Root/
1 | /* |
2 | * sparse memory mappings. |
3 | */ |
4 | #include <linux/mm.h> |
5 | #include <linux/slab.h> |
6 | #include <linux/mmzone.h> |
7 | #include <linux/bootmem.h> |
8 | #include <linux/highmem.h> |
9 | #include <linux/export.h> |
10 | #include <linux/spinlock.h> |
11 | #include <linux/vmalloc.h> |
12 | #include "internal.h" |
13 | #include <asm/dma.h> |
14 | #include <asm/pgalloc.h> |
15 | #include <asm/pgtable.h> |
16 | |
17 | /* |
18 | * Permanent SPARSEMEM data: |
19 | * |
20 | * 1) mem_section - memory sections, mem_map's for valid memory |
21 | */ |
22 | #ifdef CONFIG_SPARSEMEM_EXTREME |
23 | struct mem_section *mem_section[NR_SECTION_ROOTS] |
24 | ____cacheline_internodealigned_in_smp; |
25 | #else |
26 | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] |
27 | ____cacheline_internodealigned_in_smp; |
28 | #endif |
29 | EXPORT_SYMBOL(mem_section); |
30 | |
31 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
32 | /* |
33 | * If we did not store the node number in the page then we have to |
34 | * do a lookup in the section_to_node_table in order to find which |
35 | * node the page belongs to. |
36 | */ |
37 | #if MAX_NUMNODES <= 256 |
38 | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
39 | #else |
40 | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
41 | #endif |
42 | |
43 | int page_to_nid(const struct page *page) |
44 | { |
45 | return section_to_node_table[page_to_section(page)]; |
46 | } |
47 | EXPORT_SYMBOL(page_to_nid); |
48 | |
49 | static void set_section_nid(unsigned long section_nr, int nid) |
50 | { |
51 | section_to_node_table[section_nr] = nid; |
52 | } |
53 | #else /* !NODE_NOT_IN_PAGE_FLAGS */ |
54 | static inline void set_section_nid(unsigned long section_nr, int nid) |
55 | { |
56 | } |
57 | #endif |
58 | |
59 | #ifdef CONFIG_SPARSEMEM_EXTREME |
60 | static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) |
61 | { |
62 | struct mem_section *section = NULL; |
63 | unsigned long array_size = SECTIONS_PER_ROOT * |
64 | sizeof(struct mem_section); |
65 | |
66 | if (slab_is_available()) { |
67 | if (node_state(nid, N_HIGH_MEMORY)) |
68 | section = kzalloc_node(array_size, GFP_KERNEL, nid); |
69 | else |
70 | section = kzalloc(array_size, GFP_KERNEL); |
71 | } else { |
72 | section = alloc_bootmem_node(NODE_DATA(nid), array_size); |
73 | } |
74 | |
75 | return section; |
76 | } |
77 | |
78 | static int __meminit sparse_index_init(unsigned long section_nr, int nid) |
79 | { |
80 | unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
81 | struct mem_section *section; |
82 | int ret = 0; |
83 | |
84 | if (mem_section[root]) |
85 | return -EEXIST; |
86 | |
87 | section = sparse_index_alloc(nid); |
88 | if (!section) |
89 | return -ENOMEM; |
90 | |
91 | mem_section[root] = section; |
92 | |
93 | return ret; |
94 | } |
95 | #else /* !SPARSEMEM_EXTREME */ |
96 | static inline int sparse_index_init(unsigned long section_nr, int nid) |
97 | { |
98 | return 0; |
99 | } |
100 | #endif |
101 | |
102 | /* |
103 | * Although written for the SPARSEMEM_EXTREME case, this happens |
104 | * to also work for the flat array case because |
105 | * NR_SECTION_ROOTS==NR_MEM_SECTIONS. |
106 | */ |
107 | int __section_nr(struct mem_section* ms) |
108 | { |
109 | unsigned long root_nr; |
110 | struct mem_section* root; |
111 | |
112 | for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { |
113 | root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); |
114 | if (!root) |
115 | continue; |
116 | |
117 | if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) |
118 | break; |
119 | } |
120 | |
121 | VM_BUG_ON(root_nr == NR_SECTION_ROOTS); |
122 | |
123 | return (root_nr * SECTIONS_PER_ROOT) + (ms - root); |
124 | } |
125 | |
126 | /* |
127 | * During early boot, before section_mem_map is used for an actual |
128 | * mem_map, we use section_mem_map to store the section's NUMA |
129 | * node. This keeps us from having to use another data structure. The |
130 | * node information is cleared just before we store the real mem_map. |
131 | */ |
132 | static inline unsigned long sparse_encode_early_nid(int nid) |
133 | { |
134 | return (nid << SECTION_NID_SHIFT); |
135 | } |
136 | |
137 | static inline int sparse_early_nid(struct mem_section *section) |
