Root/
1 | /* |
2 | * Resizable virtual memory filesystem for Linux. |
3 | * |
4 | * Copyright (C) 2000 Linus Torvalds. |
5 | * 2000 Transmeta Corp. |
6 | * 2000-2001 Christoph Rohland |
7 | * 2000-2001 SAP AG |
8 | * 2002 Red Hat Inc. |
9 | * Copyright (C) 2002-2011 Hugh Dickins. |
10 | * Copyright (C) 2011 Google Inc. |
11 | * Copyright (C) 2002-2005 VERITAS Software Corporation. |
12 | * Copyright (C) 2004 Andi Kleen, SuSE Labs |
13 | * |
14 | * Extended attribute support for tmpfs: |
15 | * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> |
16 | * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> |
17 | * |
18 | * tiny-shmem: |
19 | * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> |
20 | * |
21 | * This file is released under the GPL. |
22 | */ |
23 | |
24 | #include <linux/fs.h> |
25 | #include <linux/init.h> |
26 | #include <linux/vfs.h> |
27 | #include <linux/mount.h> |
28 | #include <linux/pagemap.h> |
29 | #include <linux/file.h> |
30 | #include <linux/mm.h> |
31 | #include <linux/export.h> |
32 | #include <linux/swap.h> |
33 | |
34 | static struct vfsmount *shm_mnt; |
35 | |
36 | #ifdef CONFIG_SHMEM |
37 | /* |
38 | * This virtual memory filesystem is heavily based on the ramfs. It |
39 | * extends ramfs by the ability to use swap and honor resource limits |
40 | * which makes it a completely usable filesystem. |
41 | */ |
42 | |
43 | #include <linux/xattr.h> |
44 | #include <linux/exportfs.h> |
45 | #include <linux/posix_acl.h> |
46 | #include <linux/generic_acl.h> |
47 | #include <linux/mman.h> |
48 | #include <linux/string.h> |
49 | #include <linux/slab.h> |
50 | #include <linux/backing-dev.h> |
51 | #include <linux/shmem_fs.h> |
52 | #include <linux/writeback.h> |
53 | #include <linux/blkdev.h> |
54 | #include <linux/pagevec.h> |
55 | #include <linux/percpu_counter.h> |
56 | #include <linux/falloc.h> |
57 | #include <linux/splice.h> |
58 | #include <linux/security.h> |
59 | #include <linux/swapops.h> |
60 | #include <linux/mempolicy.h> |
61 | #include <linux/namei.h> |
62 | #include <linux/ctype.h> |
63 | #include <linux/migrate.h> |
64 | #include <linux/highmem.h> |
65 | #include <linux/seq_file.h> |
66 | #include <linux/magic.h> |
67 | |
68 | #include <asm/uaccess.h> |
69 | #include <asm/pgtable.h> |
70 | |
71 | #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) |
72 | #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) |
73 | |
74 | /* Pretend that each entry is of this size in directory's i_size */ |
75 | #define BOGO_DIRENT_SIZE 20 |
76 | |
77 | /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ |
78 | #define SHORT_SYMLINK_LEN 128 |
79 | |
80 | struct shmem_xattr { |
81 | struct list_head list; /* anchored by shmem_inode_info->xattr_list */ |
82 | char *name; /* xattr name */ |
83 | size_t size; |
84 | char value[0]; |
85 | }; |
86 | |
87 | /* |
88 | * shmem_fallocate and shmem_writepage communicate via inode->i_private |
89 | * (with i_mutex making sure that it has only one user at a time): |
90 | * we would prefer not to enlarge the shmem inode just for that. |
91 | */ |
92 | struct shmem_falloc { |
93 | pgoff_t start; /* start of range currently being fallocated */ |
94 | pgoff_t next; /* the next page offset to be fallocated */ |
95 | pgoff_t nr_falloced; /* how many new pages have been fallocated */ |
96 | pgoff_t nr_unswapped; /* how often writepage refused to swap out */ |
97 | }; |
98 | |
99 | /* Flag allocation requirements to shmem_getpage */ |
100 | enum sgp_type { |
101 | SGP_READ, /* don't exceed i_size, don't allocate page */ |
102 | SGP_CACHE, /* don't exceed i_size, may allocate page */ |
103 | SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ |
104 | SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ |
105 | SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ |
106 | }; |
107 | |
108 | #ifdef CONFIG_TMPFS |
109 | static unsigned long shmem_default_max_blocks(void) |
110 | { |
111 | return totalram_pages / 2; |
112 | } |
113 | |
114 | static unsigned long shmem_default_max_inodes(void) |
115 | { |
116 | return min(totalram_pages - totalhigh_pages, totalram_pages / 2); |
117 | } |
118 | #endif |
119 | |
120 | static bool shmem_should_replace_page(struct page *page, gfp_t gfp); |
121 | static int shmem_replace_page(struct page **pagep, gfp_t gfp, |
122 | struct shmem_inode_info *info, pgoff_t index); |
123 | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, |
124 | struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); |
125 | |
126 | static inline int shmem_getpage(struct inode *inode, pgoff_t index, |
127 | struct page **pagep, enum sgp_type sgp, int *fault_type) |
128 | { |
129 | return shmem_getpage_gfp(inode, index, pagep, sgp, |
130 | mapping_gfp_mask(inode->i_mapping), fault_type); |
131 | } |
132 | |
133 | static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) |
134 | { |
135 | return sb->s_fs_info; |
136 | } |
137 | |
138 | /* |
139 | * shmem_file_setup pre-accounts the whole fixed size of a VM object, |
140 | * for shared memory and for shared anonymous (/dev/zero) mappings |
141 | * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), |
142 | * consistent with the pre-accounting of private mappings ... |
143 | */ |
144 | static inline int shmem_acct_size(unsigned long flags, loff_t size) |
145 | { |
146 | return (flags & VM_NORESERVE) ? |
147 | 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); |
148 | } |
149 | |
150 | static inline void shmem_unacct_size(unsigned long flags, loff_t size) |
151 | { |
152 | if (!(flags & VM_NORESERVE)) |
153 | vm_unacct_memory(VM_ACCT(size)); |
154 | } |
155 | |
156 | /* |
157 | * ... whereas tmpfs objects are accounted incrementally as |
158 | * pages are allocated, in order to allow huge sparse files. |
159 | * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, |
160 | * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. |
161 | */ |
162 | static inline int shmem_acct_block(unsigned long flags) |
163 | { |
164 | return (flags & VM_NORESERVE) ? |
165 | security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; |
166 | } |
167 | |
168 | static inline void shmem_unacct_blocks(unsigned long flags, long pages) |
169 | { |
170 | if (flags & VM_NORESERVE) |
171 | vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); |
172 | } |
173 | |
174 | static const struct super_operations shmem_ops; |
175 | static const struct address_space_operations shmem_aops; |
176 | static const struct file_operations shmem_file_operations; |
177 | static const struct inode_operations shmem_inode_operations; |
178 | static const struct inode_operations shmem_dir_inode_operations; |
179 | static const struct inode_operations shmem_special_inode_operations; |
180 | static const struct vm_operations_struct shmem_vm_ops; |
181 | |
182 | static struct backing_dev_info shmem_backing_dev_info __read_mostly = { |
183 | .ra_pages = 0, /* No readahead */ |
184 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, |
185 | }; |
186 | |
187 | static LIST_HEAD(shmem_swaplist); |
188 | static DEFINE_MUTEX(shmem_swaplist_mutex); |
189 | |
190 | static int shmem_reserve_inode(struct super_block *sb) |
191 | { |
192 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
193 | if (sbinfo->max_inodes) { |
194 | spin_lock(&sbinfo->stat_lock); |
195 | if (!sbinfo->free_inodes) { |
196 | spin_unlock(&sbinfo->stat_lock); |
197 | return -ENOSPC; |
198 | } |
199 | sbinfo->free_inodes--; |
200 | spin_unlock(&sbinfo->stat_lock); |
201 | } |
202 | return 0; |
203 | } |
204 | |
205 | static void shmem_free_inode(struct super_block *sb) |
206 | { |
207 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
208 | if (sbinfo->max_inodes) { |
209 | spin_lock(&sbinfo->stat_lock); |
210 | sbinfo->free_inodes++; |
211 | spin_unlock(&sbinfo->stat_lock); |
212 | } |
213 | } |
214 | |
215 | /** |
216 | * shmem_recalc_inode - recalculate the block usage of an inode |
217 | * @inode: inode to recalc |
218 | * |
219 | * We have to calculate the free blocks since the mm can drop |
220 | * undirtied hole pages behind our back. |
221 | * |
222 | * But normally info->alloced == inode->i_mapping->nrpages + info->swapped |
223 | * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) |
224 | * |
225 | * It has to be called with the spinlock held. |
226 | */ |
227 | static void shmem_recalc_inode(struct inode *inode) |
228 | { |
229 | struct shmem_inode_info *info = SHMEM_I(inode); |
230 | long freed; |
231 | |
232 | freed = info->alloced - info->swapped - inode->i_mapping->nrpages; |
233 | if (freed > 0) { |
234 | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); |
235 | if (sbinfo->max_blocks) |
236 | percpu_counter_add(&sbinfo->used_blocks, -freed); |
237 | info->alloced -= freed; |
238 | inode->i_blocks -= freed * BLOCKS_PER_PAGE; |
239 | shmem_unacct_blocks(info->flags, freed); |
240 | } |
241 | } |
242 | |
243 | /* |
244 | * Replace item expected in radix tree by a new item, while holding tree lock. |
245 | */ |
246 | static int shmem_radix_tree_replace(struct address_space *mapping, |
247 | pgoff_t index, void *expected, void *replacement) |
248 | { |
249 | void **pslot; |
250 | void *item = NULL; |
251 | |
252 | VM_BUG_ON(!expected); |
253 | pslot = radix_tree_lookup_slot(&mapping->page_tree, index); |
254 | if (pslot) |
255 | item = radix_tree_deref_slot_protected(pslot, |
256 | &mapping->tree_lock); |
257 | if (item != expected) |
258 | return -ENOENT; |
259 | if (replacement) |
260 | radix_tree_replace_slot(pslot, replacement); |
261 | else |
262 | radix_tree_delete(&mapping->page_tree, index); |
263 | return 0; |
264 | } |
265 | |
266 | /* |
267 | * Sometimes, before we decide whether to proceed or to fail, we must check |
268 | * that an entry was not already brought back from swap by a racing thread. |
269 | * |
270 | * Checking page is not enough: by the time a SwapCache page is locked, it |
271 | * might be reused, and again be SwapCache, using the same swap as before. |
272 | */ |
273 | static bool shmem_confirm_swap(struct address_space *mapping, |
274 | pgoff_t index, swp_entry_t swap) |
275 | { |
276 | void *item; |
277 | |
278 | rcu_read_lock(); |
279 | item = radix_tree_lookup(&mapping->page_tree, index); |
280 | rcu_read_unlock(); |
281 | return item == swp_to_radix_entry(swap); |
282 | } |
283 | |
284 | /* |
285 | * Like add_to_page_cache_locked, but error if expected item has gone. |
286 | */ |
287 | static int shmem_add_to_page_cache(struct page *page, |
288 | struct address_space *mapping, |
289 | pgoff_t index, gfp_t gfp, void *expected) |
290 | { |
291 | int error; |
292 | |
293 | VM_BUG_ON(!PageLocked(page)); |
294 | VM_BUG_ON(!PageSwapBacked(page)); |
295 | |
296 | page_cache_get(page); |
297 | page->mapping = mapping; |
298 | page->index = index; |
299 | |
300 | spin_lock_irq(&mapping->tree_lock); |
301 | if (!expected) |
302 | error = radix_tree_insert(&mapping->page_tree, index, page); |
303 | else |
304 | error = shmem_radix_tree_replace(mapping, index, expected, |
305 | page); |
306 | if (!error) { |
307 | mapping->nrpages++; |
308 | __inc_zone_page_state(page, NR_FILE_PAGES); |
309 | __inc_zone_page_state(page, NR_SHMEM); |
310 | spin_unlock_irq(&mapping->tree_lock); |
311 | } else { |
312 | page->mapping = NULL; |
313 | spin_unlock_irq(&mapping->tree_lock); |
314 | page_cache_release(page); |
315 | } |
316 | return error; |
317 | } |
318 | |
319 | /* |
320 | * Like delete_from_page_cache, but substitutes swap for page. |
321 | */ |
322 | static void shmem_delete_from_page_cache(struct page *page, void *radswap) |
323 | { |
324 | struct address_space *mapping = page->mapping; |
325 | int error; |
326 | |
327 | spin_lock_irq(&mapping->tree_lock); |
328 | error = shmem_radix_tree_replace(mapping, page->index, page, radswap); |
329 | page->mapping = NULL; |
330 | mapping->nrpages--; |
331 | __dec_zone_page_state(page, NR_FILE_PAGES); |
332 | __dec_zone_page_state(page, NR_SHMEM); |
333 | spin_unlock_irq(&mapping->tree_lock); |
334 | page_cache_release(page); |
335 | BUG_ON(error); |
336 | } |
337 | |
338 | /* |
339 | * Like find_get_pages, but collecting swap entries as well as pages. |
340 | */ |
341 | static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, |
342 | pgoff_t start, unsigned int nr_pages, |
343 | struct page **pages, pgoff_t *indices) |
344 | { |
345 | unsigned int i; |
346 | unsigned int ret; |
