Root/
1 | /* |
2 | * SLOB Allocator: Simple List Of Blocks |
3 | * |
4 | * Matt Mackall <mpm@selenic.com> 12/30/03 |
5 | * |
6 | * NUMA support by Paul Mundt, 2007. |
7 | * |
8 | * How SLOB works: |
9 | * |
10 | * The core of SLOB is a traditional K&R style heap allocator, with |
11 | * support for returning aligned objects. The granularity of this |
12 | * allocator is as little as 2 bytes, however typically most architectures |
13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. |
14 | * |
15 | * The slob heap is a set of linked list of pages from alloc_pages(), |
16 | * and within each page, there is a singly-linked list of free blocks |
17 | * (slob_t). The heap is grown on demand. To reduce fragmentation, |
18 | * heap pages are segregated into three lists, with objects less than |
19 | * 256 bytes, objects less than 1024 bytes, and all other objects. |
20 | * |
21 | * Allocation from heap involves first searching for a page with |
22 | * sufficient free blocks (using a next-fit-like approach) followed by |
23 | * a first-fit scan of the page. Deallocation inserts objects back |
24 | * into the free list in address order, so this is effectively an |
25 | * address-ordered first fit. |
26 | * |
27 | * Above this is an implementation of kmalloc/kfree. Blocks returned |
28 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
29 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
30 | * alloc_pages() directly, allocating compound pages so the page order |
31 | * does not have to be separately tracked, and also stores the exact |
32 | * allocation size in page->private so that it can be used to accurately |
33 | * provide ksize(). These objects are detected in kfree() because slob_page() |
34 | * is false for them. |
35 | * |
36 | * SLAB is emulated on top of SLOB by simply calling constructors and |
37 | * destructors for every SLAB allocation. Objects are returned with the |
38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which |
39 | * case the low-level allocator will fragment blocks to create the proper |
40 | * alignment. Again, objects of page-size or greater are allocated by |
41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
42 | * size bookkeeping is necessary and there is essentially no allocation |
43 | * space overhead, and compound pages aren't needed for multi-page |
44 | * allocations. |
45 | * |
46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real |
47 | * logic down to the page allocator, and simply doing the node accounting |
48 | * on the upper levels. In the event that a node id is explicitly |
49 | * provided, alloc_pages_exact_node() with the specified node id is used |
50 | * instead. The common case (or when the node id isn't explicitly provided) |
51 | * will default to the current node, as per numa_node_id(). |
52 | * |
53 | * Node aware pages are still inserted in to the global freelist, and |
54 | * these are scanned for by matching against the node id encoded in the |
55 | * page flags. As a result, block allocations that can be satisfied from |
56 | * the freelist will only be done so on pages residing on the same node, |
57 | * in order to prevent random node placement. |
58 | */ |
59 | |
60 | #include <linux/kernel.h> |
61 | #include <linux/slab.h> |
62 | #include "slab.h" |
63 | |
64 | #include <linux/mm.h> |
65 | #include <linux/swap.h> /* struct reclaim_state */ |
66 | #include <linux/cache.h> |
67 | #include <linux/init.h> |
68 | #include <linux/export.h> |
69 | #include <linux/rcupdate.h> |
70 | #include <linux/list.h> |
71 | #include <linux/kmemleak.h> |
72 | |
73 | #include <trace/events/kmem.h> |
74 | |
75 | #include <linux/atomic.h> |
76 | |
77 | /* |
78 | * slob_block has a field 'units', which indicates size of block if +ve, |
79 | * or offset of next block if -ve (in SLOB_UNITs). |
80 | * |
81 | * Free blocks of size 1 unit simply contain the offset of the next block. |