138 | { |
139 | return (section->section_mem_map >> SECTION_NID_SHIFT); |
140 | } |
141 | |
142 | /* Validate the physical addressing limitations of the model */ |
143 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, |
144 | unsigned long *end_pfn) |
145 | { |
146 | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
147 | |
148 | /* |
149 | * Sanity checks - do not allow an architecture to pass |
150 | * in larger pfns than the maximum scope of sparsemem: |
151 | */ |
152 | if (*start_pfn > max_sparsemem_pfn) { |
153 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
154 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
155 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
156 | WARN_ON_ONCE(1); |
157 | *start_pfn = max_sparsemem_pfn; |
158 | *end_pfn = max_sparsemem_pfn; |
159 | } else if (*end_pfn > max_sparsemem_pfn) { |
160 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
161 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
162 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
163 | WARN_ON_ONCE(1); |
164 | *end_pfn = max_sparsemem_pfn; |
165 | } |
166 | } |
167 | |
168 | /* Record a memory area against a node. */ |
169 | void __init memory_present(int nid, unsigned long start, unsigned long end) |
170 | { |
171 | unsigned long pfn; |
172 | |
173 | start &= PAGE_SECTION_MASK; |
174 | mminit_validate_memmodel_limits(&start, &end); |
175 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
176 | unsigned long section = pfn_to_section_nr(pfn); |
177 | struct mem_section *ms; |
178 | |
179 | sparse_index_init(section, nid); |
180 | set_section_nid(section, nid); |
181 | |
182 | ms = __nr_to_section(section); |
183 | if (!ms->section_mem_map) |
184 | ms->section_mem_map = sparse_encode_early_nid(nid) | |
185 | SECTION_MARKED_PRESENT; |
186 | } |
187 | } |
188 | |
189 | /* |
190 | * Only used by the i386 NUMA architecures, but relatively |
191 | * generic code. |
192 | */ |
193 | unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, |
194 | unsigned long end_pfn) |
195 | { |
196 | unsigned long pfn; |
197 | unsigned long nr_pages = 0; |
198 | |
199 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); |
200 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
201 | if (nid != early_pfn_to_nid(pfn)) |
202 | continue; |
203 | |
204 | if (pfn_present(pfn)) |
205 | nr_pages += PAGES_PER_SECTION; |
206 | } |
207 | |
208 | return nr_pages * sizeof(struct page); |
209 | } |
210 | |
211 | /* |
212 | * Subtle, we encode the real pfn into the mem_map such that |
213 | * the identity pfn - section_mem_map will return the actual |
214 | * physical page frame number. |
215 | */ |
216 | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) |
217 | { |
218 | return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); |
219 | } |
220 | |
221 | /* |
222 | * Decode mem_map from the coded memmap |
223 | */ |
224 | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
225 | { |
226 | /* mask off the extra low bits of information */ |
227 | coded_mem_map &= SECTION_MAP_MASK; |
228 | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
229 | } |
230 | |
231 | static int __meminit sparse_init_one_section(struct mem_section *ms, |
232 | unsigned long pnum, struct page *mem_map, |
233 | unsigned long *pageblock_bitmap) |
234 | { |
235 | if (!present_section(ms)) |
236 | return -EINVAL; |
237 | |
238 | ms->section_mem_map &= ~SECTION_MAP_MASK; |
239 | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | |
240 | SECTION_HAS_MEM_MAP; |
241 | ms->pageblock_flags = pageblock_bitmap; |
242 | |
243 | return 1; |
244 | } |
245 | |
246 | unsigned long usemap_size(void) |
247 | { |
248 | unsigned long size_bytes; |
249 | size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; |
250 | size_bytes = roundup(size_bytes, sizeof(unsigned long)); |
251 | return size_bytes; |
252 | } |
253 | |
254 | #ifdef CONFIG_MEMORY_HOTPLUG |
255 | static unsigned long *__kmalloc_section_usemap(void) |
256 | { |
257 | return kmalloc(usemap_size(), GFP_KERNEL); |
258 | } |
259 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
260 | |
261 | #ifdef CONFIG_MEMORY_HOTREMOVE |
262 | static unsigned long * __init |
263 | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