347 | unsigned int nr_found; |
348 | |
349 | rcu_read_lock(); |
350 | restart: |
351 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, |
352 | (void ***)pages, indices, start, nr_pages); |
353 | ret = 0; |
354 | for (i = 0; i < nr_found; i++) { |
355 | struct page *page; |
356 | repeat: |
357 | page = radix_tree_deref_slot((void **)pages[i]); |
358 | if (unlikely(!page)) |
359 | continue; |
360 | if (radix_tree_exception(page)) { |
361 | if (radix_tree_deref_retry(page)) |
362 | goto restart; |
363 | /* |
364 | * Otherwise, we must be storing a swap entry |
365 | * here as an exceptional entry: so return it |
366 | * without attempting to raise page count. |
367 | */ |
368 | goto export; |
369 | } |
370 | if (!page_cache_get_speculative(page)) |
371 | goto repeat; |
372 | |
373 | /* Has the page moved? */ |
374 | if (unlikely(page != *((void **)pages[i]))) { |
375 | page_cache_release(page); |
376 | goto repeat; |
377 | } |
378 | export: |
379 | indices[ret] = indices[i]; |
380 | pages[ret] = page; |
381 | ret++; |
382 | } |
383 | if (unlikely(!ret && nr_found)) |
384 | goto restart; |
385 | rcu_read_unlock(); |
386 | return ret; |
387 | } |
388 | |
389 | /* |
390 | * Remove swap entry from radix tree, free the swap and its page cache. |
391 | */ |
392 | static int shmem_free_swap(struct address_space *mapping, |
393 | pgoff_t index, void *radswap) |
394 | { |
395 | int error; |
396 | |
397 | spin_lock_irq(&mapping->tree_lock); |
398 | error = shmem_radix_tree_replace(mapping, index, radswap, NULL); |
399 | spin_unlock_irq(&mapping->tree_lock); |
400 | if (!error) |
401 | free_swap_and_cache(radix_to_swp_entry(radswap)); |
402 | return error; |
403 | } |
404 | |
405 | /* |
406 | * Pagevec may contain swap entries, so shuffle up pages before releasing. |
407 | */ |
408 | static void shmem_deswap_pagevec(struct pagevec *pvec) |
409 | { |
410 | int i, j; |
411 | |
412 | for (i = 0, j = 0; i < pagevec_count(pvec); i++) { |
413 | struct page *page = pvec->pages[i]; |
414 | if (!radix_tree_exceptional_entry(page)) |
415 | pvec->pages[j++] = page; |
416 | } |
417 | pvec->nr = j; |
418 | } |
419 | |
420 | /* |
421 | * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. |
422 | */ |
423 | void shmem_unlock_mapping(struct address_space *mapping) |
424 | { |
425 | struct pagevec pvec; |
426 | pgoff_t indices[PAGEVEC_SIZE]; |
427 | pgoff_t index = 0; |
428 | |
429 | pagevec_init(&pvec, 0); |
430 | /* |
431 | * Minor point, but we might as well stop if someone else SHM_LOCKs it. |
432 | */ |
433 | while (!mapping_unevictable(mapping)) { |
434 | /* |
435 | * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it |
436 | * has finished, if it hits a row of PAGEVEC_SIZE swap entries. |
437 | */ |
438 | pvec.nr = shmem_find_get_pages_and_swap(mapping, index, |
439 | PAGEVEC_SIZE, pvec.pages, indices); |
440 | if (!pvec.nr) |
441 | break; |
442 | index = indices[pvec.nr - 1] + 1; |
443 | shmem_deswap_pagevec(&pvec); |
444 | check_move_unevictable_pages(pvec.pages, pvec.nr); |
445 | pagevec_release(&pvec); |
446 | cond_resched(); |
447 | } |
448 | } |
449 | |
450 | /* |
451 | * Remove range of pages and swap entries from radix tree, and free them. |
452 | * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. |
453 | */ |
454 | static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, |
455 | bool unfalloc) |
456 | { |
457 | struct address_space *mapping = inode->i_mapping; |
458 | struct shmem_inode_info *info = SHMEM_I(inode); |
459 | pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
460 | pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; |
461 | unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); |
462 | unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); |
463 | struct pagevec pvec; |
464 | pgoff_t indices[PAGEVEC_SIZE]; |
465 | long nr_swaps_freed = 0; |
466 | pgoff_t index; |
467 | int i; |
468 | |
469 | if (lend == -1) |
470 | end = -1; /* unsigned, so actually very big */ |
471 | |
472 | pagevec_init(&pvec, 0); |
473 | index = start; |
474 | while (index < end) { |
475 | pvec.nr = shmem_find_get_pages_and_swap(mapping, index, |
476 | min(end - index, (pgoff_t)PAGEVEC_SIZE), |
477 | pvec.pages, indices); |
478 | if (!pvec.nr) |
479 | break; |
480 | mem_cgroup_uncharge_start(); |
481 | for (i = 0; i < pagevec_count(&pvec); i++) { |
482 | struct page *page = pvec.pages[i]; |
483 | |
484 | index = indices[i]; |
485 | if (index >= end) |
486 | break; |
487 | |
488 | if (radix_tree_exceptional_entry(page)) { |
489 | if (unfalloc) |
490 | continue; |
491 | nr_swaps_freed += !shmem_free_swap(mapping, |
492 | index, page); |
493 | continue; |
494 | } |
495 | |
496 | if (!trylock_page(page)) |
497 | continue; |
498 | if (!unfalloc || !PageUptodate(page)) { |
499 | if (page->mapping == mapping) { |
500 | VM_BUG_ON(PageWriteback(page)); |
501 | truncate_inode_page(mapping, page); |
502 | } |
503 | } |
504 | unlock_page(page); |
505 | } |
506 | shmem_deswap_pagevec(&pvec); |
507 | pagevec_release(&pvec); |
508 | mem_cgroup_uncharge_end(); |
509 | cond_resched(); |
510 | index++; |
511 | } |
512 | |
513 | if (partial_start) { |
514 | struct page *page = NULL; |
515 | shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); |
516 | if (page) { |
517 | unsigned int top = PAGE_CACHE_SIZE; |
518 | if (start > end) { |
519 | top = partial_end; |
520 | partial_end = 0; |
521 | } |
522 | zero_user_segment(page, partial_start, top); |
523 | set_page_dirty(page); |
524 | unlock_page(page); |
525 | page_cache_release(page); |
526 | } |
527 | } |
528 | if (partial_end) { |
529 | struct page *page = NULL; |
530 | shmem_getpage(inode, end, &page, SGP_READ, NULL); |
531 | if (page) { |
532 | zero_user_segment(page, 0, partial_end); |
533 | set_page_dirty(page); |
534 | unlock_page(page); |
535 | page_cache_release(page); |
536 | } |
537 | } |
538 | if (start >= end) |
539 | return; |
540 | |
541 | index = start; |
542 | for ( ; ; ) { |
543 | cond_resched(); |
544 | pvec.nr = shmem_find_get_pages_and_swap(mapping, index, |
545 | min(end - index, (pgoff_t)PAGEVEC_SIZE), |
546 | pvec.pages, indices); |
547 | if (!pvec.nr) { |
548 | if (index == start || unfalloc) |
549 | break; |
550 | index = start; |
551 | continue; |
552 | } |
553 | if ((index == start || unfalloc) && indices[0] >= end) { |
554 | shmem_deswap_pagevec(&pvec); |
555 | pagevec_release(&pvec); |
556 | break; |
557 | } |
558 | mem_cgroup_uncharge_start(); |
559 | for (i = 0; i < pagevec_count(&pvec); i++) { |
560 | struct page *page = pvec.pages[i]; |
561 | |
562 | index = indices[i]; |
563 | if (index >= end) |
564 | break; |
565 | |
566 | if (radix_tree_exceptional_entry(page)) { |
567 | if (unfalloc) |
568 | continue; |
569 | nr_swaps_freed += !shmem_free_swap(mapping, |
570 | index, page); |
571 | continue; |
572 | } |
573 | |
574 | lock_page(page); |
575 | if (!unfalloc || !PageUptodate(page)) { |
576 | if (page->mapping == mapping) { |
577 | VM_BUG_ON(PageWriteback(page)); |
578 | truncate_inode_page(mapping, page); |
579 | } |
580 | } |
581 | unlock_page(page); |
582 | } |
583 | shmem_deswap_pagevec(&pvec); |
584 | pagevec_release(&pvec); |
585 | mem_cgroup_uncharge_end(); |
586 | index++; |
587 | } |
588 | |
589 | spin_lock(&info->lock); |
590 | info->swapped -= nr_swaps_freed; |
591 | shmem_recalc_inode(inode); |
592 | spin_unlock(&info->lock); |
593 | } |
594 | |
595 | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) |
596 | { |
597 | shmem_undo_range(inode, lstart, lend, false); |
598 | inode->i_ctime = inode->i_mtime = CURRENT_TIME; |
599 | } |
600 | EXPORT_SYMBOL_GPL(shmem_truncate_range); |
601 | |
602 | static int shmem_setattr(struct dentry *dentry, struct iattr *attr) |
603 | { |
604 | struct inode *inode = dentry->d_inode; |
605 | int error; |
606 | |
607 | error = inode_change_ok(inode, attr); |
608 | if (error) |
609 | return error; |
610 | |
611 | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { |
612 | loff_t oldsize = inode->i_size; |
613 | loff_t newsize = attr->ia_size; |
614 | |
615 | if (newsize != oldsize) { |
616 | i_size_write(inode, newsize); |
617 | inode->i_ctime = inode->i_mtime = CURRENT_TIME; |
618 | } |
619 | if (newsize < oldsize) { |
620 | loff_t holebegin = round_up(newsize, PAGE_SIZE); |
621 | unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); |
622 | shmem_truncate_range(inode, newsize, (loff_t)-1); |
623 | /* unmap again to remove racily COWed private pages */ |
624 | unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); |
625 | } |
626 | } |
627 | |
628 | setattr_copy(inode, attr); |
629 | #ifdef CONFIG_TMPFS_POSIX_ACL |
630 | if (attr->ia_valid & ATTR_MODE) |
631 | error = generic_acl_chmod(inode); |
632 | #endif |
633 | return error; |
634 | } |
635 | |
636 | static void shmem_evict_inode(struct inode *inode) |
637 | { |
638 | struct shmem_inode_info *info = SHMEM_I(inode); |
639 | struct shmem_xattr *xattr, *nxattr; |
640 | |
641 | if (inode->i_mapping->a_ops == &shmem_aops) { |
642 | shmem_unacct_size(info->flags, inode->i_size); |
643 | inode->i_size = 0; |
644 | shmem_truncate_range(inode, 0, (loff_t)-1); |
645 | if (!list_empty(&info->swaplist)) { |
646 | mutex_lock(&shmem_swaplist_mutex); |
647 | list_del_init(&info->swaplist); |
648 | mutex_unlock(&shmem_swaplist_mutex); |
649 | } |
650 | } else |
651 | kfree(info->symlink); |
652 | |
653 | list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { |
654 | kfree(xattr->name); |
655 | kfree(xattr); |
656 | } |
657 | BUG_ON(inode->i_blocks); |
658 | shmem_free_inode(inode->i_sb); |
659 | clear_inode(inode); |
660 | } |
661 | |
662 | /* |
663 | * If swap found in inode, free it and move page from swapcache to filecache. |
664 | */ |
665 | static int shmem_unuse_inode(struct shmem_inode_info *info, |
666 | swp_entry_t swap, struct page **pagep) |
667 | { |
668 | struct address_space *mapping = info->vfs_inode.i_mapping; |
669 | void *radswap; |
670 | pgoff_t index; |
671 | gfp_t gfp; |
672 | int error = 0; |
673 | |
674 | radswap = swp_to_radix_entry(swap); |
675 | index = radix_tree_locate_item(&mapping->page_tree, radswap); |
676 | if (index == -1) |
677 | return 0; |
678 | |
679 | /* |
680 | * Move _head_ to start search for next from here. |
681 | * But be careful: shmem_evict_inode checks list_empty without taking |
682 | * mutex, and there's an instant in list_move_tail when info->swaplist |
683 | * would appear empty, if it were the only one on shmem_swaplist. |
684 | */ |
685 | if (shmem_swaplist.next != &info->swaplist) |
686 | list_move_tail(&shmem_swaplist, &info->swaplist); |
687 | |
688 | gfp = mapping_gfp_mask(mapping); |
689 | if (shmem_should_replace_page(*pagep, gfp)) { |
690 | mutex_unlock(&shmem_swaplist_mutex); |
691 | error = shmem_replace_page(pagep, gfp, info, index); |
692 | mutex_lock(&shmem_swaplist_mutex); |
693 | /* |
694 | * We needed to drop mutex to make that restrictive page |
695 | * allocation, but the inode might have been freed while we |
696 | * dropped it: although a racing shmem_evict_inode() cannot |
697 | * complete without emptying the radix_tree, our page lock |
698 | * on this swapcache page is not enough to prevent that - |
699 | * free_swap_and_cache() of our swap entry will only |
700 | * trylock_page(), removing swap from radix_tree whatever. |
701 | * |
702 | * We must not proceed to shmem_add_to_page_cache() if the |
703 | * inode has been freed, but of course we cannot rely on |
704 | * inode or mapping or info to check that. However, we can |
705 | * safely check if our swap entry is still in use (and here |
706 | * it can't have got reused for another page): if it's still |
707 | * in use, then the inode cannot have been freed yet, and we |
708 | * can safely proceed (if it's no longer in use, that tells |
709 | * nothing about the inode, but we don't need to unuse swap). |
710 | */ |
711 | if (!page_swapcount(*pagep)) |
712 | error = -ENOENT; |
713 | } |
714 | |
715 | /* |
716 | * We rely on shmem_swaplist_mutex, not only to protect the swaplist, |
717 | * but also to hold up shmem_evict_inode(): so inode cannot be freed |
718 | * beneath us (pagelock doesn't help until the page is in pagecache). |
719 | */ |
720 | if (!error) |
721 | error = shmem_add_to_page_cache(*pagep, mapping, index, |
722 | GFP_NOWAIT, radswap); |
723 | if (error != -ENOMEM) { |
724 | /* |
725 | * Truncation and eviction use free_swap_and_cache(), which |
