* Print out the early_node_map[] */ |
4877 | printk("Early memory node ranges\n"); |
4878 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
4879 | printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, |
4880 | start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); |
4881 | |
4882 | /* Initialise every node */ |
4883 | mminit_verify_pageflags_layout(); |
4884 | setup_nr_node_ids(); |
4885 | for_each_online_node(nid) { |
4886 | pg_data_t *pgdat = NODE_DATA(nid); |
4887 | free_area_init_node(nid, NULL, |
4888 | find_min_pfn_for_node(nid), NULL); |
4889 | |
4890 | /* Any memory on that node */ |
4891 | if (pgdat->node_present_pages) |
4892 | node_set_state(nid, N_HIGH_MEMORY); |
4893 | check_for_regular_memory(pgdat); |
4894 | } |
4895 | } |
4896 | |
4897 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
4898 | { |
4899 | unsigned long long coremem; |
4900 | if (!p) |
4901 | return -EINVAL; |
4902 | |
4903 | coremem = memparse(p, &p); |
4904 | *core = coremem >> PAGE_SHIFT; |
4905 | |
4906 | /* Paranoid check that UL is enough for the coremem value */ |
4907 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
4908 | |
4909 | return 0; |
4910 | } |
4911 | |
4912 | /* |
4913 | * kernelcore=size sets the amount of memory for use for allocations that |
4914 | * cannot be reclaimed or migrated. |
4915 | */ |
4916 | static int __init cmdline_parse_kernelcore(char *p) |
4917 | { |
4918 | return cmdline_parse_core(p, &required_kernelcore); |
4919 | } |
4920 | |
4921 | /* |
4922 | * movablecore=size sets the amount of memory for use for allocations that |
4923 | * can be reclaimed or migrated. |
4924 | */ |
4925 | static int __init cmdline_parse_movablecore(char *p) |
4926 | { |
4927 | return cmdline_parse_core(p, &required_movablecore); |
4928 | } |
4929 | |
4930 | early_param("kernelcore", cmdline_parse_kernelcore); |
4931 | early_param("movablecore", cmdline_parse_movablecore); |
4932 | |
4933 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4934 | |
4935 | /** |
4936 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
4937 | * @new_dma_reserve: The number of pages to mark reserved |
4938 | * |
4939 | * The per-cpu batchsize and zone watermarks are determined by present_pages. |
4940 | * In the DMA zone, a significant percentage may be consumed by kernel image |
4941 | * and other unfreeable allocations which can skew the watermarks badly. This |
4942 | * function may optionally be used to account for unfreeable pages in the |
4943 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and |
4944 | * smaller per-cpu batchsize. |
4945 | */ |
4946 | void __init set_dma_reserve(unsigned long new_dma_reserve) |
4947 | { |
4948 | dma_reserve = new_dma_reserve; |
4949 | } |
4950 | |
4951 | void __init free_area_init(unsigned long *zones_size) |
4952 | { |
4953 | free_area_init_node(0, zones_size, |
4954 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
4955 | } |
4956 | |
4957 | static int page_alloc_cpu_notify(struct notifier_block *self, |
4958 | unsigned long action, void *hcpu) |
4959 | { |
4960 | int cpu = (unsigned long)hcpu; |
4961 | |
4962 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
4963 | lru_add_drain_cpu(cpu); |
4964 | drain_pages(cpu); |
4965 | |
4966 | /* |
4967 | * Spill the event counters of the dead processor |
4968 | * into the current processors event counters. |
4969 | * This artificially elevates the count of the current |
4970 | * processor. |
4971 | */ |
4972 | vm_events_fold_cpu(cpu); |
4973 | |
4974 | /* |
4975 | * Zero the differential counters of the dead processor |
4976 | * so that the vm statistics are consistent. |
4977 | * |
4978 | * This is only okay since the processor is dead and cannot |
4979 | * race with what we are doing. |
4980 | */ |
4981 | refresh_cpu_vm_stats(cpu); |
4982 | } |
4983 | return NOTIFY_OK; |
4984 | } |
4985 | |
4986 | void __init page_alloc_init(void) |
4987 | { |
4988 | hotcpu_notifier(page_alloc_cpu_notify, 0); |
4989 | } |
4990 | |
4991 | /* |
4992 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio |
4993 | * or min_free_kbytes changes. |
4994 | */ |
4995 | static void calculate_totalreserve_pages(void) |
