Root/
1 | /* |
2 | * linux/mm/swap.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | */ |
6 | |
7 | /* |
8 | * This file contains the default values for the operation of the |
9 | * Linux VM subsystem. Fine-tuning documentation can be found in |
10 | * Documentation/sysctl/vm.txt. |
11 | * Started 18.12.91 |
12 | * Swap aging added 23.2.95, Stephen Tweedie. |
13 | * Buffermem limits added 12.3.98, Rik van Riel. |
14 | */ |
15 | |
16 | #include <linux/mm.h> |
17 | #include <linux/sched.h> |
18 | #include <linux/kernel_stat.h> |
19 | #include <linux/swap.h> |
20 | #include <linux/mman.h> |
21 | #include <linux/pagemap.h> |
22 | #include <linux/pagevec.h> |
23 | #include <linux/init.h> |
24 | #include <linux/export.h> |
25 | #include <linux/mm_inline.h> |
26 | #include <linux/percpu_counter.h> |
27 | #include <linux/percpu.h> |
28 | #include <linux/cpu.h> |
29 | #include <linux/notifier.h> |
30 | #include <linux/backing-dev.h> |
31 | #include <linux/memcontrol.h> |
32 | #include <linux/gfp.h> |
33 | |
34 | #include "internal.h" |
35 | |
36 | /* How many pages do we try to swap or page in/out together? */ |
37 | int page_cluster; |
38 | |
39 | static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); |
40 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); |
41 | static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); |
42 | |
43 | /* |
44 | * This path almost never happens for VM activity - pages are normally |
45 | * freed via pagevecs. But it gets used by networking. |
46 | */ |
47 | static void __page_cache_release(struct page *page) |
48 | { |
49 | if (PageLRU(page)) { |
50 | struct zone *zone = page_zone(page); |
51 | struct lruvec *lruvec; |
52 | unsigned long flags; |
53 | |
54 | spin_lock_irqsave(&zone->lru_lock, flags); |
55 | lruvec = mem_cgroup_page_lruvec(page, zone); |
56 | VM_BUG_ON(!PageLRU(page)); |
57 | __ClearPageLRU(page); |
58 | del_page_from_lru_list(page, lruvec, page_off_lru(page)); |
59 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
60 | } |
61 | } |
62 | |
63 | static void __put_single_page(struct page *page) |
64 | { |
65 | __page_cache_release(page); |
66 | free_hot_cold_page(page, 0); |
67 | } |
68 | |
69 | static void __put_compound_page(struct page *page) |
70 | { |
71 | compound_page_dtor *dtor; |
72 | |
73 | __page_cache_release(page); |
74 | dtor = get_compound_page_dtor(page); |
75 | (*dtor)(page); |
76 | } |
77 | |
78 | static void put_compound_page(struct page *page) |
79 | { |
80 | if (unlikely(PageTail(page))) { |
81 | /* __split_huge_page_refcount can run under us */ |
82 | struct page *page_head = compound_trans_head(page); |
83 | |
84 | if (likely(page != page_head && |
85 | get_page_unless_zero(page_head))) { |
86 | unsigned long flags; |
87 | |
88 | /* |
89 | * THP can not break up slab pages so avoid taking |
90 | * compound_lock(). Slab performs non-atomic bit ops |
91 | * on page->flags for better performance. In particular |
92 | * slab_unlock() in slub used to be a hot path. It is |
93 | * still hot on arches that do not support |
94 | * this_cpu_cmpxchg_double(). |
95 | */ |
96 | if (PageSlab(page_head)) { |
97 | if (PageTail(page)) { |
98 | if (put_page_testzero(page_head)) |
99 | VM_BUG_ON(1); |
100 | |
101 | atomic_dec(&page->_mapcount); |
102 | goto skip_lock_tail; |
103 | } else |
104 | goto skip_lock; |
105 | } |
106 | /* |
107 | * page_head wasn't a dangling pointer but it |
108 | * may not be a head page anymore by the time |
109 | * we obtain the lock. That is ok as long as it |
110 | * can't be freed from under us. |
111 | */ |
