Root/
1 | #include <linux/mm.h> |
2 | #include <linux/slab.h> |
3 | #include <linux/string.h> |
4 | #include <linux/export.h> |
5 | #include <linux/err.h> |
6 | #include <linux/sched.h> |
7 | #include <linux/security.h> |
8 | #include <asm/uaccess.h> |
9 | |
10 | #include "internal.h" |
11 | |
12 | #define CREATE_TRACE_POINTS |
13 | #include <trace/events/kmem.h> |
14 | |
15 | /** |
16 | * kstrdup - allocate space for and copy an existing string |
17 | * @s: the string to duplicate |
18 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
19 | */ |
20 | char *kstrdup(const char *s, gfp_t gfp) |
21 | { |
22 | size_t len; |
23 | char *buf; |
24 | |
25 | if (!s) |
26 | return NULL; |
27 | |
28 | len = strlen(s) + 1; |
29 | buf = kmalloc_track_caller(len, gfp); |
30 | if (buf) |
31 | memcpy(buf, s, len); |
32 | return buf; |
33 | } |
34 | EXPORT_SYMBOL(kstrdup); |
35 | |
36 | /** |
37 | * kstrndup - allocate space for and copy an existing string |
38 | * @s: the string to duplicate |
39 | * @max: read at most @max chars from @s |
40 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory |
41 | */ |
42 | char *kstrndup(const char *s, size_t max, gfp_t gfp) |
43 | { |
44 | size_t len; |
45 | char *buf; |
46 | |
47 | if (!s) |
48 | return NULL; |
49 | |
50 | len = strnlen(s, max); |
51 | buf = kmalloc_track_caller(len+1, gfp); |
52 | if (buf) { |
53 | memcpy(buf, s, len); |
54 | buf[len] = '\0'; |
55 | } |
56 | return buf; |
57 | } |
58 | EXPORT_SYMBOL(kstrndup); |
59 | |
60 | /** |
61 | * kmemdup - duplicate region of memory |
62 | * |
63 | * @src: memory region to duplicate |
64 | * @len: memory region length |
65 | * @gfp: GFP mask to use |
66 | */ |
67 | void *kmemdup(const void *src, size_t len, gfp_t gfp) |
68 | { |
69 | void *p; |
70 | |
71 | p = kmalloc_track_caller(len, gfp); |
72 | if (p) |
73 | memcpy(p, src, len); |
74 | return p; |
75 | } |
76 | EXPORT_SYMBOL(kmemdup); |
77 | |
78 | /** |
79 | * memdup_user - duplicate memory region from user space |
80 | * |
81 | * @src: source address in user space |
82 | * @len: number of bytes to copy |
83 | * |
84 | * Returns an ERR_PTR() on failure. |
85 | */ |
86 | void *memdup_user(const void __user *src, size_t len) |
87 | { |
88 | void *p; |
89 | |
90 | /* |
91 | * Always use GFP_KERNEL, since copy_from_user() can sleep and |
92 | * cause pagefault, which makes it pointless to use GFP_NOFS |
93 | * or GFP_ATOMIC. |
94 | */ |
95 | p = kmalloc_track_caller(len, GFP_KERNEL); |
96 | if (!p) |
97 | return ERR_PTR(-ENOMEM); |
98 | |
99 | if (copy_from_user(p, src, len)) { |
100 | kfree(p); |
101 | return ERR_PTR(-EFAULT); |
102 | } |
103 | |
104 | return p; |
105 | } |
106 | EXPORT_SYMBOL(memdup_user); |
107 | |
108 | /** |
109 | * __krealloc - like krealloc() but don't free @p. |
110 | * @p: object to reallocate memory for. |
111 | * @new_size: how many bytes of memory are required. |
112 | * @flags: the type of memory to allocate. |
113 | * |
114 | * This function is like krealloc() except it never frees the originally |
115 | * allocated buffer. Use this if you don't want to free the buffer immediately |
116 | * like, for example, with RCU. |
117 | */ |
118 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) |
119 | { |
120 | void *ret; |
121 | size_t ks = 0; |
122 | |
123 | if (unlikely(!new_size)) |
124 | return ZERO_SIZE_PTR; |
125 | |
126 | if (p) |
127 | ks = ksize(p); |
128 | |
129 | if (ks >= new_size) |
130 | return (void *)p; |
131 | |
132 | ret = kmalloc_track_caller(new_size, flags); |
133 | if (ret && p) |
134 | memcpy(ret, p, ks); |
135 | |
136 | return ret; |
137 | } |
138 | EXPORT_SYMBOL(__krealloc); |
139 | |
140 | /** |
141 | * krealloc - reallocate memory. The contents will remain unchanged. |
142 | * @p: object to reallocate memory for. |
143 | * @new_size: how many bytes of memory are required. |
144 | * @flags: the type of memory to allocate. |
145 | * |
