Root/
1 | /* |
2 | * linux/mm/swap_state.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | * Swap reorganised 29.12.95, Stephen Tweedie |
6 | * |
7 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie |
8 | */ |
9 | #include <linux/mm.h> |
10 | #include <linux/gfp.h> |
11 | #include <linux/kernel_stat.h> |
12 | #include <linux/swap.h> |
13 | #include <linux/swapops.h> |
14 | #include <linux/init.h> |
15 | #include <linux/pagemap.h> |
16 | #include <linux/backing-dev.h> |
17 | #include <linux/blkdev.h> |
18 | #include <linux/pagevec.h> |
19 | #include <linux/migrate.h> |
20 | #include <linux/page_cgroup.h> |
21 | |
22 | #include <asm/pgtable.h> |
23 | |
24 | /* |
25 | * swapper_space is a fiction, retained to simplify the path through |
26 | * vmscan's shrink_page_list. |
27 | */ |
28 | static const struct address_space_operations swap_aops = { |
29 | .writepage = swap_writepage, |
30 | .set_page_dirty = swap_set_page_dirty, |
31 | .migratepage = migrate_page, |
32 | }; |
33 | |
34 | static struct backing_dev_info swap_backing_dev_info = { |
35 | .name = "swap", |
36 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, |
37 | }; |
38 | |
39 | struct address_space swapper_space = { |
40 | .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), |
41 | .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), |
42 | .a_ops = &swap_aops, |
43 | .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), |
44 | .backing_dev_info = &swap_backing_dev_info, |
45 | }; |
46 | |
47 | #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) |
48 | |
49 | static struct { |
50 | unsigned long add_total; |
51 | unsigned long del_total; |
52 | unsigned long find_success; |
53 | unsigned long find_total; |
54 | } swap_cache_info; |
55 | |
56 | void show_swap_cache_info(void) |
57 | { |
58 | printk("%lu pages in swap cache\n", total_swapcache_pages); |
59 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", |
60 | swap_cache_info.add_total, swap_cache_info.del_total, |
61 | swap_cache_info.find_success, swap_cache_info.find_total); |
62 | printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); |
63 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
64 | } |
65 | |
66 | /* |
67 | * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
68 | * but sets SwapCache flag and private instead of mapping and index. |
69 | */ |
70 | static int __add_to_swap_cache(struct page *page, swp_entry_t entry) |
71 | { |
72 | int error; |
73 | |
74 | VM_BUG_ON(!PageLocked(page)); |
75 | VM_BUG_ON(PageSwapCache(page)); |
76 | VM_BUG_ON(!PageSwapBacked(page)); |
77 | |
78 | page_cache_get(page); |
79 | SetPageSwapCache(page); |
80 | set_page_private(page, entry.val); |
81 | |
82 | spin_lock_irq(&swapper_space.tree_lock); |
83 | error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); |
84 | if (likely(!error)) { |
85 | total_swapcache_pages++; |
86 | __inc_zone_page_state(page, NR_FILE_PAGES); |
87 | INC_CACHE_INFO(add_total); |
88 | } |
89 | spin_unlock_irq(&swapper_space.tree_lock); |
90 | |
91 | if (unlikely(error)) { |
92 | /* |
93 | * Only the context which have set SWAP_HAS_CACHE flag |
94 | * would call add_to_swap_cache(). |
95 | * So add_to_swap_cache() doesn't returns -EEXIST. |
96 | */ |
97 | VM_BUG_ON(error == -EEXIST); |
98 | set_page_private(page, 0UL); |
99 | ClearPageSwapCache(page); |
100 | page_cache_release(page); |
101 | } |
102 | |
103 | return error; |
104 | } |
105 | |
106 | |
107 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) |
108 | { |
109 | int error; |
110 | |
111 | error = radix_tree_preload(gfp_mask); |
112 | if (!error) { |
113 | error = __add_to_swap_cache(page, entry); |
114 | radix_tree_preload_end(); |
115 | } |
116 | return error; |
117 | } |
118 | |
119 | /* |
120 | * This must be called only on pages that have |
121 | * been verified to be in the swap cache. |
122 | */ |
123 | void __delete_from_swap_cache(struct page *page) |
124 | { |
125 | VM_BUG_ON(!PageLocked(page)); |
126 | VM_BUG_ON(!PageSwapCache(page)); |
127 | VM_BUG_ON(PageWriteback(page)); |
128 | |
129 | radix_tree_delete(&swapper_space.page_tree, page_private(page)); |
130 | set_page_private(page, 0); |
131 | ClearPageSwapCache(page); |
132 | total_swapcache_pages--; |
133 | __dec_zone_page_state(page, NR_FILE_PAGES); |
134 | INC_CACHE_INFO(del_total); |