112 | flags = compound_lock_irqsave(page_head); |
113 | if (unlikely(!PageTail(page))) { |
114 | /* __split_huge_page_refcount run before us */ |
115 | compound_unlock_irqrestore(page_head, flags); |
116 | skip_lock: |
117 | if (put_page_testzero(page_head)) |
118 | __put_single_page(page_head); |
119 | out_put_single: |
120 | if (put_page_testzero(page)) |
121 | __put_single_page(page); |
122 | return; |
123 | } |
124 | VM_BUG_ON(page_head != page->first_page); |
125 | /* |
126 | * We can release the refcount taken by |
127 | * get_page_unless_zero() now that |
128 | * __split_huge_page_refcount() is blocked on |
129 | * the compound_lock. |
130 | */ |
131 | if (put_page_testzero(page_head)) |
132 | VM_BUG_ON(1); |
133 | /* __split_huge_page_refcount will wait now */ |
134 | VM_BUG_ON(page_mapcount(page) <= 0); |
135 | atomic_dec(&page->_mapcount); |
136 | VM_BUG_ON(atomic_read(&page_head->_count) <= 0); |
137 | VM_BUG_ON(atomic_read(&page->_count) != 0); |
138 | compound_unlock_irqrestore(page_head, flags); |
139 | |
140 | skip_lock_tail: |
141 | if (put_page_testzero(page_head)) { |
142 | if (PageHead(page_head)) |
143 | __put_compound_page(page_head); |
144 | else |
145 | __put_single_page(page_head); |
146 | } |
147 | } else { |
148 | /* page_head is a dangling pointer */ |
149 | VM_BUG_ON(PageTail(page)); |
150 | goto out_put_single; |
151 | } |
152 | } else if (put_page_testzero(page)) { |
153 | if (PageHead(page)) |
154 | __put_compound_page(page); |
155 | else |
156 | __put_single_page(page); |
157 | } |
158 | } |
159 | |
160 | void put_page(struct page *page) |
161 | { |
162 | if (unlikely(PageCompound(page))) |
163 | put_compound_page(page); |
164 | else if (put_page_testzero(page)) |
165 | __put_single_page(page); |
166 | } |
167 | EXPORT_SYMBOL(put_page); |
168 | |
169 | /* |
170 | * This function is exported but must not be called by anything other |
171 | * than get_page(). It implements the slow path of get_page(). |
172 | */ |
173 | bool __get_page_tail(struct page *page) |
174 | { |
175 | /* |
176 | * This takes care of get_page() if run on a tail page |
177 | * returned by one of the get_user_pages/follow_page variants. |
178 | * get_user_pages/follow_page itself doesn't need the compound |
179 | * lock because it runs __get_page_tail_foll() under the |
180 | * proper PT lock that already serializes against |
181 | * split_huge_page(). |
182 | */ |
183 | unsigned long flags; |
184 | bool got = false; |
185 | struct page *page_head = compound_trans_head(page); |
186 | |
187 | if (likely(page != page_head && get_page_unless_zero(page_head))) { |
188 | |
189 | /* Ref to put_compound_page() comment. */ |
190 | if (PageSlab(page_head)) { |
191 | if (likely(PageTail(page))) { |
192 | __get_page_tail_foll(page, false); |
193 | return true; |
194 | } else { |
195 | put_page(page_head); |
196 | return false; |
197 | } |
198 | } |
199 | |
200 | /* |
201 | * page_head wasn't a dangling pointer but it |
202 | * may not be a head page anymore by the time |
203 | * we obtain the lock. That is ok as long as it |
204 | * can't be freed from under us. |
205 | */ |
206 | flags = compound_lock_irqsave(page_head); |
207 | /* here __split_huge_page_refcount won't run anymore */ |
208 | if (likely(PageTail(page))) { |
209 | __get_page_tail_foll(page, false); |
210 | got = true; |
211 | } |
212 | compound_unlock_irqrestore(page_head, flags); |
213 | if (unlikely(!got)) |
214 | put_page(page_head); |
215 | } |
216 | return got; |
217 | } |
218 | EXPORT_SYMBOL(__get_page_tail); |
219 | |
220 | /** |
221 | * put_pages_list() - release a list of pages |