726 | * only does trylock page: if we raced, best clean up here. |
727 | */ |
728 | delete_from_swap_cache(*pagep); |
729 | set_page_dirty(*pagep); |
730 | if (!error) { |
731 | spin_lock(&info->lock); |
732 | info->swapped--; |
733 | spin_unlock(&info->lock); |
734 | swap_free(swap); |
735 | } |
736 | error = 1; /* not an error, but entry was found */ |
737 | } |
738 | return error; |
739 | } |
740 | |
741 | /* |
742 | * Search through swapped inodes to find and replace swap by page. |
743 | */ |
744 | int shmem_unuse(swp_entry_t swap, struct page *page) |
745 | { |
746 | struct list_head *this, *next; |
747 | struct shmem_inode_info *info; |
748 | int found = 0; |
749 | int error = 0; |
750 | |
751 | /* |
752 | * There's a faint possibility that swap page was replaced before |
753 | * caller locked it: caller will come back later with the right page. |
754 | */ |
755 | if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) |
756 | goto out; |
757 | |
758 | /* |
759 | * Charge page using GFP_KERNEL while we can wait, before taking |
760 | * the shmem_swaplist_mutex which might hold up shmem_writepage(). |
761 | * Charged back to the user (not to caller) when swap account is used. |
762 | */ |
763 | error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); |
764 | if (error) |
765 | goto out; |
766 | /* No radix_tree_preload: swap entry keeps a place for page in tree */ |
767 | |
768 | mutex_lock(&shmem_swaplist_mutex); |
769 | list_for_each_safe(this, next, &shmem_swaplist) { |
770 | info = list_entry(this, struct shmem_inode_info, swaplist); |
771 | if (info->swapped) |
772 | found = shmem_unuse_inode(info, swap, &page); |
773 | else |
774 | list_del_init(&info->swaplist); |
775 | cond_resched(); |
776 | if (found) |
777 | break; |
778 | } |
779 | mutex_unlock(&shmem_swaplist_mutex); |
780 | |
781 | if (found < 0) |
782 | error = found; |
783 | out: |
784 | unlock_page(page); |
785 | page_cache_release(page); |
786 | return error; |
787 | } |
788 | |
789 | /* |
790 | * Move the page from the page cache to the swap cache. |
791 | */ |
792 | static int shmem_writepage(struct page *page, struct writeback_control *wbc) |
793 | { |
794 | struct shmem_inode_info *info; |
795 | struct address_space *mapping; |
796 | struct inode *inode; |
797 | swp_entry_t swap; |
798 | pgoff_t index; |
799 | |
800 | BUG_ON(!PageLocked(page)); |
801 | mapping = page->mapping; |
802 | index = page->index; |
803 | inode = mapping->host; |
804 | info = SHMEM_I(inode); |
805 | if (info->flags & VM_LOCKED) |
806 | goto redirty; |
807 | if (!total_swap_pages) |
808 | goto redirty; |
809 | |
810 | /* |
811 | * shmem_backing_dev_info's capabilities prevent regular writeback or |
812 | * sync from ever calling shmem_writepage; but a stacking filesystem |
813 | * might use ->writepage of its underlying filesystem, in which case |
814 | * tmpfs should write out to swap only in response to memory pressure, |
815 | * and not for the writeback threads or sync. |
816 | */ |
817 | if (!wbc->for_reclaim) { |
818 | WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ |
819 | goto redirty; |
820 | } |
821 | |
822 | /* |
823 | * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC |
824 | * value into swapfile.c, the only way we can correctly account for a |
825 | * fallocated page arriving here is now to initialize it and write it. |
826 | * |
827 | * That's okay for a page already fallocated earlier, but if we have |
828 | * not yet completed the fallocation, then (a) we want to keep track |
829 | * of this page in case we have to undo it, and (b) it may not be a |
830 | * good idea to continue anyway, once we're pushing into swap. So |
831 | * reactivate the page, and let shmem_fallocate() quit when too many. |
832 | */ |
833 | if (!PageUptodate(page)) { |
834 | if (inode->i_private) { |
835 | struct shmem_falloc *shmem_falloc; |
836 | spin_lock(&inode->i_lock); |
837 | shmem_falloc = inode->i_private; |
838 | if (shmem_falloc && |
839 | index >= shmem_falloc->start && |
840 | index < shmem_falloc->next) |
841 | shmem_falloc->nr_unswapped++; |
842 | else |
843 | shmem_falloc = NULL; |
844 | spin_unlock(&inode->i_lock); |
845 | if (shmem_falloc) |
846 | goto redirty; |
847 | } |
848 | clear_highpage(page); |
849 | flush_dcache_page(page); |
850 | SetPageUptodate(page); |
851 | } |
852 | |
853 | swap = get_swap_page(); |
854 | if (!swap.val) |
855 | goto redirty; |
856 | |
857 | /* |
858 | * Add inode to shmem_unuse()'s list of swapped-out inodes, |
859 | * if it's not already there. Do it now before the page is |
860 | * moved to swap cache, when its pagelock no longer protects |
861 | * the inode from eviction. But don't unlock the mutex until |
862 | * we've incremented swapped, because shmem_unuse_inode() will |
863 | * prune a !swapped inode from the swaplist under this mutex. |
864 | */ |
865 | mutex_lock(&shmem_swaplist_mutex); |
866 | if (list_empty(&info->swaplist)) |
867 | list_add_tail(&info->swaplist, &shmem_swaplist); |
868 | |
869 | if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { |
870 | swap_shmem_alloc(swap); |
871 | shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); |
872 | |
873 | spin_lock(&info->lock); |
874 | info->swapped++; |
875 | shmem_recalc_inode(inode); |
876 | spin_unlock(&info->lock); |
877 | |
878 | mutex_unlock(&shmem_swaplist_mutex); |
879 | BUG_ON(page_mapped(page)); |
880 | swap_writepage(page, wbc); |
881 | return 0; |
882 | } |
883 | |
884 | mutex_unlock(&shmem_swaplist_mutex); |
885 | swapcache_free(swap, NULL); |
886 | redirty: |
887 | set_page_dirty(page); |
888 | if (wbc->for_reclaim) |
889 | return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ |
890 | unlock_page(page); |
891 | return 0; |
892 | } |
893 | |
894 | #ifdef CONFIG_NUMA |
895 | #ifdef CONFIG_TMPFS |
896 | static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) |
897 | { |
898 | char buffer[64]; |
899 | |
900 | if (!mpol || mpol->mode == MPOL_DEFAULT) |
901 | return; /* show nothing */ |
902 | |
903 | mpol_to_str(buffer, sizeof(buffer), mpol, 1); |
904 | |
905 | seq_printf(seq, ",mpol=%s", buffer); |
906 | } |
907 | |
908 | static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) |
909 | { |
910 | struct mempolicy *mpol = NULL; |
911 | if (sbinfo->mpol) { |
912 | spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ |
913 | mpol = sbinfo->mpol; |
914 | mpol_get(mpol); |
915 | spin_unlock(&sbinfo->stat_lock); |
916 | } |
917 | return mpol; |
918 | } |
919 | #endif /* CONFIG_TMPFS */ |
920 | |
921 | static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, |
922 | struct shmem_inode_info *info, pgoff_t index) |
923 | { |
924 | struct mempolicy mpol, *spol; |
925 | struct vm_area_struct pvma; |
926 | |
927 | spol = mpol_cond_copy(&mpol, |
928 | mpol_shared_policy_lookup(&info->policy, index)); |
929 | |
930 | /* Create a pseudo vma that just contains the policy */ |
931 | pvma.vm_start = 0; |
932 | /* Bias interleave by inode number to distribute better across nodes */ |
933 | pvma.vm_pgoff = index + info->vfs_inode.i_ino; |
934 | pvma.vm_ops = NULL; |
935 | pvma.vm_policy = spol; |
936 | return swapin_readahead(swap, gfp, &pvma, 0); |
937 | } |
938 | |
939 | static struct page *shmem_alloc_page(gfp_t gfp, |
940 | struct shmem_inode_info *info, pgoff_t index) |
941 | { |
942 | struct vm_area_struct pvma; |
943 | |
944 | /* Create a pseudo vma that just contains the policy */ |
945 | pvma.vm_start = 0; |
946 | /* Bias interleave by inode number to distribute better across nodes */ |
947 | pvma.vm_pgoff = index + info->vfs_inode.i_ino; |
948 | pvma.vm_ops = NULL; |
949 | pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); |
950 | |
951 | /* |
952 | * alloc_page_vma() will drop the shared policy reference |
953 | */ |
954 | return alloc_page_vma(gfp, &pvma, 0); |
955 | } |
956 | #else /* !CONFIG_NUMA */ |
957 | #ifdef CONFIG_TMPFS |
958 | static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) |
959 | { |
960 | } |
961 | #endif /* CONFIG_TMPFS */ |
962 | |
963 | static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, |
964 | struct shmem_inode_info *info, pgoff_t index) |
965 | { |
966 | return swapin_readahead(swap, gfp, NULL, 0); |
967 | } |
968 | |
969 | static inline struct page *shmem_alloc_page(gfp_t gfp, |
970 | struct shmem_inode_info *info, pgoff_t index) |
971 | { |
972 | return alloc_page(gfp); |
973 | } |
974 | #endif /* CONFIG_NUMA */ |
975 | |
976 | #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) |
977 | static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) |
978 | { |
979 | return NULL; |
980 | } |
981 | #endif |
982 | |
983 | /* |
984 | * When a page is moved from swapcache to shmem filecache (either by the |
985 | * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of |
986 | * shmem_unuse_inode()), it may have been read in earlier from swap, in |
987 | * ignorance of the mapping it belongs to. If that mapping has special |
988 | * constraints (like the gma500 GEM driver, which requires RAM below 4GB), |
989 | * we may need to copy to a suitable page before moving to filecache. |
990 | * |
991 | * In a future release, this may well be extended to respect cpuset and |
992 | * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); |
993 | * but for now it is a simple matter of zone. |
994 | */ |
995 | static bool shmem_should_replace_page(struct page *page, gfp_t gfp) |
996 | { |
997 | return page_zonenum(page) > gfp_zone(gfp); |
998 | } |
999 | |
1000 | static int shmem_replace_page(struct page **pagep, gfp_t gfp, |
1001 | struct shmem_inode_info *info, pgoff_t index) |
1002 | { |
1003 | struct page *oldpage, *newpage; |
1004 | struct address_space *swap_mapping; |
1005 | pgoff_t swap_index; |
1006 | int error; |
1007 | |
1008 | oldpage = *pagep; |
1009 | swap_index = page_private(oldpage); |
1010 | swap_mapping = page_mapping(oldpage); |
1011 | |
1012 | /* |
1013 | * We have arrived here because our zones are constrained, so don't |
1014 | * limit chance of success by further cpuset and node constraints. |
1015 | */ |
1016 | gfp &= ~GFP_CONSTRAINT_MASK; |
1017 | newpage = shmem_alloc_page(gfp, info, index); |
1018 | if (!newpage) |
1019 | return -ENOMEM; |
1020 | |
1021 | page_cache_get(newpage); |
1022 | copy_highpage(newpage, oldpage); |
1023 | flush_dcache_page(newpage); |
1024 | |
1025 | __set_page_locked(newpage); |
1026 | SetPageUptodate(newpage); |
1027 | SetPageSwapBacked(newpage); |
1028 | set_page_private(newpage, swap_index); |
1029 | SetPageSwapCache(newpage); |
1030 | |
1031 | /* |
1032 | * Our caller will very soon move newpage out of swapcache, but it's |
1033 | * a nice clean interface for us to replace oldpage by newpage there. |
1034 | */ |
1035 | spin_lock_irq(&swap_mapping->tree_lock); |
1036 | error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, |
1037 | newpage); |
1038 | if (!error) { |
1039 | __inc_zone_page_state(newpage, NR_FILE_PAGES); |
1040 | __dec_zone_page_state(oldpage, NR_FILE_PAGES); |
1041 | } |
1042 | spin_unlock_irq(&swap_mapping->tree_lock); |
1043 | |
1044 | if (unlikely(error)) { |
1045 | /* |
1046 | * Is this possible? I think not, now that our callers check |
1047 | * both PageSwapCache and page_private after getting page lock; |
1048 | * but be defensive. Reverse old to newpage for clear and free. |
1049 | */ |
1050 | oldpage = newpage; |
1051 | } else { |
1052 | mem_cgroup_replace_page_cache(oldpage, newpage); |
1053 | lru_cache_add_anon(newpage); |
1054 | *pagep = newpage; |
1055 | } |
1056 | |
1057 | ClearPageSwapCache(oldpage); |
1058 | set_page_private(oldpage, 0); |
1059 | |
1060 | unlock_page(oldpage); |
1061 | page_cache_release(oldpage); |
1062 | page_cache_release(oldpage); |
1063 | return error; |
1064 | } |
1065 | |
1066 | /* |
1067 | * shmem_getpage_gfp - find page in cache, or get from swap, or allocate |
1068 | * |
1069 | * If we allocate a new one we do not mark it dirty. That's up to the |
1070 | * vm. If we swap it in we mark it dirty since we also free the swap |
1071 | * entry since a page cannot live in both the swap and page cache |
1072 | */ |
1073 | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, |
1074 | struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) |
1075 | { |
1076 | struct address_space *mapping = inode->i_mapping; |
1077 | struct shmem_inode_info *info; |
1078 | struct shmem_sb_info *sbinfo; |