82 | * Those with larger size contain their size in the first SLOB_UNIT of |
83 | * memory, and the offset of the next free block in the second SLOB_UNIT. |
84 | */ |
85 | #if PAGE_SIZE <= (32767 * 2) |
86 | typedef s16 slobidx_t; |
87 | #else |
88 | typedef s32 slobidx_t; |
89 | #endif |
90 | |
91 | struct slob_block { |
92 | slobidx_t units; |
93 | }; |
94 | typedef struct slob_block slob_t; |
95 | |
96 | /* |
97 | * All partially free slob pages go on these lists. |
98 | */ |
99 | #define SLOB_BREAK1 256 |
100 | #define SLOB_BREAK2 1024 |
101 | static LIST_HEAD(free_slob_small); |
102 | static LIST_HEAD(free_slob_medium); |
103 | static LIST_HEAD(free_slob_large); |
104 | |
105 | /* |
106 | * slob_page_free: true for pages on free_slob_pages list. |
107 | */ |
108 | static inline int slob_page_free(struct page *sp) |
109 | { |
110 | return PageSlobFree(sp); |
111 | } |
112 | |
113 | static void set_slob_page_free(struct page *sp, struct list_head *list) |
114 | { |
115 | list_add(&sp->list, list); |
116 | __SetPageSlobFree(sp); |
117 | } |
118 | |
119 | static inline void clear_slob_page_free(struct page *sp) |
120 | { |
121 | list_del(&sp->list); |
122 | __ClearPageSlobFree(sp); |
123 | } |
124 | |
125 | #define SLOB_UNIT sizeof(slob_t) |
126 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) |
127 | #define SLOB_ALIGN L1_CACHE_BYTES |
128 | |
129 | /* |
130 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which |
131 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free |
132 | * the block using call_rcu. |
133 | */ |
134 | struct slob_rcu { |
135 | struct rcu_head head; |
136 | int size; |
137 | }; |
138 | |
139 | /* |
140 | * slob_lock protects all slob allocator structures. |
141 | */ |
142 | static DEFINE_SPINLOCK(slob_lock); |
143 | |
144 | /* |
145 | * Encode the given size and next info into a free slob block s. |
146 | */ |
147 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) |
148 | { |
149 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
150 | slobidx_t offset = next - base; |
151 | |
152 | if (size > 1) { |
153 | s[0].units = size; |
154 | s[1].units = offset; |
155 | } else |
156 | s[0].units = -offset; |
157 | } |
158 | |
159 | /* |
160 | * Return the size of a slob block. |
161 | */ |
162 | static slobidx_t slob_units(slob_t *s) |
163 | { |
164 | if (s->units > 0) |
165 | return s->units; |
166 | return 1; |
167 | } |
168 | |
169 | /* |
170 | * Return the next free slob block pointer after this one. |
171 | */ |
172 | static slob_t *slob_next(slob_t *s) |
173 | { |
174 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
175 | slobidx_t next; |
176 | |
177 | if (s[0].units < 0) |
178 | next = -s[0].units; |
179 | else |
180 | next = s[1].units; |
181 | return base+next; |
182 | } |
183 | |
184 | /* |
185 | * Returns true if s is the last free block in its page. |
186 | */ |
187 | static int slob_last(slob_t *s) |
188 | { |
189 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
190 | } |
191 | |
192 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
193 | { |
194 | void *page; |
195 | |
196 | #ifdef CONFIG_NUMA |
197 | if (node != -1) |
198 | page = alloc_pages_exact_node(node, gfp, order); |
199 | else |
200 | #endif |
201 | page = alloc_pages(gfp, order); |
202 | |
203 | if (!page) |
204 | return NULL; |
205 | |
206 | return page_address(page); |
207 | } |
208 | |
209 | static void slob_free_pages(void *b, int order) |
210 | { |
211 | if (current->reclaim_state) |
212 | current->reclaim_state->reclaimed_slab += 1 << order; |
213 | free_pages((unsigned long)b, order); |
214 | } |
215 | |
216 | /* |
217 | * Allocate a slob block within a given slob_page sp. |
218 | */ |
219 | static void *slob_page_alloc(struct page *sp, size_t size, int align) |
220 | { |
221 | slob_t *prev, *cur, *aligned = NULL; |
222 | int delta = 0, units = SLOB_UNITS(size); |
223 | |
224 | for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { |
225 | slobidx_t avail = slob_units(cur); |