222 | * @pages: list of pages threaded on page->lru |
223 | * |
224 | * Release a list of pages which are strung together on page.lru. Currently |
225 | * used by read_cache_pages() and related error recovery code. |
226 | */ |
227 | void put_pages_list(struct list_head *pages) |
228 | { |
229 | while (!list_empty(pages)) { |
230 | struct page *victim; |
231 | |
232 | victim = list_entry(pages->prev, struct page, lru); |
233 | list_del(&victim->lru); |
234 | page_cache_release(victim); |
235 | } |
236 | } |
237 | EXPORT_SYMBOL(put_pages_list); |
238 | |
239 | /* |
240 | * get_kernel_pages() - pin kernel pages in memory |
241 | * @kiov: An array of struct kvec structures |
242 | * @nr_segs: number of segments to pin |
243 | * @write: pinning for read/write, currently ignored |
244 | * @pages: array that receives pointers to the pages pinned. |
245 | * Should be at least nr_segs long. |
246 | * |
247 | * Returns number of pages pinned. This may be fewer than the number |
248 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
249 | * were pinned, returns -errno. Each page returned must be released |
250 | * with a put_page() call when it is finished with. |
251 | */ |
252 | int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, |
253 | struct page **pages) |
254 | { |
255 | int seg; |
256 | |
257 | for (seg = 0; seg < nr_segs; seg++) { |
258 | if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) |
259 | return seg; |
260 | |
261 | pages[seg] = kmap_to_page(kiov[seg].iov_base); |
262 | page_cache_get(pages[seg]); |
263 | } |
264 | |
265 | return seg; |
266 | } |
267 | EXPORT_SYMBOL_GPL(get_kernel_pages); |
268 | |
269 | /* |
270 | * get_kernel_page() - pin a kernel page in memory |
271 | * @start: starting kernel address |
272 | * @write: pinning for read/write, currently ignored |
273 | * @pages: array that receives pointer to the page pinned. |
274 | * Must be at least nr_segs long. |
275 | * |
276 | * Returns 1 if page is pinned. If the page was not pinned, returns |
277 | * -errno. The page returned must be released with a put_page() call |
278 | * when it is finished with. |
279 | */ |
280 | int get_kernel_page(unsigned long start, int write, struct page **pages) |
281 | { |
282 | const struct kvec kiov = { |
283 | .iov_base = (void *)start, |
284 | .iov_len = PAGE_SIZE |
285 | }; |
286 | |
287 | return get_kernel_pages(&kiov, 1, write, pages); |
288 | } |
289 | EXPORT_SYMBOL_GPL(get_kernel_page); |
290 | |
291 | static void pagevec_lru_move_fn(struct pagevec *pvec, |
292 | void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), |
293 | void *arg) |
294 | { |
295 | int i; |
296 | struct zone *zone = NULL; |
297 | struct lruvec *lruvec; |
298 | unsigned long flags = 0; |
299 | |
300 | for (i = 0; i < pagevec_count(pvec); i++) { |
301 | struct page *page = pvec->pages[i]; |
302 | struct zone *pagezone = page_zone(page); |
303 | |
304 | if (pagezone != zone) { |
305 | if (zone) |
306 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
307 | zone = pagezone; |
308 | spin_lock_irqsave(&zone->lru_lock, flags); |
309 | } |
310 | |
311 | lruvec = mem_cgroup_page_lruvec(page, zone); |
312 | (*move_fn)(page, lruvec, arg); |
313 | } |
314 | if (zone) |
315 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
316 | release_pages(pvec->pages, pvec->nr, pvec->cold); |
317 | pagevec_reinit(pvec); |
318 | } |
319 | |
320 | static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, |
321 | void *arg) |
322 | { |
323 | int *pgmoved = arg; |
324 | |
325 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