135 | } |
136 | |
137 | /** |
138 | * add_to_swap - allocate swap space for a page |
139 | * @page: page we want to move to swap |
140 | * |
141 | * Allocate swap space for the page and add the page to the |
142 | * swap cache. Caller needs to hold the page lock. |
143 | */ |
144 | int add_to_swap(struct page *page) |
145 | { |
146 | swp_entry_t entry; |
147 | int err; |
148 | |
149 | VM_BUG_ON(!PageLocked(page)); |
150 | VM_BUG_ON(!PageUptodate(page)); |
151 | |
152 | entry = get_swap_page(); |
153 | if (!entry.val) |
154 | return 0; |
155 | |
156 | if (unlikely(PageTransHuge(page))) |
157 | if (unlikely(split_huge_page(page))) { |
158 | swapcache_free(entry, NULL); |
159 | return 0; |
160 | } |
161 | |
162 | /* |
163 | * Radix-tree node allocations from PF_MEMALLOC contexts could |
164 | * completely exhaust the page allocator. __GFP_NOMEMALLOC |
165 | * stops emergency reserves from being allocated. |
166 | * |
167 | * TODO: this could cause a theoretical memory reclaim |
168 | * deadlock in the swap out path. |
169 | */ |
170 | /* |
171 | * Add it to the swap cache and mark it dirty |
172 | */ |
173 | err = add_to_swap_cache(page, entry, |
174 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); |
175 | |
176 | if (!err) { /* Success */ |
177 | SetPageDirty(page); |
178 | return 1; |
179 | } else { /* -ENOMEM radix-tree allocation failure */ |
180 | /* |
181 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
182 | * clear SWAP_HAS_CACHE flag. |
183 | */ |
184 | swapcache_free(entry, NULL); |
185 | return 0; |
186 | } |
187 | } |
188 | |
189 | /* |
190 | * This must be called only on pages that have |
191 | * been verified to be in the swap cache and locked. |
192 | * It will never put the page into the free list, |
193 | * the caller has a reference on the page. |
194 | */ |
195 | void delete_from_swap_cache(struct page *page) |
196 | { |
197 | swp_entry_t entry; |
198 | |
199 | entry.val = page_private(page); |
200 | |
201 | spin_lock_irq(&swapper_space.tree_lock); |
202 | __delete_from_swap_cache(page); |
203 | spin_unlock_irq(&swapper_space.tree_lock); |
204 | |
205 | swapcache_free(entry, page); |
206 | page_cache_release(page); |
207 | } |
208 | |
209 | /* |
210 | * If we are the only user, then try to free up the swap cache. |
211 | * |
212 | * Its ok to check for PageSwapCache without the page lock |
213 | * here because we are going to recheck again inside |
214 | * try_to_free_swap() _with_ the lock. |
215 | * - Marcelo |
216 | */ |
217 | static inline void free_swap_cache(struct page *page) |
218 | { |
219 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
220 | try_to_free_swap(page); |
221 | unlock_page(page); |
222 | } |
223 | } |
224 | |
225 | /* |
226 | * Perform a free_page(), also freeing any swap cache associated with |
227 | * this page if it is the last user of the page. |
228 | */ |
229 | void free_page_and_swap_cache(struct page *page) |
230 | { |
231 | free_swap_cache(page); |
232 | page_cache_release(page); |
233 | } |
234 | |
235 | /* |
236 | * Passed an array of pages, drop them all from swapcache and then release |
237 | * them. They are removed from the LRU and freed if this is their last use. |
238 | */ |
239 | void free_pages_and_swap_cache(struct page **pages, int nr) |
240 | { |
241 | struct page **pagep = pages; |
242 | |
243 | lru_add_drain(); |
244 | while (nr) { |
245 | int todo = min(nr, PAGEVEC_SIZE); |
246 | int i; |
247 | |
248 | for (i = 0; i < todo; i++) |
249 | free_swap_cache(pagep[i]); |
250 | release_pages(pagep, todo, 0); |
251 | pagep += todo; |
252 | nr -= todo; |
253 | } |
254 | } |
255 | |
256 | /* |
257 | * Lookup a swap entry in the swap cache. A found page will be returned |
258 | * unlocked and with its refcount incremented - we rely on the kernel |
259 | * lock getting page table operations atomic even if we drop the page |
260 | * lock before returning. |
261 | */ |
262 | struct page * lookup_swap_cache(swp_entry_t entry) |
263 | { |
264 | struct page *page; |
265 | |
266 | page = find_get_page(&swapper_space, entry.val); |
267 | |
268 | if (page) |
269 | INC_CACHE_INFO(find_success); |
270 | |
271 | INC_CACHE_INFO(find_total); |
272 | return page; |
273 | } |
274 | |
275 | /* |
276 | * Locate a page of swap in physical memory, reserving swap cache space |