4996 | { |
4997 | struct pglist_data *pgdat; |
4998 | unsigned long reserve_pages = 0; |
4999 | enum zone_type i, j; |
5000 | |
5001 | for_each_online_pgdat(pgdat) { |
5002 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5003 | struct zone *zone = pgdat->node_zones + i; |
5004 | unsigned long max = 0; |
5005 | |
5006 | /* Find valid and maximum lowmem_reserve in the zone */ |
5007 | for (j = i; j < MAX_NR_ZONES; j++) { |
5008 | if (zone->lowmem_reserve[j] > max) |
5009 | max = zone->lowmem_reserve[j]; |
5010 | } |
5011 | |
5012 | /* we treat the high watermark as reserved pages. */ |
5013 | max += high_wmark_pages(zone); |
5014 | |
5015 | if (max > zone->present_pages) |
5016 | max = zone->present_pages; |
5017 | reserve_pages += max; |
5018 | /* |
5019 | * Lowmem reserves are not available to |
5020 | * GFP_HIGHUSER page cache allocations and |
5021 | * kswapd tries to balance zones to their high |
5022 | * watermark. As a result, neither should be |
5023 | * regarded as dirtyable memory, to prevent a |
5024 | * situation where reclaim has to clean pages |
5025 | * in order to balance the zones. |
5026 | */ |
5027 | zone->dirty_balance_reserve = max; |
5028 | } |
5029 | } |
5030 | dirty_balance_reserve = reserve_pages; |
5031 | totalreserve_pages = reserve_pages; |
5032 | } |
5033 | |
5034 | /* |
5035 | * setup_per_zone_lowmem_reserve - called whenever |
5036 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone |
5037 | * has a correct pages reserved value, so an adequate number of |
5038 | * pages are left in the zone after a successful __alloc_pages(). |
5039 | */ |
5040 | static void setup_per_zone_lowmem_reserve(void) |
5041 | { |
5042 | struct pglist_data *pgdat; |
5043 | enum zone_type j, idx; |
5044 | |
5045 | for_each_online_pgdat(pgdat) { |
5046 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5047 | struct zone *zone = pgdat->node_zones + j; |
5048 | unsigned long present_pages = zone->present_pages; |
5049 | |
5050 | zone->lowmem_reserve[j] = 0; |
5051 | |
5052 | idx = j; |
5053 | while (idx) { |
5054 | struct zone *lower_zone; |
5055 | |
5056 | idx--; |
5057 | |
5058 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
5059 | sysctl_lowmem_reserve_ratio[idx] = 1; |
5060 | |
5061 | lower_zone = pgdat->node_zones + idx; |
5062 | lower_zone->lowmem_reserve[j] = present_pages / |
5063 | sysctl_lowmem_reserve_ratio[idx]; |
5064 | present_pages += lower_zone->present_pages; |
5065 | } |
5066 | } |
5067 | } |
5068 | |
5069 | /* update totalreserve_pages */ |
5070 | calculate_totalreserve_pages(); |
5071 | } |
5072 | |
5073 | static void __setup_per_zone_wmarks(void) |
5074 | { |
5075 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
5076 | unsigned long lowmem_pages = 0; |
5077 | struct zone *zone; |
5078 | unsigned long flags; |
5079 | |
5080 | /* Calculate total number of !ZONE_HIGHMEM pages */ |
5081 | for_each_zone(zone) { |
5082 | if (!is_highmem(zone)) |
5083 | lowmem_pages += zone->present_pages; |
5084 | } |
5085 | |
5086 | for_each_zone(zone) { |
5087 | u64 tmp; |
5088 | |
5089 | spin_lock_irqsave(&zone->lock, flags); |
5090 | tmp = (u64)pages_min * zone->present_pages; |
5091 | do_div(tmp, lowmem_pages); |
5092 | if (is_highmem(zone)) { |
5093 | /* |
5094 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
5095 | * need highmem pages, so cap pages_min to a small |
5096 | * value here. |
5097 | * |
5098 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
5099 | * deltas controls asynch page reclaim, and so should |
5100 | * not be capped for highmem. |
5101 | */ |
5102 | int min_pages; |
5103 | |
5104 | min_pages = zone->present_pages / 1024; |
5105 | if (min_pages < SWAP_CLUSTER_MAX) |
5106 | min_pages = SWAP_CLUSTER_MAX; |
5107 | if (min_pages > 128) |
5108 | min_pages = 128; |
5109 | zone->watermark[WMARK_MIN] = min_pages; |
5110 | } else { |
5111 | /* |
5112 | * If it's a lowmem zone, reserve a number of pages |
5113 | * proportionate to the zone's size. |
5114 | */ |
5115 | zone->watermark[WMARK_MIN] = tmp; |
5116 | } |
5117 | |
5118 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