1079 | struct page *page; |
1080 | swp_entry_t swap; |
1081 | int error; |
1082 | int once = 0; |
1083 | int alloced = 0; |
1084 | |
1085 | if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) |
1086 | return -EFBIG; |
1087 | repeat: |
1088 | swap.val = 0; |
1089 | page = find_lock_page(mapping, index); |
1090 | if (radix_tree_exceptional_entry(page)) { |
1091 | swap = radix_to_swp_entry(page); |
1092 | page = NULL; |
1093 | } |
1094 | |
1095 | if (sgp != SGP_WRITE && sgp != SGP_FALLOC && |
1096 | ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { |
1097 | error = -EINVAL; |
1098 | goto failed; |
1099 | } |
1100 | |
1101 | /* fallocated page? */ |
1102 | if (page && !PageUptodate(page)) { |
1103 | if (sgp != SGP_READ) |
1104 | goto clear; |
1105 | unlock_page(page); |
1106 | page_cache_release(page); |
1107 | page = NULL; |
1108 | } |
1109 | if (page || (sgp == SGP_READ && !swap.val)) { |
1110 | *pagep = page; |
1111 | return 0; |
1112 | } |
1113 | |
1114 | /* |
1115 | * Fast cache lookup did not find it: |
1116 | * bring it back from swap or allocate. |
1117 | */ |
1118 | info = SHMEM_I(inode); |
1119 | sbinfo = SHMEM_SB(inode->i_sb); |
1120 | |
1121 | if (swap.val) { |
1122 | /* Look it up and read it in.. */ |
1123 | page = lookup_swap_cache(swap); |
1124 | if (!page) { |
1125 | /* here we actually do the io */ |
1126 | if (fault_type) |
1127 | *fault_type |= VM_FAULT_MAJOR; |
1128 | page = shmem_swapin(swap, gfp, info, index); |
1129 | if (!page) { |
1130 | error = -ENOMEM; |
1131 | goto failed; |
1132 | } |
1133 | } |
1134 | |
1135 | /* We have to do this with page locked to prevent races */ |
1136 | lock_page(page); |
1137 | if (!PageSwapCache(page) || page_private(page) != swap.val || |
1138 | !shmem_confirm_swap(mapping, index, swap)) { |
1139 | error = -EEXIST; /* try again */ |
1140 | goto unlock; |
1141 | } |
1142 | if (!PageUptodate(page)) { |
1143 | error = -EIO; |
1144 | goto failed; |
1145 | } |
1146 | wait_on_page_writeback(page); |
1147 | |
1148 | if (shmem_should_replace_page(page, gfp)) { |
1149 | error = shmem_replace_page(&page, gfp, info, index); |
1150 | if (error) |
1151 | goto failed; |
1152 | } |
1153 | |
1154 | error = mem_cgroup_cache_charge(page, current->mm, |
1155 | gfp & GFP_RECLAIM_MASK); |
1156 | if (!error) { |
1157 | error = shmem_add_to_page_cache(page, mapping, index, |
1158 | gfp, swp_to_radix_entry(swap)); |
1159 | /* We already confirmed swap, and make no allocation */ |
1160 | VM_BUG_ON(error); |
1161 | } |
1162 | if (error) |
1163 | goto failed; |
1164 | |
1165 | spin_lock(&info->lock); |
1166 | info->swapped--; |
1167 | shmem_recalc_inode(inode); |
1168 | spin_unlock(&info->lock); |
1169 | |
1170 | delete_from_swap_cache(page); |
1171 | set_page_dirty(page); |
1172 | swap_free(swap); |
1173 | |
1174 | } else { |
1175 | if (shmem_acct_block(info->flags)) { |
1176 | error = -ENOSPC; |
1177 | goto failed; |
1178 | } |
1179 | if (sbinfo->max_blocks) { |
1180 | if (percpu_counter_compare(&sbinfo->used_blocks, |
1181 | sbinfo->max_blocks) >= 0) { |
1182 | error = -ENOSPC; |
1183 | goto unacct; |
1184 | } |
1185 | percpu_counter_inc(&sbinfo->used_blocks); |
1186 | } |
1187 | |
1188 | page = shmem_alloc_page(gfp, info, index); |
1189 | if (!page) { |
1190 | error = -ENOMEM; |
1191 | goto decused; |
1192 | } |
1193 | |
1194 | SetPageSwapBacked(page); |
1195 | __set_page_locked(page); |
1196 | error = mem_cgroup_cache_charge(page, current->mm, |
1197 | gfp & GFP_RECLAIM_MASK); |
1198 | if (error) |
1199 | goto decused; |
1200 | error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); |
1201 | if (!error) { |
1202 | error = shmem_add_to_page_cache(page, mapping, index, |
1203 | gfp, NULL); |
1204 | radix_tree_preload_end(); |
1205 | } |
1206 | if (error) { |
1207 | mem_cgroup_uncharge_cache_page(page); |
1208 | goto decused; |
1209 | } |
1210 | lru_cache_add_anon(page); |
1211 | |
1212 | spin_lock(&info->lock); |
1213 | info->alloced++; |
1214 | inode->i_blocks += BLOCKS_PER_PAGE; |
1215 | shmem_recalc_inode(inode); |
1216 | spin_unlock(&info->lock); |
1217 | alloced = true; |
1218 | |
1219 | /* |
1220 | * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. |
1221 | */ |
1222 | if (sgp == SGP_FALLOC) |
1223 | sgp = SGP_WRITE; |
1224 | clear: |
1225 | /* |
1226 | * Let SGP_WRITE caller clear ends if write does not fill page; |
1227 | * but SGP_FALLOC on a page fallocated earlier must initialize |
1228 | * it now, lest undo on failure cancel our earlier guarantee. |
1229 | */ |
1230 | if (sgp != SGP_WRITE) { |
1231 | clear_highpage(page); |
1232 | flush_dcache_page(page); |
1233 | SetPageUptodate(page); |
1234 | } |
1235 | if (sgp == SGP_DIRTY) |
1236 | set_page_dirty(page); |
1237 | } |
1238 | |
1239 | /* Perhaps the file has been truncated since we checked */ |
1240 | if (sgp != SGP_WRITE && sgp != SGP_FALLOC && |
1241 | ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { |
1242 | error = -EINVAL; |
1243 | if (alloced) |
1244 | goto trunc; |
1245 | else |
1246 | goto failed; |
1247 | } |
1248 | *pagep = page; |
1249 | return 0; |
1250 | |
1251 | /* |
1252 | * Error recovery. |
1253 | */ |
1254 | trunc: |
1255 | info = SHMEM_I(inode); |
1256 | ClearPageDirty(page); |
1257 | delete_from_page_cache(page); |
1258 | spin_lock(&info->lock); |
1259 | info->alloced--; |
1260 | inode->i_blocks -= BLOCKS_PER_PAGE; |
1261 | spin_unlock(&info->lock); |
1262 | decused: |
1263 | sbinfo = SHMEM_SB(inode->i_sb); |
1264 | if (sbinfo->max_blocks) |
1265 | percpu_counter_add(&sbinfo->used_blocks, -1); |
1266 | unacct: |
1267 | shmem_unacct_blocks(info->flags, 1); |
1268 | failed: |
1269 | if (swap.val && error != -EINVAL && |
1270 | !shmem_confirm_swap(mapping, index, swap)) |
1271 | error = -EEXIST; |
1272 | unlock: |
1273 | if (page) { |
1274 | unlock_page(page); |
1275 | page_cache_release(page); |
1276 | } |
1277 | if (error == -ENOSPC && !once++) { |
1278 | info = SHMEM_I(inode); |
1279 | spin_lock(&info->lock); |
1280 | shmem_recalc_inode(inode); |
1281 | spin_unlock(&info->lock); |
1282 | goto repeat; |
1283 | } |
1284 | if (error == -EEXIST) /* from above or from radix_tree_insert */ |
1285 | goto repeat; |
1286 | return error; |
1287 | } |
1288 | |
1289 | static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1290 | { |
1291 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
1292 | int error; |
1293 | int ret = VM_FAULT_LOCKED; |
1294 | |
1295 | error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); |
1296 | if (error) |
1297 | return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); |
1298 | |
1299 | if (ret & VM_FAULT_MAJOR) { |
1300 | count_vm_event(PGMAJFAULT); |
1301 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); |
1302 | } |
1303 | return ret; |
1304 | } |
1305 | |
1306 | #ifdef CONFIG_NUMA |
1307 | static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) |
1308 | { |
1309 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
1310 | return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); |
1311 | } |
1312 | |
1313 | static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, |
1314 | unsigned long addr) |
1315 | { |
1316 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
1317 | pgoff_t index; |
1318 | |
1319 | index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
1320 | return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); |
1321 | } |
1322 | #endif |
1323 | |
1324 | int shmem_lock(struct file *file, int lock, struct user_struct *user) |
1325 | { |
1326 | struct inode *inode = file->f_path.dentry->d_inode; |
1327 | struct shmem_inode_info *info = SHMEM_I(inode); |
1328 | int retval = -ENOMEM; |
1329 | |
1330 | spin_lock(&info->lock); |
1331 | if (lock && !(info->flags & VM_LOCKED)) { |
1332 | if (!user_shm_lock(inode->i_size, user)) |
1333 | goto out_nomem; |
1334 | info->flags |= VM_LOCKED; |
1335 | mapping_set_unevictable(file->f_mapping); |
1336 | } |
1337 | if (!lock && (info->flags & VM_LOCKED) && user) { |
1338 | user_shm_unlock(inode->i_size, user); |
1339 | info->flags &= ~VM_LOCKED; |
1340 | mapping_clear_unevictable(file->f_mapping); |
1341 | } |
1342 | retval = 0; |
1343 | |
1344 | out_nomem: |
1345 | spin_unlock(&info->lock); |
1346 | return retval; |
1347 | } |
1348 | |
1349 | static int shmem_mmap(struct file *file, struct vm_area_struct *vma) |
1350 | { |
1351 | file_accessed(file); |
1352 | vma->vm_ops = &shmem_vm_ops; |
1353 | vma->vm_flags |= VM_CAN_NONLINEAR; |
1354 | return 0; |
1355 | } |
1356 | |
1357 | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, |
1358 | umode_t mode, dev_t dev, unsigned long flags) |
1359 | { |
1360 | struct inode *inode; |
1361 | struct shmem_inode_info *info; |
1362 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
1363 | |
1364 | if (shmem_reserve_inode(sb)) |
1365 | return NULL; |
1366 | |
1367 | inode = new_inode(sb); |
1368 | if (inode) { |
1369 | inode->i_ino = get_next_ino(); |
1370 | inode_init_owner(inode, dir, mode); |
1371 | inode->i_blocks = 0; |
1372 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; |
1373 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
1374 | inode->i_generation = get_seconds(); |
1375 | info = SHMEM_I(inode); |
1376 | memset(info, 0, (char *)inode - (char *)info); |
1377 | spin_lock_init(&info->lock); |
1378 | info->flags = flags & VM_NORESERVE; |
1379 | INIT_LIST_HEAD(&info->swaplist); |
1380 | INIT_LIST_HEAD(&info->xattr_list); |
1381 | cache_no_acl(inode); |
1382 | |
1383 | switch (mode & S_IFMT) { |
1384 | default: |
1385 | inode->i_op = &shmem_special_inode_operations; |
1386 | init_special_inode(inode, mode, dev); |
1387 | break; |
1388 | case S_IFREG: |
1389 | inode->i_mapping->a_ops = &shmem_aops; |
1390 | inode->i_op = &shmem_inode_operations; |
1391 | inode->i_fop = &shmem_file_operations; |
1392 | mpol_shared_policy_init(&info->policy, |
1393 | shmem_get_sbmpol(sbinfo)); |
1394 | break; |
1395 | case S_IFDIR: |
1396 | inc_nlink(inode); |
1397 | /* Some things misbehave if size == 0 on a directory */ |
1398 | inode->i_size = 2 * BOGO_DIRENT_SIZE; |
1399 | inode->i_op = &shmem_dir_inode_operations; |
1400 | inode->i_fop = &simple_dir_operations; |
1401 | break; |
1402 | case S_IFLNK: |
1403 | /* |
1404 | * Must not load anything in the rbtree, |
1405 | * mpol_free_shared_policy will not be called. |
1406 | */ |
1407 | mpol_shared_policy_init(&info->policy, NULL); |
1408 | break; |
1409 | } |
1410 | } else |
1411 | shmem_free_inode(sb); |
1412 | return inode; |
1413 | } |
1414 | |
1415 | #ifdef CONFIG_TMPFS |
1416 | static const struct inode_operations shmem_symlink_inode_operations; |
1417 | static const struct inode_operations shmem_short_symlink_operations; |
1418 | |
1419 | #ifdef CONFIG_TMPFS_XATTR |
1420 | static int shmem_initxattrs(struct inode *, const struct xattr *, void *); |
1421 | #else |
1422 | #define shmem_initxattrs NULL |
1423 | #endif |
1424 | |
1425 | static int |
1426 | shmem_write_begin(struct file *file, struct address_space *mapping, |
1427 | loff_t pos, unsigned len, unsigned flags, |
1428 | struct page **pagep, void **fsdata) |
1429 | { |
1430 | struct inode *inode = mapping->host; |
1431 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; |
1432 | return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); |
1433 | } |
1434 | |
1435 | static int |
1436 | shmem_write_end(struct file *file, struct address_space *mapping, |
1437 | loff_t pos, unsigned len, unsigned copied, |
1438 | struct page *page, void *fsdata) |
1439 | { |
1440 | struct inode *inode = mapping->host; |
1441 | |
1442 | if (pos + copied > inode->i_size) |
1443 | i_size_write(inode, pos + copied); |
1444 | |
1445 | if (!PageUptodate(page)) { |
1446 | if (copied < PAGE_CACHE_SIZE) { |
1447 | unsigned from = pos & (PAGE_CACHE_SIZE - 1); |
1448 | zero_user_segments(page, 0, from, |
1449 | from + copied, PAGE_CACHE_SIZE); |
1450 | } |
1451 | SetPageUptodate(page); |
1452 | } |
1453 | set_page_dirty(page); |
1454 | unlock_page(page); |
1455 | page_cache_release(page); |
1456 | |
1457 | return copied; |
1458 | } |
1459 | |
1460 | static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) |
1461 | { |
1462 | struct inode *inode = filp->f_path.dentry->d_inode; |
1463 | struct address_space *mapping = inode->i_mapping; |
1464 | pgoff_t index; |
1465 | unsigned long offset; |
1466 | enum sgp_type sgp = SGP_READ; |
1467 | |
1468 | /* |