146 | * The contents of the object pointed to are preserved up to the |
147 | * lesser of the new and old sizes. If @p is %NULL, krealloc() |
148 | * behaves exactly like kmalloc(). If @size is 0 and @p is not a |
149 | * %NULL pointer, the object pointed to is freed. |
150 | */ |
151 | void *krealloc(const void *p, size_t new_size, gfp_t flags) |
152 | { |
153 | void *ret; |
154 | |
155 | if (unlikely(!new_size)) { |
156 | kfree(p); |
157 | return ZERO_SIZE_PTR; |
158 | } |
159 | |
160 | ret = __krealloc(p, new_size, flags); |
161 | if (ret && p != ret) |
162 | kfree(p); |
163 | |
164 | return ret; |
165 | } |
166 | EXPORT_SYMBOL(krealloc); |
167 | |
168 | /** |
169 | * kzfree - like kfree but zero memory |
170 | * @p: object to free memory of |
171 | * |
172 | * The memory of the object @p points to is zeroed before freed. |
173 | * If @p is %NULL, kzfree() does nothing. |
174 | * |
175 | * Note: this function zeroes the whole allocated buffer which can be a good |
176 | * deal bigger than the requested buffer size passed to kmalloc(). So be |
177 | * careful when using this function in performance sensitive code. |
178 | */ |
179 | void kzfree(const void *p) |
180 | { |
181 | size_t ks; |
182 | void *mem = (void *)p; |
183 | |
184 | if (unlikely(ZERO_OR_NULL_PTR(mem))) |
185 | return; |
186 | ks = ksize(mem); |
187 | memset(mem, 0, ks); |
188 | kfree(mem); |
189 | } |
190 | EXPORT_SYMBOL(kzfree); |
191 | |
192 | /* |
193 | * strndup_user - duplicate an existing string from user space |
194 | * @s: The string to duplicate |
195 | * @n: Maximum number of bytes to copy, including the trailing NUL. |
196 | */ |
197 | char *strndup_user(const char __user *s, long n) |
198 | { |
199 | char *p; |
200 | long length; |
201 | |
202 | length = strnlen_user(s, n); |
203 | |
204 | if (!length) |
205 | return ERR_PTR(-EFAULT); |
206 | |
207 | if (length > n) |
208 | return ERR_PTR(-EINVAL); |
209 | |
210 | p = memdup_user(s, length); |
211 | |
212 | if (IS_ERR(p)) |
213 | return p; |
214 | |
215 | p[length - 1] = '\0'; |
216 | |
217 | return p; |
218 | } |
219 | EXPORT_SYMBOL(strndup_user); |
220 | |
221 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
222 | struct vm_area_struct *prev, struct rb_node *rb_parent) |
223 | { |
224 | struct vm_area_struct *next; |
225 | |
226 | vma->vm_prev = prev; |
227 | if (prev) { |
228 | next = prev->vm_next; |
229 | prev->vm_next = vma; |
230 | } else { |
231 | mm->mmap = vma; |
232 | if (rb_parent) |
233 | next = rb_entry(rb_parent, |
234 | struct vm_area_struct, vm_rb); |
235 | else |
236 | next = NULL; |
237 | } |
238 | vma->vm_next = next; |
239 | if (next) |
240 | next->vm_prev = vma; |
241 | } |
242 | |
243 | /* Check if the vma is being used as a stack by this task */ |
244 | static int vm_is_stack_for_task(struct task_struct *t, |
245 | struct vm_area_struct *vma) |
246 | { |
247 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
248 | } |
249 | |
250 | /* |
251 | * Check if the vma is being used as a stack. |
252 | * If is_group is non-zero, check in the entire thread group or else |
253 | * just check in the current task. Returns the pid of the task that |
254 | * the vma is stack for. |
255 | */ |
256 | pid_t vm_is_stack(struct task_struct *task, |
257 | struct vm_area_struct *vma, int in_group) |
258 | { |
259 | pid_t ret = 0; |
260 | |
261 | if (vm_is_stack_for_task(task, vma)) |
262 | return task->pid; |
263 | |
264 | if (in_group) { |
265 | struct task_struct *t; |
266 | rcu_read_lock(); |
267 | if (!pid_alive(task)) |
268 | goto done; |
269 | |
270 | t = task; |
271 | do { |
272 | if (vm_is_stack_for_task(t, vma)) { |
273 | ret = t->pid; |
274 | goto done; |
275 | } |
276 | } while_each_thread(task, t); |
277 | done: |
278 | rcu_read_unlock(); |
279 | } |
280 | |
281 | return ret; |
282 | } |
283 | |
284 | #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) |