5119 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); |
5120 | |
5121 | zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); |
5122 | zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); |
5123 | zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); |
5124 | |
5125 | setup_zone_migrate_reserve(zone); |
5126 | spin_unlock_irqrestore(&zone->lock, flags); |
5127 | } |
5128 | |
5129 | /* update totalreserve_pages */ |
5130 | calculate_totalreserve_pages(); |
5131 | } |
5132 | |
5133 | /** |
5134 | * setup_per_zone_wmarks - called when min_free_kbytes changes |
5135 | * or when memory is hot-{added|removed} |
5136 | * |
5137 | * Ensures that the watermark[min,low,high] values for each zone are set |
5138 | * correctly with respect to min_free_kbytes. |
5139 | */ |
5140 | void setup_per_zone_wmarks(void) |
5141 | { |
5142 | mutex_lock(&zonelists_mutex); |
5143 | __setup_per_zone_wmarks(); |
5144 | mutex_unlock(&zonelists_mutex); |
5145 | } |
5146 | |
5147 | /* |
5148 | * The inactive anon list should be small enough that the VM never has to |
5149 | * do too much work, but large enough that each inactive page has a chance |
5150 | * to be referenced again before it is swapped out. |
5151 | * |
5152 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to |
5153 | * INACTIVE_ANON pages on this zone's LRU, maintained by the |
5154 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of |
5155 | * the anonymous pages are kept on the inactive list. |
5156 | * |
5157 | * total target max |
5158 | * memory ratio inactive anon |
5159 | * ------------------------------------- |
5160 | * 10MB 1 5MB |
5161 | * 100MB 1 50MB |
5162 | * 1GB 3 250MB |
5163 | * 10GB 10 0.9GB |
5164 | * 100GB 31 3GB |
5165 | * 1TB 101 10GB |
5166 | * 10TB 320 32GB |
5167 | */ |
5168 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
5169 | { |
5170 | unsigned int gb, ratio; |
5171 | |
5172 | /* Zone size in gigabytes */ |
5173 | gb = zone->present_pages >> (30 - PAGE_SHIFT); |
5174 | if (gb) |
5175 | ratio = int_sqrt(10 * gb); |
5176 | else |
5177 | ratio = 1; |
5178 | |
5179 | zone->inactive_ratio = ratio; |
5180 | } |
5181 | |
5182 | static void __meminit setup_per_zone_inactive_ratio(void) |
5183 | { |
5184 | struct zone *zone; |
5185 | |
5186 | for_each_zone(zone) |
5187 | calculate_zone_inactive_ratio(zone); |
5188 | } |
5189 | |
5190 | /* |
5191 | * Initialise min_free_kbytes. |
5192 | * |
5193 | * For small machines we want it small (128k min). For large machines |
5194 | * we want it large (64MB max). But it is not linear, because network |
5195 | * bandwidth does not increase linearly with machine size. We use |
5196 | * |
5197 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
5198 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
5199 | * |
5200 | * which yields |
5201 | * |
5202 | * 16MB: 512k |
5203 | * 32MB: 724k |
5204 | * 64MB: 1024k |
5205 | * 128MB: 1448k |
5206 | * 256MB: 2048k |
5207 | * 512MB: 2896k |
5208 | * 1024MB: 4096k |
5209 | * 2048MB: 5792k |
5210 | * 4096MB: 8192k |
5211 | * 8192MB: 11584k |
5212 | * 16384MB: 16384k |
5213 | */ |
5214 | int __meminit init_per_zone_wmark_min(void) |
5215 | { |
5216 | unsigned long lowmem_kbytes; |
5217 | |
5218 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
5219 | |
5220 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
5221 | if (min_free_kbytes < 128) |
5222 | min_free_kbytes = 128; |
5223 | if (min_free_kbytes > 65536) |
5224 | min_free_kbytes = 65536; |
5225 | setup_per_zone_wmarks(); |
5226 | refresh_zone_stat_thresholds(); |
5227 | setup_per_zone_lowmem_reserve(); |
5228 | setup_per_zone_inactive_ratio(); |
5229 | return 0; |
5230 | } |
5231 | module_init(init_per_zone_wmark_min) |
5232 | |
5233 | /* |
5234 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
5235 | * that we can call two helper functions whenever min_free_kbytes |
5236 | * changes. |
5237 | */ |
5238 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, |
5239 | void __user *buffer, size_t *length, loff_t *ppos) |
5240 | { |
5241 | proc_dointvec(table, write, buffer, length, ppos); |
5242 | if (write) |
5243 | setup_per_zone_wmarks(); |