264 | unsigned long size) |
265 | { |
266 | unsigned long goal, limit; |
267 | unsigned long *p; |
268 | int nid; |
269 | /* |
270 | * A page may contain usemaps for other sections preventing the |
271 | * page being freed and making a section unremovable while |
272 | * other sections referencing the usemap retmain active. Similarly, |
273 | * a pgdat can prevent a section being removed. If section A |
274 | * contains a pgdat and section B contains the usemap, both |
275 | * sections become inter-dependent. This allocates usemaps |
276 | * from the same section as the pgdat where possible to avoid |
277 | * this problem. |
278 | */ |
279 | goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); |
280 | limit = goal + (1UL << PA_SECTION_SHIFT); |
281 | nid = early_pfn_to_nid(goal >> PAGE_SHIFT); |
282 | again: |
283 | p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, |
284 | SMP_CACHE_BYTES, goal, limit); |
285 | if (!p && limit) { |
286 | limit = 0; |
287 | goto again; |
288 | } |
289 | return p; |
290 | } |
291 | |
292 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) |
293 | { |
294 | unsigned long usemap_snr, pgdat_snr; |
295 | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; |
296 | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; |
297 | struct pglist_data *pgdat = NODE_DATA(nid); |
298 | int usemap_nid; |
299 | |
300 | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); |
301 | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); |
302 | if (usemap_snr == pgdat_snr) |
303 | return; |
304 | |
305 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) |
306 | /* skip redundant message */ |
307 | return; |
308 | |
309 | old_usemap_snr = usemap_snr; |
310 | old_pgdat_snr = pgdat_snr; |
311 | |
312 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); |
313 | if (usemap_nid != nid) { |
314 | printk(KERN_INFO |
315 | "node %d must be removed before remove section %ld\n", |
316 | nid, usemap_snr); |
317 | return; |
318 | } |
319 | /* |
320 | * There is a circular dependency. |
321 | * Some platforms allow un-removable section because they will just |
322 | * gather other removable sections for dynamic partitioning. |
323 | * Just notify un-removable section's number here. |
324 | */ |
325 | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, |
326 | pgdat_snr, nid); |
327 | printk(KERN_CONT |
328 | " have a circular dependency on usemap and pgdat allocations\n"); |
329 | } |
330 | #else |
331 | static unsigned long * __init |
332 | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
333 | unsigned long size) |
334 | { |
335 | return alloc_bootmem_node_nopanic(pgdat, size); |
336 | } |
337 | |
338 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) |
339 | { |
340 | } |
341 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
342 | |
343 | static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, |
344 | unsigned long pnum_begin, |
345 | unsigned long pnum_end, |
346 | unsigned long usemap_count, int nodeid) |
347 | { |
348 | void *usemap; |
349 | unsigned long pnum; |
350 | int size = usemap_size(); |
351 | |
352 | usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), |
353 | size * usemap_count); |
354 | if (!usemap) { |
355 | printk(KERN_WARNING "%s: allocation failed\n", __func__); |
356 | return; |
357 | } |
358 | |
359 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
360 | if (!present_section_nr(pnum)) |
361 | continue; |
362 | usemap_map[pnum] = usemap; |
363 | usemap += size; |
364 | check_usemap_section_nr(nodeid, usemap_map[pnum]); |
365 | } |
366 | } |
367 | |
368 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
369 | struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) |
370 | { |
371 | struct page *map; |
372 | unsigned long size; |
373 | |
374 | map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); |
375 | if (map) |
376 | return map; |
377 | |
378 | size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); |
379 | map = __alloc_bootmem_node_high(NODE_DATA(nid), size, |
380 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
381 | return map; |
382 | } |
383 | void __init sparse_mem_maps_populate_node(struct page **map_map, |
384 | unsigned long pnum_begin, |