226 | |
227 | if (align) { |
228 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
229 | delta = aligned - cur; |
230 | } |
231 | if (avail >= units + delta) { /* room enough? */ |
232 | slob_t *next; |
233 | |
234 | if (delta) { /* need to fragment head to align? */ |
235 | next = slob_next(cur); |
236 | set_slob(aligned, avail - delta, next); |
237 | set_slob(cur, delta, aligned); |
238 | prev = cur; |
239 | cur = aligned; |
240 | avail = slob_units(cur); |
241 | } |
242 | |
243 | next = slob_next(cur); |
244 | if (avail == units) { /* exact fit? unlink. */ |
245 | if (prev) |
246 | set_slob(prev, slob_units(prev), next); |
247 | else |
248 | sp->freelist = next; |
249 | } else { /* fragment */ |
250 | if (prev) |
251 | set_slob(prev, slob_units(prev), cur + units); |
252 | else |
253 | sp->freelist = cur + units; |
254 | set_slob(cur + units, avail - units, next); |
255 | } |
256 | |
257 | sp->units -= units; |
258 | if (!sp->units) |
259 | clear_slob_page_free(sp); |
260 | return cur; |
261 | } |
262 | if (slob_last(cur)) |
263 | return NULL; |
264 | } |
265 | } |
266 | |
267 | /* |
268 | * slob_alloc: entry point into the slob allocator. |
269 | */ |
270 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
271 | { |
272 | struct page *sp; |
273 | struct list_head *prev; |
274 | struct list_head *slob_list; |
275 | slob_t *b = NULL; |
276 | unsigned long flags; |
277 | |
278 | if (size < SLOB_BREAK1) |
279 | slob_list = &free_slob_small; |
280 | else if (size < SLOB_BREAK2) |
281 | slob_list = &free_slob_medium; |
282 | else |
283 | slob_list = &free_slob_large; |
284 | |
285 | spin_lock_irqsave(&slob_lock, flags); |
286 | /* Iterate through each partially free page, try to find room */ |
287 | list_for_each_entry(sp, slob_list, list) { |
288 | #ifdef CONFIG_NUMA |
289 | /* |
290 | * If there's a node specification, search for a partial |
291 | * page with a matching node id in the freelist. |
292 | */ |
293 | if (node != -1 && page_to_nid(sp) != node) |
294 | continue; |
295 | #endif |
296 | /* Enough room on this page? */ |
297 | if (sp->units < SLOB_UNITS(size)) |
298 | continue; |
299 | |
300 | /* Attempt to alloc */ |
301 | prev = sp->list.prev; |
302 | b = slob_page_alloc(sp, size, align); |
303 | if (!b) |
304 | continue; |
305 | |
306 | /* Improve fragment distribution and reduce our average |
307 | * search time by starting our next search here. (see |
308 | * Knuth vol 1, sec 2.5, pg 449) */ |
309 | if (prev != slob_list->prev && |
310 | slob_list->next != prev->next) |
311 | list_move_tail(slob_list, prev->next); |
312 | break; |
313 | } |
314 | spin_unlock_irqrestore(&slob_lock, flags); |
315 | |
316 | /* Not enough space: must allocate a new page */ |
317 | if (!b) { |
318 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
319 | if (!b) |
320 | return NULL; |
321 | sp = virt_to_page(b); |
322 | __SetPageSlab(sp); |
323 | |
324 | spin_lock_irqsave(&slob_lock, flags); |
325 | sp->units = SLOB_UNITS(PAGE_SIZE); |
326 | sp->freelist = b; |
327 | INIT_LIST_HEAD(&sp->list); |
328 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
329 | set_slob_page_free(sp, slob_list); |
330 | b = slob_page_alloc(sp, size, align); |
331 | BUG_ON(!b); |
332 | spin_unlock_irqrestore(&slob_lock, flags); |
333 | } |
334 | if (unlikely((gfp & __GFP_ZERO) && b)) |
335 | memset(b, 0, size); |
336 | return b; |
337 | } |
338 | |
339 | /* |
340 | * slob_free: entry point into the slob allocator. |
341 | */ |
342 | static void slob_free(void *block, int size) |
343 | { |
344 | struct page *sp; |
345 | slob_t *prev, *next, *b = (slob_t *)block; |
346 | slobidx_t units; |
347 | unsigned long flags; |
348 | struct list_head *slob_list; |
349 | |
350 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
351 | return; |
352 | BUG_ON(!size); |
353 | |
354 | sp = virt_to_page(block); |
355 | units = SLOB_UNITS(size); |
356 | |
357 | spin_lock_irqsave(&slob_lock, flags); |