5244 | return 0; |
5245 | } |
5246 | |
5247 | #ifdef CONFIG_NUMA |
5248 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, |
5249 | void __user *buffer, size_t *length, loff_t *ppos) |
5250 | { |
5251 | struct zone *zone; |
5252 | int rc; |
5253 | |
5254 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
5255 | if (rc) |
5256 | return rc; |
5257 | |
5258 | for_each_zone(zone) |
5259 | zone->min_unmapped_pages = (zone->present_pages * |
5260 | sysctl_min_unmapped_ratio) / 100; |
5261 | return 0; |
5262 | } |
5263 | |
5264 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, |
5265 | void __user *buffer, size_t *length, loff_t *ppos) |
5266 | { |
5267 | struct zone *zone; |
5268 | int rc; |
5269 | |
5270 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
5271 | if (rc) |
5272 | return rc; |
5273 | |
5274 | for_each_zone(zone) |
5275 | zone->min_slab_pages = (zone->present_pages * |
5276 | sysctl_min_slab_ratio) / 100; |
5277 | return 0; |
5278 | } |
5279 | #endif |
5280 | |
5281 | /* |
5282 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
5283 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
5284 | * whenever sysctl_lowmem_reserve_ratio changes. |
5285 | * |
5286 | * The reserve ratio obviously has absolutely no relation with the |
5287 | * minimum watermarks. The lowmem reserve ratio can only make sense |
5288 | * if in function of the boot time zone sizes. |
5289 | */ |
5290 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, |
5291 | void __user *buffer, size_t *length, loff_t *ppos) |
5292 | { |
5293 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
5294 | setup_per_zone_lowmem_reserve(); |
5295 | return 0; |
5296 | } |
5297 | |
5298 | /* |
5299 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each |
5300 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist |
5301 | * can have before it gets flushed back to buddy allocator. |
5302 | */ |
5303 | |
5304 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, |
5305 | void __user *buffer, size_t *length, loff_t *ppos) |
5306 | { |
5307 | struct zone *zone; |
5308 | unsigned int cpu; |
5309 | int ret; |
5310 | |
5311 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
5312 | if (!write || (ret < 0)) |
5313 | return ret; |
5314 | for_each_populated_zone(zone) { |
5315 | for_each_possible_cpu(cpu) { |
5316 | unsigned long high; |
5317 | high = zone->present_pages / percpu_pagelist_fraction; |
5318 | setup_pagelist_highmark( |
5319 | per_cpu_ptr(zone->pageset, cpu), high); |
5320 | } |
5321 | } |
5322 | return 0; |
5323 | } |
5324 | |
5325 | int hashdist = HASHDIST_DEFAULT; |
5326 | |
5327 | #ifdef CONFIG_NUMA |
5328 | static int __init set_hashdist(char *str) |
5329 | { |
5330 | if (!str) |
5331 | return 0; |
5332 | hashdist = simple_strtoul(str, &str, 0); |
5333 | return 1; |
5334 | } |
5335 | __setup("hashdist=", set_hashdist); |
5336 | #endif |
5337 | |
5338 | /* |
5339 | * allocate a large system hash table from bootmem |
5340 | * - it is assumed that the hash table must contain an exact power-of-2 |
5341 | * quantity of entries |
5342 | * - limit is the number of hash buckets, not the total allocation size |
5343 | */ |
5344 | void *__init alloc_large_system_hash(const char *tablename, |
5345 | unsigned long bucketsize, |
5346 | unsigned long numentries, |
5347 | int scale, |
5348 | int flags, |
5349 | unsigned int *_hash_shift, |
5350 | unsigned int *_hash_mask, |
5351 | unsigned long low_limit, |
5352 | unsigned long high_limit) |
5353 | { |
5354 | unsigned long long max = high_limit; |
5355 | unsigned long log2qty, size; |
5356 | void *table = NULL; |
5357 | |
5358 | /* allow the kernel cmdline to have a say */ |
5359 | if (!numentries) { |
5360 | /* round applicable memory size up to nearest megabyte */ |
5361 | numentries = nr_kernel_pages; |
5362 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
5363 | numentries >>= 20 - PAGE_SHIFT; |
5364 | numentries <<= 20 - PAGE_SHIFT; |
5365 | |
5366 | /* limit to 1 bucket per 2^scale bytes of low memory */ |
5367 | if (scale > PAGE_SHIFT) |
5368 | numentries >>= (scale - PAGE_SHIFT); |
5369 | else |
5370 | numentries <<= (PAGE_SHIFT - scale); |