1469 | * Might this read be for a stacking filesystem? Then when reading |
1470 | * holes of a sparse file, we actually need to allocate those pages, |
1471 | * and even mark them dirty, so it cannot exceed the max_blocks limit. |
1472 | */ |
1473 | if (segment_eq(get_fs(), KERNEL_DS)) |
1474 | sgp = SGP_DIRTY; |
1475 | |
1476 | index = *ppos >> PAGE_CACHE_SHIFT; |
1477 | offset = *ppos & ~PAGE_CACHE_MASK; |
1478 | |
1479 | for (;;) { |
1480 | struct page *page = NULL; |
1481 | pgoff_t end_index; |
1482 | unsigned long nr, ret; |
1483 | loff_t i_size = i_size_read(inode); |
1484 | |
1485 | end_index = i_size >> PAGE_CACHE_SHIFT; |
1486 | if (index > end_index) |
1487 | break; |
1488 | if (index == end_index) { |
1489 | nr = i_size & ~PAGE_CACHE_MASK; |
1490 | if (nr <= offset) |
1491 | break; |
1492 | } |
1493 | |
1494 | desc->error = shmem_getpage(inode, index, &page, sgp, NULL); |
1495 | if (desc->error) { |
1496 | if (desc->error == -EINVAL) |
1497 | desc->error = 0; |
1498 | break; |
1499 | } |
1500 | if (page) |
1501 | unlock_page(page); |
1502 | |
1503 | /* |
1504 | * We must evaluate after, since reads (unlike writes) |
1505 | * are called without i_mutex protection against truncate |
1506 | */ |
1507 | nr = PAGE_CACHE_SIZE; |
1508 | i_size = i_size_read(inode); |
1509 | end_index = i_size >> PAGE_CACHE_SHIFT; |
1510 | if (index == end_index) { |
1511 | nr = i_size & ~PAGE_CACHE_MASK; |
1512 | if (nr <= offset) { |
1513 | if (page) |
1514 | page_cache_release(page); |
1515 | break; |
1516 | } |
1517 | } |
1518 | nr -= offset; |
1519 | |
1520 | if (page) { |
1521 | /* |
1522 | * If users can be writing to this page using arbitrary |
1523 | * virtual addresses, take care about potential aliasing |
1524 | * before reading the page on the kernel side. |
1525 | */ |
1526 | if (mapping_writably_mapped(mapping)) |
1527 | flush_dcache_page(page); |
1528 | /* |
1529 | * Mark the page accessed if we read the beginning. |
1530 | */ |
1531 | if (!offset) |
1532 | mark_page_accessed(page); |
1533 | } else { |
1534 | page = ZERO_PAGE(0); |
1535 | page_cache_get(page); |
1536 | } |
1537 | |
1538 | /* |
1539 | * Ok, we have the page, and it's up-to-date, so |
1540 | * now we can copy it to user space... |
1541 | * |
1542 | * The actor routine returns how many bytes were actually used.. |
1543 | * NOTE! This may not be the same as how much of a user buffer |
1544 | * we filled up (we may be padding etc), so we can only update |
1545 | * "pos" here (the actor routine has to update the user buffer |
1546 | * pointers and the remaining count). |
1547 | */ |
1548 | ret = actor(desc, page, offset, nr); |
1549 | offset += ret; |
1550 | index += offset >> PAGE_CACHE_SHIFT; |
1551 | offset &= ~PAGE_CACHE_MASK; |
1552 | |
1553 | page_cache_release(page); |
1554 | if (ret != nr || !desc->count) |
1555 | break; |
1556 | |
1557 | cond_resched(); |
1558 | } |
1559 | |
1560 | *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; |
1561 | file_accessed(filp); |
1562 | } |
1563 | |
1564 | static ssize_t shmem_file_aio_read(struct kiocb *iocb, |
1565 | const struct iovec *iov, unsigned long nr_segs, loff_t pos) |
1566 | { |
1567 | struct file *filp = iocb->ki_filp; |
1568 | ssize_t retval; |
1569 | unsigned long seg; |
1570 | size_t count; |
1571 | loff_t *ppos = &iocb->ki_pos; |
1572 | |
1573 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1574 | if (retval) |
1575 | return retval; |
1576 | |
1577 | for (seg = 0; seg < nr_segs; seg++) { |
1578 | read_descriptor_t desc; |
1579 | |
1580 | desc.written = 0; |
1581 | desc.arg.buf = iov[seg].iov_base; |
1582 | desc.count = iov[seg].iov_len; |
1583 | if (desc.count == 0) |
1584 | continue; |
1585 | desc.error = 0; |
1586 | do_shmem_file_read(filp, ppos, &desc, file_read_actor); |
1587 | retval += desc.written; |
1588 | if (desc.error) { |
1589 | retval = retval ?: desc.error; |
1590 | break; |
1591 | } |
1592 | if (desc.count > 0) |
1593 | break; |
1594 | } |
1595 | return retval; |
1596 | } |
1597 | |
1598 | static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, |
1599 | struct pipe_inode_info *pipe, size_t len, |
1600 | unsigned int flags) |
1601 | { |
1602 | struct address_space *mapping = in->f_mapping; |
1603 | struct inode *inode = mapping->host; |
1604 | unsigned int loff, nr_pages, req_pages; |
1605 | struct page *pages[PIPE_DEF_BUFFERS]; |
1606 | struct partial_page partial[PIPE_DEF_BUFFERS]; |
1607 | struct page *page; |
1608 | pgoff_t index, end_index; |
1609 | loff_t isize, left; |
1610 | int error, page_nr; |
1611 | struct splice_pipe_desc spd = { |
1612 | .pages = pages, |
1613 | .partial = partial, |
1614 | .nr_pages_max = PIPE_DEF_BUFFERS, |
1615 | .flags = flags, |
1616 | .ops = &page_cache_pipe_buf_ops, |
1617 | .spd_release = spd_release_page, |
1618 | }; |
1619 | |
1620 | isize = i_size_read(inode); |
1621 | if (unlikely(*ppos >= isize)) |
1622 | return 0; |
1623 | |
1624 | left = isize - *ppos; |
1625 | if (unlikely(left < len)) |
1626 | len = left; |
1627 | |
1628 | if (splice_grow_spd(pipe, &spd)) |
1629 | return -ENOMEM; |
1630 | |
1631 | index = *ppos >> PAGE_CACHE_SHIFT; |
1632 | loff = *ppos & ~PAGE_CACHE_MASK; |
1633 | req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
1634 | nr_pages = min(req_pages, pipe->buffers); |
1635 | |
1636 | spd.nr_pages = find_get_pages_contig(mapping, index, |
1637 | nr_pages, spd.pages); |
1638 | index += spd.nr_pages; |
1639 | error = 0; |
1640 | |
1641 | while (spd.nr_pages < nr_pages) { |
1642 | error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); |
1643 | if (error) |
1644 | break; |
1645 | unlock_page(page); |
1646 | spd.pages[spd.nr_pages++] = page; |
1647 | index++; |
1648 | } |
1649 | |
1650 | index = *ppos >> PAGE_CACHE_SHIFT; |
1651 | nr_pages = spd.nr_pages; |
1652 | spd.nr_pages = 0; |
1653 | |
1654 | for (page_nr = 0; page_nr < nr_pages; page_nr++) { |
1655 | unsigned int this_len; |
1656 | |
1657 | if (!len) |
1658 | break; |
1659 | |
1660 | this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); |
1661 | page = spd.pages[page_nr]; |
1662 | |
1663 | if (!PageUptodate(page) || page->mapping != mapping) { |
1664 | error = shmem_getpage(inode, index, &page, |
1665 | SGP_CACHE, NULL); |
1666 | if (error) |
1667 | break; |
1668 | unlock_page(page); |
1669 | page_cache_release(spd.pages[page_nr]); |
1670 | spd.pages[page_nr] = page; |
1671 | } |
1672 | |
1673 | isize = i_size_read(inode); |
1674 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; |
1675 | if (unlikely(!isize || index > end_index)) |
1676 | break; |
1677 | |
1678 | if (end_index == index) { |
1679 | unsigned int plen; |
1680 | |
1681 | plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; |
1682 | if (plen <= loff) |
1683 | break; |
1684 | |
1685 | this_len = min(this_len, plen - loff); |
1686 | len = this_len; |
1687 | } |
1688 | |
1689 | spd.partial[page_nr].offset = loff; |
1690 | spd.partial[page_nr].len = this_len; |
1691 | len -= this_len; |
1692 | loff = 0; |
1693 | spd.nr_pages++; |
1694 | index++; |
1695 | } |
1696 | |
1697 | while (page_nr < nr_pages) |
1698 | page_cache_release(spd.pages[page_nr++]); |
1699 | |
1700 | if (spd.nr_pages) |
1701 | error = splice_to_pipe(pipe, &spd); |
1702 | |
1703 | splice_shrink_spd(&spd); |
1704 | |
1705 | if (error > 0) { |
1706 | *ppos += error; |
1707 | file_accessed(in); |
1708 | } |
1709 | return error; |
1710 | } |
1711 | |
1712 | static long shmem_fallocate(struct file *file, int mode, loff_t offset, |
1713 | loff_t len) |
1714 | { |
1715 | struct inode *inode = file->f_path.dentry->d_inode; |
1716 | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); |
1717 | struct shmem_falloc shmem_falloc; |
1718 | pgoff_t start, index, end; |
1719 | int error; |
1720 | |
1721 | mutex_lock(&inode->i_mutex); |
1722 | |
1723 | if (mode & FALLOC_FL_PUNCH_HOLE) { |
1724 | struct address_space *mapping = file->f_mapping; |
1725 | loff_t unmap_start = round_up(offset, PAGE_SIZE); |
1726 | loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; |
1727 | |
1728 | if ((u64)unmap_end > (u64)unmap_start) |
1729 | unmap_mapping_range(mapping, unmap_start, |
1730 | 1 + unmap_end - unmap_start, 0); |
1731 | shmem_truncate_range(inode, offset, offset + len - 1); |
1732 | /* No need to unmap again: hole-punching leaves COWed pages */ |
1733 | error = 0; |
1734 | goto out; |
1735 | } |
1736 | |
1737 | /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ |
1738 | error = inode_newsize_ok(inode, offset + len); |
1739 | if (error) |
1740 | goto out; |
1741 | |
1742 | start = offset >> PAGE_CACHE_SHIFT; |
1743 | end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
1744 | /* Try to avoid a swapstorm if len is impossible to satisfy */ |
1745 | if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { |
1746 | error = -ENOSPC; |
1747 | goto out; |
1748 | } |
1749 | |
1750 | shmem_falloc.start = start; |
1751 | shmem_falloc.next = start; |
1752 | shmem_falloc.nr_falloced = 0; |
1753 | shmem_falloc.nr_unswapped = 0; |
1754 | spin_lock(&inode->i_lock); |
1755 | inode->i_private = &shmem_falloc; |
1756 | spin_unlock(&inode->i_lock); |
1757 | |
1758 | for (index = start; index < end; index++) { |
1759 | struct page *page; |
1760 | |
1761 | /* |
1762 | * Good, the fallocate(2) manpage permits EINTR: we may have |
1763 | * been interrupted because we are using up too much memory. |
1764 | */ |
1765 | if (signal_pending(current)) |
1766 | error = -EINTR; |
1767 | else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) |
1768 | error = -ENOMEM; |
1769 | else |
1770 | error = shmem_getpage(inode, index, &page, SGP_FALLOC, |
1771 | NULL); |
1772 | if (error) { |
1773 | /* Remove the !PageUptodate pages we added */ |
1774 | shmem_undo_range(inode, |
1775 | (loff_t)start << PAGE_CACHE_SHIFT, |
1776 | (loff_t)index << PAGE_CACHE_SHIFT, true); |
1777 | goto undone; |
1778 | } |
1779 | |
1780 | /* |
1781 | * Inform shmem_writepage() how far we have reached. |
1782 | * No need for lock or barrier: we have the page lock. |
1783 | */ |
1784 | shmem_falloc.next++; |
1785 | if (!PageUptodate(page)) |
1786 | shmem_falloc.nr_falloced++; |
1787 | |
1788 | /* |
1789 | * If !PageUptodate, leave it that way so that freeable pages |
1790 | * can be recognized if we need to rollback on error later. |
1791 | * But set_page_dirty so that memory pressure will swap rather |
1792 | * than free the pages we are allocating (and SGP_CACHE pages |
1793 | * might still be clean: we now need to mark those dirty too). |
1794 | */ |
1795 | set_page_dirty(page); |
1796 | unlock_page(page); |
1797 | page_cache_release(page); |
1798 | cond_resched(); |
1799 | } |
1800 | |
1801 | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) |
1802 | i_size_write(inode, offset + len); |
1803 | inode->i_ctime = CURRENT_TIME; |
1804 | undone: |
1805 | spin_lock(&inode->i_lock); |
1806 | inode->i_private = NULL; |
1807 | spin_unlock(&inode->i_lock); |
1808 | out: |
1809 | mutex_unlock(&inode->i_mutex); |
1810 | return error; |
1811 | } |
1812 | |
1813 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) |
1814 | { |
1815 | struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); |
1816 | |
1817 | buf->f_type = TMPFS_MAGIC; |
1818 | buf->f_bsize = PAGE_CACHE_SIZE; |
1819 | buf->f_namelen = NAME_MAX; |
1820 | if (sbinfo->max_blocks) { |
1821 | buf->f_blocks = sbinfo->max_blocks; |
1822 | buf->f_bavail = |
1823 | buf->f_bfree = sbinfo->max_blocks - |
1824 | percpu_counter_sum(&sbinfo->used_blocks); |
1825 | } |
1826 | if (sbinfo->max_inodes) { |
1827 | buf->f_files = sbinfo->max_inodes; |
1828 | buf->f_ffree = sbinfo->free_inodes; |
1829 | } |
1830 | /* else leave those fields 0 like simple_statfs */ |
1831 | return 0; |
1832 | } |
1833 | |
1834 | /* |
1835 | * File creation. Allocate an inode, and we're done.. |
1836 | */ |
1837 | static int |
1838 | shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) |
1839 | { |
1840 | struct inode *inode; |
1841 | int error = -ENOSPC; |
1842 | |
1843 | inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); |
1844 | if (inode) { |
1845 | error = security_inode_init_security(inode, dir, |
1846 | &dentry->d_name, |
1847 | shmem_initxattrs, NULL); |
1848 | if (error) { |
1849 | if (error != -EOPNOTSUPP) { |
1850 | iput(inode); |
1851 | return error; |
1852 | } |
1853 | } |
1854 | #ifdef CONFIG_TMPFS_POSIX_ACL |
1855 | error = generic_acl_init(inode, dir); |
