Root/mm/slab.c

1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89#include <linux/slab.h>
90#include "slab.h"
91#include <linux/mm.h>
92#include <linux/poison.h>
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
98#include <linux/cpuset.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
107#include <linux/string.h>
108#include <linux/uaccess.h>
109#include <linux/nodemask.h>
110#include <linux/kmemleak.h>
111#include <linux/mempolicy.h>
112#include <linux/mutex.h>
113#include <linux/fault-inject.h>
114#include <linux/rtmutex.h>
115#include <linux/reciprocal_div.h>
116#include <linux/debugobjects.h>
117#include <linux/kmemcheck.h>
118#include <linux/memory.h>
119#include <linux/prefetch.h>
120
121#include <net/sock.h>
122
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
127#include <trace/events/kmem.h>
128
129#include "internal.h"
130
131/*
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
154
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
167# define CREATE_MASK (SLAB_RED_ZONE | \
168             SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169             SLAB_CACHE_DMA | \
170             SLAB_STORE_USER | \
171             SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172             SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173             SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174#else
175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
176             SLAB_CACHE_DMA | \
177             SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178             SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179             SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
201typedef unsigned int kmem_bufctl_t;
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
206
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
220 */
221struct slab_rcu {
222    struct rcu_head head;
223    struct kmem_cache *cachep;
224    void *addr;
225};
226
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235    union {
236        struct {
237            struct list_head list;
238            unsigned long colouroff;
239            void *s_mem; /* including colour offset */
240            unsigned int inuse; /* num of objs active in slab */
241            kmem_bufctl_t free;
242            unsigned short nodeid;
243        };
244        struct slab_rcu __slab_cover_slab_rcu;
245    };
246};
247
248/*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261    unsigned int avail;
262    unsigned int limit;
263    unsigned int batchcount;
264    unsigned int touched;
265    spinlock_t lock;
266    void *entry[]; /*
267             * Must have this definition in here for the proper
268             * alignment of array_cache. Also simplifies accessing
269             * the entries.
270             *
271             * Entries should not be directly dereferenced as
272             * entries belonging to slabs marked pfmemalloc will
273             * have the lower bits set SLAB_OBJ_PFMEMALLOC
274             */
275};
276
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280    return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285    *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286    return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291    *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300    struct array_cache cache;
301    void *entries[BOOT_CPUCACHE_ENTRIES];
302};
303
304/*
305 * The slab lists for all objects.
306 */
307struct kmem_list3 {
308    struct list_head slabs_partial; /* partial list first, better asm code */
309    struct list_head slabs_full;
310    struct list_head slabs_free;
311    unsigned long free_objects;
312    unsigned int free_limit;
313    unsigned int colour_next; /* Per-node cache coloring */
314    spinlock_t list_lock;
315    struct array_cache *shared; /* shared per node */
316    struct array_cache **alien; /* on other nodes */
317    unsigned long next_reap; /* updated without locking */
318    int free_touched; /* updated without locking */
319};
320
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326#define CACHE_CACHE 0
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
329
330static int drain_freelist(struct kmem_cache *cache,
331            struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333            int node);
334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335static void cache_reap(struct work_struct *unused);
336
337/*
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
340 */
341static __always_inline int index_of(const size_t size)
342{
343    extern void __bad_size(void);
344
345    if (__builtin_constant_p(size)) {
346        int i = 0;
347
348#define CACHE(x) \
349    if (size <=x) \
350        return i; \
351    else \
352        i++;
353#include <linux/kmalloc_sizes.h>
354#undef CACHE
355        __bad_size();
356    } else
357        __bad_size();
358    return 0;
359}
360
361static int slab_early_init = 1;
362
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
365
366static void kmem_list3_init(struct kmem_list3 *parent)
367{
368    INIT_LIST_HEAD(&parent->slabs_full);
369    INIT_LIST_HEAD(&parent->slabs_partial);
370    INIT_LIST_HEAD(&parent->slabs_free);
371    parent->shared = NULL;
372    parent->alien = NULL;
373    parent->colour_next = 0;
374    spin_lock_init(&parent->list_lock);
375    parent->free_objects = 0;
376    parent->free_touched = 0;
377}
378
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380    do { \
381        INIT_LIST_HEAD(listp); \
382        list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383    } while (0)
384
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386    do { \
387    MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388    MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389    MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390    } while (0)
391
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
399 *
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412#define STATS_SET_HIGH(x) \
413    do { \
414        if ((x)->num_active > (x)->high_mark) \
415            (x)->high_mark = (x)->num_active; \
416    } while (0)
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421#define STATS_SET_FREEABLE(x, i) \
422    do { \
423        if ((x)->max_freeable < i) \
424            (x)->max_freeable = i; \
425    } while (0)
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
439#define STATS_INC_NODEFREES(x) do { } while (0)
440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
441#define STATS_SET_FREEABLE(x, i) do { } while (0)
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
449
450/*
451 * memory layout of objects:
452 * 0 : objp
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
457 * redzone word.
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
462 */
463static int obj_offset(struct kmem_cache *cachep)
464{
465    return cachep->obj_offset;
466}
467
468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
469{
470    BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471    return (unsigned long long*) (objp + obj_offset(cachep) -
472                      sizeof(unsigned long long));
473}
474
475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
476{
477    BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478    if (cachep->flags & SLAB_STORE_USER)
479        return (unsigned long long *)(objp + cachep->size -
480                          sizeof(unsigned long long) -
481                          REDZONE_ALIGN);
482    return (unsigned long long *) (objp + cachep->size -
483                       sizeof(unsigned long long));
484}
485
486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
487{
488    BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489    return (void **)(objp + cachep->size - BYTES_PER_WORD);
490}
491
492#else
493
494#define obj_offset(x) 0
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
501#ifdef CONFIG_TRACING
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
504    return cachep->size;
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
509/*
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
512 */
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
516static bool slab_max_order_set __initdata;
517
518static inline struct kmem_cache *page_get_cache(struct page *page)
519{
520    page = compound_head(page);
521    BUG_ON(!PageSlab(page));
522    return page->slab_cache;
523}
524
525static inline struct kmem_cache *virt_to_cache(const void *obj)
526{
527    struct page *page = virt_to_head_page(obj);
528    return page->slab_cache;
529}
530
531static inline struct slab *virt_to_slab(const void *obj)
532{
533    struct page *page = virt_to_head_page(obj);
534
535    VM_BUG_ON(!PageSlab(page));
536    return page->slab_page;
537}
538
539static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
540                 unsigned int idx)
541{
542    return slab->s_mem + cache->size * idx;
543}
544
545/*
546 * We want to avoid an expensive divide : (offset / cache->size)
547 * Using the fact that size is a constant for a particular cache,
548 * we can replace (offset / cache->size) by
549 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
550 */
551static inline unsigned int obj_to_index(const struct kmem_cache *cache,
552                    const struct slab *slab, void *obj)
553{
554    u32 offset = (obj - slab->s_mem);
555    return reciprocal_divide(offset, cache->reciprocal_buffer_size);
556}
557
558/*
559 * These are the default caches for kmalloc. Custom caches can have other sizes.
560 */
561struct cache_sizes malloc_sizes[] = {
562#define CACHE(x) { .cs_size = (x) },
563#include <linux/kmalloc_sizes.h>
564    CACHE(ULONG_MAX)
565#undef CACHE
566};
567EXPORT_SYMBOL(malloc_sizes);
568
569/* Must match cache_sizes above. Out of line to keep cache footprint low. */
570struct cache_names {
571    char *name;
572    char *name_dma;
573};
574
575static struct cache_names __initdata cache_names[] = {
576#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
577#include <linux/kmalloc_sizes.h>
578    {NULL,}
579#undef CACHE
580};
581
582static struct arraycache_init initarray_cache __initdata =
583    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
584static struct arraycache_init initarray_generic =
585    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
586
587/* internal cache of cache description objs */
588static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
589static struct kmem_cache cache_cache = {
590    .nodelists = cache_cache_nodelists,
591    .batchcount = 1,
592    .limit = BOOT_CPUCACHE_ENTRIES,
593    .shared = 1,
594    .size = sizeof(struct kmem_cache),
595    .name = "kmem_cache",
596};
597
598#define BAD_ALIEN_MAGIC 0x01020304ul
599
600#ifdef CONFIG_LOCKDEP
601
602/*
603 * Slab sometimes uses the kmalloc slabs to store the slab headers
604 * for other slabs "off slab".
605 * The locking for this is tricky in that it nests within the locks
606 * of all other slabs in a few places; to deal with this special
607 * locking we put on-slab caches into a separate lock-class.
608 *
609 * We set lock class for alien array caches which are up during init.
610 * The lock annotation will be lost if all cpus of a node goes down and
611 * then comes back up during hotplug
612 */
613static struct lock_class_key on_slab_l3_key;
614static struct lock_class_key on_slab_alc_key;
615
616static struct lock_class_key debugobj_l3_key;
617static struct lock_class_key debugobj_alc_key;
618
619static void slab_set_lock_classes(struct kmem_cache *cachep,
620        struct lock_class_key *l3_key, struct lock_class_key *alc_key,
621        int q)
622{
623    struct array_cache **alc;
624    struct kmem_list3 *l3;
625    int r;
626
627    l3 = cachep->nodelists[q];
628    if (!l3)
629        return;
630
631    lockdep_set_class(&l3->list_lock, l3_key);
632    alc = l3->alien;
633    /*
634     * FIXME: This check for BAD_ALIEN_MAGIC
635     * should go away when common slab code is taught to
636     * work even without alien caches.
637     * Currently, non NUMA code returns BAD_ALIEN_MAGIC
638     * for alloc_alien_cache,
639     */
640    if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
641        return;
642    for_each_node(r) {
643        if (alc[r])
644            lockdep_set_class(&alc[r]->lock, alc_key);
645    }
646}
647
648static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
649{
650    slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
651}
652
653static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
654{
655    int node;
656
657    for_each_online_node(node)
658        slab_set_debugobj_lock_classes_node(cachep, node);
659}
660
661static void init_node_lock_keys(int q)
662{
663    struct cache_sizes *s = malloc_sizes;
664
665    if (slab_state < UP)
666        return;
667
668    for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
669        struct kmem_list3 *l3;
670
671        l3 = s->cs_cachep->nodelists[q];
672        if (!l3 || OFF_SLAB(s->cs_cachep))
673            continue;
674
675        slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
676                &on_slab_alc_key, q);
677    }
678}
679
680static inline void init_lock_keys(void)
681{
682    int node;
683
684    for_each_node(node)
685        init_node_lock_keys(node);
686}
687#else
688static void init_node_lock_keys(int q)
689{
690}
691
692static inline void init_lock_keys(void)
693{
694}
695
696static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
697{
698}
699
700static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
701{
702}
703#endif
704
705static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
706
707static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
708{
709    return cachep->array[smp_processor_id()];
710}
711
712static inline struct kmem_cache *__find_general_cachep(size_t size,
713                            gfp_t gfpflags)
714{
715    struct cache_sizes *csizep = malloc_sizes;
716
717#if DEBUG
718    /* This happens if someone tries to call
719     * kmem_cache_create(), or __kmalloc(), before
720     * the generic caches are initialized.
721     */
722    BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
723#endif
724    if (!size)
725        return ZERO_SIZE_PTR;
726
727    while (size > csizep->cs_size)
728        csizep++;
729
730    /*
731     * Really subtle: The last entry with cs->cs_size==ULONG_MAX
732     * has cs_{dma,}cachep==NULL. Thus no special case
733     * for large kmalloc calls required.
734     */
735#ifdef CONFIG_ZONE_DMA
736    if (unlikely(gfpflags & GFP_DMA))
737        return csizep->cs_dmacachep;
738#endif
739    return csizep->cs_cachep;
740}
741
742static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
743{
744    return __find_general_cachep(size, gfpflags);
745}
746
747static size_t slab_mgmt_size(size_t nr_objs, size_t align)
748{
749    return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
750}
751
752/*
753 * Calculate the number of objects and left-over bytes for a given buffer size.
754 */
755static void cache_estimate(unsigned long gfporder, size_t buffer_size,
756               size_t align, int flags, size_t *left_over,
757               unsigned int *num)
758{
759    int nr_objs;
760    size_t mgmt_size;
761    size_t slab_size = PAGE_SIZE << gfporder;
762
763    /*
764     * The slab management structure can be either off the slab or
765     * on it. For the latter case, the memory allocated for a
766     * slab is used for:
767     *
768     * - The struct slab
769     * - One kmem_bufctl_t for each object
770     * - Padding to respect alignment of @align
771     * - @buffer_size bytes for each object
772     *
773     * If the slab management structure is off the slab, then the
774     * alignment will already be calculated into the size. Because
775     * the slabs are all pages aligned, the objects will be at the
776     * correct alignment when allocated.
777     */
778    if (flags & CFLGS_OFF_SLAB) {
779        mgmt_size = 0;
780        nr_objs = slab_size / buffer_size;
781
782        if (nr_objs > SLAB_LIMIT)
783            nr_objs = SLAB_LIMIT;
784    } else {
785        /*
786         * Ignore padding for the initial guess. The padding
787         * is at most @align-1 bytes, and @buffer_size is at
788         * least @align. In the worst case, this result will
789         * be one greater than the number of objects that fit
790         * into the memory allocation when taking the padding
791         * into account.
792         */
793        nr_objs = (slab_size - sizeof(struct slab)) /
794              (buffer_size + sizeof(kmem_bufctl_t));
795
796        /*
797         * This calculated number will be either the right
798         * amount, or one greater than what we want.
799         */
800        if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
801               > slab_size)
802            nr_objs--;
803
804        if (nr_objs > SLAB_LIMIT)
805            nr_objs = SLAB_LIMIT;
806
807        mgmt_size = slab_mgmt_size(nr_objs, align);
808    }
809    *num = nr_objs;
810    *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
811}
812
813#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
814
815static void __slab_error(const char *function, struct kmem_cache *cachep,
816            char *msg)
817{
818    printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
819           function, cachep->name, msg);
820    dump_stack();
821}
822
823/*
824 * By default on NUMA we use alien caches to stage the freeing of
825 * objects allocated from other nodes. This causes massive memory
826 * inefficiencies when using fake NUMA setup to split memory into a
827 * large number of small nodes, so it can be disabled on the command
828 * line
829  */
830
831static int use_alien_caches __read_mostly = 1;
832static int __init noaliencache_setup(char *s)
833{
834    use_alien_caches = 0;
835    return 1;
836}
837__setup("noaliencache", noaliencache_setup);
838
839static int __init slab_max_order_setup(char *str)
840{
841    get_option(&str, &slab_max_order);
842    slab_max_order = slab_max_order < 0 ? 0 :
843                min(slab_max_order, MAX_ORDER - 1);
844    slab_max_order_set = true;
845
846    return 1;
847}
848__setup("slab_max_order=", slab_max_order_setup);
849
850#ifdef CONFIG_NUMA
851/*
852 * Special reaping functions for NUMA systems called from cache_reap().
853 * These take care of doing round robin flushing of alien caches (containing
854 * objects freed on different nodes from which they were allocated) and the
855 * flushing of remote pcps by calling drain_node_pages.
856 */
857static DEFINE_PER_CPU(unsigned long, slab_reap_node);
858
859static void init_reap_node(int cpu)
860{
861    int node;
862
863    node = next_node(cpu_to_mem(cpu), node_online_map);
864    if (node == MAX_NUMNODES)
865        node = first_node(node_online_map);
866
867    per_cpu(slab_reap_node, cpu) = node;
868}
869
870static void next_reap_node(void)
871{
872    int node = __this_cpu_read(slab_reap_node);
873
874    node = next_node(node, node_online_map);
875    if (unlikely(node >= MAX_NUMNODES))
876        node = first_node(node_online_map);
877    __this_cpu_write(slab_reap_node, node);
878}
879
880#else
881#define init_reap_node(cpu) do { } while (0)
882#define next_reap_node(void) do { } while (0)
883#endif
884
885/*
886 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
887 * via the workqueue/eventd.
888 * Add the CPU number into the expiration time to minimize the possibility of
889 * the CPUs getting into lockstep and contending for the global cache chain
890 * lock.
891 */
892static void __cpuinit start_cpu_timer(int cpu)
893{
894    struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
895
896    /*
897     * When this gets called from do_initcalls via cpucache_init(),
898     * init_workqueues() has already run, so keventd will be setup
899     * at that time.
900     */
901    if (keventd_up() && reap_work->work.func == NULL) {
902        init_reap_node(cpu);
903        INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
904        schedule_delayed_work_on(cpu, reap_work,
905                    __round_jiffies_relative(HZ, cpu));
906    }
907}
908
909static struct array_cache *alloc_arraycache(int node, int entries,
910                        int batchcount, gfp_t gfp)
911{
912    int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
913    struct array_cache *nc = NULL;
914
915    nc = kmalloc_node(memsize, gfp, node);
916    /*
917     * The array_cache structures contain pointers to free object.