5371 | |
5372 | /* Make sure we've got at least a 0-order allocation.. */ |
5373 | if (unlikely(flags & HASH_SMALL)) { |
5374 | /* Makes no sense without HASH_EARLY */ |
5375 | WARN_ON(!(flags & HASH_EARLY)); |
5376 | if (!(numentries >> *_hash_shift)) { |
5377 | numentries = 1UL << *_hash_shift; |
5378 | BUG_ON(!numentries); |
5379 | } |
5380 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) |
5381 | numentries = PAGE_SIZE / bucketsize; |
5382 | } |
5383 | numentries = roundup_pow_of_two(numentries); |
5384 | |
5385 | /* limit allocation size to 1/16 total memory by default */ |
5386 | if (max == 0) { |
5387 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; |
5388 | do_div(max, bucketsize); |
5389 | } |
5390 | max = min(max, 0x80000000ULL); |
5391 | |
5392 | if (numentries < low_limit) |
5393 | numentries = low_limit; |
5394 | if (numentries > max) |
5395 | numentries = max; |
5396 | |
5397 | log2qty = ilog2(numentries); |
5398 | |
5399 | do { |
5400 | size = bucketsize << log2qty; |
5401 | if (flags & HASH_EARLY) |
5402 | table = alloc_bootmem_nopanic(size); |
5403 | else if (hashdist) |
5404 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); |
5405 | else { |
5406 | /* |
5407 | * If bucketsize is not a power-of-two, we may free |
5408 | * some pages at the end of hash table which |
5409 | * alloc_pages_exact() automatically does |
5410 | */ |
5411 | if (get_order(size) < MAX_ORDER) { |
5412 | table = alloc_pages_exact(size, GFP_ATOMIC); |
5413 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
5414 | } |
5415 | } |
5416 | } while (!table && size > PAGE_SIZE && --log2qty); |
5417 | |
5418 | if (!table) |
5419 | panic("Failed to allocate %s hash table\n", tablename); |
5420 | |
5421 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
5422 | tablename, |
5423 | (1UL << log2qty), |
5424 | ilog2(size) - PAGE_SHIFT, |
5425 | size); |
5426 | |
5427 | if (_hash_shift) |
5428 | *_hash_shift = log2qty; |
5429 | if (_hash_mask) |
5430 | *_hash_mask = (1 << log2qty) - 1; |
5431 | |
5432 | return table; |
5433 | } |
5434 | |
5435 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
5436 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, |
5437 | unsigned long pfn) |
5438 | { |
5439 | #ifdef CONFIG_SPARSEMEM |
5440 | return __pfn_to_section(pfn)->pageblock_flags; |
5441 | #else |
5442 | return zone->pageblock_flags; |
5443 | #endif /* CONFIG_SPARSEMEM */ |
5444 | } |
5445 | |
5446 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) |
5447 | { |
5448 | #ifdef CONFIG_SPARSEMEM |
5449 | pfn &= (PAGES_PER_SECTION-1); |
5450 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
5451 | #else |
5452 | pfn = pfn - zone->zone_start_pfn; |
5453 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
5454 | #endif /* CONFIG_SPARSEMEM */ |
5455 | } |
5456 | |
5457 | /** |
5458 | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages |
5459 | * @page: The page within the block of interest |
5460 | * @start_bitidx: The first bit of interest to retrieve |
5461 | * @end_bitidx: The last bit of interest |
5462 | * returns pageblock_bits flags |
5463 | */ |
5464 | unsigned long get_pageblock_flags_group(struct page *page, |
5465 | int start_bitidx, int end_bitidx) |
5466 | { |
5467 | struct zone *zone; |
5468 | unsigned long *bitmap; |
5469 | unsigned long pfn, bitidx; |
5470 | unsigned long flags = 0; |
5471 | unsigned long value = 1; |
5472 | |
5473 | zone = page_zone(page); |
5474 | pfn = page_to_pfn(page); |
5475 | bitmap = get_pageblock_bitmap(zone, pfn); |
5476 | bitidx = pfn_to_bitidx(zone, pfn); |
5477 | |
5478 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) |
5479 | if (test_bit(bitidx + start_bitidx, bitmap)) |
5480 | flags |= value; |
5481 | |
5482 | return flags; |
5483 | } |
5484 | |
5485 | /** |
5486 | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages |
5487 | * @page: The page within the block of interest |
5488 | * @start_bitidx: The first bit of interest |
5489 | * @end_bitidx: The last bit of interest |
5490 | * @flags: The flags to set |
5491 | */ |
5492 | void set_pageblock_flags_group(struct page *page, unsigned long flags, |