326 | enum lru_list lru = page_lru_base_type(page); |
327 | list_move_tail(&page->lru, &lruvec->lists[lru]); |
328 | (*pgmoved)++; |
329 | } |
330 | } |
331 | |
332 | /* |
333 | * pagevec_move_tail() must be called with IRQ disabled. |
334 | * Otherwise this may cause nasty races. |
335 | */ |
336 | static void pagevec_move_tail(struct pagevec *pvec) |
337 | { |
338 | int pgmoved = 0; |
339 | |
340 | pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); |
341 | __count_vm_events(PGROTATED, pgmoved); |
342 | } |
343 | |
344 | /* |
345 | * Writeback is about to end against a page which has been marked for immediate |
346 | * reclaim. If it still appears to be reclaimable, move it to the tail of the |
347 | * inactive list. |
348 | */ |
349 | void rotate_reclaimable_page(struct page *page) |
350 | { |
351 | if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && |
352 | !PageUnevictable(page) && PageLRU(page)) { |
353 | struct pagevec *pvec; |
354 | unsigned long flags; |
355 | |
356 | page_cache_get(page); |
357 | local_irq_save(flags); |
358 | pvec = &__get_cpu_var(lru_rotate_pvecs); |
359 | if (!pagevec_add(pvec, page)) |
360 | pagevec_move_tail(pvec); |
361 | local_irq_restore(flags); |
362 | } |
363 | } |
364 | |
365 | static void update_page_reclaim_stat(struct lruvec *lruvec, |
366 | int file, int rotated) |
367 | { |
368 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
369 | |
370 | reclaim_stat->recent_scanned[file]++; |
371 | if (rotated) |
372 | reclaim_stat->recent_rotated[file]++; |
373 | } |
374 | |
375 | static void __activate_page(struct page *page, struct lruvec *lruvec, |
376 | void *arg) |
377 | { |
378 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
379 | int file = page_is_file_cache(page); |
380 | int lru = page_lru_base_type(page); |
381 | |
382 | del_page_from_lru_list(page, lruvec, lru); |
383 | SetPageActive(page); |
384 | lru += LRU_ACTIVE; |
385 | add_page_to_lru_list(page, lruvec, lru); |
386 | |
387 | __count_vm_event(PGACTIVATE); |
388 | update_page_reclaim_stat(lruvec, file, 1); |
389 | } |
390 | } |
391 | |
392 | #ifdef CONFIG_SMP |
393 | static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); |
394 | |
395 | static void activate_page_drain(int cpu) |
396 | { |
397 | struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); |
398 | |
399 | if (pagevec_count(pvec)) |
400 | pagevec_lru_move_fn(pvec, __activate_page, NULL); |
401 | } |
402 | |
403 | void activate_page(struct page *page) |
404 | { |
405 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
406 | struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); |
407 | |
408 | page_cache_get(page); |
409 | if (!pagevec_add(pvec, page)) |
410 | pagevec_lru_move_fn(pvec, __activate_page, NULL); |
411 | put_cpu_var(activate_page_pvecs); |
412 | } |
413 | } |
414 | |
415 | #else |
416 | static inline void activate_page_drain(int cpu) |
417 | { |
418 | } |
419 | |
420 | void activate_page(struct page *page) |
421 | { |
422 | struct zone *zone = page_zone(page); |
423 | |
424 | spin_lock_irq(&zone->lru_lock); |
425 | __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); |
426 | spin_unlock_irq(&zone->lru_lock); |
427 | } |
428 | #endif |
429 | |
430 | /* |
431 | * Mark a page as having seen activity. |
432 | * |
433 | * inactive,unreferenced -> inactive,referenced |
434 | * inactive,referenced -> active,unreferenced |
435 | * active,unreferenced -> active,referenced |
436 | */ |
437 | void mark_page_accessed(struct page *page) |
438 | { |
439 | if (!PageActive(page) && !PageUnevictable(page) && |