285 | void arch_pick_mmap_layout(struct mm_struct *mm) |
286 | { |
287 | mm->mmap_base = TASK_UNMAPPED_BASE; |
288 | mm->get_unmapped_area = arch_get_unmapped_area; |
289 | mm->unmap_area = arch_unmap_area; |
290 | } |
291 | #endif |
292 | |
293 | /* |
294 | * Like get_user_pages_fast() except its IRQ-safe in that it won't fall |
295 | * back to the regular GUP. |
296 | * If the architecture not support this function, simply return with no |
297 | * page pinned |
298 | */ |
299 | int __attribute__((weak)) __get_user_pages_fast(unsigned long start, |
300 | int nr_pages, int write, struct page **pages) |
301 | { |
302 | return 0; |
303 | } |
304 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); |
305 | |
306 | /** |
307 | * get_user_pages_fast() - pin user pages in memory |
308 | * @start: starting user address |
309 | * @nr_pages: number of pages from start to pin |
310 | * @write: whether pages will be written to |
311 | * @pages: array that receives pointers to the pages pinned. |
312 | * Should be at least nr_pages long. |
313 | * |
314 | * Returns number of pages pinned. This may be fewer than the number |
315 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
316 | * were pinned, returns -errno. |
317 | * |
318 | * get_user_pages_fast provides equivalent functionality to get_user_pages, |
319 | * operating on current and current->mm, with force=0 and vma=NULL. However |
320 | * unlike get_user_pages, it must be called without mmap_sem held. |
321 | * |
322 | * get_user_pages_fast may take mmap_sem and page table locks, so no |
323 | * assumptions can be made about lack of locking. get_user_pages_fast is to be |
324 | * implemented in a way that is advantageous (vs get_user_pages()) when the |
325 | * user memory area is already faulted in and present in ptes. However if the |
326 | * pages have to be faulted in, it may turn out to be slightly slower so |
327 | * callers need to carefully consider what to use. On many architectures, |
328 | * get_user_pages_fast simply falls back to get_user_pages. |
329 | */ |
330 | int __attribute__((weak)) get_user_pages_fast(unsigned long start, |
331 | int nr_pages, int write, struct page **pages) |
332 | { |
333 | struct mm_struct *mm = current->mm; |
334 | int ret; |
335 | |
336 | down_read(&mm->mmap_sem); |
337 | ret = get_user_pages(current, mm, start, nr_pages, |
338 | write, 0, pages, NULL); |
339 | up_read(&mm->mmap_sem); |
340 | |
341 | return ret; |
342 | } |
343 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
344 | |
345 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
346 | unsigned long len, unsigned long prot, |
347 | unsigned long flag, unsigned long pgoff) |
348 | { |
349 | unsigned long ret; |
350 | struct mm_struct *mm = current->mm; |
351 | |
352 | ret = security_mmap_file(file, prot, flag); |
353 | if (!ret) { |
354 | down_write(&mm->mmap_sem); |
355 | ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff); |
356 | up_write(&mm->mmap_sem); |
357 | } |
358 | return ret; |
359 | } |
360 | |
361 | unsigned long vm_mmap(struct file *file, unsigned long addr, |
362 | unsigned long len, unsigned long prot, |
363 | unsigned long flag, unsigned long offset) |
364 | { |
365 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) |
366 | return -EINVAL; |
367 | if (unlikely(offset & ~PAGE_MASK)) |
368 | return -EINVAL; |
369 | |
370 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
371 | } |
372 | EXPORT_SYMBOL(vm_mmap); |
373 | |
374 | /* Tracepoints definitions. */ |
375 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); |
376 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); |
377 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); |
378 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); |
379 | EXPORT_TRACEPOINT_SYMBOL(kfree); |
380 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |
381 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9