277 | * and reading the disk if it is not already cached. |
278 | * A failure return means that either the page allocation failed or that |
279 | * the swap entry is no longer in use. |
280 | */ |
281 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
282 | struct vm_area_struct *vma, unsigned long addr) |
283 | { |
284 | struct page *found_page, *new_page = NULL; |
285 | int err; |
286 | |
287 | do { |
288 | /* |
289 | * First check the swap cache. Since this is normally |
290 | * called after lookup_swap_cache() failed, re-calling |
291 | * that would confuse statistics. |
292 | */ |
293 | found_page = find_get_page(&swapper_space, entry.val); |
294 | if (found_page) |
295 | break; |
296 | |
297 | /* |
298 | * Get a new page to read into from swap. |
299 | */ |
300 | if (!new_page) { |
301 | new_page = alloc_page_vma(gfp_mask, vma, addr); |
302 | if (!new_page) |
303 | break; /* Out of memory */ |
304 | } |
305 | |
306 | /* |
307 | * call radix_tree_preload() while we can wait. |
308 | */ |
309 | err = radix_tree_preload(gfp_mask & GFP_KERNEL); |
310 | if (err) |
311 | break; |
312 | |
313 | /* |
314 | * Swap entry may have been freed since our caller observed it. |
315 | */ |
316 | err = swapcache_prepare(entry); |
317 | if (err == -EEXIST) { /* seems racy */ |
318 | radix_tree_preload_end(); |
319 | continue; |
320 | } |
321 | if (err) { /* swp entry is obsolete ? */ |
322 | radix_tree_preload_end(); |
323 | break; |
324 | } |
325 | |
326 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ |
327 | __set_page_locked(new_page); |
328 | SetPageSwapBacked(new_page); |
329 | err = __add_to_swap_cache(new_page, entry); |
330 | if (likely(!err)) { |
331 | radix_tree_preload_end(); |
332 | /* |
333 | * Initiate read into locked page and return. |
334 | */ |
335 | lru_cache_add_anon(new_page); |
336 | swap_readpage(new_page); |
337 | return new_page; |
338 | } |
339 | radix_tree_preload_end(); |
340 | ClearPageSwapBacked(new_page); |
341 | __clear_page_locked(new_page); |
342 | /* |
343 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
344 | * clear SWAP_HAS_CACHE flag. |
345 | */ |
346 | swapcache_free(entry, NULL); |
347 | } while (err != -ENOMEM); |
348 | |
349 | if (new_page) |
350 | page_cache_release(new_page); |
351 | return found_page; |
352 | } |
353 | |
354 | /** |
355 | * swapin_readahead - swap in pages in hope we need them soon |
356 | * @entry: swap entry of this memory |
357 | * @gfp_mask: memory allocation flags |
358 | * @vma: user vma this address belongs to |
359 | * @addr: target address for mempolicy |
360 | * |
361 | * Returns the struct page for entry and addr, after queueing swapin. |
362 | * |
363 | * Primitive swap readahead code. We simply read an aligned block of |
364 | * (1 << page_cluster) entries in the swap area. This method is chosen |
365 | * because it doesn't cost us any seek time. We also make sure to queue |
366 | * the 'original' request together with the readahead ones... |
367 | * |
368 | * This has been extended to use the NUMA policies from the mm triggering |
369 | * the readahead. |
370 | * |
371 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. |
372 | */ |
373 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, |
374 | struct vm_area_struct *vma, unsigned long addr) |
375 | { |
376 | struct page *page; |
377 | unsigned long offset = swp_offset(entry); |
378 | unsigned long start_offset, end_offset; |
379 | unsigned long mask = (1UL << page_cluster) - 1; |
380 | struct blk_plug plug; |
381 | |
382 | /* Read a page_cluster sized and aligned cluster around offset. */ |
383 | start_offset = offset & ~mask; |
384 | end_offset = offset | mask; |
385 | if (!start_offset) /* First page is swap header. */ |
386 | start_offset++; |
387 | |
388 | blk_start_plug(&plug); |
389 | for (offset = start_offset; offset <= end_offset ; offset++) { |
390 | /* Ok, do the async read-ahead now */ |
391 | page = read_swap_cache_async(swp_entry(swp_type(entry), offset), |
392 | gfp_mask, vma, addr); |
393 | if (!page) |
394 | continue; |
395 | page_cache_release(page); |
396 | } |
397 | blk_finish_plug(&plug); |
398 | |
399 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
400 | return read_swap_cache_async(entry, gfp_mask, vma, addr); |
401 | } |
402 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9