440 | PageReferenced(page) && PageLRU(page)) { |
441 | activate_page(page); |
442 | ClearPageReferenced(page); |
443 | } else if (!PageReferenced(page)) { |
444 | SetPageReferenced(page); |
445 | } |
446 | } |
447 | EXPORT_SYMBOL(mark_page_accessed); |
448 | |
449 | void __lru_cache_add(struct page *page, enum lru_list lru) |
450 | { |
451 | struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; |
452 | |
453 | page_cache_get(page); |
454 | if (!pagevec_add(pvec, page)) |
455 | __pagevec_lru_add(pvec, lru); |
456 | put_cpu_var(lru_add_pvecs); |
457 | } |
458 | EXPORT_SYMBOL(__lru_cache_add); |
459 | |
460 | /** |
461 | * lru_cache_add_lru - add a page to a page list |
462 | * @page: the page to be added to the LRU. |
463 | * @lru: the LRU list to which the page is added. |
464 | */ |
465 | void lru_cache_add_lru(struct page *page, enum lru_list lru) |
466 | { |
467 | if (PageActive(page)) { |
468 | VM_BUG_ON(PageUnevictable(page)); |
469 | ClearPageActive(page); |
470 | } else if (PageUnevictable(page)) { |
471 | VM_BUG_ON(PageActive(page)); |
472 | ClearPageUnevictable(page); |
473 | } |
474 | |
475 | VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); |
476 | __lru_cache_add(page, lru); |
477 | } |
478 | |
479 | /** |
480 | * add_page_to_unevictable_list - add a page to the unevictable list |
481 | * @page: the page to be added to the unevictable list |
482 | * |
483 | * Add page directly to its zone's unevictable list. To avoid races with |
484 | * tasks that might be making the page evictable, through eg. munlock, |
485 | * munmap or exit, while it's not on the lru, we want to add the page |
486 | * while it's locked or otherwise "invisible" to other tasks. This is |
487 | * difficult to do when using the pagevec cache, so bypass that. |
488 | */ |
489 | void add_page_to_unevictable_list(struct page *page) |
490 | { |
491 | struct zone *zone = page_zone(page); |
492 | struct lruvec *lruvec; |
493 | |
494 | spin_lock_irq(&zone->lru_lock); |
495 | lruvec = mem_cgroup_page_lruvec(page, zone); |
496 | SetPageUnevictable(page); |
497 | SetPageLRU(page); |
498 | add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); |
499 | spin_unlock_irq(&zone->lru_lock); |
500 | } |
501 | |
502 | /* |
503 | * If the page can not be invalidated, it is moved to the |
504 | * inactive list to speed up its reclaim. It is moved to the |
505 | * head of the list, rather than the tail, to give the flusher |
506 | * threads some time to write it out, as this is much more |
507 | * effective than the single-page writeout from reclaim. |
508 | * |
509 | * If the page isn't page_mapped and dirty/writeback, the page |
510 | * could reclaim asap using PG_reclaim. |
511 | * |
512 | * 1. active, mapped page -> none |
513 | * 2. active, dirty/writeback page -> inactive, head, PG_reclaim |
514 | * 3. inactive, mapped page -> none |
515 | * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim |
516 | * 5. inactive, clean -> inactive, tail |
517 | * 6. Others -> none |
518 | * |
519 | * In 4, why it moves inactive's head, the VM expects the page would |
520 | * be write it out by flusher threads as this is much more effective |
521 | * than the single-page writeout from reclaim. |
522 | */ |
523 | static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, |
524 | void *arg) |
525 | { |
526 | int lru, file; |
527 | bool active; |
528 | |
529 | if (!PageLRU(page)) |
530 | return; |
531 | |
532 | if (PageUnevictable(page)) |
533 | return; |
534 | |
535 | /* Some processes are using the page */ |
536 | if (page_mapped(page)) |
537 | return; |