385 | unsigned long pnum_end, |
386 | unsigned long map_count, int nodeid) |
387 | { |
388 | void *map; |
389 | unsigned long pnum; |
390 | unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; |
391 | |
392 | map = alloc_remap(nodeid, size * map_count); |
393 | if (map) { |
394 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
395 | if (!present_section_nr(pnum)) |
396 | continue; |
397 | map_map[pnum] = map; |
398 | map += size; |
399 | } |
400 | return; |
401 | } |
402 | |
403 | size = PAGE_ALIGN(size); |
404 | map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, |
405 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
406 | if (map) { |
407 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
408 | if (!present_section_nr(pnum)) |
409 | continue; |
410 | map_map[pnum] = map; |
411 | map += size; |
412 | } |
413 | return; |
414 | } |
415 | |
416 | /* fallback */ |
417 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
418 | struct mem_section *ms; |
419 | |
420 | if (!present_section_nr(pnum)) |
421 | continue; |
422 | map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); |
423 | if (map_map[pnum]) |
424 | continue; |
425 | ms = __nr_to_section(pnum); |
426 | printk(KERN_ERR "%s: sparsemem memory map backing failed " |
427 | "some memory will not be available.\n", __func__); |
428 | ms->section_mem_map = 0; |
429 | } |
430 | } |
431 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
432 | |
433 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
434 | static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, |
435 | unsigned long pnum_begin, |
436 | unsigned long pnum_end, |
437 | unsigned long map_count, int nodeid) |
438 | { |
439 | sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, |
440 | map_count, nodeid); |
441 | } |
442 | #else |
443 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
444 | { |
445 | struct page *map; |
446 | struct mem_section *ms = __nr_to_section(pnum); |
447 | int nid = sparse_early_nid(ms); |
448 | |
449 | map = sparse_mem_map_populate(pnum, nid); |
450 | if (map) |
451 | return map; |
452 | |
453 | printk(KERN_ERR "%s: sparsemem memory map backing failed " |
454 | "some memory will not be available.\n", __func__); |
455 | ms->section_mem_map = 0; |
456 | return NULL; |
457 | } |
458 | #endif |
459 | |
460 | void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) |
461 | { |
462 | } |
463 | |
464 | /* |
465 | * Allocate the accumulated non-linear sections, allocate a mem_map |
466 | * for each and record the physical to section mapping. |
467 | */ |
468 | void __init sparse_init(void) |
469 | { |
470 | unsigned long pnum; |
471 | struct page *map; |
472 | unsigned long *usemap; |
473 | unsigned long **usemap_map; |
474 | int size; |
475 | int nodeid_begin = 0; |
476 | unsigned long pnum_begin = 0; |
477 | unsigned long usemap_count; |
478 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
479 | unsigned long map_count; |
480 | int size2; |
481 | struct page **map_map; |
482 | #endif |
483 | |
484 | /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ |
485 | set_pageblock_order(); |
486 | |
487 | /* |
488 | * map is using big page (aka 2M in x86 64 bit) |
489 | * usemap is less one page (aka 24 bytes) |
490 | * so alloc 2M (with 2M align) and 24 bytes in turn will |
491 | * make next 2M slip to one more 2M later. |
492 | * then in big system, the memory will have a lot of holes... |
493 | * here try to allocate 2M pages continuously. |
494 | * |
495 | * powerpc need to call sparse_init_one_section right after each |
496 | * sparse_early_mem_map_alloc, so allocate usemap_map at first. |
497 | */ |
498 | size = sizeof(unsigned long *) * NR_MEM_SECTIONS; |
499 | usemap_map = alloc_bootmem(size); |
500 | if (!usemap_map) |
501 | panic("can not allocate usemap_map\n"); |
502 | |
503 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
504 | struct mem_section *ms; |
505 | |
506 | if (!present_section_nr(pnum)) |
507 | continue; |
508 | ms = __nr_to_section(pnum); |
509 | nodeid_begin = sparse_early_nid(ms); |
510 | pnum_begin = pnum; |
511 | break; |
512 | } |
513 | usemap_count = 1; |
514 | for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { |
515 | struct mem_section *ms; |