5493 | int start_bitidx, int end_bitidx) |
5494 | { |
5495 | struct zone *zone; |
5496 | unsigned long *bitmap; |
5497 | unsigned long pfn, bitidx; |
5498 | unsigned long value = 1; |
5499 | |
5500 | zone = page_zone(page); |
5501 | pfn = page_to_pfn(page); |
5502 | bitmap = get_pageblock_bitmap(zone, pfn); |
5503 | bitidx = pfn_to_bitidx(zone, pfn); |
5504 | VM_BUG_ON(pfn < zone->zone_start_pfn); |
5505 | VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); |
5506 | |
5507 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) |
5508 | if (flags & value) |
5509 | __set_bit(bitidx + start_bitidx, bitmap); |
5510 | else |
5511 | __clear_bit(bitidx + start_bitidx, bitmap); |
5512 | } |
5513 | |
5514 | /* |
5515 | * This function checks whether pageblock includes unmovable pages or not. |
5516 | * If @count is not zero, it is okay to include less @count unmovable pages |
5517 | * |
5518 | * PageLRU check wihtout isolation or lru_lock could race so that |
5519 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't |
5520 | * expect this function should be exact. |
5521 | */ |
5522 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count) |
5523 | { |
5524 | unsigned long pfn, iter, found; |
5525 | int mt; |
5526 | |
5527 | /* |
5528 | * For avoiding noise data, lru_add_drain_all() should be called |
5529 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
5530 | */ |
5531 | if (zone_idx(zone) == ZONE_MOVABLE) |
5532 | return false; |
5533 | mt = get_pageblock_migratetype(page); |
5534 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) |
5535 | return false; |
5536 | |
5537 | pfn = page_to_pfn(page); |
5538 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { |
5539 | unsigned long check = pfn + iter; |
5540 | |
5541 | if (!pfn_valid_within(check)) |
5542 | continue; |
5543 | |
5544 | page = pfn_to_page(check); |
5545 | /* |
5546 | * We can't use page_count without pin a page |
5547 | * because another CPU can free compound page. |
5548 | * This check already skips compound tails of THP |
5549 | * because their page->_count is zero at all time. |
5550 | */ |
5551 | if (!atomic_read(&page->_count)) { |
5552 | if (PageBuddy(page)) |
5553 | iter += (1 << page_order(page)) - 1; |
5554 | continue; |
5555 | } |
5556 | |
5557 | if (!PageLRU(page)) |
5558 | found++; |
5559 | /* |
5560 | * If there are RECLAIMABLE pages, we need to check it. |
5561 | * But now, memory offline itself doesn't call shrink_slab() |
5562 | * and it still to be fixed. |
5563 | */ |
5564 | /* |
5565 | * If the page is not RAM, page_count()should be 0. |
5566 | * we don't need more check. This is an _used_ not-movable page. |
5567 | * |
5568 | * The problematic thing here is PG_reserved pages. PG_reserved |
5569 | * is set to both of a memory hole page and a _used_ kernel |
5570 | * page at boot. |
5571 | */ |
5572 | if (found > count) |
5573 | return true; |
5574 | } |
5575 | return false; |
5576 | } |
5577 | |
5578 | bool is_pageblock_removable_nolock(struct page *page) |
5579 | { |
5580 | struct zone *zone; |
5581 | unsigned long pfn; |
5582 | |
5583 | /* |
5584 | * We have to be careful here because we are iterating over memory |
5585 | * sections which are not zone aware so we might end up outside of |
5586 | * the zone but still within the section. |
5587 | * We have to take care about the node as well. If the node is offline |
5588 | * its NODE_DATA will be NULL - see page_zone. |
5589 | */ |
5590 | if (!node_online(page_to_nid(page))) |
5591 | return false; |
5592 | |
5593 | zone = page_zone(page); |
5594 | pfn = page_to_pfn(page); |
5595 | if (zone->zone_start_pfn > pfn || |
5596 | zone->zone_start_pfn + zone->spanned_pages <= pfn) |
5597 | return false; |
5598 | |
5599 | return !has_unmovable_pages(zone, page, 0); |
5600 | } |
5601 | |
5602 | #ifdef CONFIG_CMA |
5603 | |
5604 | static unsigned long pfn_max_align_down(unsigned long pfn) |
5605 | { |
5606 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, |
5607 | pageblock_nr_pages) - 1); |
5608 | } |
5609 | |
5610 | static unsigned long pfn_max_align_up(unsigned long pfn) |
5611 | { |