538 | |
539 | active = PageActive(page); |
540 | file = page_is_file_cache(page); |
541 | lru = page_lru_base_type(page); |
542 | |
543 | del_page_from_lru_list(page, lruvec, lru + active); |
544 | ClearPageActive(page); |
545 | ClearPageReferenced(page); |
546 | add_page_to_lru_list(page, lruvec, lru); |
547 | |
548 | if (PageWriteback(page) || PageDirty(page)) { |
549 | /* |
550 | * PG_reclaim could be raced with end_page_writeback |
551 | * It can make readahead confusing. But race window |
552 | * is _really_ small and it's non-critical problem. |
553 | */ |
554 | SetPageReclaim(page); |
555 | } else { |
556 | /* |
557 | * The page's writeback ends up during pagevec |
558 | * We moves tha page into tail of inactive. |
559 | */ |
560 | list_move_tail(&page->lru, &lruvec->lists[lru]); |
561 | __count_vm_event(PGROTATED); |
562 | } |
563 | |
564 | if (active) |
565 | __count_vm_event(PGDEACTIVATE); |
566 | update_page_reclaim_stat(lruvec, file, 0); |
567 | } |
568 | |
569 | /* |
570 | * Drain pages out of the cpu's pagevecs. |
571 | * Either "cpu" is the current CPU, and preemption has already been |
572 | * disabled; or "cpu" is being hot-unplugged, and is already dead. |
573 | */ |
574 | void lru_add_drain_cpu(int cpu) |
575 | { |
576 | struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); |
577 | struct pagevec *pvec; |
578 | int lru; |
579 | |
580 | for_each_lru(lru) { |
581 | pvec = &pvecs[lru - LRU_BASE]; |
582 | if (pagevec_count(pvec)) |
583 | __pagevec_lru_add(pvec, lru); |
584 | } |
585 | |
586 | pvec = &per_cpu(lru_rotate_pvecs, cpu); |
587 | if (pagevec_count(pvec)) { |
588 | unsigned long flags; |
589 | |
590 | /* No harm done if a racing interrupt already did this */ |
591 | local_irq_save(flags); |
592 | pagevec_move_tail(pvec); |
593 | local_irq_restore(flags); |
594 | } |
595 | |
596 | pvec = &per_cpu(lru_deactivate_pvecs, cpu); |
597 | if (pagevec_count(pvec)) |
598 | pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); |
599 | |
600 | activate_page_drain(cpu); |
601 | } |
602 | |
603 | /** |
604 | * deactivate_page - forcefully deactivate a page |
605 | * @page: page to deactivate |
606 | * |
607 | * This function hints the VM that @page is a good reclaim candidate, |
608 | * for example if its invalidation fails due to the page being dirty |
609 | * or under writeback. |
610 | */ |
611 | void deactivate_page(struct page *page) |
612 | { |
613 | /* |
614 | * In a workload with many unevictable page such as mprotect, unevictable |
615 | * page deactivation for accelerating reclaim is pointless. |
616 | */ |
617 | if (PageUnevictable(page)) |
618 | return; |
619 | |
620 | if (likely(get_page_unless_zero(page))) { |
621 | struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); |
622 | |
623 | if (!pagevec_add(pvec, page)) |
624 | pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); |
625 | put_cpu_var(lru_deactivate_pvecs); |
626 | } |
627 | } |
628 | |
629 | void lru_add_drain(void) |
630 | { |
631 | lru_add_drain_cpu(get_cpu()); |
632 | put_cpu(); |
633 | } |
634 | |
635 | static void lru_add_drain_per_cpu(struct work_struct *dummy) |
636 | { |
637 | lru_add_drain(); |
638 | } |
639 | |
640 | /* |
641 | * Returns 0 for success |
642 | */ |
643 | int lru_add_drain_all(void) |
644 | { |
645 | return schedule_on_each_cpu(lru_add_drain_per_cpu); |
646 | } |
647 | |
648 | /* |
649 | * Batched page_cache_release(). Decrement the reference count on all the |
650 | * passed pages. If it fell to zero then remove the page from the LRU and |
651 | * free it. |
652 | * |