516 | int nodeid; |
517 | |
518 | if (!present_section_nr(pnum)) |
519 | continue; |
520 | ms = __nr_to_section(pnum); |
521 | nodeid = sparse_early_nid(ms); |
522 | if (nodeid == nodeid_begin) { |
523 | usemap_count++; |
524 | continue; |
525 | } |
526 | /* ok, we need to take cake of from pnum_begin to pnum - 1*/ |
527 | sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, |
528 | usemap_count, nodeid_begin); |
529 | /* new start, update count etc*/ |
530 | nodeid_begin = nodeid; |
531 | pnum_begin = pnum; |
532 | usemap_count = 1; |
533 | } |
534 | /* ok, last chunk */ |
535 | sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, |
536 | usemap_count, nodeid_begin); |
537 | |
538 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
539 | size2 = sizeof(struct page *) * NR_MEM_SECTIONS; |
540 | map_map = alloc_bootmem(size2); |
541 | if (!map_map) |
542 | panic("can not allocate map_map\n"); |
543 | |
544 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
545 | struct mem_section *ms; |
546 | |
547 | if (!present_section_nr(pnum)) |
548 | continue; |
549 | ms = __nr_to_section(pnum); |
550 | nodeid_begin = sparse_early_nid(ms); |
551 | pnum_begin = pnum; |
552 | break; |
553 | } |
554 | map_count = 1; |
555 | for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { |
556 | struct mem_section *ms; |
557 | int nodeid; |
558 | |
559 | if (!present_section_nr(pnum)) |
560 | continue; |
561 | ms = __nr_to_section(pnum); |
562 | nodeid = sparse_early_nid(ms); |
563 | if (nodeid == nodeid_begin) { |
564 | map_count++; |
565 | continue; |
566 | } |
567 | /* ok, we need to take cake of from pnum_begin to pnum - 1*/ |
568 | sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, |
569 | map_count, nodeid_begin); |
570 | /* new start, update count etc*/ |
571 | nodeid_begin = nodeid; |
572 | pnum_begin = pnum; |
573 | map_count = 1; |
574 | } |
575 | /* ok, last chunk */ |
576 | sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, |
577 | map_count, nodeid_begin); |
578 | #endif |
579 | |
580 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
581 | if (!present_section_nr(pnum)) |
582 | continue; |
583 | |
584 | usemap = usemap_map[pnum]; |
585 | if (!usemap) |
586 | continue; |
587 | |
588 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
589 | map = map_map[pnum]; |
590 | #else |
591 | map = sparse_early_mem_map_alloc(pnum); |
592 | #endif |
593 | if (!map) |
594 | continue; |
595 | |
596 | sparse_init_one_section(__nr_to_section(pnum), pnum, map, |
597 | usemap); |
598 | } |
599 | |
600 | vmemmap_populate_print_last(); |
601 | |
602 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
603 | free_bootmem(__pa(map_map), size2); |
604 | #endif |
605 | free_bootmem(__pa(usemap_map), size); |
606 | } |
607 | |
608 | #ifdef CONFIG_MEMORY_HOTPLUG |
609 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
610 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
611 | unsigned long nr_pages) |
612 | { |
613 | /* This will make the necessary allocations eventually. */ |
614 | return sparse_mem_map_populate(pnum, nid); |
615 | } |
616 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
617 | { |
618 | return; /* XXX: Not implemented yet */ |
619 | } |
620 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) |
621 | { |
622 | } |
623 | #else |
624 | static struct page *__kmalloc_section_memmap(unsigned long nr_pages) |
625 | { |
626 | struct page *page, *ret; |
627 | unsigned long memmap_size = sizeof(struct page) * nr_pages; |
628 | |
629 | page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); |
630 | if (page) |
631 | goto got_map_page; |
632 | |
633 | ret = vmalloc(memmap_size); |
634 | if (ret) |
635 | goto got_map_ptr; |
636 | |
637 | return NULL; |
638 | got_map_page: |
639 | ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); |
640 | got_map_ptr: |
641 | memset(ret, 0, memmap_size); |
642 | |
643 | return ret; |
644 | } |
645 | |
646 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
647 | unsigned long nr_pages) |
648 | { |
649 | return __kmalloc_section_memmap(nr_pages); |
650 | } |
651 | |
652 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
653 | { |
654 | if (is_vmalloc_addr(memmap)) |
655 | vfree(memmap); |
656 | else |