1856 | if (error) { |
1857 | iput(inode); |
1858 | return error; |
1859 | } |
1860 | #else |
1861 | error = 0; |
1862 | #endif |
1863 | dir->i_size += BOGO_DIRENT_SIZE; |
1864 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
1865 | d_instantiate(dentry, inode); |
1866 | dget(dentry); /* Extra count - pin the dentry in core */ |
1867 | } |
1868 | return error; |
1869 | } |
1870 | |
1871 | static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
1872 | { |
1873 | int error; |
1874 | |
1875 | if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) |
1876 | return error; |
1877 | inc_nlink(dir); |
1878 | return 0; |
1879 | } |
1880 | |
1881 | static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, |
1882 | bool excl) |
1883 | { |
1884 | return shmem_mknod(dir, dentry, mode | S_IFREG, 0); |
1885 | } |
1886 | |
1887 | /* |
1888 | * Link a file.. |
1889 | */ |
1890 | static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) |
1891 | { |
1892 | struct inode *inode = old_dentry->d_inode; |
1893 | int ret; |
1894 | |
1895 | /* |
1896 | * No ordinary (disk based) filesystem counts links as inodes; |
1897 | * but each new link needs a new dentry, pinning lowmem, and |
1898 | * tmpfs dentries cannot be pruned until they are unlinked. |
1899 | */ |
1900 | ret = shmem_reserve_inode(inode->i_sb); |
1901 | if (ret) |
1902 | goto out; |
1903 | |
1904 | dir->i_size += BOGO_DIRENT_SIZE; |
1905 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
1906 | inc_nlink(inode); |
1907 | ihold(inode); /* New dentry reference */ |
1908 | dget(dentry); /* Extra pinning count for the created dentry */ |
1909 | d_instantiate(dentry, inode); |
1910 | out: |
1911 | return ret; |
1912 | } |
1913 | |
1914 | static int shmem_unlink(struct inode *dir, struct dentry *dentry) |
1915 | { |
1916 | struct inode *inode = dentry->d_inode; |
1917 | |
1918 | if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) |
1919 | shmem_free_inode(inode->i_sb); |
1920 | |
1921 | dir->i_size -= BOGO_DIRENT_SIZE; |
1922 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
1923 | drop_nlink(inode); |
1924 | dput(dentry); /* Undo the count from "create" - this does all the work */ |
1925 | return 0; |
1926 | } |
1927 | |
1928 | static int shmem_rmdir(struct inode *dir, struct dentry *dentry) |
1929 | { |
1930 | if (!simple_empty(dentry)) |
1931 | return -ENOTEMPTY; |
1932 | |
1933 | drop_nlink(dentry->d_inode); |
1934 | drop_nlink(dir); |
1935 | return shmem_unlink(dir, dentry); |
1936 | } |
1937 | |
1938 | /* |
1939 | * The VFS layer already does all the dentry stuff for rename, |
1940 | * we just have to decrement the usage count for the target if |
1941 | * it exists so that the VFS layer correctly free's it when it |
1942 | * gets overwritten. |
1943 | */ |
1944 | static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) |
1945 | { |
1946 | struct inode *inode = old_dentry->d_inode; |
1947 | int they_are_dirs = S_ISDIR(inode->i_mode); |
1948 | |
1949 | if (!simple_empty(new_dentry)) |
1950 | return -ENOTEMPTY; |
1951 | |
1952 | if (new_dentry->d_inode) { |
1953 | (void) shmem_unlink(new_dir, new_dentry); |
1954 | if (they_are_dirs) |
1955 | drop_nlink(old_dir); |
1956 | } else if (they_are_dirs) { |
1957 | drop_nlink(old_dir); |
1958 | inc_nlink(new_dir); |
1959 | } |
1960 | |
1961 | old_dir->i_size -= BOGO_DIRENT_SIZE; |
1962 | new_dir->i_size += BOGO_DIRENT_SIZE; |
1963 | old_dir->i_ctime = old_dir->i_mtime = |
1964 | new_dir->i_ctime = new_dir->i_mtime = |
1965 | inode->i_ctime = CURRENT_TIME; |
1966 | return 0; |
1967 | } |
1968 | |
1969 | static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) |
1970 | { |
1971 | int error; |
1972 | int len; |
1973 | struct inode *inode; |
1974 | struct page *page; |
1975 | char *kaddr; |
1976 | struct shmem_inode_info *info; |
1977 | |
1978 | len = strlen(symname) + 1; |
1979 | if (len > PAGE_CACHE_SIZE) |
1980 | return -ENAMETOOLONG; |
1981 | |
1982 | inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); |
1983 | if (!inode) |
1984 | return -ENOSPC; |
1985 | |
1986 | error = security_inode_init_security(inode, dir, &dentry->d_name, |
1987 | shmem_initxattrs, NULL); |
1988 | if (error) { |
1989 | if (error != -EOPNOTSUPP) { |
1990 | iput(inode); |
1991 | return error; |
1992 | } |
1993 | error = 0; |
1994 | } |
1995 | |
1996 | info = SHMEM_I(inode); |
1997 | inode->i_size = len-1; |
1998 | if (len <= SHORT_SYMLINK_LEN) { |
1999 | info->symlink = kmemdup(symname, len, GFP_KERNEL); |
2000 | if (!info->symlink) { |
2001 | iput(inode); |
2002 | return -ENOMEM; |
2003 | } |
2004 | inode->i_op = &shmem_short_symlink_operations; |
2005 | } else { |
2006 | error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); |
2007 | if (error) { |
2008 | iput(inode); |
2009 | return error; |
2010 | } |
2011 | inode->i_mapping->a_ops = &shmem_aops; |
2012 | inode->i_op = &shmem_symlink_inode_operations; |
2013 | kaddr = kmap_atomic(page); |
2014 | memcpy(kaddr, symname, len); |
2015 | kunmap_atomic(kaddr); |
2016 | SetPageUptodate(page); |
2017 | set_page_dirty(page); |
2018 | unlock_page(page); |
2019 | page_cache_release(page); |
2020 | } |
2021 | dir->i_size += BOGO_DIRENT_SIZE; |
2022 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
2023 | d_instantiate(dentry, inode); |
2024 | dget(dentry); |
2025 | return 0; |
2026 | } |
2027 | |
2028 | static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) |
2029 | { |
2030 | nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); |
2031 | return NULL; |
2032 | } |
2033 | |
2034 | static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) |
2035 | { |
2036 | struct page *page = NULL; |
2037 | int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); |
2038 | nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); |
2039 | if (page) |
2040 | unlock_page(page); |
2041 | return page; |
2042 | } |
2043 | |
2044 | static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) |
2045 | { |
2046 | if (!IS_ERR(nd_get_link(nd))) { |
2047 | struct page *page = cookie; |
2048 | kunmap(page); |
2049 | mark_page_accessed(page); |
2050 | page_cache_release(page); |
2051 | } |
2052 | } |
2053 | |
2054 | #ifdef CONFIG_TMPFS_XATTR |
2055 | /* |
2056 | * Superblocks without xattr inode operations may get some security.* xattr |
2057 | * support from the LSM "for free". As soon as we have any other xattrs |
2058 | * like ACLs, we also need to implement the security.* handlers at |
2059 | * filesystem level, though. |
2060 | */ |
2061 | |
2062 | /* |
2063 | * Allocate new xattr and copy in the value; but leave the name to callers. |
2064 | */ |
2065 | static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) |
2066 | { |
2067 | struct shmem_xattr *new_xattr; |
2068 | size_t len; |
2069 | |
2070 | /* wrap around? */ |
2071 | len = sizeof(*new_xattr) + size; |
2072 | if (len <= sizeof(*new_xattr)) |
2073 | return NULL; |
2074 | |
2075 | new_xattr = kmalloc(len, GFP_KERNEL); |
2076 | if (!new_xattr) |
2077 | return NULL; |
2078 | |
2079 | new_xattr->size = size; |
2080 | memcpy(new_xattr->value, value, size); |
2081 | return new_xattr; |
2082 | } |
2083 | |
2084 | /* |
2085 | * Callback for security_inode_init_security() for acquiring xattrs. |
2086 | */ |
2087 | static int shmem_initxattrs(struct inode *inode, |
2088 | const struct xattr *xattr_array, |
2089 | void *fs_info) |
2090 | { |
2091 | struct shmem_inode_info *info = SHMEM_I(inode); |
2092 | const struct xattr *xattr; |
2093 | struct shmem_xattr *new_xattr; |
2094 | size_t len; |
2095 | |
2096 | for (xattr = xattr_array; xattr->name != NULL; xattr++) { |
2097 | new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); |
2098 | if (!new_xattr) |
2099 | return -ENOMEM; |
2100 | |
2101 | len = strlen(xattr->name) + 1; |
2102 | new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, |
2103 | GFP_KERNEL); |
2104 | if (!new_xattr->name) { |
2105 | kfree(new_xattr); |
2106 | return -ENOMEM; |
2107 | } |
2108 | |
2109 | memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, |
2110 | XATTR_SECURITY_PREFIX_LEN); |
2111 | memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, |
2112 | xattr->name, len); |
2113 | |
2114 | spin_lock(&info->lock); |
2115 | list_add(&new_xattr->list, &info->xattr_list); |
2116 | spin_unlock(&info->lock); |
2117 | } |
2118 | |
2119 | return 0; |
2120 | } |
2121 | |
2122 | static int shmem_xattr_get(struct dentry *dentry, const char *name, |
2123 | void *buffer, size_t size) |
2124 | { |
2125 | struct shmem_inode_info *info; |
2126 | struct shmem_xattr *xattr; |
2127 | int ret = -ENODATA; |
2128 | |
2129 | info = SHMEM_I(dentry->d_inode); |
2130 | |
2131 | spin_lock(&info->lock); |
2132 | list_for_each_entry(xattr, &info->xattr_list, list) { |
2133 | if (strcmp(name, xattr->name)) |
2134 | continue; |
2135 | |
2136 | ret = xattr->size; |
2137 | if (buffer) { |
2138 | if (size < xattr->size) |
2139 | ret = -ERANGE; |
2140 | else |
2141 | memcpy(buffer, xattr->value, xattr->size); |
2142 | } |
2143 | break; |
2144 | } |
2145 | spin_unlock(&info->lock); |
2146 | return ret; |
2147 | } |
2148 | |
2149 | static int shmem_xattr_set(struct inode *inode, const char *name, |
2150 | const void *value, size_t size, int flags) |
2151 | { |
2152 | struct shmem_inode_info *info = SHMEM_I(inode); |
2153 | struct shmem_xattr *xattr; |
2154 | struct shmem_xattr *new_xattr = NULL; |
2155 | int err = 0; |
2156 | |
2157 | /* value == NULL means remove */ |
2158 | if (value) { |
2159 | new_xattr = shmem_xattr_alloc(value, size); |
2160 | if (!new_xattr) |
2161 | return -ENOMEM; |
2162 | |
2163 | new_xattr->name = kstrdup(name, GFP_KERNEL); |
2164 | if (!new_xattr->name) { |
2165 | kfree(new_xattr); |
2166 | return -ENOMEM; |
2167 | } |
2168 | } |
2169 | |
2170 | spin_lock(&info->lock); |
2171 | list_for_each_entry(xattr, &info->xattr_list, list) { |
2172 | if (!strcmp(name, xattr->name)) { |
2173 | if (flags & XATTR_CREATE) { |
2174 | xattr = new_xattr; |
2175 | err = -EEXIST; |
2176 | } else if (new_xattr) { |
2177 | list_replace(&xattr->list, &new_xattr->list); |
2178 | } else { |
2179 | list_del(&xattr->list); |
2180 | } |
2181 | goto out; |
2182 | } |
2183 | } |
2184 | if (flags & XATTR_REPLACE) { |
2185 | xattr = new_xattr; |
2186 | err = -ENODATA; |
2187 | } else { |
2188 | list_add(&new_xattr->list, &info->xattr_list); |
2189 | xattr = NULL; |
2190 | } |
2191 | out: |
2192 | spin_unlock(&info->lock); |
2193 | if (xattr) |
2194 | kfree(xattr->name); |
2195 | kfree(xattr); |
2196 | return err; |
2197 | } |
2198 | |
2199 | static const struct xattr_handler *shmem_xattr_handlers[] = { |
2200 | #ifdef CONFIG_TMPFS_POSIX_ACL |
2201 | &generic_acl_access_handler, |
2202 | &generic_acl_default_handler, |
2203 | #endif |
2204 | NULL |
2205 | }; |
2206 | |
2207 | static int shmem_xattr_validate(const char *name) |
2208 | { |
2209 | struct { const char *prefix; size_t len; } arr[] = { |
2210 | { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, |
2211 | { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } |
2212 | }; |
2213 | int i; |
2214 | |
2215 | for (i = 0; i < ARRAY_SIZE(arr); i++) { |
2216 | size_t preflen = arr[i].len; |
2217 | if (strncmp(name, arr[i].prefix, preflen) == 0) { |
2218 | if (!name[preflen]) |
2219 | return -EINVAL; |
2220 | return 0; |
2221 | } |
2222 | } |
2223 | return -EOPNOTSUPP; |
2224 | } |
2225 | |
2226 | static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, |
2227 | void *buffer, size_t size) |
2228 | { |
2229 | int err; |
2230 | |
2231 | /* |
2232 | * If this is a request for a synthetic attribute in the system.* |
2233 | * namespace use the generic infrastructure to resolve a handler |
2234 | * for it via sb->s_xattr. |
2235 | */ |
2236 | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) |
2237 | return generic_getxattr(dentry, name, buffer, size); |
2238 | |
2239 | err = shmem_xattr_validate(name); |
2240 | if (err) |
2241 | return err; |
2242 | |
2243 | return shmem_xattr_get(dentry, name, buffer, size); |
2244 | } |
2245 | |
2246 | static int shmem_setxattr(struct dentry *dentry, const char *name, |
2247 | const void *value, size_t size, int flags) |
2248 | { |
2249 | int err; |
2250 | |
2251 | /* |
2252 | * If this is a request for a synthetic attribute in the system.* |
2253 | * namespace use the generic infrastructure to resolve a handler |
2254 | * for it via sb->s_xattr. |
2255 | */ |