653 | * Avoid taking zone->lru_lock if possible, but if it is taken, retain it |
654 | * for the remainder of the operation. |
655 | * |
656 | * The locking in this function is against shrink_inactive_list(): we recheck |
657 | * the page count inside the lock to see whether shrink_inactive_list() |
658 | * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() |
659 | * will free it. |
660 | */ |
661 | void release_pages(struct page **pages, int nr, int cold) |
662 | { |
663 | int i; |
664 | LIST_HEAD(pages_to_free); |
665 | struct zone *zone = NULL; |
666 | struct lruvec *lruvec; |
667 | unsigned long uninitialized_var(flags); |
668 | |
669 | for (i = 0; i < nr; i++) { |
670 | struct page *page = pages[i]; |
671 | |
672 | if (unlikely(PageCompound(page))) { |
673 | if (zone) { |
674 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
675 | zone = NULL; |
676 | } |
677 | put_compound_page(page); |
678 | continue; |
679 | } |
680 | |
681 | if (!put_page_testzero(page)) |
682 | continue; |
683 | |
684 | if (PageLRU(page)) { |
685 | struct zone *pagezone = page_zone(page); |
686 | |
687 | if (pagezone != zone) { |
688 | if (zone) |
689 | spin_unlock_irqrestore(&zone->lru_lock, |
690 | flags); |
691 | zone = pagezone; |
692 | spin_lock_irqsave(&zone->lru_lock, flags); |
693 | } |
694 | |
695 | lruvec = mem_cgroup_page_lruvec(page, zone); |
696 | VM_BUG_ON(!PageLRU(page)); |
697 | __ClearPageLRU(page); |
698 | del_page_from_lru_list(page, lruvec, page_off_lru(page)); |
699 | } |
700 | |
701 | list_add(&page->lru, &pages_to_free); |
702 | } |
703 | if (zone) |
704 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
705 | |
706 | free_hot_cold_page_list(&pages_to_free, cold); |
707 | } |
708 | EXPORT_SYMBOL(release_pages); |
709 | |
710 | /* |
711 | * The pages which we're about to release may be in the deferred lru-addition |
712 | * queues. That would prevent them from really being freed right now. That's |
713 | * OK from a correctness point of view but is inefficient - those pages may be |
714 | * cache-warm and we want to give them back to the page allocator ASAP. |
715 | * |
716 | * So __pagevec_release() will drain those queues here. __pagevec_lru_add() |
717 | * and __pagevec_lru_add_active() call release_pages() directly to avoid |
718 | * mutual recursion. |
719 | */ |
720 | void __pagevec_release(struct pagevec *pvec) |
721 | { |
722 | lru_add_drain(); |
723 | release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); |
724 | pagevec_reinit(pvec); |
725 | } |
726 | EXPORT_SYMBOL(__pagevec_release); |
727 | |
728 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
729 | /* used by __split_huge_page_refcount() */ |
730 | void lru_add_page_tail(struct page *page, struct page *page_tail, |
731 | struct lruvec *lruvec) |
732 | { |
733 | int uninitialized_var(active); |
734 | enum lru_list lru; |
735 | const int file = 0; |
736 | |
737 | VM_BUG_ON(!PageHead(page)); |
738 | VM_BUG_ON(PageCompound(page_tail)); |
739 | VM_BUG_ON(PageLRU(page_tail)); |
740 | VM_BUG_ON(NR_CPUS != 1 && |
741 | !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); |
742 | |
743 | SetPageLRU(page_tail); |
744 | |
745 | if (page_evictable(page_tail, NULL)) { |
746 | if (PageActive(page)) { |
747 | SetPageActive(page_tail); |
748 | active = 1; |
749 | lru = LRU_ACTIVE_ANON; |
750 | } else { |
751 | active = 0; |
752 | lru = LRU_INACTIVE_ANON; |
753 | } |
754 | } else { |
755 | SetPageUnevictable(page_tail); |
756 | lru = LRU_UNEVICTABLE; |
757 | } |
758 | |
759 | if (likely(PageLRU(page))) |
760 | list_add_tail(&page_tail->lru, &page->lru); |
761 | else { |