918     * However, when such objects are allocated or transferred to another
919     * cache the pointers are not cleared and they could be counted as
920     * valid references during a kmemleak scan. Therefore, kmemleak must
921     * not scan such objects.
922     */
923    kmemleak_no_scan(nc);
924    if (nc) {
925        nc->avail = 0;
926        nc->limit = entries;
927        nc->batchcount = batchcount;
928        nc->touched = 0;
929        spin_lock_init(&nc->lock);
930    }
931    return nc;
932}
933
934static inline bool is_slab_pfmemalloc(struct slab *slabp)
935{
936    struct page *page = virt_to_page(slabp->s_mem);
937
938    return PageSlabPfmemalloc(page);
939}
940
941/* Clears pfmemalloc_active if no slabs have pfmalloc set */
942static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
943                        struct array_cache *ac)
944{
945    struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
946    struct slab *slabp;
947    unsigned long flags;
948
949    if (!pfmemalloc_active)
950        return;
951
952    spin_lock_irqsave(&l3->list_lock, flags);
953    list_for_each_entry(slabp, &l3->slabs_full, list)
954        if (is_slab_pfmemalloc(slabp))
955            goto out;
956
957    list_for_each_entry(slabp, &l3->slabs_partial, list)
958        if (is_slab_pfmemalloc(slabp))
959            goto out;
960
961    list_for_each_entry(slabp, &l3->slabs_free, list)
962        if (is_slab_pfmemalloc(slabp))
963            goto out;
964
965    pfmemalloc_active = false;
966out:
967    spin_unlock_irqrestore(&l3->list_lock, flags);
968}
969
970static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
971                        gfp_t flags, bool force_refill)
972{
973    int i;
974    void *objp = ac->entry[--ac->avail];
975
976    /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
977    if (unlikely(is_obj_pfmemalloc(objp))) {
978        struct kmem_list3 *l3;
979
980        if (gfp_pfmemalloc_allowed(flags)) {
981            clear_obj_pfmemalloc(&objp);
982            return objp;
983        }
984
985        /* The caller cannot use PFMEMALLOC objects, find another one */
986        for (i = 1; i < ac->avail; i++) {
987            /* If a !PFMEMALLOC object is found, swap them */
988            if (!is_obj_pfmemalloc(ac->entry[i])) {
989                objp = ac->entry[i];
990                ac->entry[i] = ac->entry[ac->avail];
991                ac->entry[ac->avail] = objp;
992                return objp;
993            }
994        }
995
996        /*
997         * If there are empty slabs on the slabs_free list and we are
998         * being forced to refill the cache, mark this one !pfmemalloc.
999         */
1000        l3 = cachep->nodelists[numa_mem_id()];
1001        if (!list_empty(&l3->slabs_free) && force_refill) {
1002            struct slab *slabp = virt_to_slab(objp);
1003            ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
1004            clear_obj_pfmemalloc(&objp);
1005            recheck_pfmemalloc_active(cachep, ac);
1006            return objp;
1007        }
1008
1009        /* No !PFMEMALLOC objects available */
1010        ac->avail++;
1011        objp = NULL;
1012    }
1013
1014    return objp;
1015}
1016
1017static inline void *ac_get_obj(struct kmem_cache *cachep,
1018            struct array_cache *ac, gfp_t flags, bool force_refill)
1019{
1020    void *objp;
1021
1022    if (unlikely(sk_memalloc_socks()))
1023        objp = __ac_get_obj(cachep, ac, flags, force_refill);
1024    else
1025        objp = ac->entry[--ac->avail];
1026
1027    return objp;
1028}
1029
1030static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1031                                void *objp)
1032{
1033    if (unlikely(pfmemalloc_active)) {
1034        /* Some pfmemalloc slabs exist, check if this is one */
1035        struct page *page = virt_to_page(objp);
1036        if (PageSlabPfmemalloc(page))
1037            set_obj_pfmemalloc(&objp);
1038    }
1039
1040    return objp;
1041}
1042
1043static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1044                                void *objp)
1045{
1046    if (unlikely(sk_memalloc_socks()))
1047        objp = __ac_put_obj(cachep, ac, objp);
1048
1049    ac->entry[ac->avail++] = objp;
1050}
1051
1052/*
1053 * Transfer objects in one arraycache to another.
1054 * Locking must be handled by the caller.
1055 *
1056 * Return the number of entries transferred.
1057 */
1058static int transfer_objects(struct array_cache *to,
1059        struct array_cache *from, unsigned int max)
1060{
1061    /* Figure out how many entries to transfer */
1062    int nr = min3(from->avail, max, to->limit - to->avail);
1063
1064    if (!nr)
1065        return 0;
1066
1067    memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1068            sizeof(void *) *nr);
1069
1070    from->avail -= nr;
1071    to->avail += nr;
1072    return nr;
1073}
1074
1075#ifndef CONFIG_NUMA
1076
1077#define drain_alien_cache(cachep, alien) do { } while (0)
1078#define reap_alien(cachep, l3) do { } while (0)
1079
1080static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1081{
1082    return (struct array_cache **)BAD_ALIEN_MAGIC;
1083}
1084
1085static inline void free_alien_cache(struct array_cache **ac_ptr)
1086{
1087}
1088
1089static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1090{
1091    return 0;
1092}
1093
1094static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1095        gfp_t flags)
1096{
1097    return NULL;
1098}
1099
1100static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1101         gfp_t flags, int nodeid)
1102{
1103    return NULL;
1104}
1105
1106#else /* CONFIG_NUMA */
1107
1108static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1109static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1110
1111static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1112{
1113    struct array_cache **ac_ptr;
1114    int memsize = sizeof(void *) * nr_node_ids;
1115    int i;
1116
1117    if (limit > 1)
1118        limit = 12;
1119    ac_ptr = kzalloc_node(memsize, gfp, node);
1120    if (ac_ptr) {
1121        for_each_node(i) {
1122            if (i == node || !node_online(i))
1123                continue;
1124            ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1125            if (!ac_ptr[i]) {
1126                for (i--; i >= 0; i--)
1127                    kfree(ac_ptr[i]);
1128                kfree(ac_ptr);
1129                return NULL;
1130            }
1131        }
1132    }
1133    return ac_ptr;
1134}
1135
1136static void free_alien_cache(struct array_cache **ac_ptr)
1137{
1138    int i;
1139
1140    if (!ac_ptr)
1141        return;
1142    for_each_node(i)
1143        kfree(ac_ptr[i]);
1144    kfree(ac_ptr);
1145}
1146
1147static void __drain_alien_cache(struct kmem_cache *cachep,
1148                struct array_cache *ac, int node)
1149{
1150    struct kmem_list3 *rl3 = cachep->nodelists[node];
1151
1152    if (ac->avail) {
1153        spin_lock(&rl3->list_lock);
1154        /*
1155         * Stuff objects into the remote nodes shared array first.
1156         * That way we could avoid the overhead of putting the objects
1157         * into the free lists and getting them back later.
1158         */
1159        if (rl3->shared)
1160            transfer_objects(rl3->shared, ac, ac->limit);
1161
1162        free_block(cachep, ac->entry, ac->avail, node);
1163        ac->avail = 0;
1164        spin_unlock(&rl3->list_lock);
1165    }
1166}
1167
1168/*
1169 * Called from cache_reap() to regularly drain alien caches round robin.
1170 */
1171static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1172{
1173    int node = __this_cpu_read(slab_reap_node);
1174
1175    if (l3->alien) {
1176        struct array_cache *ac = l3->alien[node];
1177
1178        if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1179            __drain_alien_cache(cachep, ac, node);
1180            spin_unlock_irq(&ac->lock);
1181        }
1182    }
1183}
1184
1185static void drain_alien_cache(struct kmem_cache *cachep,
1186                struct array_cache **alien)
1187{
1188    int i = 0;
1189    struct array_cache *ac;
1190    unsigned long flags;
1191
1192    for_each_online_node(i) {
1193        ac = alien[i];
1194        if (ac) {
1195            spin_lock_irqsave(&ac->lock, flags);
1196            __drain_alien_cache(cachep, ac, i);
1197            spin_unlock_irqrestore(&ac->lock, flags);
1198        }
1199    }
1200}
1201
1202static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1203{
1204    struct slab *slabp = virt_to_slab(objp);
1205    int nodeid = slabp->nodeid;
1206    struct kmem_list3 *l3;
1207    struct array_cache *alien = NULL;
1208    int node;
1209
1210    node = numa_mem_id();
1211
1212    /*
1213     * Make sure we are not freeing a object from another node to the array
1214     * cache on this cpu.
1215     */
1216    if (likely(slabp->nodeid == node))
1217        return 0;
1218
1219    l3 = cachep->nodelists[node];
1220    STATS_INC_NODEFREES(cachep);
1221    if (l3->alien && l3->alien[nodeid]) {
1222        alien = l3->alien[nodeid];
1223        spin_lock(&alien->lock);
1224        if (unlikely(alien->avail == alien->limit)) {
1225            STATS_INC_ACOVERFLOW(cachep);
1226            __drain_alien_cache(cachep, alien, nodeid);
1227        }
1228        ac_put_obj(cachep, alien, objp);
1229        spin_unlock(&alien->lock);
1230    } else {
1231        spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1232        free_block(cachep, &objp, 1, nodeid);
1233        spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1234    }
1235    return 1;
1236}
1237#endif
1238
1239/*
1240 * Allocates and initializes nodelists for a node on each slab cache, used for
1241 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1242 * will be allocated off-node since memory is not yet online for the new node.
1243 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1244 * already in use.
1245 *
1246 * Must hold slab_mutex.
1247 */
1248static int init_cache_nodelists_node(int node)
1249{
1250    struct kmem_cache *cachep;
1251    struct kmem_list3 *l3;
1252    const int memsize = sizeof(struct kmem_list3);
1253
1254    list_for_each_entry(cachep, &slab_caches, list) {
1255        /*
1256         * Set up the size64 kmemlist for cpu before we can
1257         * begin anything. Make sure some other cpu on this
1258         * node has not already allocated this
1259         */
1260        if (!cachep->nodelists[node]) {
1261            l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1262            if (!l3)
1263                return -ENOMEM;
1264            kmem_list3_init(l3);
1265            l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1266                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1267
1268            /*
1269             * The l3s don't come and go as CPUs come and
1270             * go. slab_mutex is sufficient
1271             * protection here.
1272             */
1273            cachep->nodelists[node] = l3;
1274        }
1275
1276        spin_lock_irq(&cachep->nodelists[node]->list_lock);
1277        cachep->nodelists[node]->free_limit =
1278            (1 + nr_cpus_node(node)) *
1279            cachep->batchcount + cachep->num;
1280        spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1281    }
1282    return 0;
1283}
1284
1285static void __cpuinit cpuup_canceled(long cpu)
1286{
1287    struct kmem_cache *cachep;
1288    struct kmem_list3 *l3 = NULL;
1289    int node = cpu_to_mem(cpu);
1290    const struct cpumask *mask = cpumask_of_node(node);
1291
1292    list_for_each_entry(cachep, &slab_caches, list) {
1293        struct array_cache *nc;
1294        struct array_cache *shared;
1295        struct array_cache **alien;
1296
1297        /* cpu is dead; no one can alloc from it. */
1298        nc = cachep->array[cpu];
1299        cachep->array[cpu] = NULL;
1300        l3 = cachep->nodelists[node];
1301
1302        if (!l3)
1303            goto free_array_cache;
1304
1305        spin_lock_irq(&l3->list_lock);
1306
1307        /* Free limit for this kmem_list3 */
1308        l3->free_limit -= cachep->batchcount;
1309        if (nc)
1310            free_block(cachep, nc->entry, nc->avail, node);
1311
1312        if (!cpumask_empty(mask)) {
1313            spin_unlock_irq(&l3->list_lock);
1314            goto free_array_cache;
1315        }
1316
1317        shared = l3->shared;
1318        if (shared) {
1319            free_block(cachep, shared->entry,
1320                   shared->avail, node);
1321            l3->shared = NULL;
1322        }
1323
1324        alien = l3->alien;
1325        l3->alien = NULL;
1326
1327        spin_unlock_irq(&l3->list_lock);
1328
1329        kfree(shared);
1330        if (alien) {
1331            drain_alien_cache(cachep, alien);
1332            free_alien_cache(alien);
1333        }
1334free_array_cache:
1335        kfree(nc);
1336    }
1337    /*
1338     * In the previous loop, all the objects were freed to
1339     * the respective cache's slabs, now we can go ahead and
1340     * shrink each nodelist to its limit.
1341     */
1342    list_for_each_entry(cachep, &slab_caches, list) {
1343        l3 = cachep->nodelists[node];
1344        if (!l3)
1345            continue;
1346        drain_freelist(cachep, l3, l3->free_objects);
1347    }
1348}
1349
1350static int __cpuinit cpuup_prepare(long cpu)
1351{
1352    struct kmem_cache *cachep;
1353    struct kmem_list3 *l3 = NULL;
1354    int node = cpu_to_mem(cpu);
1355    int err;
1356
1357    /*
1358     * We need to do this right in the beginning since
1359     * alloc_arraycache's are going to use this list.
1360     * kmalloc_node allows us to add the slab to the right
1361     * kmem_list3 and not this cpu's kmem_list3
1362     */
1363    err = init_cache_nodelists_node(node);
1364    if (err < 0)
1365        goto bad;
1366
1367    /*
1368     * Now we can go ahead with allocating the shared arrays and
1369     * array caches
1370     */
1371    list_for_each_entry(cachep, &slab_caches, list) {
1372        struct array_cache *nc;
1373        struct array_cache *shared = NULL;
1374        struct array_cache **alien = NULL;
1375
1376        nc = alloc_arraycache(node, cachep->limit,
1377                    cachep->batchcount, GFP_KERNEL);
1378        if (!nc)
1379            goto bad;
1380        if (cachep->shared) {
1381            shared = alloc_arraycache(node,
1382                cachep->shared * cachep->batchcount,
1383                0xbaadf00d, GFP_KERNEL);
1384            if (!shared) {
1385                kfree(nc);
1386                goto bad;
1387            }
1388        }
1389        if (use_alien_caches) {
1390            alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1391            if (!alien) {
1392                kfree(shared);
1393                kfree(nc);
1394                goto bad;
1395            }
1396        }
1397        cachep->array[cpu] = nc;
1398        l3 = cachep->nodelists[node];
1399        BUG_ON(!l3);
1400
1401        spin_lock_irq(&l3->list_lock);
1402        if (!l3->shared) {
1403            /*
1404             * We are serialised from CPU_DEAD or
1405             * CPU_UP_CANCELLED by the cpucontrol lock
1406             */
1407            l3->shared = shared;
1408            shared = NULL;
1409        }
1410#ifdef CONFIG_NUMA
1411        if (!l3->alien) {
1412            l3->alien = alien;
1413            alien = NULL;
1414        }
1415#endif
1416        spin_unlock_irq(&l3->list_lock);
1417        kfree(shared);
1418        free_alien_cache(alien);
1419        if (cachep->flags & SLAB_DEBUG_OBJECTS)
1420            slab_set_debugobj_lock_classes_node(cachep, node);
1421    }
1422    init_node_lock_keys(node);
1423
1424    return 0;
1425bad:
1426    cpuup_canceled(cpu);
1427    return -ENOMEM;
1428}
1429
1430static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1431                    unsigned long action, void *hcpu)
1432{
1433    long cpu = (long)hcpu;
1434    int err = 0;
1435
1436    switch (action) {
1437    case CPU_UP_PREPARE:
1438    case CPU_UP_PREPARE_FROZEN:
1439        mutex_lock(&slab_mutex);
1440        err = cpuup_prepare(cpu);
1441        mutex_unlock(&slab_mutex);
1442        break;
1443    case CPU_ONLINE:
1444    case CPU_ONLINE_FROZEN:
1445        start_cpu_timer(cpu);
1446        break;
1447#ifdef CONFIG_HOTPLUG_CPU
1448      case CPU_DOWN_PREPARE:
1449      case CPU_DOWN_PREPARE_FROZEN:
1450        /*
1451         * Shutdown cache reaper. Note that the slab_mutex is
1452         * held so that if cache_reap() is invoked it cannot do
1453         * anything expensive but will only modify reap_work
1454         * and reschedule the timer.
1455        */
1456        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1457        /* Now the cache_reaper is guaranteed to be not running. */
1458        per_cpu(slab_reap_work, cpu).work.func = NULL;
1459          break;
1460      case CPU_DOWN_FAILED:
1461      case CPU_DOWN_FAILED_FROZEN:
1462        start_cpu_timer(cpu);
1463          break;
1464    case CPU_DEAD:
1465    case CPU_DEAD_FROZEN:
1466        /*
1467         * Even if all the cpus of a node are down, we don't free the
1468         * kmem_list3 of any cache. This to avoid a race between
1469         * cpu_down, and a kmalloc allocation from another cpu for
1470         * memory from the node of the cpu going down. The list3
1471         * structure is usually allocated from kmem_cache_create() and
1472         * gets destroyed at kmem_cache_destroy().