358 | |
359 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
360 | /* Go directly to page allocator. Do not pass slob allocator */ |
361 | if (slob_page_free(sp)) |
362 | clear_slob_page_free(sp); |
363 | spin_unlock_irqrestore(&slob_lock, flags); |
364 | __ClearPageSlab(sp); |
365 | reset_page_mapcount(sp); |
366 | slob_free_pages(b, 0); |
367 | return; |
368 | } |
369 | |
370 | if (!slob_page_free(sp)) { |
371 | /* This slob page is about to become partially free. Easy! */ |
372 | sp->units = units; |
373 | sp->freelist = b; |
374 | set_slob(b, units, |
375 | (void *)((unsigned long)(b + |
376 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
377 | if (size < SLOB_BREAK1) |
378 | slob_list = &free_slob_small; |
379 | else if (size < SLOB_BREAK2) |
380 | slob_list = &free_slob_medium; |
381 | else |
382 | slob_list = &free_slob_large; |
383 | set_slob_page_free(sp, slob_list); |
384 | goto out; |
385 | } |
386 | |
387 | /* |
388 | * Otherwise the page is already partially free, so find reinsertion |
389 | * point. |
390 | */ |
391 | sp->units += units; |
392 | |
393 | if (b < (slob_t *)sp->freelist) { |
394 | if (b + units == sp->freelist) { |
395 | units += slob_units(sp->freelist); |
396 | sp->freelist = slob_next(sp->freelist); |
397 | } |
398 | set_slob(b, units, sp->freelist); |
399 | sp->freelist = b; |
400 | } else { |
401 | prev = sp->freelist; |
402 | next = slob_next(prev); |
403 | while (b > next) { |
404 | prev = next; |
405 | next = slob_next(prev); |
406 | } |
407 | |
408 | if (!slob_last(prev) && b + units == next) { |
409 | units += slob_units(next); |
410 | set_slob(b, units, slob_next(next)); |
411 | } else |
412 | set_slob(b, units, next); |
413 | |
414 | if (prev + slob_units(prev) == b) { |
415 | units = slob_units(b) + slob_units(prev); |
416 | set_slob(prev, units, slob_next(b)); |
417 | } else |
418 | set_slob(prev, slob_units(prev), b); |
419 | } |
420 | out: |
421 | spin_unlock_irqrestore(&slob_lock, flags); |
422 | } |
423 | |
424 | /* |
425 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. |
426 | */ |
427 | |
428 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
429 | { |
430 | unsigned int *m; |
431 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
432 | void *ret; |
433 | |
434 | gfp &= gfp_allowed_mask; |
435 | |
436 | lockdep_trace_alloc(gfp); |
437 | |
438 | if (size < PAGE_SIZE - align) { |
439 | if (!size) |
440 | return ZERO_SIZE_PTR; |
441 | |
442 | m = slob_alloc(size + align, gfp, align, node); |
443 | |
444 | if (!m) |
445 | return NULL; |
446 | *m = size; |
447 | ret = (void *)m + align; |
448 | |
449 | trace_kmalloc_node(_RET_IP_, ret, |
450 | size, size + align, gfp, node); |
451 | } else { |
452 | unsigned int order = get_order(size); |
453 | |
454 | if (likely(order)) |
455 | gfp |= __GFP_COMP; |
456 | ret = slob_new_pages(gfp, order, node); |
457 | if (ret) { |
458 | struct page *page; |
459 | page = virt_to_page(ret); |
460 | page->private = size; |
461 | } |
462 | |
463 | trace_kmalloc_node(_RET_IP_, ret, |
464 | size, PAGE_SIZE << order, gfp, node); |
465 | } |
466 | |
467 | kmemleak_alloc(ret, size, 1, gfp); |
468 | return ret; |
469 | } |
470 | EXPORT_SYMBOL(__kmalloc_node); |
471 | |
472 | void kfree(const void *block) |
473 | { |
474 | struct page *sp; |
475 | |
476 | trace_kfree(_RET_IP_, block); |
477 | |
478 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
479 | return; |
480 | kmemleak_free(block); |
481 | |
482 | sp = virt_to_page(block); |
483 | if (PageSlab(sp)) { |
484 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
485 | unsigned int *m = (unsigned int *)(block - align); |
486 | slob_free(m, *m + align); |
487 | } else |
488 | put_page(sp); |
489 | } |
490 | EXPORT_SYMBOL(kfree); |
491 | |
492 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
493 | size_t ksize(const void *block) |
494 | { |
495 | struct page *sp; |
496 | |
497 | BUG_ON(!block); |
498 | if (unlikely(block == ZERO_SIZE_PTR)) |