2256 | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) |
2257 | return generic_setxattr(dentry, name, value, size, flags); |
2258 | |
2259 | err = shmem_xattr_validate(name); |
2260 | if (err) |
2261 | return err; |
2262 | |
2263 | if (size == 0) |
2264 | value = ""; /* empty EA, do not remove */ |
2265 | |
2266 | return shmem_xattr_set(dentry->d_inode, name, value, size, flags); |
2267 | |
2268 | } |
2269 | |
2270 | static int shmem_removexattr(struct dentry *dentry, const char *name) |
2271 | { |
2272 | int err; |
2273 | |
2274 | /* |
2275 | * If this is a request for a synthetic attribute in the system.* |
2276 | * namespace use the generic infrastructure to resolve a handler |
2277 | * for it via sb->s_xattr. |
2278 | */ |
2279 | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) |
2280 | return generic_removexattr(dentry, name); |
2281 | |
2282 | err = shmem_xattr_validate(name); |
2283 | if (err) |
2284 | return err; |
2285 | |
2286 | return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); |
2287 | } |
2288 | |
2289 | static bool xattr_is_trusted(const char *name) |
2290 | { |
2291 | return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); |
2292 | } |
2293 | |
2294 | static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) |
2295 | { |
2296 | bool trusted = capable(CAP_SYS_ADMIN); |
2297 | struct shmem_xattr *xattr; |
2298 | struct shmem_inode_info *info; |
2299 | size_t used = 0; |
2300 | |
2301 | info = SHMEM_I(dentry->d_inode); |
2302 | |
2303 | spin_lock(&info->lock); |
2304 | list_for_each_entry(xattr, &info->xattr_list, list) { |
2305 | size_t len; |
2306 | |
2307 | /* skip "trusted." attributes for unprivileged callers */ |
2308 | if (!trusted && xattr_is_trusted(xattr->name)) |
2309 | continue; |
2310 | |
2311 | len = strlen(xattr->name) + 1; |
2312 | used += len; |
2313 | if (buffer) { |
2314 | if (size < used) { |
2315 | used = -ERANGE; |
2316 | break; |
2317 | } |
2318 | memcpy(buffer, xattr->name, len); |
2319 | buffer += len; |
2320 | } |
2321 | } |
2322 | spin_unlock(&info->lock); |
2323 | |
2324 | return used; |
2325 | } |
2326 | #endif /* CONFIG_TMPFS_XATTR */ |
2327 | |
2328 | static const struct inode_operations shmem_short_symlink_operations = { |
2329 | .readlink = generic_readlink, |
2330 | .follow_link = shmem_follow_short_symlink, |
2331 | #ifdef CONFIG_TMPFS_XATTR |
2332 | .setxattr = shmem_setxattr, |
2333 | .getxattr = shmem_getxattr, |
2334 | .listxattr = shmem_listxattr, |
2335 | .removexattr = shmem_removexattr, |
2336 | #endif |
2337 | }; |
2338 | |
2339 | static const struct inode_operations shmem_symlink_inode_operations = { |
2340 | .readlink = generic_readlink, |
2341 | .follow_link = shmem_follow_link, |
2342 | .put_link = shmem_put_link, |
2343 | #ifdef CONFIG_TMPFS_XATTR |
2344 | .setxattr = shmem_setxattr, |
2345 | .getxattr = shmem_getxattr, |
2346 | .listxattr = shmem_listxattr, |
2347 | .removexattr = shmem_removexattr, |
2348 | #endif |
2349 | }; |
2350 | |
2351 | static struct dentry *shmem_get_parent(struct dentry *child) |
2352 | { |
2353 | return ERR_PTR(-ESTALE); |
2354 | } |
2355 | |
2356 | static int shmem_match(struct inode *ino, void *vfh) |
2357 | { |
2358 | __u32 *fh = vfh; |
2359 | __u64 inum = fh[2]; |
2360 | inum = (inum << 32) | fh[1]; |
2361 | return ino->i_ino == inum && fh[0] == ino->i_generation; |
2362 | } |
2363 | |
2364 | static struct dentry *shmem_fh_to_dentry(struct super_block *sb, |
2365 | struct fid *fid, int fh_len, int fh_type) |
2366 | { |
2367 | struct inode *inode; |
2368 | struct dentry *dentry = NULL; |
2369 | u64 inum = fid->raw[2]; |
2370 | inum = (inum << 32) | fid->raw[1]; |
2371 | |
2372 | if (fh_len < 3) |
2373 | return NULL; |
2374 | |
2375 | inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), |
2376 | shmem_match, fid->raw); |
2377 | if (inode) { |
2378 | dentry = d_find_alias(inode); |
2379 | iput(inode); |
2380 | } |
2381 | |
2382 | return dentry; |
2383 | } |
2384 | |
2385 | static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, |
2386 | struct inode *parent) |
2387 | { |
2388 | if (*len < 3) { |
2389 | *len = 3; |
2390 | return 255; |
2391 | } |
2392 | |
2393 | if (inode_unhashed(inode)) { |
2394 | /* Unfortunately insert_inode_hash is not idempotent, |
2395 | * so as we hash inodes here rather than at creation |
2396 | * time, we need a lock to ensure we only try |
2397 | * to do it once |
2398 | */ |
2399 | static DEFINE_SPINLOCK(lock); |
2400 | spin_lock(&lock); |
2401 | if (inode_unhashed(inode)) |
2402 | __insert_inode_hash(inode, |
2403 | inode->i_ino + inode->i_generation); |
2404 | spin_unlock(&lock); |
2405 | } |
2406 | |
2407 | fh[0] = inode->i_generation; |
2408 | fh[1] = inode->i_ino; |
2409 | fh[2] = ((__u64)inode->i_ino) >> 32; |
2410 | |
2411 | *len = 3; |
2412 | return 1; |
2413 | } |
2414 | |
2415 | static const struct export_operations shmem_export_ops = { |
2416 | .get_parent = shmem_get_parent, |
2417 | .encode_fh = shmem_encode_fh, |
2418 | .fh_to_dentry = shmem_fh_to_dentry, |
2419 | }; |
2420 | |
2421 | static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, |
2422 | bool remount) |
2423 | { |
2424 | char *this_char, *value, *rest; |
2425 | uid_t uid; |
2426 | gid_t gid; |
2427 | |
2428 | while (options != NULL) { |
2429 | this_char = options; |
2430 | for (;;) { |
2431 | /* |
2432 | * NUL-terminate this option: unfortunately, |
2433 | * mount options form a comma-separated list, |
2434 | * but mpol's nodelist may also contain commas. |
2435 | */ |
2436 | options = strchr(options, ','); |
2437 | if (options == NULL) |
2438 | break; |
2439 | options++; |
2440 | if (!isdigit(*options)) { |
2441 | options[-1] = '\0'; |
2442 | break; |
2443 | } |
2444 | } |
2445 | if (!*this_char) |
2446 | continue; |
2447 | if ((value = strchr(this_char,'=')) != NULL) { |
2448 | *value++ = 0; |
2449 | } else { |
2450 | printk(KERN_ERR |
2451 | "tmpfs: No value for mount option '%s'\n", |
2452 | this_char); |
2453 | return 1; |
2454 | } |
2455 | |
2456 | if (!strcmp(this_char,"size")) { |
2457 | unsigned long long size; |
2458 | size = memparse(value,&rest); |
2459 | if (*rest == '%') { |
2460 | size <<= PAGE_SHIFT; |
2461 | size *= totalram_pages; |
2462 | do_div(size, 100); |
2463 | rest++; |
2464 | } |
2465 | if (*rest) |
2466 | goto bad_val; |
2467 | sbinfo->max_blocks = |
2468 | DIV_ROUND_UP(size, PAGE_CACHE_SIZE); |
2469 | } else if (!strcmp(this_char,"nr_blocks")) { |
2470 | sbinfo->max_blocks = memparse(value, &rest); |
2471 | if (*rest) |
2472 | goto bad_val; |
2473 | } else if (!strcmp(this_char,"nr_inodes")) { |
2474 | sbinfo->max_inodes = memparse(value, &rest); |
2475 | if (*rest) |
2476 | goto bad_val; |
2477 | } else if (!strcmp(this_char,"mode")) { |
2478 | if (remount) |
2479 | continue; |
2480 | sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; |
2481 | if (*rest) |
2482 | goto bad_val; |
2483 | } else if (!strcmp(this_char,"uid")) { |
2484 | if (remount) |
2485 | continue; |
2486 | uid = simple_strtoul(value, &rest, 0); |
2487 | if (*rest) |
2488 | goto bad_val; |
2489 | sbinfo->uid = make_kuid(current_user_ns(), uid); |
2490 | if (!uid_valid(sbinfo->uid)) |
2491 | goto bad_val; |
2492 | } else if (!strcmp(this_char,"gid")) { |
2493 | if (remount) |
2494 | continue; |
2495 | gid = simple_strtoul(value, &rest, 0); |
2496 | if (*rest) |
2497 | goto bad_val; |
2498 | sbinfo->gid = make_kgid(current_user_ns(), gid); |
2499 | if (!gid_valid(sbinfo->gid)) |
2500 | goto bad_val; |
2501 | } else if (!strcmp(this_char,"mpol")) { |
2502 | if (mpol_parse_str(value, &sbinfo->mpol, 1)) |
2503 | goto bad_val; |
2504 | } else { |
2505 | printk(KERN_ERR "tmpfs: Bad mount option %s\n", |
2506 | this_char); |
2507 | return 1; |
2508 | } |
2509 | } |
2510 | return 0; |
2511 | |
2512 | bad_val: |
2513 | printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", |
2514 | value, this_char); |
2515 | return 1; |
2516 | |
2517 | } |
2518 | |
2519 | static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) |
2520 | { |
2521 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
2522 | struct shmem_sb_info config = *sbinfo; |
2523 | unsigned long inodes; |
2524 | int error = -EINVAL; |
2525 | |
2526 | if (shmem_parse_options(data, &config, true)) |
2527 | return error; |
2528 | |
2529 | spin_lock(&sbinfo->stat_lock); |
2530 | inodes = sbinfo->max_inodes - sbinfo->free_inodes; |
2531 | if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) |
2532 | goto out; |
2533 | if (config.max_inodes < inodes) |
2534 | goto out; |
2535 | /* |
2536 | * Those tests disallow limited->unlimited while any are in use; |
2537 | * but we must separately disallow unlimited->limited, because |
2538 | * in that case we have no record of how much is already in use. |
2539 | */ |
2540 | if (config.max_blocks && !sbinfo->max_blocks) |
2541 | goto out; |
2542 | if (config.max_inodes && !sbinfo->max_inodes) |
2543 | goto out; |
2544 | |
2545 | error = 0; |
2546 | sbinfo->max_blocks = config.max_blocks; |
2547 | sbinfo->max_inodes = config.max_inodes; |
2548 | sbinfo->free_inodes = config.max_inodes - inodes; |
2549 | |
2550 | mpol_put(sbinfo->mpol); |
2551 | sbinfo->mpol = config.mpol; /* transfers initial ref */ |
2552 | out: |
2553 | spin_unlock(&sbinfo->stat_lock); |
2554 | return error; |
2555 | } |
2556 | |
2557 | static int shmem_show_options(struct seq_file *seq, struct dentry *root) |
2558 | { |
2559 | struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); |
2560 | |
2561 | if (sbinfo->max_blocks != shmem_default_max_blocks()) |
2562 | seq_printf(seq, ",size=%luk", |
2563 | sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); |
2564 | if (sbinfo->max_inodes != shmem_default_max_inodes()) |
2565 | seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); |
2566 | if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) |
2567 | seq_printf(seq, ",mode=%03ho", sbinfo->mode); |
2568 | if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) |
2569 | seq_printf(seq, ",uid=%u", |
2570 | from_kuid_munged(&init_user_ns, sbinfo->uid)); |
2571 | if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) |
2572 | seq_printf(seq, ",gid=%u", |
2573 | from_kgid_munged(&init_user_ns, sbinfo->gid)); |
2574 | shmem_show_mpol(seq, sbinfo->mpol); |
2575 | return 0; |
2576 | } |
2577 | #endif /* CONFIG_TMPFS */ |
2578 | |
2579 | static void shmem_put_super(struct super_block *sb) |
2580 | { |
2581 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
2582 | |
2583 | percpu_counter_destroy(&sbinfo->used_blocks); |
2584 | kfree(sbinfo); |
2585 | sb->s_fs_info = NULL; |
2586 | } |
2587 | |
2588 | int shmem_fill_super(struct super_block *sb, void *data, int silent) |
2589 | { |
2590 | struct inode *inode; |
2591 | struct shmem_sb_info *sbinfo; |
2592 | int err = -ENOMEM; |
2593 | |
2594 | /* Round up to L1_CACHE_BYTES to resist false sharing */ |
2595 | sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), |
2596 | L1_CACHE_BYTES), GFP_KERNEL); |
2597 | if (!sbinfo) |
2598 | return -ENOMEM; |
2599 | |
2600 | sbinfo->mode = S_IRWXUGO | S_ISVTX; |
2601 | sbinfo->uid = current_fsuid(); |
2602 | sbinfo->gid = current_fsgid(); |
2603 | sb->s_fs_info = sbinfo; |
2604 | |
2605 | #ifdef CONFIG_TMPFS |
2606 | /* |
2607 | * Per default we only allow half of the physical ram per |
2608 | * tmpfs instance, limiting inodes to one per page of lowmem; |
2609 | * but the internal instance is left unlimited. |
2610 | */ |
2611 | if (!(sb->s_flags & MS_NOUSER)) { |
2612 | sbinfo->max_blocks = shmem_default_max_blocks(); |
2613 | sbinfo->max_inodes = shmem_default_max_inodes(); |
2614 | if (shmem_parse_options(data, sbinfo, false)) { |
2615 | err = -EINVAL; |
2616 | goto failed; |
2617 | } |
2618 | } |
2619 | sb->s_export_op = &shmem_export_ops; |
2620 | sb->s_flags |= MS_NOSEC; |
2621 | #else |
2622 | sb->s_flags |= MS_NOUSER; |
2623 | #endif |
2624 | |
2625 | spin_lock_init(&sbinfo->stat_lock); |
2626 | if (percpu_counter_init(&sbinfo->used_blocks, 0)) |
2627 | goto failed; |
2628 | sbinfo->free_inodes = sbinfo->max_inodes; |
2629 | |
2630 | sb->s_maxbytes = MAX_LFS_FILESIZE; |
2631 | sb->s_blocksize = PAGE_CACHE_SIZE; |
2632 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
2633 | sb->s_magic = TMPFS_MAGIC; |
2634 | sb->s_op = &shmem_ops; |
2635 | sb->s_time_gran = 1; |
2636 | #ifdef CONFIG_TMPFS_XATTR |
2637 | sb->s_xattr = shmem_xattr_handlers; |
2638 | #endif |