1473         */
1474        /* fall through */
1475#endif
1476    case CPU_UP_CANCELED:
1477    case CPU_UP_CANCELED_FROZEN:
1478        mutex_lock(&slab_mutex);
1479        cpuup_canceled(cpu);
1480        mutex_unlock(&slab_mutex);
1481        break;
1482    }
1483    return notifier_from_errno(err);
1484}
1485
1486static struct notifier_block __cpuinitdata cpucache_notifier = {
1487    &cpuup_callback, NULL, 0
1488};
1489
1490#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1491/*
1492 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1493 * Returns -EBUSY if all objects cannot be drained so that the node is not
1494 * removed.
1495 *
1496 * Must hold slab_mutex.
1497 */
1498static int __meminit drain_cache_nodelists_node(int node)
1499{
1500    struct kmem_cache *cachep;
1501    int ret = 0;
1502
1503    list_for_each_entry(cachep, &slab_caches, list) {
1504        struct kmem_list3 *l3;
1505
1506        l3 = cachep->nodelists[node];
1507        if (!l3)
1508            continue;
1509
1510        drain_freelist(cachep, l3, l3->free_objects);
1511
1512        if (!list_empty(&l3->slabs_full) ||
1513            !list_empty(&l3->slabs_partial)) {
1514            ret = -EBUSY;
1515            break;
1516        }
1517    }
1518    return ret;
1519}
1520
1521static int __meminit slab_memory_callback(struct notifier_block *self,
1522                    unsigned long action, void *arg)
1523{
1524    struct memory_notify *mnb = arg;
1525    int ret = 0;
1526    int nid;
1527
1528    nid = mnb->status_change_nid;
1529    if (nid < 0)
1530        goto out;
1531
1532    switch (action) {
1533    case MEM_GOING_ONLINE:
1534        mutex_lock(&slab_mutex);
1535        ret = init_cache_nodelists_node(nid);
1536        mutex_unlock(&slab_mutex);
1537        break;
1538    case MEM_GOING_OFFLINE:
1539        mutex_lock(&slab_mutex);
1540        ret = drain_cache_nodelists_node(nid);
1541        mutex_unlock(&slab_mutex);
1542        break;
1543    case MEM_ONLINE:
1544    case MEM_OFFLINE:
1545    case MEM_CANCEL_ONLINE:
1546    case MEM_CANCEL_OFFLINE:
1547        break;
1548    }
1549out:
1550    return notifier_from_errno(ret);
1551}
1552#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1553
1554/*
1555 * swap the static kmem_list3 with kmalloced memory
1556 */
1557static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1558                int nodeid)
1559{
1560    struct kmem_list3 *ptr;
1561
1562    ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1563    BUG_ON(!ptr);
1564
1565    memcpy(ptr, list, sizeof(struct kmem_list3));
1566    /*
1567     * Do not assume that spinlocks can be initialized via memcpy:
1568     */
1569    spin_lock_init(&ptr->list_lock);
1570
1571    MAKE_ALL_LISTS(cachep, ptr, nodeid);
1572    cachep->nodelists[nodeid] = ptr;
1573}
1574
1575/*
1576 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1577 * size of kmem_list3.
1578 */
1579static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1580{
1581    int node;
1582
1583    for_each_online_node(node) {
1584        cachep->nodelists[node] = &initkmem_list3[index + node];
1585        cachep->nodelists[node]->next_reap = jiffies +
1586            REAPTIMEOUT_LIST3 +
1587            ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1588    }
1589}
1590
1591/*
1592 * Initialisation. Called after the page allocator have been initialised and
1593 * before smp_init().
1594 */
1595void __init kmem_cache_init(void)
1596{
1597    size_t left_over;
1598    struct cache_sizes *sizes;
1599    struct cache_names *names;
1600    int i;
1601    int order;
1602    int node;
1603
1604    if (num_possible_nodes() == 1)
1605        use_alien_caches = 0;
1606
1607    for (i = 0; i < NUM_INIT_LISTS; i++) {
1608        kmem_list3_init(&initkmem_list3[i]);
1609        if (i < MAX_NUMNODES)
1610            cache_cache.nodelists[i] = NULL;
1611    }
1612    set_up_list3s(&cache_cache, CACHE_CACHE);
1613
1614    /*
1615     * Fragmentation resistance on low memory - only use bigger
1616     * page orders on machines with more than 32MB of memory if
1617     * not overridden on the command line.
1618     */
1619    if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1620        slab_max_order = SLAB_MAX_ORDER_HI;
1621
1622    /* Bootstrap is tricky, because several objects are allocated
1623     * from caches that do not exist yet:
1624     * 1) initialize the cache_cache cache: it contains the struct
1625     * kmem_cache structures of all caches, except cache_cache itself:
1626     * cache_cache is statically allocated.
1627     * Initially an __init data area is used for the head array and the
1628     * kmem_list3 structures, it's replaced with a kmalloc allocated
1629     * array at the end of the bootstrap.
1630     * 2) Create the first kmalloc cache.
1631     * The struct kmem_cache for the new cache is allocated normally.
1632     * An __init data area is used for the head array.
1633     * 3) Create the remaining kmalloc caches, with minimally sized
1634     * head arrays.
1635     * 4) Replace the __init data head arrays for cache_cache and the first
1636     * kmalloc cache with kmalloc allocated arrays.
1637     * 5) Replace the __init data for kmem_list3 for cache_cache and
1638     * the other cache's with kmalloc allocated memory.
1639     * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1640     */
1641
1642    node = numa_mem_id();
1643
1644    /* 1) create the cache_cache */
1645    INIT_LIST_HEAD(&slab_caches);
1646    list_add(&cache_cache.list, &slab_caches);
1647    cache_cache.colour_off = cache_line_size();
1648    cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1649    cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1650
1651    /*
1652     * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1653     */
1654    cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1655                  nr_node_ids * sizeof(struct kmem_list3 *);
1656    cache_cache.object_size = cache_cache.size;
1657    cache_cache.size = ALIGN(cache_cache.size,
1658                    cache_line_size());
1659    cache_cache.reciprocal_buffer_size =
1660        reciprocal_value(cache_cache.size);
1661
1662    for (order = 0; order < MAX_ORDER; order++) {
1663        cache_estimate(order, cache_cache.size,
1664            cache_line_size(), 0, &left_over, &cache_cache.num);
1665        if (cache_cache.num)
1666            break;
1667    }
1668    BUG_ON(!cache_cache.num);
1669    cache_cache.gfporder = order;
1670    cache_cache.colour = left_over / cache_cache.colour_off;
1671    cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1672                      sizeof(struct slab), cache_line_size());
1673
1674    /* 2+3) create the kmalloc caches */
1675    sizes = malloc_sizes;
1676    names = cache_names;
1677
1678    /*
1679     * Initialize the caches that provide memory for the array cache and the
1680     * kmem_list3 structures first. Without this, further allocations will
1681     * bug.
1682     */
1683
1684    sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
1685                    sizes[INDEX_AC].cs_size,
1686                    ARCH_KMALLOC_MINALIGN,
1687                    ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1688                    NULL);
1689
1690    if (INDEX_AC != INDEX_L3) {
1691        sizes[INDEX_L3].cs_cachep =
1692            __kmem_cache_create(names[INDEX_L3].name,
1693                sizes[INDEX_L3].cs_size,
1694                ARCH_KMALLOC_MINALIGN,
1695                ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1696                NULL);
1697    }
1698
1699    slab_early_init = 0;
1700
1701    while (sizes->cs_size != ULONG_MAX) {
1702        /*
1703         * For performance, all the general caches are L1 aligned.
1704         * This should be particularly beneficial on SMP boxes, as it
1705         * eliminates "false sharing".
1706         * Note for systems short on memory removing the alignment will
1707         * allow tighter packing of the smaller caches.
1708         */
1709        if (!sizes->cs_cachep) {
1710            sizes->cs_cachep = __kmem_cache_create(names->name,
1711                    sizes->cs_size,
1712                    ARCH_KMALLOC_MINALIGN,
1713                    ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1714                    NULL);
1715        }
1716#ifdef CONFIG_ZONE_DMA
1717        sizes->cs_dmacachep = __kmem_cache_create(
1718                    names->name_dma,
1719                    sizes->cs_size,
1720                    ARCH_KMALLOC_MINALIGN,
1721                    ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1722                        SLAB_PANIC,
1723                    NULL);
1724#endif
1725        sizes++;
1726        names++;
1727    }
1728    /* 4) Replace the bootstrap head arrays */
1729    {
1730        struct array_cache *ptr;
1731
1732        ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1733
1734        BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1735        memcpy(ptr, cpu_cache_get(&cache_cache),
1736               sizeof(struct arraycache_init));
1737        /*
1738         * Do not assume that spinlocks can be initialized via memcpy:
1739         */
1740        spin_lock_init(&ptr->lock);
1741
1742        cache_cache.array[smp_processor_id()] = ptr;
1743
1744        ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1745
1746        BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1747               != &initarray_generic.cache);
1748        memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1749               sizeof(struct arraycache_init));
1750        /*
1751         * Do not assume that spinlocks can be initialized via memcpy:
1752         */
1753        spin_lock_init(&ptr->lock);
1754
1755        malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1756            ptr;
1757    }
1758    /* 5) Replace the bootstrap kmem_list3's */
1759    {
1760        int nid;
1761
1762        for_each_online_node(nid) {
1763            init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1764
1765            init_list(malloc_sizes[INDEX_AC].cs_cachep,
1766                  &initkmem_list3[SIZE_AC + nid], nid);
1767
1768            if (INDEX_AC != INDEX_L3) {
1769                init_list(malloc_sizes[INDEX_L3].cs_cachep,
1770                      &initkmem_list3[SIZE_L3 + nid], nid);
1771            }
1772        }
1773    }
1774
1775    slab_state = UP;
1776}
1777
1778void __init kmem_cache_init_late(void)
1779{
1780    struct kmem_cache *cachep;
1781
1782    slab_state = UP;
1783
1784    /* Annotate slab for lockdep -- annotate the malloc caches */
1785    init_lock_keys();
1786
1787    /* 6) resize the head arrays to their final sizes */
1788    mutex_lock(&slab_mutex);
1789    list_for_each_entry(cachep, &slab_caches, list)
1790        if (enable_cpucache(cachep, GFP_NOWAIT))
1791            BUG();
1792    mutex_unlock(&slab_mutex);
1793
1794    /* Done! */
1795    slab_state = FULL;
1796
1797    /*
1798     * Register a cpu startup notifier callback that initializes
1799     * cpu_cache_get for all new cpus
1800     */
1801    register_cpu_notifier(&cpucache_notifier);
1802
1803#ifdef CONFIG_NUMA
1804    /*
1805     * Register a memory hotplug callback that initializes and frees
1806     * nodelists.
1807     */
1808    hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1809#endif
1810
1811    /*
1812     * The reap timers are started later, with a module init call: That part
1813     * of the kernel is not yet operational.
1814     */
1815}
1816
1817static int __init cpucache_init(void)
1818{
1819    int cpu;
1820
1821    /*
1822     * Register the timers that return unneeded pages to the page allocator
1823     */
1824    for_each_online_cpu(cpu)
1825        start_cpu_timer(cpu);
1826
1827    /* Done! */
1828    slab_state = FULL;
1829    return 0;
1830}
1831__initcall(cpucache_init);
1832
1833static noinline void
1834slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1835{
1836    struct kmem_list3 *l3;
1837    struct slab *slabp;
1838    unsigned long flags;
1839    int node;
1840
1841    printk(KERN_WARNING
1842        "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1843        nodeid, gfpflags);
1844    printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1845        cachep->name, cachep->size, cachep->gfporder);
1846
1847    for_each_online_node(node) {
1848        unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1849        unsigned long active_slabs = 0, num_slabs = 0;
1850
1851        l3 = cachep->nodelists[node];
1852        if (!l3)
1853            continue;
1854
1855        spin_lock_irqsave(&l3->list_lock, flags);
1856        list_for_each_entry(slabp, &l3->slabs_full, list) {
1857            active_objs += cachep->num;
1858            active_slabs++;
1859        }
1860        list_for_each_entry(slabp, &l3->slabs_partial, list) {
1861            active_objs += slabp->inuse;
1862            active_slabs++;
1863        }
1864        list_for_each_entry(slabp, &l3->slabs_free, list)
1865            num_slabs++;
1866
1867        free_objects += l3->free_objects;
1868        spin_unlock_irqrestore(&l3->list_lock, flags);
1869
1870        num_slabs += active_slabs;
1871        num_objs = num_slabs * cachep->num;
1872        printk(KERN_WARNING
1873            " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1874            node, active_slabs, num_slabs, active_objs, num_objs,
1875            free_objects);
1876    }
1877}
1878
1879/*
1880 * Interface to system's page allocator. No need to hold the cache-lock.
1881 *
1882 * If we requested dmaable memory, we will get it. Even if we
1883 * did not request dmaable memory, we might get it, but that
1884 * would be relatively rare and ignorable.
1885 */
1886static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1887{
1888    struct page *page;
1889    int nr_pages;
1890    int i;
1891
1892#ifndef CONFIG_MMU
1893    /*
1894     * Nommu uses slab's for process anonymous memory allocations, and thus
1895     * requires __GFP_COMP to properly refcount higher order allocations
1896     */
1897    flags |= __GFP_COMP;
1898#endif
1899
1900    flags |= cachep->allocflags;
1901    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1902        flags |= __GFP_RECLAIMABLE;
1903
1904    page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1905    if (!page) {
1906        if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1907            slab_out_of_memory(cachep, flags, nodeid);
1908        return NULL;
1909    }
1910
1911    /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1912    if (unlikely(page->pfmemalloc))
1913        pfmemalloc_active = true;
1914
1915    nr_pages = (1 << cachep->gfporder);
1916    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1917        add_zone_page_state(page_zone(page),
1918            NR_SLAB_RECLAIMABLE, nr_pages);
1919    else
1920        add_zone_page_state(page_zone(page),
1921            NR_SLAB_UNRECLAIMABLE, nr_pages);
1922    for (i = 0; i < nr_pages; i++) {
1923        __SetPageSlab(page + i);
1924
1925        if (page->pfmemalloc)
1926            SetPageSlabPfmemalloc(page + i);
1927    }
1928
1929    if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1930        kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1931
1932        if (cachep->ctor)
1933            kmemcheck_mark_uninitialized_pages(page, nr_pages);
1934        else
1935            kmemcheck_mark_unallocated_pages(page, nr_pages);
1936    }
1937
1938    return page_address(page);
1939}
1940
1941/*
1942 * Interface to system's page release.