657 | free_pages((unsigned long)memmap, |
658 | get_order(sizeof(struct page) * nr_pages)); |
659 | } |
660 | |
661 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) |
662 | { |
663 | unsigned long maps_section_nr, removing_section_nr, i; |
664 | unsigned long magic; |
665 | |
666 | for (i = 0; i < nr_pages; i++, page++) { |
667 | magic = (unsigned long) page->lru.next; |
668 | |
669 | BUG_ON(magic == NODE_INFO); |
670 | |
671 | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); |
672 | removing_section_nr = page->private; |
673 | |
674 | /* |
675 | * When this function is called, the removing section is |
676 | * logical offlined state. This means all pages are isolated |
677 | * from page allocator. If removing section's memmap is placed |
678 | * on the same section, it must not be freed. |
679 | * If it is freed, page allocator may allocate it which will |
680 | * be removed physically soon. |
681 | */ |
682 | if (maps_section_nr != removing_section_nr) |
683 | put_page_bootmem(page); |
684 | } |
685 | } |
686 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
687 | |
688 | static void free_section_usemap(struct page *memmap, unsigned long *usemap) |
689 | { |
690 | struct page *usemap_page; |
691 | unsigned long nr_pages; |
692 | |
693 | if (!usemap) |
694 | return; |
695 | |
696 | usemap_page = virt_to_page(usemap); |
697 | /* |
698 | * Check to see if allocation came from hot-plug-add |
699 | */ |
700 | if (PageSlab(usemap_page)) { |
701 | kfree(usemap); |
702 | if (memmap) |
703 | __kfree_section_memmap(memmap, PAGES_PER_SECTION); |
704 | return; |
705 | } |
706 | |
707 | /* |
708 | * The usemap came from bootmem. This is packed with other usemaps |
709 | * on the section which has pgdat at boot time. Just keep it as is now. |
710 | */ |
711 | |
712 | if (memmap) { |
713 | struct page *memmap_page; |
714 | memmap_page = virt_to_page(memmap); |
715 | |
716 | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) |
717 | >> PAGE_SHIFT; |
718 | |
719 | free_map_bootmem(memmap_page, nr_pages); |
720 | } |
721 | } |
722 | |
723 | /* |
724 | * returns the number of sections whose mem_maps were properly |
725 | * set. If this is <=0, then that means that the passed-in |
726 | * map was not consumed and must be freed. |
727 | */ |
728 | int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, |
729 | int nr_pages) |
730 | { |
731 | unsigned long section_nr = pfn_to_section_nr(start_pfn); |
732 | struct pglist_data *pgdat = zone->zone_pgdat; |
733 | struct mem_section *ms; |
734 | struct page *memmap; |
735 | unsigned long *usemap; |
736 | unsigned long flags; |
737 | int ret; |
738 | |
739 | /* |
740 | * no locking for this, because it does its own |
741 | * plus, it does a kmalloc |
742 | */ |
743 | ret = sparse_index_init(section_nr, pgdat->node_id); |
744 | if (ret < 0 && ret != -EEXIST) |
745 | return ret; |
746 | memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); |
747 | if (!memmap) |
748 | return -ENOMEM; |
749 | usemap = __kmalloc_section_usemap(); |
750 | if (!usemap) { |
751 | __kfree_section_memmap(memmap, nr_pages); |
752 | return -ENOMEM; |
753 | } |
754 | |
755 | pgdat_resize_lock(pgdat, &flags); |
756 | |
757 | ms = __pfn_to_section(start_pfn); |
758 | if (ms->section_mem_map & SECTION_MARKED_PRESENT) { |
759 | ret = -EEXIST; |
760 | goto out; |
761 | } |
762 | |
763 | ms->section_mem_map |= SECTION_MARKED_PRESENT; |
764 | |
765 | ret = sparse_init_one_section(ms, section_nr, memmap, usemap); |
766 | |
767 | out: |
768 | pgdat_resize_unlock(pgdat, &flags); |
769 | if (ret <= 0) { |
770 | kfree(usemap); |
771 | __kfree_section_memmap(memmap, nr_pages); |
772 | } |
773 | return ret; |
774 | } |
775 | |
776 | void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) |
777 | { |
778 | struct page *memmap = NULL; |
779 | unsigned long *usemap = NULL; |
780 | |
781 | if (ms->section_mem_map) { |
782 | usemap = ms->pageblock_flags; |
783 | memmap = sparse_decode_mem_map(ms->section_mem_map, |
784 | __section_nr(ms)); |
785 | ms->section_mem_map = 0; |
786 | ms->pageblock_flags = NULL; |
787 | } |
788 | |
789 | free_section_usemap(memmap, usemap); |
790 | } |
791 | #endif |
792 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9