2639 | #ifdef CONFIG_TMPFS_POSIX_ACL |
2640 | sb->s_flags |= MS_POSIXACL; |
2641 | #endif |
2642 | |
2643 | inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); |
2644 | if (!inode) |
2645 | goto failed; |
2646 | inode->i_uid = sbinfo->uid; |
2647 | inode->i_gid = sbinfo->gid; |
2648 | sb->s_root = d_make_root(inode); |
2649 | if (!sb->s_root) |
2650 | goto failed; |
2651 | return 0; |
2652 | |
2653 | failed: |
2654 | shmem_put_super(sb); |
2655 | return err; |
2656 | } |
2657 | |
2658 | static struct kmem_cache *shmem_inode_cachep; |
2659 | |
2660 | static struct inode *shmem_alloc_inode(struct super_block *sb) |
2661 | { |
2662 | struct shmem_inode_info *info; |
2663 | info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); |
2664 | if (!info) |
2665 | return NULL; |
2666 | return &info->vfs_inode; |
2667 | } |
2668 | |
2669 | static void shmem_destroy_callback(struct rcu_head *head) |
2670 | { |
2671 | struct inode *inode = container_of(head, struct inode, i_rcu); |
2672 | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); |
2673 | } |
2674 | |
2675 | static void shmem_destroy_inode(struct inode *inode) |
2676 | { |
2677 | if (S_ISREG(inode->i_mode)) |
2678 | mpol_free_shared_policy(&SHMEM_I(inode)->policy); |
2679 | call_rcu(&inode->i_rcu, shmem_destroy_callback); |
2680 | } |
2681 | |
2682 | static void shmem_init_inode(void *foo) |
2683 | { |
2684 | struct shmem_inode_info *info = foo; |
2685 | inode_init_once(&info->vfs_inode); |
2686 | } |
2687 | |
2688 | static int shmem_init_inodecache(void) |
2689 | { |
2690 | shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", |
2691 | sizeof(struct shmem_inode_info), |
2692 | 0, SLAB_PANIC, shmem_init_inode); |
2693 | return 0; |
2694 | } |
2695 | |
2696 | static void shmem_destroy_inodecache(void) |
2697 | { |
2698 | kmem_cache_destroy(shmem_inode_cachep); |
2699 | } |
2700 | |
2701 | static const struct address_space_operations shmem_aops = { |
2702 | .writepage = shmem_writepage, |
2703 | .set_page_dirty = __set_page_dirty_no_writeback, |
2704 | #ifdef CONFIG_TMPFS |
2705 | .write_begin = shmem_write_begin, |
2706 | .write_end = shmem_write_end, |
2707 | #endif |
2708 | .migratepage = migrate_page, |
2709 | .error_remove_page = generic_error_remove_page, |
2710 | }; |
2711 | |
2712 | static const struct file_operations shmem_file_operations = { |
2713 | .mmap = shmem_mmap, |
2714 | #ifdef CONFIG_TMPFS |
2715 | .llseek = generic_file_llseek, |
2716 | .read = do_sync_read, |
2717 | .write = do_sync_write, |
2718 | .aio_read = shmem_file_aio_read, |
2719 | .aio_write = generic_file_aio_write, |
2720 | .fsync = noop_fsync, |
2721 | .splice_read = shmem_file_splice_read, |
2722 | .splice_write = generic_file_splice_write, |
2723 | .fallocate = shmem_fallocate, |
2724 | #endif |
2725 | }; |
2726 | |
2727 | static const struct inode_operations shmem_inode_operations = { |
2728 | .setattr = shmem_setattr, |
2729 | #ifdef CONFIG_TMPFS_XATTR |
2730 | .setxattr = shmem_setxattr, |
2731 | .getxattr = shmem_getxattr, |
2732 | .listxattr = shmem_listxattr, |
2733 | .removexattr = shmem_removexattr, |
2734 | #endif |
2735 | }; |
2736 | |
2737 | static const struct inode_operations shmem_dir_inode_operations = { |
2738 | #ifdef CONFIG_TMPFS |
2739 | .create = shmem_create, |
2740 | .lookup = simple_lookup, |
2741 | .link = shmem_link, |
2742 | .unlink = shmem_unlink, |
2743 | .symlink = shmem_symlink, |
2744 | .mkdir = shmem_mkdir, |
2745 | .rmdir = shmem_rmdir, |
2746 | .mknod = shmem_mknod, |
2747 | .rename = shmem_rename, |
2748 | #endif |
2749 | #ifdef CONFIG_TMPFS_XATTR |
2750 | .setxattr = shmem_setxattr, |
2751 | .getxattr = shmem_getxattr, |
2752 | .listxattr = shmem_listxattr, |
2753 | .removexattr = shmem_removexattr, |
2754 | #endif |
2755 | #ifdef CONFIG_TMPFS_POSIX_ACL |
2756 | .setattr = shmem_setattr, |
2757 | #endif |
2758 | }; |
2759 | |
2760 | static const struct inode_operations shmem_special_inode_operations = { |
2761 | #ifdef CONFIG_TMPFS_XATTR |
2762 | .setxattr = shmem_setxattr, |
2763 | .getxattr = shmem_getxattr, |
2764 | .listxattr = shmem_listxattr, |
2765 | .removexattr = shmem_removexattr, |
2766 | #endif |
2767 | #ifdef CONFIG_TMPFS_POSIX_ACL |
2768 | .setattr = shmem_setattr, |
2769 | #endif |
2770 | }; |
2771 | |
2772 | static const struct super_operations shmem_ops = { |
2773 | .alloc_inode = shmem_alloc_inode, |
2774 | .destroy_inode = shmem_destroy_inode, |
2775 | #ifdef CONFIG_TMPFS |
2776 | .statfs = shmem_statfs, |
2777 | .remount_fs = shmem_remount_fs, |
2778 | .show_options = shmem_show_options, |
2779 | #endif |
2780 | .evict_inode = shmem_evict_inode, |
2781 | .drop_inode = generic_delete_inode, |
2782 | .put_super = shmem_put_super, |
2783 | }; |
2784 | |
2785 | static const struct vm_operations_struct shmem_vm_ops = { |
2786 | .fault = shmem_fault, |
2787 | #ifdef CONFIG_NUMA |
2788 | .set_policy = shmem_set_policy, |
2789 | .get_policy = shmem_get_policy, |
2790 | #endif |
2791 | }; |
2792 | |
2793 | static struct dentry *shmem_mount(struct file_system_type *fs_type, |
2794 | int flags, const char *dev_name, void *data) |
2795 | { |
2796 | return mount_nodev(fs_type, flags, data, shmem_fill_super); |
2797 | } |
2798 | |
2799 | static struct file_system_type shmem_fs_type = { |
2800 | .owner = THIS_MODULE, |
2801 | .name = "tmpfs", |
2802 | .mount = shmem_mount, |
2803 | .kill_sb = kill_litter_super, |
2804 | }; |
2805 | |
2806 | int __init shmem_init(void) |
2807 | { |
2808 | int error; |
2809 | |
2810 | error = bdi_init(&shmem_backing_dev_info); |
2811 | if (error) |
2812 | goto out4; |
2813 | |
2814 | error = shmem_init_inodecache(); |
2815 | if (error) |
2816 | goto out3; |
2817 | |
2818 | error = register_filesystem(&shmem_fs_type); |
2819 | if (error) { |
2820 | printk(KERN_ERR "Could not register tmpfs\n"); |
2821 | goto out2; |
2822 | } |
2823 | |
2824 | shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, |
2825 | shmem_fs_type.name, NULL); |
2826 | if (IS_ERR(shm_mnt)) { |
2827 | error = PTR_ERR(shm_mnt); |
2828 | printk(KERN_ERR "Could not kern_mount tmpfs\n"); |
2829 | goto out1; |
2830 | } |
2831 | return 0; |
2832 | |
2833 | out1: |
2834 | unregister_filesystem(&shmem_fs_type); |
2835 | out2: |
2836 | shmem_destroy_inodecache(); |
2837 | out3: |
2838 | bdi_destroy(&shmem_backing_dev_info); |
2839 | out4: |
2840 | shm_mnt = ERR_PTR(error); |
2841 | return error; |
2842 | } |
2843 | |
2844 | #else /* !CONFIG_SHMEM */ |
2845 | |
2846 | /* |
2847 | * tiny-shmem: simple shmemfs and tmpfs using ramfs code |
2848 | * |
2849 | * This is intended for small system where the benefits of the full |
2850 | * shmem code (swap-backed and resource-limited) are outweighed by |
2851 | * their complexity. On systems without swap this code should be |
2852 | * effectively equivalent, but much lighter weight. |
2853 | */ |
2854 | |
2855 | #include <linux/ramfs.h> |
2856 | |
2857 | static struct file_system_type shmem_fs_type = { |
2858 | .name = "tmpfs", |
2859 | .mount = ramfs_mount, |
2860 | .kill_sb = kill_litter_super, |
2861 | }; |
2862 | |
2863 | int __init shmem_init(void) |
2864 | { |
2865 | BUG_ON(register_filesystem(&shmem_fs_type) != 0); |
2866 | |
2867 | shm_mnt = kern_mount(&shmem_fs_type); |
2868 | BUG_ON(IS_ERR(shm_mnt)); |
2869 | |
2870 | return 0; |
2871 | } |
2872 | |
2873 | int shmem_unuse(swp_entry_t swap, struct page *page) |
2874 | { |
2875 | return 0; |
2876 | } |
2877 | |
2878 | int shmem_lock(struct file *file, int lock, struct user_struct *user) |
2879 | { |
2880 | return 0; |
2881 | } |
2882 | |
2883 | void shmem_unlock_mapping(struct address_space *mapping) |
2884 | { |
2885 | } |
2886 | |
2887 | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) |
2888 | { |
2889 | truncate_inode_pages_range(inode->i_mapping, lstart, lend); |
2890 | } |
2891 | EXPORT_SYMBOL_GPL(shmem_truncate_range); |
2892 | |
2893 | #define shmem_vm_ops generic_file_vm_ops |
2894 | #define shmem_file_operations ramfs_file_operations |
2895 | #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) |
2896 | #define shmem_acct_size(flags, size) 0 |
2897 | #define shmem_unacct_size(flags, size) do {} while (0) |
2898 | |
2899 | #endif /* CONFIG_SHMEM */ |
2900 | |
2901 | /* common code */ |
2902 | |
2903 | /** |
2904 | * shmem_file_setup - get an unlinked file living in tmpfs |
2905 | * @name: name for dentry (to be seen in /proc/<pid>/maps |
2906 | * @size: size to be set for the file |
2907 | * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size |
2908 | */ |
2909 | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) |
2910 | { |
2911 | int error; |
2912 | struct file *file; |
2913 | struct inode *inode; |
2914 | struct path path; |
2915 | struct dentry *root; |
2916 | struct qstr this; |
2917 | |
2918 | if (IS_ERR(shm_mnt)) |
2919 | return (void *)shm_mnt; |
2920 | |
2921 | if (size < 0 || size > MAX_LFS_FILESIZE) |
2922 | return ERR_PTR(-EINVAL); |
2923 | |
2924 | if (shmem_acct_size(flags, size)) |
2925 | return ERR_PTR(-ENOMEM); |
2926 | |
2927 | error = -ENOMEM; |
2928 | this.name = name; |
2929 | this.len = strlen(name); |
2930 | this.hash = 0; /* will go */ |
2931 | root = shm_mnt->mnt_root; |
2932 | path.dentry = d_alloc(root, &this); |
2933 | if (!path.dentry) |
2934 | goto put_memory; |
2935 | path.mnt = mntget(shm_mnt); |
2936 | |
2937 | error = -ENOSPC; |
2938 | inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); |
2939 | if (!inode) |
2940 | goto put_dentry; |
2941 | |
2942 | d_instantiate(path.dentry, inode); |
2943 | inode->i_size = size; |
2944 | clear_nlink(inode); /* It is unlinked */ |
2945 | #ifndef CONFIG_MMU |
2946 | error = ramfs_nommu_expand_for_mapping(inode, size); |
2947 | if (error) |
2948 | goto put_dentry; |
2949 | #endif |
2950 | |
2951 | error = -ENFILE; |
2952 | file = alloc_file(&path, FMODE_WRITE | FMODE_READ, |
2953 | &shmem_file_operations); |
2954 | if (!file) |
2955 | goto put_dentry; |
2956 | |
2957 | return file; |
2958 | |
2959 | put_dentry: |
2960 | path_put(&path); |
2961 | put_memory: |
2962 | shmem_unacct_size(flags, size); |
2963 | return ERR_PTR(error); |
2964 | } |
2965 | EXPORT_SYMBOL_GPL(shmem_file_setup); |
2966 | |
2967 | /** |
2968 | * shmem_zero_setup - setup a shared anonymous mapping |
2969 | * @vma: the vma to be mmapped is prepared by do_mmap_pgoff |
2970 | */ |
2971 | int shmem_zero_setup(struct vm_area_struct *vma) |
2972 | { |
2973 | struct file *file; |
2974 | loff_t size = vma->vm_end - vma->vm_start; |
2975 | |
2976 | file = shmem_file_setup("dev/zero", size, vma->vm_flags); |
2977 | if (IS_ERR(file)) |
2978 | return PTR_ERR(file); |
2979 | |
2980 | if (vma->vm_file) |
2981 | fput(vma->vm_file); |
2982 | vma->vm_file = file; |
2983 | vma->vm_ops = &shmem_vm_ops; |
2984 | vma->vm_flags |= VM_CAN_NONLINEAR; |
2985 | return 0; |
2986 | } |
2987 | |
2988 | /** |
2989 | * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. |
2990 | * @mapping: the page's address_space |
2991 | * @index: the page index |
2992 | * @gfp: the page allocator flags to use if allocating |
2993 | * |
2994 | * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", |
2995 | * with any new page allocations done using the specified allocation flags. |
2996 | * But read_cache_page_gfp() uses the ->readpage() method: which does not |
2997 | * suit tmpfs, since it may have pages in swapcache, and needs to find those |
2998 | * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. |
2999 | * |
3000 | * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in |
3001 | * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. |
3002 | */ |
3003 | struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, |
3004 | pgoff_t index, gfp_t gfp) |
3005 | { |
3006 | #ifdef CONFIG_SHMEM |
3007 | struct inode *inode = mapping->host; |
3008 | struct page *page; |
3009 | int error; |
3010 | |
3011 | BUG_ON(mapping->a_ops != &shmem_aops); |
3012 | error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); |
3013 | if (error) |
3014 | page = ERR_PTR(error); |
3015 | else |
3016 | unlock_page(page); |
3017 | return page; |
3018 | #else |
3019 | /* |
3020 | * The tiny !SHMEM case uses ramfs without swap |
3021 | */ |
3022 | return read_cache_page_gfp(mapping, index, gfp); |
3023 | #endif |
3024 | } |
3025 | EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); |
3026 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9