1943 */
1944static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1945{
1946    unsigned long i = (1 << cachep->gfporder);
1947    struct page *page = virt_to_page(addr);
1948    const unsigned long nr_freed = i;
1949
1950    kmemcheck_free_shadow(page, cachep->gfporder);
1951
1952    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1953        sub_zone_page_state(page_zone(page),
1954                NR_SLAB_RECLAIMABLE, nr_freed);
1955    else
1956        sub_zone_page_state(page_zone(page),
1957                NR_SLAB_UNRECLAIMABLE, nr_freed);
1958    while (i--) {
1959        BUG_ON(!PageSlab(page));
1960        __ClearPageSlabPfmemalloc(page);
1961        __ClearPageSlab(page);
1962        page++;
1963    }
1964    if (current->reclaim_state)
1965        current->reclaim_state->reclaimed_slab += nr_freed;
1966    free_pages((unsigned long)addr, cachep->gfporder);
1967}
1968
1969static void kmem_rcu_free(struct rcu_head *head)
1970{
1971    struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1972    struct kmem_cache *cachep = slab_rcu->cachep;
1973
1974    kmem_freepages(cachep, slab_rcu->addr);
1975    if (OFF_SLAB(cachep))
1976        kmem_cache_free(cachep->slabp_cache, slab_rcu);
1977}
1978
1979#if DEBUG
1980
1981#ifdef CONFIG_DEBUG_PAGEALLOC
1982static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1983                unsigned long caller)
1984{
1985    int size = cachep->object_size;
1986
1987    addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1988
1989    if (size < 5 * sizeof(unsigned long))
1990        return;
1991
1992    *addr++ = 0x12345678;
1993    *addr++ = caller;
1994    *addr++ = smp_processor_id();
1995    size -= 3 * sizeof(unsigned long);
1996    {
1997        unsigned long *sptr = &caller;
1998        unsigned long svalue;
1999
2000        while (!kstack_end(sptr)) {
2001            svalue = *sptr++;
2002            if (kernel_text_address(svalue)) {
2003                *addr++ = svalue;
2004                size -= sizeof(unsigned long);
2005                if (size <= sizeof(unsigned long))
2006                    break;
2007            }
2008        }
2009
2010    }
2011    *addr++ = 0x87654321;
2012}
2013#endif
2014
2015static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
2016{
2017    int size = cachep->object_size;
2018    addr = &((char *)addr)[obj_offset(cachep)];
2019
2020    memset(addr, val, size);
2021    *(unsigned char *)(addr + size - 1) = POISON_END;
2022}
2023
2024static void dump_line(char *data, int offset, int limit)
2025{
2026    int i;
2027    unsigned char error = 0;
2028    int bad_count = 0;
2029
2030    printk(KERN_ERR "%03x: ", offset);
2031    for (i = 0; i < limit; i++) {
2032        if (data[offset + i] != POISON_FREE) {
2033            error = data[offset + i];
2034            bad_count++;
2035        }
2036    }
2037    print_hex_dump(KERN_CONT, "", 0, 16, 1,
2038            &data[offset], limit, 1);
2039
2040    if (bad_count == 1) {
2041        error ^= POISON_FREE;
2042        if (!(error & (error - 1))) {
2043            printk(KERN_ERR "Single bit error detected. Probably "
2044                    "bad RAM.\n");
2045#ifdef CONFIG_X86
2046            printk(KERN_ERR "Run memtest86+ or a similar memory "
2047                    "test tool.\n");
2048#else
2049            printk(KERN_ERR "Run a memory test tool.\n");
2050#endif
2051        }
2052    }
2053}
2054#endif
2055
2056#if DEBUG
2057
2058static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2059{
2060    int i, size;
2061    char *realobj;
2062
2063    if (cachep->flags & SLAB_RED_ZONE) {
2064        printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2065            *dbg_redzone1(cachep, objp),
2066            *dbg_redzone2(cachep, objp));
2067    }
2068
2069    if (cachep->flags & SLAB_STORE_USER) {
2070        printk(KERN_ERR "Last user: [<%p>]",
2071            *dbg_userword(cachep, objp));
2072        print_symbol("(%s)",
2073                (unsigned long)*dbg_userword(cachep, objp));
2074        printk("\n");
2075    }
2076    realobj = (char *)objp + obj_offset(cachep);
2077    size = cachep->object_size;
2078    for (i = 0; i < size && lines; i += 16, lines--) {
2079        int limit;
2080        limit = 16;
2081        if (i + limit > size)
2082            limit = size - i;
2083        dump_line(realobj, i, limit);
2084    }
2085}
2086
2087static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2088{
2089    char *realobj;
2090    int size, i;
2091    int lines = 0;
2092
2093    realobj = (char *)objp + obj_offset(cachep);
2094    size = cachep->object_size;
2095
2096    for (i = 0; i < size; i++) {
2097        char exp = POISON_FREE;
2098        if (i == size - 1)
2099            exp = POISON_END;
2100        if (realobj[i] != exp) {
2101            int limit;
2102            /* Mismatch ! */
2103            /* Print header */
2104            if (lines == 0) {
2105                printk(KERN_ERR
2106                    "Slab corruption (%s): %s start=%p, len=%d\n",
2107                    print_tainted(), cachep->name, realobj, size);
2108                print_objinfo(cachep, objp, 0);
2109            }
2110            /* Hexdump the affected line */
2111            i = (i / 16) * 16;
2112            limit = 16;
2113            if (i + limit > size)
2114                limit = size - i;
2115            dump_line(realobj, i, limit);
2116            i += 16;
2117            lines++;
2118            /* Limit to 5 lines */
2119            if (lines > 5)
2120                break;
2121        }
2122    }
2123    if (lines != 0) {
2124        /* Print some data about the neighboring objects, if they
2125         * exist:
2126         */
2127        struct slab *slabp = virt_to_slab(objp);
2128        unsigned int objnr;
2129
2130        objnr = obj_to_index(cachep, slabp, objp);
2131        if (objnr) {
2132            objp = index_to_obj(cachep, slabp, objnr - 1);
2133            realobj = (char *)objp + obj_offset(cachep);
2134            printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2135                   realobj, size);
2136            print_objinfo(cachep, objp, 2);
2137        }
2138        if (objnr + 1 < cachep->num) {
2139            objp = index_to_obj(cachep, slabp, objnr + 1);
2140            realobj = (char *)objp + obj_offset(cachep);
2141            printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2142                   realobj, size);
2143            print_objinfo(cachep, objp, 2);
2144        }
2145    }
2146}
2147#endif
2148
2149#if DEBUG
2150static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2151{
2152    int i;
2153    for (i = 0; i < cachep->num; i++) {
2154        void *objp = index_to_obj(cachep, slabp, i);
2155
2156        if (cachep->flags & SLAB_POISON) {
2157#ifdef CONFIG_DEBUG_PAGEALLOC
2158            if (cachep->size % PAGE_SIZE == 0 &&
2159                    OFF_SLAB(cachep))
2160                kernel_map_pages(virt_to_page(objp),
2161                    cachep->size / PAGE_SIZE, 1);
2162            else
2163                check_poison_obj(cachep, objp);
2164#else
2165            check_poison_obj(cachep, objp);
2166#endif
2167        }
2168        if (cachep->flags & SLAB_RED_ZONE) {
2169            if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2170                slab_error(cachep, "start of a freed object "
2171                       "was overwritten");
2172            if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2173                slab_error(cachep, "end of a freed object "
2174                       "was overwritten");
2175        }
2176    }
2177}
2178#else
2179static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2180{
2181}
2182#endif
2183
2184/**
2185 * slab_destroy - destroy and release all objects in a slab
2186 * @cachep: cache pointer being destroyed
2187 * @slabp: slab pointer being destroyed
2188 *
2189 * Destroy all the objs in a slab, and release the mem back to the system.
2190 * Before calling the slab must have been unlinked from the cache. The
2191 * cache-lock is not held/needed.
2192 */
2193static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2194{
2195    void *addr = slabp->s_mem - slabp->colouroff;
2196
2197    slab_destroy_debugcheck(cachep, slabp);
2198    if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2199        struct slab_rcu *slab_rcu;
2200
2201        slab_rcu = (struct slab_rcu *)slabp;
2202        slab_rcu->cachep = cachep;
2203        slab_rcu->addr = addr;
2204        call_rcu(&slab_rcu->head, kmem_rcu_free);
2205    } else {
2206        kmem_freepages(cachep, addr);
2207        if (OFF_SLAB(cachep))
2208            kmem_cache_free(cachep->slabp_cache, slabp);
2209    }
2210}
2211
2212static void __kmem_cache_destroy(struct kmem_cache *cachep)
2213{
2214    int i;
2215    struct kmem_list3 *l3;
2216
2217    for_each_online_cpu(i)
2218        kfree(cachep->array[i]);
2219
2220    /* NUMA: free the list3 structures */
2221    for_each_online_node(i) {
2222        l3 = cachep->nodelists[i];
2223        if (l3) {
2224            kfree(l3->shared);
2225            free_alien_cache(l3->alien);
2226            kfree(l3);
2227        }
2228    }
2229    kmem_cache_free(&cache_cache, cachep);
2230}
2231
2232
2233/**
2234 * calculate_slab_order - calculate size (page order) of slabs
2235 * @cachep: pointer to the cache that is being created
2236 * @size: size of objects to be created in this cache.
2237 * @align: required alignment for the objects.
2238 * @flags: slab allocation flags
2239 *
2240 * Also calculates the number of objects per slab.
2241 *
2242 * This could be made much more intelligent. For now, try to avoid using
2243 * high order pages for slabs. When the gfp() functions are more friendly
2244 * towards high-order requests, this should be changed.
2245 */
2246static size_t calculate_slab_order(struct kmem_cache *cachep,
2247            size_t size, size_t align, unsigned long flags)
2248{
2249    unsigned long offslab_limit;
2250    size_t left_over = 0;
2251    int gfporder;
2252
2253    for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2254        unsigned int num;
2255        size_t remainder;
2256
2257        cache_estimate(gfporder, size, align, flags, &remainder, &num);
2258        if (!num)
2259            continue;
2260
2261        if (flags & CFLGS_OFF_SLAB) {
2262            /*
2263             * Max number of objs-per-slab for caches which
2264             * use off-slab slabs. Needed to avoid a possible
2265             * looping condition in cache_grow().
2266             */
2267            offslab_limit = size - sizeof(struct slab);
2268            offslab_limit /= sizeof(kmem_bufctl_t);
2269
2270             if (num > offslab_limit)
2271                break;
2272        }
2273
2274        /* Found something acceptable - save it away */
2275        cachep->num = num;
2276        cachep->gfporder = gfporder;
2277        left_over = remainder;
2278
2279        /*
2280         * A VFS-reclaimable slab tends to have most allocations
2281         * as GFP_NOFS and we really don't want to have to be allocating
2282         * higher-order pages when we are unable to shrink dcache.
2283         */
2284        if (flags & SLAB_RECLAIM_ACCOUNT)
2285            break;
2286
2287        /*
2288         * Large number of objects is good, but very large slabs are
2289         * currently bad for the gfp()s.
2290         */
2291        if (gfporder >= slab_max_order)
2292            break;
2293
2294        /*
2295         * Acceptable internal fragmentation?
2296         */
2297        if (left_over * 8 <= (PAGE_SIZE << gfporder))
2298            break;
2299    }
2300    return left_over;
2301}
2302
2303static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2304{
2305    if (slab_state >= FULL)
2306        return enable_cpucache(cachep, gfp);
2307
2308    if (slab_state == DOWN) {
2309        /*
2310         * Note: the first kmem_cache_create must create the cache
2311         * that's used by kmalloc(24), otherwise the creation of
2312         * further caches will BUG().
2313         */
2314        cachep->array[smp_processor_id()] = &initarray_generic.cache;
2315
2316        /*
2317         * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2318         * the first cache, then we need to set up all its list3s,
2319         * otherwise the creation of further caches will BUG().
2320         */
2321        set_up_list3s(cachep, SIZE_AC);
2322        if (INDEX_AC == INDEX_L3)
2323            slab_state = PARTIAL_L3;
2324        else
2325            slab_state = PARTIAL_ARRAYCACHE;
2326    } else {
2327        cachep->array[smp_processor_id()] =
2328            kmalloc(sizeof(struct arraycache_init), gfp);
2329
2330        if (slab_state == PARTIAL_ARRAYCACHE) {
2331            set_up_list3s(cachep, SIZE_L3);
2332            slab_state = PARTIAL_L3;
2333        } else {
2334            int node;
2335            for_each_online_node(node) {
2336                cachep->nodelists[node] =
2337                    kmalloc_node(sizeof(struct kmem_list3),
2338                        gfp, node);
2339                BUG_ON(!cachep->nodelists[node]);
2340                kmem_list3_init(cachep->nodelists[node]);
2341            }
2342        }
2343    }
2344    cachep->nodelists[numa_mem_id()]->next_reap =
2345            jiffies + REAPTIMEOUT_LIST3 +
2346            ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2347
2348    cpu_cache_get(cachep)->avail = 0;
2349    cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2350    cpu_cache_get(cachep)->batchcount = 1;
2351    cpu_cache_get(cachep)->touched = 0;
2352    cachep->batchcount = 1;
2353    cachep->limit = BOOT_CPUCACHE_ENTRIES;
2354    return 0;
2355}
2356
2357/**
2358 * __kmem_cache_create - Create a cache.
2359 * @name: A string which is used in /proc/slabinfo to identify this cache.
2360 * @size: The size of objects to be created in this cache.
2361 * @align: The required alignment for the objects.
2362 * @flags: SLAB flags
2363 * @ctor: A constructor for the objects.
2364 *
2365 * Returns a ptr to the cache on success, NULL on failure.
2366 * Cannot be called within a int, but can be interrupted.
2367 * The @ctor is run when new pages are allocated by the cache.
2368 *
2369 * @name must be valid until the cache is destroyed. This implies that
2370 * the module calling this has to destroy the cache before getting unloaded.
2371 *
2372 * The flags are
2373 *
2374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2375 * to catch references to uninitialised memory.
2376 *
2377 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2378 * for buffer overruns.
2379 *
2380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2381 * cacheline. This can be beneficial if you're counting cycles as closely
2382 * as davem.
2383 */
2384struct kmem_cache *
2385__kmem_cache_create (const char *name, size_t size, size_t align,
2386    unsigned long flags, void (*ctor)(void *))
2387{
2388    size_t left_over, slab_size, ralign;
2389    struct kmem_cache *cachep = NULL;
2390    gfp_t gfp;
2391
2392#if DEBUG
2393#if FORCED_DEBUG
2394    /*
2395     * Enable redzoning and last user accounting, except for caches with
2396     * large objects, if the increased size would increase the object size
2397     * above the next power of two: caches with object sizes just above a
2398     * power of two have a significant amount of internal fragmentation.
2399     */
2400    if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2401                        2 * sizeof(unsigned long long)))
2402        flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2403    if (!(flags & SLAB_DESTROY_BY_RCU))
2404        flags |= SLAB_POISON;
2405#endif
2406    if (flags & SLAB_DESTROY_BY_RCU)
2407        BUG_ON(flags & SLAB_POISON);
2408#endif
2409    /*
2410     * Always checks flags, a caller might be expecting debug support which
2411     * isn't available.
2412     */
2413    BUG_ON(flags & ~CREATE_MASK);
2414
2415    /*
2416     * Check that size is in terms of words. This is needed to avoid
2417     * unaligned accesses for some archs when redzoning is used, and makes
2418     * sure any on-slab bufctl's are also correctly aligned.
2419     */
2420    if (size & (BYTES_PER_WORD - 1)) {
2421        size += (BYTES_PER_WORD - 1);
2422        size &= ~(BYTES_PER_WORD - 1);
2423    }
2424
2425    /* calculate the final buffer alignment: */
2426
2427    /* 1) arch recommendation: can be overridden for debug */
2428    if (flags & SLAB_HWCACHE_ALIGN) {
2429        /*
2430         * Default alignment: as specified by the arch code. Except if
2431         * an object is really small, then squeeze multiple objects into
2432         * one cacheline.
2433         */
2434        ralign = cache_line_size();
2435        while (size <= ralign / 2)
2436            ralign /= 2;
2437    } else {
2438        ralign = BYTES_PER_WORD;
2439    }
2440
2441    /*
2442     * Redzoning and user store require word alignment or possibly larger.
2443     * Note this will be overridden by architecture or caller mandated
2444     * alignment if either is greater than BYTES_PER_WORD.
2445     */
2446    if (flags & SLAB_STORE_USER)
2447        ralign = BYTES_PER_WORD;
2448
2449    if (flags & SLAB_RED_ZONE) {
2450        ralign = REDZONE_ALIGN;
2451        /* If redzoning, ensure that the second redzone is suitably
2452         * aligned, by adjusting the object size accordingly. */
2453        size += REDZONE_ALIGN - 1;
2454        size &= ~(REDZONE_ALIGN - 1);
2455    }
2456
2457    /* 2) arch mandated alignment */
2458    if (ralign < ARCH_SLAB_MINALIGN) {
2459        ralign = ARCH_SLAB_MINALIGN;
2460    }
2461    /* 3) caller mandated alignment */
2462    if (ralign < align) {
2463        ralign = align;
2464    }
2465    /* disable debug if necessary */
2466    if (ralign > __alignof__(unsigned long long))
2467        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2468    /*
2469     * 4) Store it.
2470     */
2471    align = ralign;
2472
2473    if (slab_is_available())
2474        gfp = GFP_KERNEL;
2475    else
2476        gfp = GFP_NOWAIT;
2477
2478    /* Get cache's description obj. */
2479    cachep = kmem_cache_zalloc(&cache_cache, gfp);
2480    if (!cachep)
2481        return NULL;
2482
2483    cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2484    cachep->object_size = size;
2485    cachep->align = align;
2486#if DEBUG
2487
2488    /*
2489     * Both debugging options require word-alignment which is calculated
2490     * into align above.
2491     */
2492    if (flags & SLAB_RED_ZONE) {
2493        /* add space for red zone words */
2494        cachep->obj_offset += sizeof(unsigned long long);
2495        size += 2 * sizeof(unsigned long long);
2496    }
2497    if (flags & SLAB_STORE_USER) {
2498        /* user store requires one word storage behind the end of
2499         * the real object. But if the second red zone needs to be
2500         * aligned to 64 bits, we must allow that much space.
2501         */
2502        if (flags & SLAB_RED_ZONE)
2503            size += REDZONE_ALIGN;
2504        else
2505            size += BYTES_PER_WORD;
2506    }
2507#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2508    if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2509        && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2510        cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2511        size = PAGE_SIZE;
2512    }
2513#endif
2514#endif
2515
2516    /*
2517     * Determine if the slab management is 'on' or 'off' slab.
2518     * (bootstrapping cannot cope with offslab caches so don't do
2519     * it too early on. Always use on-slab management when
2520     * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2521     */
2522    if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2523        !(flags & SLAB_NOLEAKTRACE))
2524        /*
2525         * Size is large, assume best to place the slab management obj
2526         * off-slab (should allow better packing of objs).