499 | return 0; |
500 | |
501 | sp = virt_to_page(block); |
502 | if (PageSlab(sp)) { |
503 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
504 | unsigned int *m = (unsigned int *)(block - align); |
505 | return SLOB_UNITS(*m) * SLOB_UNIT; |
506 | } else |
507 | return sp->private; |
508 | } |
509 | EXPORT_SYMBOL(ksize); |
510 | |
511 | struct kmem_cache *__kmem_cache_create(const char *name, size_t size, |
512 | size_t align, unsigned long flags, void (*ctor)(void *)) |
513 | { |
514 | struct kmem_cache *c; |
515 | |
516 | c = slob_alloc(sizeof(struct kmem_cache), |
517 | GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); |
518 | |
519 | if (c) { |
520 | c->name = name; |
521 | c->size = size; |
522 | if (flags & SLAB_DESTROY_BY_RCU) { |
523 | /* leave room for rcu footer at the end of object */ |
524 | c->size += sizeof(struct slob_rcu); |
525 | } |
526 | c->flags = flags; |
527 | c->ctor = ctor; |
528 | /* ignore alignment unless it's forced */ |
529 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
530 | if (c->align < ARCH_SLAB_MINALIGN) |
531 | c->align = ARCH_SLAB_MINALIGN; |
532 | if (c->align < align) |
533 | c->align = align; |
534 | |
535 | kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL); |
536 | c->refcount = 1; |
537 | } |
538 | return c; |
539 | } |
540 | |
541 | void kmem_cache_destroy(struct kmem_cache *c) |
542 | { |
543 | kmemleak_free(c); |
544 | if (c->flags & SLAB_DESTROY_BY_RCU) |
545 | rcu_barrier(); |
546 | slob_free(c, sizeof(struct kmem_cache)); |
547 | } |
548 | EXPORT_SYMBOL(kmem_cache_destroy); |
549 | |
550 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
551 | { |
552 | void *b; |
553 | |
554 | flags &= gfp_allowed_mask; |
555 | |
556 | lockdep_trace_alloc(flags); |
557 | |
558 | if (c->size < PAGE_SIZE) { |
559 | b = slob_alloc(c->size, flags, c->align, node); |
560 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
561 | SLOB_UNITS(c->size) * SLOB_UNIT, |
562 | flags, node); |
563 | } else { |
564 | b = slob_new_pages(flags, get_order(c->size), node); |
565 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
566 | PAGE_SIZE << get_order(c->size), |
567 | flags, node); |
568 | } |
569 | |
570 | if (c->ctor) |
571 | c->ctor(b); |
572 | |
573 | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); |
574 | return b; |
575 | } |
576 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
577 | |
578 | static void __kmem_cache_free(void *b, int size) |
579 | { |
580 | if (size < PAGE_SIZE) |
581 | slob_free(b, size); |
582 | else |
583 | slob_free_pages(b, get_order(size)); |
584 | } |
585 | |
586 | static void kmem_rcu_free(struct rcu_head *head) |
587 | { |
588 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; |
589 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); |
590 | |
591 | __kmem_cache_free(b, slob_rcu->size); |
592 | } |
593 | |
594 | void kmem_cache_free(struct kmem_cache *c, void *b) |
595 | { |
596 | kmemleak_free_recursive(b, c->flags); |
597 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
598 | struct slob_rcu *slob_rcu; |
599 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
600 | slob_rcu->size = c->size; |
601 | call_rcu(&slob_rcu->head, kmem_rcu_free); |
602 | } else { |
603 | __kmem_cache_free(b, c->size); |
604 | } |
605 | |
606 | trace_kmem_cache_free(_RET_IP_, b); |
607 | } |
608 | EXPORT_SYMBOL(kmem_cache_free); |
609 | |
610 | unsigned int kmem_cache_size(struct kmem_cache *c) |
611 | { |
612 | return c->size; |
613 | } |
614 | EXPORT_SYMBOL(kmem_cache_size); |
615 | |
616 | int kmem_cache_shrink(struct kmem_cache *d) |
617 | { |
618 | return 0; |
619 | } |
620 | EXPORT_SYMBOL(kmem_cache_shrink); |
621 | |
622 | void __init kmem_cache_init(void) |
623 | { |
624 | slab_state = UP; |
625 | } |
626 | |
627 | void __init kmem_cache_init_late(void) |
628 | { |
629 | slab_state = FULL; |
630 | } |
631 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9