5612 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, |
5613 | pageblock_nr_pages)); |
5614 | } |
5615 | |
5616 | static struct page * |
5617 | __alloc_contig_migrate_alloc(struct page *page, unsigned long private, |
5618 | int **resultp) |
5619 | { |
5620 | gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; |
5621 | |
5622 | if (PageHighMem(page)) |
5623 | gfp_mask |= __GFP_HIGHMEM; |
5624 | |
5625 | return alloc_page(gfp_mask); |
5626 | } |
5627 | |
5628 | /* [start, end) must belong to a single zone. */ |
5629 | static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) |
5630 | { |
5631 | /* This function is based on compact_zone() from compaction.c. */ |
5632 | |
5633 | unsigned long pfn = start; |
5634 | unsigned int tries = 0; |
5635 | int ret = 0; |
5636 | |
5637 | struct compact_control cc = { |
5638 | .nr_migratepages = 0, |
5639 | .order = -1, |
5640 | .zone = page_zone(pfn_to_page(start)), |
5641 | .sync = true, |
5642 | }; |
5643 | INIT_LIST_HEAD(&cc.migratepages); |
5644 | |
5645 | migrate_prep_local(); |
5646 | |
5647 | while (pfn < end || !list_empty(&cc.migratepages)) { |
5648 | if (fatal_signal_pending(current)) { |
5649 | ret = -EINTR; |
5650 | break; |
5651 | } |
5652 | |
5653 | if (list_empty(&cc.migratepages)) { |
5654 | cc.nr_migratepages = 0; |
5655 | pfn = isolate_migratepages_range(cc.zone, &cc, |
5656 | pfn, end); |
5657 | if (!pfn) { |
5658 | ret = -EINTR; |
5659 | break; |
5660 | } |
5661 | tries = 0; |
5662 | } else if (++tries == 5) { |
5663 | ret = ret < 0 ? ret : -EBUSY; |
5664 | break; |
5665 | } |
5666 | |
5667 | ret = migrate_pages(&cc.migratepages, |
5668 | __alloc_contig_migrate_alloc, |
5669 | 0, false, MIGRATE_SYNC); |
5670 | } |
5671 | |
5672 | putback_lru_pages(&cc.migratepages); |
5673 | return ret > 0 ? 0 : ret; |
5674 | } |
5675 | |
5676 | /* |
5677 | * Update zone's cma pages counter used for watermark level calculation. |
5678 | */ |
5679 | static inline void __update_cma_watermarks(struct zone *zone, int count) |
5680 | { |
5681 | unsigned long flags; |
5682 | spin_lock_irqsave(&zone->lock, flags); |
5683 | zone->min_cma_pages += count; |
5684 | spin_unlock_irqrestore(&zone->lock, flags); |
5685 | setup_per_zone_wmarks(); |
5686 | } |
5687 | |
5688 | /* |
5689 | * Trigger memory pressure bump to reclaim some pages in order to be able to |
5690 | * allocate 'count' pages in single page units. Does similar work as |
5691 | *__alloc_pages_slowpath() function. |
5692 | */ |
5693 | static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) |
5694 | { |
5695 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); |
5696 | struct zonelist *zonelist = node_zonelist(0, gfp_mask); |
5697 | int did_some_progress = 0; |
5698 | int order = 1; |
5699 | |
5700 | /* |
5701 | * Increase level of watermarks to force kswapd do his job |
5702 | * to stabilise at new watermark level. |
5703 | */ |
5704 | __update_cma_watermarks(zone, count); |
5705 | |
5706 | /* Obey watermarks as if the page was being allocated */ |
5707 | while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { |
5708 | wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); |
5709 | |
5710 | did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, |
5711 | NULL); |
5712 | if (!did_some_progress) { |
5713 | /* Exhausted what can be done so it's blamo time */ |
5714 | out_of_memory(zonelist, gfp_mask, order, NULL, false); |
5715 | } |
5716 | } |
5717 | |
5718 | /* Restore original watermark levels. */ |
5719 | __update_cma_watermarks(zone, -count); |
5720 | |
5721 | return count; |
5722 | } |
5723 | |
5724 | /** |
5725 | * alloc_contig_range() -- tries to allocate given range of pages |
5726 | * @start: start PFN to allocate |
5727 | * @end: one-past-the-last PFN to allocate |
5728 | * @migratetype: migratetype of the underlaying pageblocks (either |
5729 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks |
5730 | * in range must have the same migratetype and it must |
5731 | * be either of the two. |
5732 | * |
5733 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES |
5734 | * aligned, however it's the caller's responsibility to guarantee that |