2527         */
2528        flags |= CFLGS_OFF_SLAB;
2529
2530    size = ALIGN(size, align);
2531
2532    left_over = calculate_slab_order(cachep, size, align, flags);
2533
2534    if (!cachep->num) {
2535        printk(KERN_ERR
2536               "kmem_cache_create: couldn't create cache %s.\n", name);
2537        kmem_cache_free(&cache_cache, cachep);
2538        return NULL;
2539    }
2540    slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2541              + sizeof(struct slab), align);
2542
2543    /*
2544     * If the slab has been placed off-slab, and we have enough space then
2545     * move it on-slab. This is at the expense of any extra colouring.
2546     */
2547    if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2548        flags &= ~CFLGS_OFF_SLAB;
2549        left_over -= slab_size;
2550    }
2551
2552    if (flags & CFLGS_OFF_SLAB) {
2553        /* really off slab. No need for manual alignment */
2554        slab_size =
2555            cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2556
2557#ifdef CONFIG_PAGE_POISONING
2558        /* If we're going to use the generic kernel_map_pages()
2559         * poisoning, then it's going to smash the contents of
2560         * the redzone and userword anyhow, so switch them off.
2561         */
2562        if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2563            flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2564#endif
2565    }
2566
2567    cachep->colour_off = cache_line_size();
2568    /* Offset must be a multiple of the alignment. */
2569    if (cachep->colour_off < align)
2570        cachep->colour_off = align;
2571    cachep->colour = left_over / cachep->colour_off;
2572    cachep->slab_size = slab_size;
2573    cachep->flags = flags;
2574    cachep->allocflags = 0;
2575    if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2576        cachep->allocflags |= GFP_DMA;
2577    cachep->size = size;
2578    cachep->reciprocal_buffer_size = reciprocal_value(size);
2579
2580    if (flags & CFLGS_OFF_SLAB) {
2581        cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2582        /*
2583         * This is a possibility for one of the malloc_sizes caches.
2584         * But since we go off slab only for object size greater than
2585         * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2586         * this should not happen at all.
2587         * But leave a BUG_ON for some lucky dude.
2588         */
2589        BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2590    }
2591    cachep->ctor = ctor;
2592    cachep->name = name;
2593
2594    if (setup_cpu_cache(cachep, gfp)) {
2595        __kmem_cache_destroy(cachep);
2596        return NULL;
2597    }
2598
2599    if (flags & SLAB_DEBUG_OBJECTS) {
2600        /*
2601         * Would deadlock through slab_destroy()->call_rcu()->
2602         * debug_object_activate()->kmem_cache_alloc().
2603         */
2604        WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2605
2606        slab_set_debugobj_lock_classes(cachep);
2607    }
2608
2609    /* cache setup completed, link it into the list */
2610    list_add(&cachep->list, &slab_caches);
2611    return cachep;
2612}
2613
2614#if DEBUG
2615static void check_irq_off(void)
2616{
2617    BUG_ON(!irqs_disabled());
2618}
2619
2620static void check_irq_on(void)
2621{
2622    BUG_ON(irqs_disabled());
2623}
2624
2625static void check_spinlock_acquired(struct kmem_cache *cachep)
2626{
2627#ifdef CONFIG_SMP
2628    check_irq_off();
2629    assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2630#endif
2631}
2632
2633static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2634{
2635#ifdef CONFIG_SMP
2636    check_irq_off();
2637    assert_spin_locked(&cachep->nodelists[node]->list_lock);
2638#endif
2639}
2640
2641#else
2642#define check_irq_off() do { } while(0)
2643#define check_irq_on() do { } while(0)
2644#define check_spinlock_acquired(x) do { } while(0)
2645#define check_spinlock_acquired_node(x, y) do { } while(0)
2646#endif
2647
2648static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2649            struct array_cache *ac,
2650            int force, int node);
2651
2652static void do_drain(void *arg)
2653{
2654    struct kmem_cache *cachep = arg;
2655    struct array_cache *ac;
2656    int node = numa_mem_id();
2657
2658    check_irq_off();
2659    ac = cpu_cache_get(cachep);
2660    spin_lock(&cachep->nodelists[node]->list_lock);
2661    free_block(cachep, ac->entry, ac->avail, node);
2662    spin_unlock(&cachep->nodelists[node]->list_lock);
2663    ac->avail = 0;
2664}
2665
2666static void drain_cpu_caches(struct kmem_cache *cachep)
2667{
2668    struct kmem_list3 *l3;
2669    int node;
2670
2671    on_each_cpu(do_drain, cachep, 1);
2672    check_irq_on();
2673    for_each_online_node(node) {
2674        l3 = cachep->nodelists[node];
2675        if (l3 && l3->alien)
2676            drain_alien_cache(cachep, l3->alien);
2677    }
2678
2679    for_each_online_node(node) {
2680        l3 = cachep->nodelists[node];
2681        if (l3)
2682            drain_array(cachep, l3, l3->shared, 1, node);
2683    }
2684}
2685
2686/*
2687 * Remove slabs from the list of free slabs.
2688 * Specify the number of slabs to drain in tofree.
2689 *
2690 * Returns the actual number of slabs released.
2691 */
2692static int drain_freelist(struct kmem_cache *cache,
2693            struct kmem_list3 *l3, int tofree)
2694{
2695    struct list_head *p;
2696    int nr_freed;
2697    struct slab *slabp;
2698
2699    nr_freed = 0;
2700    while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2701
2702        spin_lock_irq(&l3->list_lock);
2703        p = l3->slabs_free.prev;
2704        if (p == &l3->slabs_free) {
2705            spin_unlock_irq(&l3->list_lock);
2706            goto out;
2707        }
2708
2709        slabp = list_entry(p, struct slab, list);
2710#if DEBUG
2711        BUG_ON(slabp->inuse);
2712#endif
2713        list_del(&slabp->list);
2714        /*
2715         * Safe to drop the lock. The slab is no longer linked
2716         * to the cache.
2717         */
2718        l3->free_objects -= cache->num;
2719        spin_unlock_irq(&l3->list_lock);
2720        slab_destroy(cache, slabp);
2721        nr_freed++;
2722    }
2723out:
2724    return nr_freed;
2725}
2726
2727/* Called with slab_mutex held to protect against cpu hotplug */
2728static int __cache_shrink(struct kmem_cache *cachep)
2729{
2730    int ret = 0, i = 0;
2731    struct kmem_list3 *l3;
2732
2733    drain_cpu_caches(cachep);
2734
2735    check_irq_on();
2736    for_each_online_node(i) {
2737        l3 = cachep->nodelists[i];
2738        if (!l3)
2739            continue;
2740
2741        drain_freelist(cachep, l3, l3->free_objects);
2742
2743        ret += !list_empty(&l3->slabs_full) ||
2744            !list_empty(&l3->slabs_partial);
2745    }
2746    return (ret ? 1 : 0);
2747}
2748
2749/**
2750 * kmem_cache_shrink - Shrink a cache.
2751 * @cachep: The cache to shrink.
2752 *
2753 * Releases as many slabs as possible for a cache.
2754 * To help debugging, a zero exit status indicates all slabs were released.
2755 */
2756int kmem_cache_shrink(struct kmem_cache *cachep)
2757{
2758    int ret;
2759    BUG_ON(!cachep || in_interrupt());
2760
2761    get_online_cpus();
2762    mutex_lock(&slab_mutex);
2763    ret = __cache_shrink(cachep);
2764    mutex_unlock(&slab_mutex);
2765    put_online_cpus();
2766    return ret;
2767}
2768EXPORT_SYMBOL(kmem_cache_shrink);
2769
2770/**
2771 * kmem_cache_destroy - delete a cache
2772 * @cachep: the cache to destroy
2773 *
2774 * Remove a &struct kmem_cache object from the slab cache.
2775 *
2776 * It is expected this function will be called by a module when it is
2777 * unloaded. This will remove the cache completely, and avoid a duplicate
2778 * cache being allocated each time a module is loaded and unloaded, if the
2779 * module doesn't have persistent in-kernel storage across loads and unloads.
2780 *
2781 * The cache must be empty before calling this function.
2782 *
2783 * The caller must guarantee that no one will allocate memory from the cache
2784 * during the kmem_cache_destroy().
2785 */
2786void kmem_cache_destroy(struct kmem_cache *cachep)
2787{
2788    BUG_ON(!cachep || in_interrupt());
2789
2790    /* Find the cache in the chain of caches. */
2791    get_online_cpus();
2792    mutex_lock(&slab_mutex);
2793    /*
2794     * the chain is never empty, cache_cache is never destroyed
2795     */
2796    list_del(&cachep->list);
2797    if (__cache_shrink(cachep)) {
2798        slab_error(cachep, "Can't free all objects");
2799        list_add(&cachep->list, &slab_caches);
2800        mutex_unlock(&slab_mutex);
2801        put_online_cpus();
2802        return;
2803    }
2804
2805    if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2806        rcu_barrier();
2807
2808    __kmem_cache_destroy(cachep);
2809    mutex_unlock(&slab_mutex);
2810    put_online_cpus();
2811}
2812EXPORT_SYMBOL(kmem_cache_destroy);
2813
2814/*
2815 * Get the memory for a slab management obj.
2816 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2817 * always come from malloc_sizes caches. The slab descriptor cannot
2818 * come from the same cache which is getting created because,
2819 * when we are searching for an appropriate cache for these
2820 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2821 * If we are creating a malloc_sizes cache here it would not be visible to
2822 * kmem_find_general_cachep till the initialization is complete.
2823 * Hence we cannot have slabp_cache same as the original cache.
2824 */
2825static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2826                   int colour_off, gfp_t local_flags,
2827                   int nodeid)
2828{
2829    struct slab *slabp;
2830
2831    if (OFF_SLAB(cachep)) {
2832        /* Slab management obj is off-slab. */
2833        slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2834                          local_flags, nodeid);
2835        /*
2836         * If the first object in the slab is leaked (it's allocated
2837         * but no one has a reference to it), we want to make sure
2838         * kmemleak does not treat the ->s_mem pointer as a reference
2839         * to the object. Otherwise we will not report the leak.
2840         */
2841        kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2842                   local_flags);
2843        if (!slabp)
2844            return NULL;
2845    } else {
2846        slabp = objp + colour_off;
2847        colour_off += cachep->slab_size;
2848    }
2849    slabp->inuse = 0;
2850    slabp->colouroff = colour_off;
2851    slabp->s_mem = objp + colour_off;
2852    slabp->nodeid = nodeid;
2853    slabp->free = 0;
2854    return slabp;
2855}
2856
2857static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2858{
2859    return (kmem_bufctl_t *) (slabp + 1);
2860}
2861
2862static void cache_init_objs(struct kmem_cache *cachep,
2863                struct slab *slabp)
2864{
2865    int i;
2866
2867    for (i = 0; i < cachep->num; i++) {
2868        void *objp = index_to_obj(cachep, slabp, i);
2869#if DEBUG
2870        /* need to poison the objs? */
2871        if (cachep->flags & SLAB_POISON)
2872            poison_obj(cachep, objp, POISON_FREE);
2873        if (cachep->flags & SLAB_STORE_USER)
2874            *dbg_userword(cachep, objp) = NULL;
2875
2876        if (cachep->flags & SLAB_RED_ZONE) {
2877            *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2878            *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2879        }
2880        /*
2881         * Constructors are not allowed to allocate memory from the same
2882         * cache which they are a constructor for. Otherwise, deadlock.
2883         * They must also be threaded.
2884         */
2885        if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2886            cachep->ctor(objp + obj_offset(cachep));
2887
2888        if (cachep->flags & SLAB_RED_ZONE) {
2889            if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2890                slab_error(cachep, "constructor overwrote the"
2891                       " end of an object");
2892            if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2893                slab_error(cachep, "constructor overwrote the"
2894                       " start of an object");
2895        }
2896        if ((cachep->size % PAGE_SIZE) == 0 &&
2897                OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2898            kernel_map_pages(virt_to_page(objp),
2899                     cachep->size / PAGE_SIZE, 0);
2900#else
2901        if (cachep->ctor)
2902            cachep->ctor(objp);
2903#endif
2904        slab_bufctl(slabp)[i] = i + 1;
2905    }
2906    slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2907}
2908
2909static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2910{
2911    if (CONFIG_ZONE_DMA_FLAG) {
2912        if (flags & GFP_DMA)
2913            BUG_ON(!(cachep->allocflags & GFP_DMA));
2914        else
2915            BUG_ON(cachep->allocflags & GFP_DMA);
2916    }
2917}
2918
2919static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2920                int nodeid)
2921{
2922    void *objp = index_to_obj(cachep, slabp, slabp->free);
2923    kmem_bufctl_t next;
2924
2925    slabp->inuse++;
2926    next = slab_bufctl(slabp)[slabp->free];
2927#if DEBUG
2928    slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2929    WARN_ON(slabp->nodeid != nodeid);
2930#endif
2931    slabp->free = next;
2932
2933    return objp;
2934}
2935
2936static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2937                void *objp, int nodeid)
2938{
2939    unsigned int objnr = obj_to_index(cachep, slabp, objp);
2940
2941#if DEBUG
2942    /* Verify that the slab belongs to the intended node */
2943    WARN_ON(slabp->nodeid != nodeid);
2944
2945    if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2946        printk(KERN_ERR "slab: double free detected in cache "
2947                "'%s', objp %p\n", cachep->name, objp);
2948        BUG();
2949    }
2950#endif
2951    slab_bufctl(slabp)[objnr] = slabp->free;
2952    slabp->free = objnr;
2953    slabp->inuse--;
2954}
2955
2956/*
2957 * Map pages beginning at addr to the given cache and slab. This is required
2958 * for the slab allocator to be able to lookup the cache and slab of a
2959 * virtual address for kfree, ksize, and slab debugging.
2960 */
2961static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2962               void *addr)
2963{
2964    int nr_pages;
2965    struct page *page;
2966
2967    page = virt_to_page(addr);
2968
2969    nr_pages = 1;
2970    if (likely(!PageCompound(page)))
2971        nr_pages <<= cache->gfporder;
2972
2973    do {
2974        page->slab_cache = cache;
2975        page->slab_page = slab;
2976        page++;
2977    } while (--nr_pages);
2978}
2979
2980/*
2981 * Grow (by 1) the number of slabs within a cache. This is called by
2982 * kmem_cache_alloc() when there are no active objs left in a cache.
2983 */
2984static int cache_grow(struct kmem_cache *cachep,
2985        gfp_t flags, int nodeid, void *objp)
2986{
2987    struct slab *slabp;
2988    size_t offset;
2989    gfp_t local_flags;
2990    struct kmem_list3 *l3;
2991
2992    /*
2993     * Be lazy and only check for valid flags here, keeping it out of the
2994     * critical path in kmem_cache_alloc().
2995     */
2996    BUG_ON(flags & GFP_SLAB_BUG_MASK);
2997    local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2998
2999    /* Take the l3 list lock to change the colour_next on this node */
3000    check_irq_off();
3001    l3 = cachep->nodelists[nodeid];
3002    spin_lock(&l3->list_lock);
3003
3004    /* Get colour for the slab, and cal the next value. */
3005    offset = l3->colour_next;
3006    l3->colour_next++;
3007    if (l3->colour_next >= cachep->colour)
3008        l3->colour_next = 0;
3009    spin_unlock(&l3->list_lock);
3010
3011    offset *= cachep->colour_off;
3012
3013    if (local_flags & __GFP_WAIT)
3014        local_irq_enable();
3015
3016    /*
3017     * The test for missing atomic flag is performed here, rather than
3018     * the more obvious place, simply to reduce the critical path length
3019     * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
3020     * will eventually be caught here (where it matters).
3021     */
3022    kmem_flagcheck(cachep, flags);
3023
3024    /*
3025     * Get mem for the objs. Attempt to allocate a physical page from
3026     * 'nodeid'.
3027     */
3028    if (!objp)
3029        objp = kmem_getpages(cachep, local_flags, nodeid);
3030    if (!objp)
3031        goto failed;
3032
3033    /* Get slab management. */
3034    slabp = alloc_slabmgmt(cachep, objp, offset,
3035            local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
3036    if (!slabp)
3037        goto opps1;
3038
3039    slab_map_pages(cachep, slabp, objp);
3040
3041    cache_init_objs(cachep, slabp);
3042
3043    if (local_flags & __GFP_WAIT)
3044        local_irq_disable();
3045    check_irq_off();
3046    spin_lock(&l3->list_lock);
3047
3048    /* Make slab active. */
3049    list_add_tail(&slabp->list, &(l3->slabs_free));
3050    STATS_INC_GROWN(cachep);
3051    l3->free_objects += cachep->num;
3052    spin_unlock(&l3->list_lock);
3053    return 1;
3054opps1:
3055    kmem_freepages(cachep, objp);
3056failed:
3057    if (local_flags & __GFP_WAIT)
3058        local_irq_disable();
3059    return 0;
3060}
3061
3062#if DEBUG
3063
3064/*
3065 * Perform extra freeing checks:
3066 * - detect bad pointers.