762 | struct list_head *list_head; |
763 | /* |
764 | * Head page has not yet been counted, as an hpage, |
765 | * so we must account for each subpage individually. |
766 | * |
767 | * Use the standard add function to put page_tail on the list, |
768 | * but then correct its position so they all end up in order. |
769 | */ |
770 | add_page_to_lru_list(page_tail, lruvec, lru); |
771 | list_head = page_tail->lru.prev; |
772 | list_move_tail(&page_tail->lru, list_head); |
773 | } |
774 | |
775 | if (!PageUnevictable(page)) |
776 | update_page_reclaim_stat(lruvec, file, active); |
777 | } |
778 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
779 | |
780 | static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, |
781 | void *arg) |
782 | { |
783 | enum lru_list lru = (enum lru_list)arg; |
784 | int file = is_file_lru(lru); |
785 | int active = is_active_lru(lru); |
786 | |
787 | VM_BUG_ON(PageActive(page)); |
788 | VM_BUG_ON(PageUnevictable(page)); |
789 | VM_BUG_ON(PageLRU(page)); |
790 | |
791 | SetPageLRU(page); |
792 | if (active) |
793 | SetPageActive(page); |
794 | add_page_to_lru_list(page, lruvec, lru); |
795 | update_page_reclaim_stat(lruvec, file, active); |
796 | } |
797 | |
798 | /* |
799 | * Add the passed pages to the LRU, then drop the caller's refcount |
800 | * on them. Reinitialises the caller's pagevec. |
801 | */ |
802 | void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) |
803 | { |
804 | VM_BUG_ON(is_unevictable_lru(lru)); |
805 | |
806 | pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru); |
807 | } |
808 | EXPORT_SYMBOL(__pagevec_lru_add); |
809 | |
810 | /** |
811 | * pagevec_lookup - gang pagecache lookup |
812 | * @pvec: Where the resulting pages are placed |
813 | * @mapping: The address_space to search |
814 | * @start: The starting page index |
815 | * @nr_pages: The maximum number of pages |
816 | * |
817 | * pagevec_lookup() will search for and return a group of up to @nr_pages pages |
818 | * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a |
819 | * reference against the pages in @pvec. |
820 | * |
821 | * The search returns a group of mapping-contiguous pages with ascending |
822 | * indexes. There may be holes in the indices due to not-present pages. |
823 | * |
824 | * pagevec_lookup() returns the number of pages which were found. |
825 | */ |
826 | unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, |
827 | pgoff_t start, unsigned nr_pages) |
828 | { |
829 | pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); |
830 | return pagevec_count(pvec); |
831 | } |
832 | EXPORT_SYMBOL(pagevec_lookup); |
833 | |
834 | unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, |
835 | pgoff_t *index, int tag, unsigned nr_pages) |
836 | { |
837 | pvec->nr = find_get_pages_tag(mapping, index, tag, |
838 | nr_pages, pvec->pages); |
839 | return pagevec_count(pvec); |
840 | } |
841 | EXPORT_SYMBOL(pagevec_lookup_tag); |
842 | |
843 | /* |
844 | * Perform any setup for the swap system |
845 | */ |
846 | void __init swap_setup(void) |
847 | { |
848 | unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); |
849 | |
850 | #ifdef CONFIG_SWAP |
851 | bdi_init(swapper_space.backing_dev_info); |
852 | #endif |
853 | |
854 | /* Use a smaller cluster for small-memory machines */ |
855 | if (megs < 16) |
856 | page_cluster = 2; |
857 | else |
858 | page_cluster = 3; |
859 | /* |
860 | * Right now other parts of the system means that we |
861 | * _really_ don't want to cluster much more |
862 | */ |
863 | } |
864 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9