5735 | * we are the only thread that changes migrate type of pageblocks the |
5736 | * pages fall in. |
5737 | * |
5738 | * The PFN range must belong to a single zone. |
5739 | * |
5740 | * Returns zero on success or negative error code. On success all |
5741 | * pages which PFN is in [start, end) are allocated for the caller and |
5742 | * need to be freed with free_contig_range(). |
5743 | */ |
5744 | int alloc_contig_range(unsigned long start, unsigned long end, |
5745 | unsigned migratetype) |
5746 | { |
5747 | struct zone *zone = page_zone(pfn_to_page(start)); |
5748 | unsigned long outer_start, outer_end; |
5749 | int ret = 0, order; |
5750 | |
5751 | /* |
5752 | * What we do here is we mark all pageblocks in range as |
5753 | * MIGRATE_ISOLATE. Because pageblock and max order pages may |
5754 | * have different sizes, and due to the way page allocator |
5755 | * work, we align the range to biggest of the two pages so |
5756 | * that page allocator won't try to merge buddies from |
5757 | * different pageblocks and change MIGRATE_ISOLATE to some |
5758 | * other migration type. |
5759 | * |
5760 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we |
5761 | * migrate the pages from an unaligned range (ie. pages that |
5762 | * we are interested in). This will put all the pages in |
5763 | * range back to page allocator as MIGRATE_ISOLATE. |
5764 | * |
5765 | * When this is done, we take the pages in range from page |
5766 | * allocator removing them from the buddy system. This way |
5767 | * page allocator will never consider using them. |
5768 | * |
5769 | * This lets us mark the pageblocks back as |
5770 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the |
5771 | * aligned range but not in the unaligned, original range are |
5772 | * put back to page allocator so that buddy can use them. |
5773 | */ |
5774 | |
5775 | ret = start_isolate_page_range(pfn_max_align_down(start), |
5776 | pfn_max_align_up(end), migratetype); |
5777 | if (ret) |
5778 | goto done; |
5779 | |
5780 | ret = __alloc_contig_migrate_range(start, end); |
5781 | if (ret) |
5782 | goto done; |
5783 | |
5784 | /* |
5785 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES |
5786 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's |
5787 | * more, all pages in [start, end) are free in page allocator. |
5788 | * What we are going to do is to allocate all pages from |
5789 | * [start, end) (that is remove them from page allocator). |
5790 | * |
5791 | * The only problem is that pages at the beginning and at the |
5792 | * end of interesting range may be not aligned with pages that |
5793 | * page allocator holds, ie. they can be part of higher order |
5794 | * pages. Because of this, we reserve the bigger range and |
5795 | * once this is done free the pages we are not interested in. |
5796 | * |
5797 | * We don't have to hold zone->lock here because the pages are |
5798 | * isolated thus they won't get removed from buddy. |
5799 | */ |
5800 | |
5801 | lru_add_drain_all(); |
5802 | drain_all_pages(); |
5803 | |
5804 | order = 0; |
5805 | outer_start = start; |
5806 | while (!PageBuddy(pfn_to_page(outer_start))) { |
5807 | if (++order >= MAX_ORDER) { |
5808 | ret = -EBUSY; |
5809 | goto done; |
5810 | } |
5811 | outer_start &= ~0UL << order; |
5812 | } |
5813 | |
5814 | /* Make sure the range is really isolated. */ |
5815 | if (test_pages_isolated(outer_start, end)) { |
5816 | pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", |
5817 | outer_start, end); |
5818 | ret = -EBUSY; |
5819 | goto done; |
5820 | } |
5821 | |
5822 | /* |
5823 | * Reclaim enough pages to make sure that contiguous allocation |
5824 | * will not starve the system. |
5825 | */ |
5826 | __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); |
5827 | |
5828 | /* Grab isolated pages from freelists. */ |
5829 | outer_end = isolate_freepages_range(outer_start, end); |
5830 | if (!outer_end) { |
5831 | ret = -EBUSY; |
5832 | goto done; |
5833 | } |
5834 | |
5835 | /* Free head and tail (if any) */ |
5836 | if (start != outer_start) |
5837 | free_contig_range(outer_start, start - outer_start); |
5838 | if (end != outer_end) |
5 |