3067 * - POISON/RED_ZONE checking
3068 */
3069static void kfree_debugcheck(const void *objp)
3070{
3071    if (!virt_addr_valid(objp)) {
3072        printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3073               (unsigned long)objp);
3074        BUG();
3075    }
3076}
3077
3078static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3079{
3080    unsigned long long redzone1, redzone2;
3081
3082    redzone1 = *dbg_redzone1(cache, obj);
3083    redzone2 = *dbg_redzone2(cache, obj);
3084
3085    /*
3086     * Redzone is ok.
3087     */
3088    if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3089        return;
3090
3091    if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3092        slab_error(cache, "double free detected");
3093    else
3094        slab_error(cache, "memory outside object was overwritten");
3095
3096    printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3097            obj, redzone1, redzone2);
3098}
3099
3100static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3101                   void *caller)
3102{
3103    struct page *page;
3104    unsigned int objnr;
3105    struct slab *slabp;
3106
3107    BUG_ON(virt_to_cache(objp) != cachep);
3108
3109    objp -= obj_offset(cachep);
3110    kfree_debugcheck(objp);
3111    page = virt_to_head_page(objp);
3112
3113    slabp = page->slab_page;
3114
3115    if (cachep->flags & SLAB_RED_ZONE) {
3116        verify_redzone_free(cachep, objp);
3117        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3118        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3119    }
3120    if (cachep->flags & SLAB_STORE_USER)
3121        *dbg_userword(cachep, objp) = caller;
3122
3123    objnr = obj_to_index(cachep, slabp, objp);
3124
3125    BUG_ON(objnr >= cachep->num);
3126    BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3127
3128#ifdef CONFIG_DEBUG_SLAB_LEAK
3129    slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3130#endif
3131    if (cachep->flags & SLAB_POISON) {
3132#ifdef CONFIG_DEBUG_PAGEALLOC
3133        if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3134            store_stackinfo(cachep, objp, (unsigned long)caller);
3135            kernel_map_pages(virt_to_page(objp),
3136                     cachep->size / PAGE_SIZE, 0);
3137        } else {
3138            poison_obj(cachep, objp, POISON_FREE);
3139        }
3140#else
3141        poison_obj(cachep, objp, POISON_FREE);
3142#endif
3143    }
3144    return objp;
3145}
3146
3147static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3148{
3149    kmem_bufctl_t i;
3150    int entries = 0;
3151
3152    /* Check slab's freelist to see if this obj is there. */
3153    for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3154        entries++;
3155        if (entries > cachep->num || i >= cachep->num)
3156            goto bad;
3157    }
3158    if (entries != cachep->num - slabp->inuse) {
3159bad:
3160        printk(KERN_ERR "slab: Internal list corruption detected in "
3161            "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3162            cachep->name, cachep->num, slabp, slabp->inuse,
3163            print_tainted());
3164        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3165            sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3166            1);
3167        BUG();
3168    }
3169}
3170#else
3171#define kfree_debugcheck(x) do { } while(0)
3172#define cache_free_debugcheck(x,objp,z) (objp)
3173#define check_slabp(x,y) do { } while(0)
3174#endif
3175
3176static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3177                            bool force_refill)
3178{
3179    int batchcount;
3180    struct kmem_list3 *l3;
3181    struct array_cache *ac;
3182    int node;
3183
3184    check_irq_off();
3185    node = numa_mem_id();
3186    if (unlikely(force_refill))
3187        goto force_grow;
3188retry:
3189    ac = cpu_cache_get(cachep);
3190    batchcount = ac->batchcount;
3191    if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3192        /*
3193         * If there was little recent activity on this cache, then
3194         * perform only a partial refill. Otherwise we could generate
3195         * refill bouncing.
3196         */
3197        batchcount = BATCHREFILL_LIMIT;
3198    }
3199    l3 = cachep->nodelists[node];
3200
3201    BUG_ON(ac->avail > 0 || !l3);
3202    spin_lock(&l3->list_lock);
3203
3204    /* See if we can refill from the shared array */
3205    if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3206        l3->shared->touched = 1;
3207        goto alloc_done;
3208    }
3209
3210    while (batchcount > 0) {
3211        struct list_head *entry;
3212        struct slab *slabp;
3213        /* Get slab alloc is to come from. */
3214        entry = l3->slabs_partial.next;
3215        if (entry == &l3->slabs_partial) {
3216            l3->free_touched = 1;
3217            entry = l3->slabs_free.next;
3218            if (entry == &l3->slabs_free)
3219                goto must_grow;
3220        }
3221
3222        slabp = list_entry(entry, struct slab, list);
3223        check_slabp(cachep, slabp);
3224        check_spinlock_acquired(cachep);
3225
3226        /*
3227         * The slab was either on partial or free list so
3228         * there must be at least one object available for
3229         * allocation.
3230         */
3231        BUG_ON(slabp->inuse >= cachep->num);
3232
3233        while (slabp->inuse < cachep->num && batchcount--) {
3234            STATS_INC_ALLOCED(cachep);
3235            STATS_INC_ACTIVE(cachep);
3236            STATS_SET_HIGH(cachep);
3237
3238            ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3239                                    node));
3240        }
3241        check_slabp(cachep, slabp);
3242
3243        /* move slabp to correct slabp list: */
3244        list_del(&slabp->list);
3245        if (slabp->free == BUFCTL_END)
3246            list_add(&slabp->list, &l3->slabs_full);
3247        else
3248            list_add(&slabp->list, &l3->slabs_partial);
3249    }
3250
3251must_grow:
3252    l3->free_objects -= ac->avail;
3253alloc_done:
3254    spin_unlock(&l3->list_lock);
3255
3256    if (unlikely(!ac->avail)) {
3257        int x;
3258force_grow:
3259        x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3260
3261        /* cache_grow can reenable interrupts, then ac could change. */
3262        ac = cpu_cache_get(cachep);
3263
3264        /* no objects in sight? abort */
3265        if (!x && (ac->avail == 0 || force_refill))
3266            return NULL;
3267
3268        if (!ac->avail) /* objects refilled by interrupt? */
3269            goto retry;
3270    }
3271    ac->touched = 1;
3272
3273    return ac_get_obj(cachep, ac, flags, force_refill);
3274}
3275
3276static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3277                        gfp_t flags)
3278{
3279    might_sleep_if(flags & __GFP_WAIT);
3280#if DEBUG
3281    kmem_flagcheck(cachep, flags);
3282#endif
3283}
3284
3285#if DEBUG
3286static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3287                gfp_t flags, void *objp, void *caller)
3288{
3289    if (!objp)
3290        return objp;
3291    if (cachep->flags & SLAB_POISON) {
3292#ifdef CONFIG_DEBUG_PAGEALLOC
3293        if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3294            kernel_map_pages(virt_to_page(objp),
3295                     cachep->size / PAGE_SIZE, 1);
3296        else
3297            check_poison_obj(cachep, objp);
3298#else
3299        check_poison_obj(cachep, objp);
3300#endif
3301        poison_obj(cachep, objp, POISON_INUSE);
3302    }
3303    if (cachep->flags & SLAB_STORE_USER)
3304        *dbg_userword(cachep, objp) = caller;
3305
3306    if (cachep->flags & SLAB_RED_ZONE) {
3307        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3308                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3309            slab_error(cachep, "double free, or memory outside"
3310                        " object was overwritten");
3311            printk(KERN_ERR
3312                "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3313                objp, *dbg_redzone1(cachep, objp),
3314                *dbg_redzone2(cachep, objp));
3315        }
3316        *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3317        *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3318    }
3319#ifdef CONFIG_DEBUG_SLAB_LEAK
3320    {
3321        struct slab *slabp;
3322        unsigned objnr;
3323
3324        slabp = virt_to_head_page(objp)->slab_page;
3325        objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3326        slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3327    }
3328#endif
3329    objp += obj_offset(cachep);
3330    if (cachep->ctor && cachep->flags & SLAB_POISON)
3331        cachep->ctor(objp);
3332    if (ARCH_SLAB_MINALIGN &&
3333        ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3334        printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3335               objp, (int)ARCH_SLAB_MINALIGN);
3336    }
3337    return objp;
3338}
3339#else
3340#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3341#endif
3342
3343static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3344{
3345    if (cachep == &cache_cache)
3346        return false;
3347
3348    return should_failslab(cachep->object_size, flags, cachep->flags);
3349}
3350
3351static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3352{
3353    void *objp;
3354    struct array_cache *ac;
3355    bool force_refill = false;
3356
3357    check_irq_off();
3358
3359    ac = cpu_cache_get(cachep);
3360    if (likely(ac->avail)) {
3361        ac->touched = 1;
3362        objp = ac_get_obj(cachep, ac, flags, false);
3363
3364        /*
3365         * Allow for the possibility all avail objects are not allowed
3366         * by the current flags
3367         */
3368        if (objp) {
3369            STATS_INC_ALLOCHIT(cachep);
3370            goto out;
3371        }
3372        force_refill = true;
3373    }
3374
3375    STATS_INC_ALLOCMISS(cachep);
3376    objp = cache_alloc_refill(cachep, flags, force_refill);
3377    /*
3378     * the 'ac' may be updated by cache_alloc_refill(),
3379     * and kmemleak_erase() requires its correct value.
3380     */
3381    ac = cpu_cache_get(cachep);
3382
3383out:
3384    /*
3385     * To avoid a false negative, if an object that is in one of the
3386     * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3387     * treat the array pointers as a reference to the object.
3388     */
3389    if (objp)
3390        kmemleak_erase(&ac->entry[ac->avail]);
3391    return objp;
3392}
3393
3394#ifdef CONFIG_NUMA
3395/*
3396 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3397 *
3398 * If we are in_interrupt, then process context, including cpusets and
3399 * mempolicy, may not apply and should not be used for allocation policy.
3400 */
3401static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3402{
3403    int nid_alloc, nid_here;
3404
3405    if (in_interrupt() || (flags & __GFP_THISNODE))
3406        return NULL;
3407    nid_alloc = nid_here = numa_mem_id();
3408    if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3409        nid_alloc = cpuset_slab_spread_node();
3410    else if (current->mempolicy)
3411        nid_alloc = slab_node();
3412    if (nid_alloc != nid_here)
3413        return ____cache_alloc_node(cachep, flags, nid_alloc);
3414    return NULL;
3415}
3416
3417/*
3418 * Fallback function if there was no memory available and no objects on a
3419 * certain node and fall back is permitted. First we scan all the
3420 * available nodelists for available objects. If that fails then we
3421 * perform an allocation without specifying a node. This allows the page
3422 * allocator to do its reclaim / fallback magic. We then insert the
3423 * slab into the proper nodelist and then allocate from it.
3424 */
3425static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3426{
3427    struct zonelist *zonelist;
3428    gfp_t local_flags;
3429    struct zoneref *z;
3430    struct zone *zone;
3431    enum zone_type high_zoneidx = gfp_zone(flags);
3432    void *obj = NULL;
3433    int nid;
3434    unsigned int cpuset_mems_cookie;
3435
3436    if (flags & __GFP_THISNODE)
3437        return NULL;
3438
3439    local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3440
3441retry_cpuset:
3442    cpuset_mems_cookie = get_mems_allowed();
3443    zonelist = node_zonelist(slab_node(), flags);
3444
3445retry:
3446    /*
3447     * Look through allowed nodes for objects available
3448     * from existing per node queues.
3449     */
3450    for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3451        nid = zone_to_nid(zone);
3452
3453        if (cpuset_zone_allowed_hardwall(zone, flags) &&
3454            cache->nodelists[nid] &&
3455            cache->nodelists[nid]->free_objects) {
3456                obj = ____cache_alloc_node(cache,
3457                    flags | GFP_THISNODE, nid);
3458                if (obj)
3459                    break;
3460        }
3461    }
3462
3463    if (!obj) {
3464        /*
3465         * This allocation will be performed within the constraints
3466         * of the current cpuset / memory policy requirements.
3467         * We may trigger various forms of reclaim on the allowed
3468         * set and go into memory reserves if necessary.
3469         */
3470        if (local_flags & __GFP_WAIT)
3471            local_irq_enable();
3472        kmem_flagcheck(cache, flags);
3473        obj = kmem_getpages(cache, local_flags, numa_mem_id());
3474        if (local_flags & __GFP_WAIT)
3475            local_irq_disable();
3476        if (obj) {
3477            /*
3478             * Insert into the appropriate per node queues
3479             */
3480            nid = page_to_nid(virt_to_page(obj));
3481            if (cache_grow(cache, flags, nid, obj)) {
3482                obj = ____cache_alloc_node(cache,
3483                    flags | GFP_THISNODE, nid);
3484                if (!obj)
3485                    /*
3486                     * Another processor may allocate the
3487                     * objects in the slab since we are
3488                     * not holding any locks.
3489                     */
3490                    goto retry;
3491            } else {
3492                /* cache_grow already freed obj */
3493                obj = NULL;
3494            }
3495        }
3496    }
3497
3498    if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3499        goto retry_cpuset;
3500    return obj;
3501}
3502
3503/*
3504 * A interface to enable slab creation on nodeid
3505 */
3506static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3507                int nodeid)
3508{
3509    struct list_head *entry;
3510    struct slab *slabp;
3511    struct kmem_list3 *l3;
3512    void *obj;
3513    int x;
3514
3515    l3 = cachep->nodelists[nodeid];
3516    BUG_ON(!l3);
3517
3518retry:
3519    check_irq_off();
3520    spin_lock(&l3->list_lock);
3521    entry = l3->slabs_partial.next;
3522    if (entry == &l3->slabs_partial) {
3523        l3->free_touched = 1;
3524        entry = l3->slabs_free.next;
3525        if (entry == &l3->slabs_free)
3526            goto must_grow;
3527    }
3528
3529    slabp = list_entry(entry, struct slab, list);
3530    check_spinlock_acquired_node(cachep, nodeid);
3531    check_slabp(cachep, slabp);
3532
3533    STATS_INC_NODEALLOCS(cachep);
3534    STATS_INC_ACTIVE(cachep);
3535    STATS_SET_HIGH(cachep);
3536
3537    BUG_ON(slabp->inuse == cachep->num);
3538
3539    obj = slab_get_obj(cachep, slabp, nodeid);
3540    check_slabp(cachep, slabp);
3541    l3->free_objects--;
3542    /* move slabp to correct slabp list: */
3543    list_del(&slabp->list);
3544
3545    if (slabp->free == BUFCTL_END)
3546        list_add(&slabp->list, &l3->slabs_full);
3547    else
3548        list_add(&slabp->list, &l3->slabs_partial);
3549
3550    spin_unlock(&l3->list_lock);
3551    goto done;
3552
3553must_grow:
3554    spin_unlock(&l3->list_lock);
3555    x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3556    if (x)
3557        goto retry;
3558
3559    return fallback_alloc(cachep, flags);
3560
3561done:
3562    return obj;
3563}
3564
3565/**
3566 * kmem_cache_alloc_node - Allocate an object on the specified node
3567 * @cachep: The cache to allocate from.
3568 * @flags: See kmalloc().
3569 * @nodeid: node number of the target node.
3570 * @caller: return address of caller, used for debug information
3571 *
3572 * Identical to kmem_cache_alloc but it will allocate memory on the given
3573 * node, which can improve the performance for cpu bound structures.
3574 *
3575 * Fallback to other node is possible if __GFP_THISNODE is not set.
3576 */
3577static __always_inline void *
3578__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3579           void *caller)
3580{
3581    unsigned long save_flags;
3582    void *ptr;
3583    int slab_node = numa_mem_id();
3584
3585    flags &= gfp_allowed_mask;
3586
3587    lockdep_trace_alloc(flags);
3588
3589    if (slab_should_failslab(cachep, flags))
3590        return NULL;
3591
3592    cache_alloc_debugcheck_before(cachep, flags);
3593    local_irq_save(save_flags);
3594
3595    if (nodeid == NUMA_NO_NODE)
3596        nodeid = slab_node;
3597
3598    if (unlikely(!cachep->nodelists[nodeid])) {
3599        /* Node not bootstrapped yet */
3600        ptr = fallback_alloc(cachep, flags);
3601        goto out;
3602    }
3603
3604    if (nodeid == slab_node) {
3605        /*
3606         * Use the locally cached objects if possible.
3607         * However ____cache_alloc does not allow fallback
3608         * to other nodes. It may fail while we still have
3609         * objects on other nodes available.
3610         */
3611        ptr = ____cache_alloc(cachep, flags);
3612        if (ptr)
3613            goto out;
3614    }
3615    /* ___cache_alloc_node can fall back to other nodes */
3616    ptr = ____cache_alloc_node(cachep, flags, nodeid);
3617  out:
3618    local_irq_restore(save_flags);
3619    ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3620    kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3621                 flags);
3622
3623    if (likely(ptr))
3624        kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3625
3626    if (unlikely((flags & __GFP_ZERO) && ptr))
3627        memset(ptr, 0, cachep->object_size);
3628
3629    return ptr;
3630}
3631
3632static __always_inline void *
3633__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3634{
3635    void *objp;
3636
3637    if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3638        objp = alternate_node_alloc(cache, flags);
3639        if (objp)
3640            goto out;
3641    }
3642    objp = ____cache_alloc(cache, flags);
3643
3644    /*
3645     * We may just have run out of memory on the local node.
3646     * ____cache_alloc_node() knows how to locate memory on other nodes
3647     */
3648    if (!objp)
3649        objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3650
3651  out:
3652    return objp;
3653}
3654#else
3655
3656static __always_inline void *
3657__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3658{
3659    return ____cache_alloc(cachep, flags);
3660}
3661
3662#endif /* CONFIG_NUMA */
3663
3664static __always_inline void *
3665__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3666{
3667    unsigned long save_flags;
3668    void *objp;
3669
3670    flags &= gfp_allowed_mask;
3671
3672    lockdep_trace_alloc(flags);
3673
3674    if (slab_should_failslab(cachep, flags))
3675        return NULL;
3676
3677    cache_alloc_debugcheck_before(cachep, flags);
3678    local_irq_save(save_flags);
3679    objp = __do_cache_alloc(cachep, flags);
3680    local_irq_restore(save_flags);
3681    objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3682    kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3683                 flags);
3684    prefetchw(objp);
3685
3686    if (likely(objp))
3687        kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3688
3689    if (unlikely((flags & __GFP_ZERO) && objp))
3690        memset(objp, 0, cachep->object_size);
3691
3692    return objp;
3693}
3694
3695/*
3696 * Caller needs to acquire correct kmem_list's list_lock
3697 */
3698static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3699               int node)
3700{
3701    int i;
3702    struct kmem_list3 *l3;
3703
3704    for (i = 0; i < nr_objects; i++) {
3705        void *objp;
3706        struct slab *slabp;
3707
3708        clear_obj_pfmemalloc(&objpp[i]);
3709        objp = objpp[i];
3710
3711        slabp = virt_to_slab(objp);
3712        l3 = cachep->nodelists[node];
3713        list_del(&slabp->list);
3714        check_spinlock_acquired_node(cachep, node);
3715        check_slabp(cachep, slabp);
3716        slab_put_obj(cachep, slabp, objp, node);
3717        STATS_DEC_ACTIVE(cachep);
3718        l3->free_objects++;
3719        check_slabp(cachep, slabp);
3720
3721        /* fixup slab chains */
3722        if (slabp->inuse == 0) {
3723            if (l3->free_objects > l3->free_limit) {
3724                l3->free_objects -= cachep->num;
3725                /* No need to drop any previously held
3726                 * lock here, even if we have a off-slab slab
3727                 * descriptor it is guaranteed to come from
3728                 * a different cache, refer to comments before
3729                 * alloc_slabmgmt.
3730                 */
3731                slab_destroy(cachep, slabp);
3732            } else {
3733                list_add(&slabp->list, &l3->slabs_free);
3734            }
3735        } else {
3736            /* Unconditionally move a slab to the end of the
3737             * partial list on free - maximum time for the
3738             * other objects to be freed, too.
3739             */
3740            list_add_tail(&slabp->list, &l3->slabs_partial);
3741        }
3742    }
3743}
3744
3745static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3746{
3747    int batchcount;
3748    struct kmem_list3 *l3;
3749    int node = numa_mem_id();
3750
3751    batchcount = ac->batchcount;
3752#if DEBUG
3753    BUG_ON(!batchcount || batchcount > ac->avail);
3754#endif
3755    check_irq_off();
3756    l3 = cachep->nodelists[node];
3757    spin_lock(&l3->list_lock);
3758    if (l3->shared) {
3759        struct array_cache *shared_array = l3->shared;
3760        int max = shared_array->limit - shared_array->avail;
3761        if (max) {
3762            if (batchcount > max)
3763                batchcount = max;
3764            memcpy(&(shared_array->entry[shared_array->avail]),
3765                   ac->entry, sizeof(void *) * batchcount);
3766            shared_array->avail += batchcount;
3767            goto free_done;
3768        }
3769    }
3770
3771    free_block(cachep, ac->entry, batchcount, node);
3772free_done:
3773#if STATS
3774    {
3775        int i = 0;
3776        struct list_head *p;
3777
3778        p = l3->slabs_free.next;
3779        while (p != &(l3->slabs_free)) {
3780            struct slab *slabp;
3781
3782            slabp = list_entry(p, struct slab, list);
3783            BUG_ON(slabp->inuse);
3784
3785            i++;
3786            p = p->next;
3787        }
3788        STATS_SET_FREEABLE(cachep, i);
3789    }
3790#endif
3791    spin_unlock(&l3->list_lock);
3792    ac->avail -= batchcount;
3793    memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3794}
3795
3796/*
3797 * Release an obj back to its cache. If the obj has a constructed state, it must
3798 * be in this state _before_ it is released. Called with disabled ints.
3799 */
3800static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3801    void *caller)
3802{
3803    struct array_cache *ac = cpu_cache_get(cachep);
3804
3805    check_irq_off();
3806    kmemleak_free_recursive(objp, cachep->flags);
3807    objp = cache_free_debugcheck(cachep, objp, caller);
3808
3809    kmemcheck_slab_free(cachep, objp, cachep->object_size);
3810
3811    /*
3812     * Skip calling cache_free_alien() when the platform is not numa.
3813     * This will avoid cache misses that happen while accessing slabp (which
3814     * is per page memory reference) to get nodeid. Instead use a global
3815     * variable to skip the call, which is mostly likely to be present in
3816     * the cache.
3817     */
3818    if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3819        return;
3820
3821    if (likely(ac->avail < ac->limit)) {
3822        STATS_INC_FREEHIT(cachep);
3823    } else {
3824        STATS_INC_FREEMISS(cachep);
3825        cache_flusharray(cachep, ac);
3826    }
3827
3828    ac_put_obj(cachep, ac, objp);
3829}
3830
3831/**
3832 * kmem_cache_alloc - Allocate an object
3833 * @cachep: The cache to allocate from.
3834 * @flags: See kmalloc().
3835 *
3836 * Allocate an object from this cache. The flags are only relevant
3837 * if the cache has no available objects.
3838 */
3839void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3840{
3841    void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3842
3843    trace_kmem_cache_alloc(_RET_IP_, ret,
3844                   cachep->object_size, cachep->size, flags);
3845
3846    return ret;
3847}
3848EXPORT_SYMBOL(kmem_cache_alloc);
3849
3850#ifdef CONFIG_TRACING
3851void *
3852kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3853{
3854    void *ret;
3855
3856    ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3857
3858    trace_kmalloc(_RET_IP_, ret,
3859              size, slab_buffer_size(cachep), flags);
3860    return ret;
3861}
3862EXPORT_SYMBOL(kmem_cache_alloc_trace);
3863#endif
3864
3865#ifdef CONFIG_NUMA
3866void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3867{
3868    void *ret = __cache_alloc_node(cachep, flags, nodeid,
3869                       __builtin_return_address(0));
3870
3871    trace_kmem_cache_alloc_node(_RET_IP_, ret,
3872                    cachep->object_size, cachep->size,
3873                    flags, nodeid);
3874
3875    return ret;
3876}
3877EXPORT_SYMBOL(kmem_cache_alloc_node);
3878
3879#ifdef CONFIG_TRACING
3880void *kmem_cache_alloc_node_trace(size_t size,
3881                  struct kmem_cache *cachep,
3882                  gfp_t flags,
3883                  int nodeid)
3884{
3885    void *ret;
3886
3887    ret = __cache_alloc_node(cachep, flags, nodeid,
3888                  __builtin_return_address(0));
3889    trace_kmalloc_node(_RET_IP_, ret,
3890               size, slab_buffer_size(cachep),
3891               flags, nodeid);
3892    return ret;
3893}
3894EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3895#endif
3896
3897static __always_inline void *
3898__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3899{
3900    struct kmem_cache *cachep;
3901
3902    cachep = kmem_find_general_cachep(size, flags);
3903    if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3904        return cachep;
3905    return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3906}
3907
3908#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3909void *__kmalloc_node(size_t size, gfp_t flags, int node)
3910{
3911    return __do_kmalloc_node(size, flags, node,
3912            __builtin_return_address(0));
3913}
3914EXPORT_SYMBOL(__kmalloc_node);
3915
3916void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3917        int node, unsigned long caller)
3918{
3919    return __do_kmalloc_node(size, flags, node, (void *)caller);
3920}
3921EXPORT_SYMBOL(__kmalloc_node_track_caller);
3922#else
3923void *__kmalloc_node(size_t size, gfp_t flags, int node)
3924{
3925    return __do_kmalloc_node(size, flags, node, NULL);
3926}
3927EXPORT_SYMBOL(__kmalloc_node);
3928#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3929#endif /* CONFIG_NUMA */
3930
3931/**
3932 * __do_kmalloc - allocate memory
3933 * @size: how many bytes of memory are required.
3934 * @flags: the type of memory to allocate (see kmalloc).
3935 * @caller: function caller for debug tracking of the caller
3936 */
3937static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3938                      void *caller)
3939{
3940    struct kmem_cache *cachep;
3941    void *ret;
3942
3943    /* If you want to save a few bytes .text space: replace
3944     * __ with kmem_.
3945     * Then kmalloc uses the uninlined functions instead of the inline
3946     * functions.
3947     */
3948    cachep = __find_general_cachep(size, flags);
3949    if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3950        return cachep;
3951    ret = __cache_alloc(cachep, flags, caller);
3952
3953    trace_kmalloc((unsigned long) caller, ret,
3954              size, cachep->size, flags);
3955
3956    return ret;
3957}
3958
3959
3960#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3961void *__kmalloc(size_t size, gfp_t flags)
3962{
3963    return __do_kmalloc(size, flags, __builtin_return_address(0));
3964}
3965EXPORT_SYMBOL(__kmalloc);
3966
3967void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3968{
3969    return __do_kmalloc(size, flags, (void *)caller);
3970}
3971EXPORT_SYMBOL(__kmalloc_track_caller);
3972
3973#else
3974void *__kmalloc(size_t size, gfp_t flags)
3975{
3976    return __do_kmalloc(size, flags, NULL);
3977}
3978EXPORT_SYMBOL(__kmalloc);
3979#endif
3980
3981/**
3982 * kmem_cache_free - Deallocate an object
3983 * @cachep: The cache the allocation was from.
3984 * @objp: The previously allocated object.
3985 *
3986 * Free an object which was previously allocated from this
3987 * cache.
3988 */
3989void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3990{
3991    unsigned long flags;
3992
3993    local_irq_save(flags);
3994    debug_check_no_locks_freed(objp, cachep->object_size);
3995    if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3996        debug_check_no_obj_freed(objp, cachep->object_size);
3997    __cache_free(cachep, objp, __builtin_return_address(0));
3998    local_irq_restore(flags);
3999
4000    trace_kmem_cache_free(_RET_IP_, objp);
4001}
4002EXPORT_SYMBOL(kmem_cache_free);
4003
4004/**
4005 * kfree - free previously allocated memory
4006 * @objp: pointer returned by kmalloc.
4007 *
4008 * If @objp is NULL, no operation is performed.
4009 *
4010 * Don't free memory not originally allocated by kmalloc()
4011 * or you will run into trouble.
4012 */
4013void kfree(const void *objp)
4014{
4015    struct kmem_cache *c;
4016    unsigned long flags;
4017
4018    trace_kfree(_RET_IP_, objp);
4019
4020    if (unlikely(ZERO_OR_NULL_PTR(objp)))
4021        return;
4022    local_irq_save(flags);
4023    kfree_debugcheck(objp);
4024    c = virt_to_cache(objp);
4025    debug_check_no_locks_freed(objp, c->object_size);
4026
4027    debug_check_no_obj_freed(objp, c->object_size);
4028    __cache_free(c, (void *)objp, __builtin_return_address(0));
4029    local_irq_restore(flags);
4030}
4031EXPORT_SYMBOL(kfree);
4032
4033unsigned int kmem_cache_size(struct kmem_cache *cachep)
4034{
4035    return cachep->object_size;
4036}
4037EXPORT_SYMBOL(kmem_cache_size);
4038
4039/*
4040 * This initializes kmem_list3 or resizes various caches for all nodes.
4041 */
4042static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4043{
4044    int node;
4045    struct kmem_list3 *l3;
4046    struct array_cache *new_shared;
4047    struct array_cache **new_alien = NULL;
4048
4049    for_each_online_node(node) {
4050
4051                if (use_alien_caches) {
4052                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4053                        if (!new_alien)
4054                                goto fail;
4055                }
4056
4057        new_shared = NULL;
4058        if (cachep->shared) {
4059            new_shared = alloc_arraycache(node,
4060                cachep->shared*cachep->batchcount,
4061                    0xbaadf00d, gfp);
4062            if (!new_shared) {
4063                free_alien_cache(new_alien);
4064                goto fail;
4065            }
4066        }
4067
4068        l3 = cachep->nodelists[node];
4069        if (l3) {
4070            struct array_cache *shared = l3->shared;
4071
4072            spin_lock_irq(&l3->list_lock);
4073
4074            if (shared)
4075                free_block(cachep, shared->entry,
4076                        shared->avail, node);
4077
4078            l3->shared = new_shared;
4079            if (!l3->alien) {
4080                l3->alien = new_alien;
4081                new_alien = NULL;
4082            }
4083            l3->free_limit = (1 + nr_cpus_node(node)) *
4084                    cachep->batchcount + cachep->num;
4085            spin_unlock_irq(&l3->list_lock);
4086            kfree(shared);
4087            free_alien_cache(new_alien);
4088            continue;
4089        }
4090        l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4091        if (!l3) {
4092            free_alien_cache(new_alien);
4093            kfree(new_shared);
4094            goto fail;
4095        }
4096
4097        kmem_list3_init(l3);
4098        l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4099                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4100        l3->shared = new_shared;
4101        l3->alien = new_alien;
4102        l3->free_limit = (1 + nr_cpus_node(node)) *
4103                    cachep->batchcount + cachep->num;
4104        cachep->nodelists[node] = l3;
4105    }
4106    return 0;
4107
4108fail:
4109    if (!cachep->list.next) {
4110        /* Cache is not active yet. Roll back what we did */
4111        node--;
4112        while (node >= 0) {
4113            if (cachep->nodelists[node]) {
4114                l3 = cachep->nodelists[node];
4115
4116                kfree(l3->shared);
4117                free_alien_cache(l3->alien);
4118                kfree(l3);
4119                cachep->nodelists[node] = NULL;
4120            }
4121            node--;
4122        }
4123    }
4124    return -ENOMEM;
4125}
4126
4127struct ccupdate_struct {
4128    struct kmem_cache *cachep;
4129    struct array_cache *new[0];
4130};
4131
4132static void do_ccupdate_local(void *info)
4133{
4134    struct ccupdate_struct *new = info;
4135    struct array_cache *old;
4136
4137    check_irq_off();
4138    old = cpu_cache_get(new->cachep);
4139
4140    new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4141    new->new[smp_processor_id()] = old;
4142}
4143
4144/* Always called with the slab_mutex held */
4145static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4146                int batchcount, int shared, gfp_t gfp)
4147{
4148    struct ccupdate_struct *new;
4149    int i;
4150
4151    new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4152              gfp);
4153    if (!new)
4154        return -ENOMEM;
4155
4156    for_each_online_cpu(i) {
4157        new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4158                        batchcount, gfp);
4159        if (!new->new[i]) {
4160            for (i--; i >= 0; i--)
4161                kfree(new->new[i]);
4162            kfree(new);
4163            return -ENOMEM;
4164        }
4165    }
4166    new->cachep = cachep;
4167
4168    on_each_cpu(do_ccupdate_local, (void *)new, 1);
4169
4170    check_irq_on();
4171    cachep->batchcount = batchcount;
4172    cachep->limit = limit;
4173    cachep->shared = shared;
4174
4175    for_each_online_cpu(i) {
4176        struct array_cache *ccold = new->new[i];
4177        if (!ccold)
4178            continue;
4179        spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4180        free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4181        spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4182        kfree(ccold);
4183    }
4184    kfree(new);
4185    return alloc_kmemlist(cachep, gfp);
4186}
4187
4188/* Called with slab_mutex held always */
4189static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4190{
4191    int err;
4192    int limit, shared;
4193
4194    /*
4195     * The head array serves three purposes:
4196     * - create a LIFO ordering, i.e. return objects that are cache-warm
4197     * - reduce the number of spinlock operations.
4198     * - reduce the number of linked list operations on the slab and
4199     * bufctl chains: array operations are cheaper.
4200     * The numbers are guessed, we should auto-tune as described by
4201     * Bonwick.
4202     */
4203    if (cachep->size > 131072)
4204        limit = 1;
4205    else if (cachep->size > PAGE_SIZE)
4206        limit = 8;
4207    else if (cachep->size > 1024)
4208        limit = 24;
4209    else if (cachep->size > 256)
4210        limit = 54;
4211    else
4212        limit = 120;
4213
4214    /*
4215     * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4216     * allocation behaviour: Most allocs on one cpu, most free operations
4217     * on another cpu. For these cases, an efficient object passing between
4218     * cpus is necessary. This is provided by a shared array. The array
4219     * replaces Bonwick's magazine layer.
4220     * On uniprocessor, it's functionally equivalent (but less efficient)
4221     * to a larger limit. Thus disabled by default.
4222     */
4223    shared = 0;
4224    if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4225        shared = 8;
4226
4227#if DEBUG
4228    /*
4229     * With debugging enabled, large batchcount lead to excessively long
4230     * periods with disabled local interrupts. Limit the batchcount
4231     */
4232    if (limit > 32)
4233        limit = 32;
4234#endif
4235    err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4236    if (err)
4237        printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4238               cachep->name, -err);
4239    return err;
4240}
4241
4242/*
4243 * Drain an array if it contains any elements taking the l3 lock only if
4244 * necessary. Note that the l3 listlock also protects the array_cache
4245 * if drain_array() is used on the shared array.
4246 */
4247static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4248             struct array_cache *ac, int force, int node)
4249{
4250    int tofree;
4251
4252    if (!ac || !ac->avail)
4253        return;
4254    if (ac->touched && !force) {
4255        ac->touched = 0;
4256    } else {
4257        spin_lock_irq(&l3->list_lock);
4258        if (ac->avail) {
4259            tofree = force ? ac->avail : (ac->limit + 4) / 5;
4260            if (tofree > ac->avail)
4261                tofree = (ac->avail + 1) / 2;
4262            free_block(cachep, ac->entry, tofree, node);
4263            ac->avail -= tofree;
4264            memmove(ac->entry, &(ac->entry[tofree]),
4265                sizeof(void *) * ac->avail);
4266        }
4267        spin_unlock_irq(&l3->list_lock);
4268    }
4269}
4270
4271/**
4272 * cache_reap - Reclaim memory from caches.
4273 * @w: work descriptor
4274 *
4275 * Called from workqueue/eventd every few seconds.
4276 * Purpose:
4277 * - clear the per-cpu caches for this CPU.
4278 * - return freeable pages to the main free memory pool.
4279 *
4280 * If we cannot acquire the cache chain mutex then just give up - we'll try
4281 * again on the next iteration.
4282 */
4283static void cache_reap(struct work_struct *w)
4284{
4285    struct kmem_cache *searchp;
4286    struct kmem_list3 *l3;
4287    int node = numa_mem_id();
4288    struct delayed_work *work = to_delayed_work(w);
4289
4290    if (!mutex_trylock(&slab_mutex))
4291        /* Give up. Setup the next iteration. */
4292        goto out;
4293
4294    list_for_each_entry(searchp, &slab_caches, list) {
4295        check_irq_on();
4296
4297        /*
4298         * We only take the l3 lock if absolutely necessary and we
4299         * have established with reasonable certainty that
4300         * we can do some work if the lock was obtained.
4301         */
4302        l3 = searchp->nodelists[node];
4303
4304        reap_alien(searchp, l3);
4305
4306        drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4307
4308        /*
4309         * These are racy checks but it does not matter
4310         * if we skip one check or scan twice.
4311         */
4312        if (time_after(l3->next_reap, jiffies))
4313            goto next;
4314
4315        l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4316
4317        drain_array(searchp, l3, l3->shared, 0, node);
4318
4319        if (l3->free_touched)
4320            l3->free_touched = 0;
4321        else {
4322            int freed;
4323
4324            freed = drain_freelist(searchp, l3, (l3->free_limit +
4325                5 * searchp->num - 1) / (5 * searchp->num));
4326            STATS_ADD_REAPED(searchp, freed);
4327        }
4328next:
4329        cond_resched();
4330    }
4331    check_irq_on();
4332    mutex_unlock(&slab_mutex);
4333    next_reap_node();
4334out:
4335    /* Set up the next iteration */
4336    schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4337}
4338
4339#ifdef CONFIG_SLABINFO
4340
4341static void print_slabinfo_header(struct seq_file *m)
4342{
4343    /*
4344     * Output format version, so at least we can change it
4345     * without _too_ many complaints.
4346     */
4347#if STATS
4348    seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4349#else
4350    seq_puts(m, "slabinfo - version: 2.1\n");
4351#endif
4352    seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4353         "<objperslab> <pagesperslab>");
4354    seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4355    seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4356#if STATS
4357    seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4358         "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4359    seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4360#endif
4361    seq_putc(m, '\n');
4362}
4363
4364static void *s_start(struct seq_file *m, loff_t *pos)
4365{
4366    loff_t n = *pos;
4367
4368    mutex_lock(&slab_mutex);
4369    if (!n)
4370        print_slabinfo_header(m);
4371
4372    return seq_list_start(&slab_caches, *pos);
4373}
4374
4375static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4376{
4377    return seq_list_next(p, &slab_caches, pos);
4378}
4379
4380static void s_stop(struct seq_file *m, void *p)
4381{
4382    mutex_unlock(&slab_mutex);
4383}
4384
4385static int s_show(struct seq_file *m, void *p)
4386{
4387    struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4388    struct slab *slabp;
4389    unsigned long active_objs;
4390    unsigned long num_objs;
4391    unsigned long active_slabs = 0;
4392    unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4393    const char *name;
4394    char *error = NULL;
4395    int node;
4396    struct kmem_list3 *l3;
4397
4398    active_objs = 0;
4399    num_slabs = 0;
4400    for_each_online_node(node) {
4401        l3 = cachep->nodelists[node];
4402        if (!l3)
4403            continue;
4404
4405        check_irq_on();
4406        spin_lock_irq(&l3->list_lock);
4407
4408        list_for_each_entry(slabp, &l3->slabs_full, list) {
4409            if (slabp->inuse != cachep->num && !error)
4410                error = "slabs_full accounting error";
4411            active_objs += cachep->num;
4412            active_slabs++;
4413        }
4414        list_for_each_entry(slabp, &l3->slabs_partial, list) {
4415            if (slabp->inuse == cachep->num && !error)
4416                error = "slabs_partial inuse accounting error";
4417            if (!slabp->inuse && !error)
4418                error = "slabs_partial/inuse accounting error";
4419            active_objs += slabp->inuse;
4420            active_slabs++;
4421        }
4422        list_for_each_entry(slabp, &l3->slabs_free, list) {
4423            if (slabp->inuse && !error)
4424                error = "slabs_free/inuse accounting error";
4425            num_slabs++;
4426        }
4427        free_objects += l3->free_objects;
4428        if (l3->shared)
4429            shared_avail += l3->shared->avail;
4430
4431        spin_unlock_irq(&l3->list_lock);
4432    }
4433    num_slabs += active_slabs;
4434    num_objs = num_slabs * cachep->num;
4435    if (num_objs - active_objs != free_objects && !error)
4436        error = "free_objects accounting error";
4437
4438    name = cachep->name;
4439    if (error)
4440        printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4441
4442    seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4443           name, active_objs, num_objs, cachep->size,
4444           cachep->num, (1 << cachep->gfporder));
4445    seq_printf(m, " : tunables %4u %4u %4u",
4446           cachep->limit, cachep->batchcount, cachep->shared);
4447    seq_printf(m, " : slabdata %6lu %6lu %6lu",
4448           active_slabs, num_slabs, shared_avail);
4449#if STATS
4450    { /* list3 stats */
4451        unsigned long high = cachep->high_mark;
4452        unsigned long allocs = cachep->num_allocations;
4453        unsigned long grown = cachep->grown;
4454        unsigned long reaped = cachep->reaped;
4455        unsigned long errors = cachep->errors;
4456        unsigned long max_freeable = cachep->max_freeable;
4457        unsigned long node_allocs = cachep->node_allocs;
4458        unsigned long node_frees = cachep->node_frees;
4459        unsigned long overflows = cachep->node_overflow;
4460
4461        seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4462               "%4lu %4lu %4lu %4lu %4lu",
4463               allocs, high, grown,
4464               reaped, errors, max_freeable, node_allocs,
4465               node_frees, overflows);
4466    }
4467    /* cpu stats */
4468    {
4469        unsigned long allochit = atomic_read(&cachep->allochit);
4470        unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4471        unsigned long freehit = atomic_read(&cachep->freehit);
4472        unsigned long freemiss = atomic_read(&cachep->freemiss);
4473
4474        seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4475               allochit, allocmiss, freehit, freemiss);
4476    }
4477#endif
4478    seq_putc(m, '\n');
4479    return 0;
4480}
4481
4482/*
4483 * slabinfo_op - iterator that generates /proc/slabinfo
4484 *
4485 * Output layout:
4486 * cache-name
4487 * num-active-objs
4488 * total-objs
4489 * object size
4490 * num-active-slabs
4491 * total-slabs
4492 * num-pages-per-slab
4493 * + further values on SMP and with statistics enabled
4494 */
4495
4496static const struct seq_operations slabinfo_op = {
4497    .start = s_start,
4498    .next = s_next,
4499    .stop = s_stop,
4500    .show = s_show,
4501};
4502
4503#define MAX_SLABINFO_WRITE 128
4504/**
4505 * slabinfo_write - Tuning for the slab allocator
4506 * @file: unused
4507 * @buffer: user buffer
4508 * @count: data length
4509 * @ppos: unused
4510 */
4511static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4512               size_t count, loff_t *ppos)
4513{
4514    char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4515    int limit, batchcount, shared, res;
4516    struct kmem_cache *cachep;
4517
4518    if (count > MAX_SLABINFO_WRITE)
4519        return -EINVAL;
4520    if (copy_from_user(&kbuf, buffer, count))
4521        return -EFAULT;
4522    kbuf[MAX_SLABINFO_WRITE] = '\0';
4523
4524    tmp = strchr(kbuf, ' ');
4525    if (!tmp)
4526        return -EINVAL;
4527    *tmp = '\0';
4528    tmp++;
4529    if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4530        return -EINVAL;
4531
4532    /* Find the cache in the chain of caches. */
4533    mutex_lock(&slab_mutex);
4534    res = -EINVAL;
4535    list_for_each_entry(cachep, &slab_caches, list) {
4536        if (!strcmp(cachep->name, kbuf)) {
4537            if (limit < 1 || batchcount < 1 ||
4538                    batchcount > limit || shared < 0) {
4539                res = 0;
4540            } else {
4541                res = do_tune_cpucache(cachep, limit,
4542                               batchcount, shared,
4543                               GFP_KERNEL);
4544            }
4545            break;
4546        }
4547    }
4548    mutex_unlock(&slab_mutex);
4549    if (res >= 0)
4550        res = count;
4551    return res;
4552}
4553
4554static int slabinfo_open(struct inode *inode, struct file *file)
4555{
4556    return seq_open(file, &slabinfo_op);
4557}
4558
4559static const struct file_operations proc_slabinfo_operations = {
4560    .open = slabinfo_open,
4561    .read = seq_read,
4562    .write = slabinfo_write,
4563    .llseek = seq_lseek,
4564    .release = seq_release,
4565};
4566
4567#ifdef CONFIG_DEBUG_SLAB_LEAK
4568
4569static void *leaks_start(struct seq_file *m, loff_t *pos)
4570{
4571    mutex_lock(&slab_mutex);
4572    return seq_list_start(&slab_caches, *pos);
4573}
4574
4575static inline int add_caller(unsigned long *n, unsigned long v)
4576{
4577    unsigned long *p;
4578    int l;
4579    if (!v)
4580        return 1;
4581    l = n[1];
4582    p = n + 2;
4583    while (l) {
4584        int i = l/2;
4585        unsigned long *q = p + 2 * i;
4586        if (*q == v) {
4587            q[1]++;
4588            return 1;
4589        }
4590        if (*q > v) {
4591            l = i;
4592        } else {
4593            p = q + 2;
4594            l -= i + 1;
4595        }
4596    }
4597    if (++n[1] == n[0])
4598        return 0;
4599    memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4600    p[0] = v;
4601    p[1] = 1;
4602    return 1;
4603}
4604
4605static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4606{
4607    void *p;
4608    int i;
4609    if (n[0] == n[1])
4610        return;
4611    for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4612        if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4613            continue;
4614        if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4615            return;
4616    }
4617}
4618
4619static void show_symbol(struct seq_file *m, unsigned long address)
4620{
4621#ifdef CONFIG_KALLSYMS
4622    unsigned long offset, size;
4623    char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4624
4625    if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4626        seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4627        if (modname[0])
4628            seq_printf(m, " [%s]", modname);
4629        return;
4630    }
4631#endif
4632    seq_printf(m, "%p", (void *)address);
4633}
4634
4635static int leaks_show(struct seq_file *m, void *p)
4636{
4637    struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4638    struct slab *slabp;
4639    struct kmem_list3 *l3;
4640    const char *name;
4641    unsigned long *n = m->private;
4642    int node;
4643    int i;
4644
4645    if (!(cachep->flags & SLAB_STORE_USER))
4646        return 0;
4647    if (!(cachep->flags & SLAB_RED_ZONE))
4648        return 0;
4649
4650    /* OK, we can do it */
4651
4652    n[1] = 0;
4653
4654    for_each_online_node(node) {
4655        l3 = cachep->nodelists[node];
4656        if (!l3)
4657            continue;
4658
4659        check_irq_on();
4660        spin_lock_irq(&l3->list_lock);
4661
4662        list_for_each_entry(slabp, &l3->slabs_full, list)
4663            handle_slab(n, cachep, slabp);
4664        list_for_each_entry(slabp, &l3->slabs_partial, list)
4665            handle_slab(n, cachep, slabp);
4666        spin_unlock_irq(&l3->list_lock);
4667    }
4668    name = cachep->name;
4669    if (n[0] == n[1]) {
4670        /* Increase the buffer size */
4671        mutex_unlock(&slab_mutex);
4672        m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4673        if (!m->private) {
4674            /* Too bad, we are really out */
4675            m->private = n;
4676            mutex_lock(&slab_mutex);
4677            return -ENOMEM;
4678        }
4679        *(unsigned long *)m->private = n[0] * 2;
4680        kfree(n);
4681        mutex_lock(&slab_mutex);
4682        /* Now make sure this entry will be retried */
4683        m->count = m->size;
4684        return 0;
4685    }
4686    for (i = 0; i < n[1]; i++) {
4687        seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4688        show_symbol(m, n[2*i+2]);
4689        seq_putc(m, '\n');
4690    }
4691
4692    return 0;
4693}
4694
4695static const struct seq_operations slabstats_op = {
4696    .start = leaks_start,
4697    .next = s_next,
4698    .stop = s_stop,
4699    .show = leaks_show,
4700};
4701
4702static int slabstats_open(struct inode *inode, struct file *file)
4703{
4704    unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4705    int ret = -ENOMEM;
4706    if (n) {
4707        ret = seq_open(file, &slabstats_op);
4708        if (!ret) {
4709            struct seq_file *m = file->private_data;
4710            *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4711            m->private = n;
4712            n = NULL;
4713        }
4714        kfree(n);
4715    }
4716    return ret;
4717}
4718
4719static const struct file_operations proc_slabstats_operations = {
4720    .open = slabstats_open,
4721    .read = seq_read,
4722    .llseek = seq_lseek,
4723    .release = seq_release_private,
4724};
4725#endif
4726
4727static int __init slab_proc_init(void)
4728{
4729    proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4730#ifdef CONFIG_DEBUG_SLAB_LEAK
4731    proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4732#endif
4733    return 0;
4734}
4735module_init(slab_proc_init);
4736#endif
4737
4738/**
4739 * ksize - get the actual amount of memory allocated for a given object
4740 * @objp: Pointer to the object
4741 *
4742 * kmalloc may internally round up allocations and return more memory
4743 * than requested. ksize() can be used to determine the actual amount of
4744 * memory allocated. The caller may use this additional memory, even though
4745 * a smaller amount of memory was initially specified with the kmalloc call.
4746 * The caller must guarantee that objp points to a valid object previously
4747 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4748 * must not be freed during the duration of the call.
4749 */
4750size_t ksize(const void *objp)
4751{
4752    BUG_ON(!objp);
4753    if (unlikely(objp == ZERO_SIZE_PTR))
4754        return 0;
4755
4756    return virt_to_cache(objp)->object_size;
4757}
4758EXPORT_SYMBOL(ksize);
4759

Archive Download this file



interactive