Root/
1 | /* |
2 | * linux/mm/vmscan.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | * |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. |
7 | * kswapd added: 7.1.96 sct |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. |
12 | */ |
13 | |
14 | #include <linux/mm.h> |
15 | #include <linux/module.h> |
16 | #include <linux/gfp.h> |
17 | #include <linux/kernel_stat.h> |
18 | #include <linux/swap.h> |
19 | #include <linux/pagemap.h> |
20 | #include <linux/init.h> |
21 | #include <linux/highmem.h> |
22 | #include <linux/vmstat.h> |
23 | #include <linux/file.h> |
24 | #include <linux/writeback.h> |
25 | #include <linux/blkdev.h> |
26 | #include <linux/buffer_head.h> /* for try_to_release_page(), |
27 | buffer_heads_over_limit */ |
28 | #include <linux/mm_inline.h> |
29 | #include <linux/backing-dev.h> |
30 | #include <linux/rmap.h> |
31 | #include <linux/topology.h> |
32 | #include <linux/cpu.h> |
33 | #include <linux/cpuset.h> |
34 | #include <linux/compaction.h> |
35 | #include <linux/notifier.h> |
36 | #include <linux/rwsem.h> |
37 | #include <linux/delay.h> |
38 | #include <linux/kthread.h> |
39 | #include <linux/freezer.h> |
40 | #include <linux/memcontrol.h> |
41 | #include <linux/delayacct.h> |
42 | #include <linux/sysctl.h> |
43 | #include <linux/oom.h> |
44 | #include <linux/prefetch.h> |
45 | |
46 | #include <asm/tlbflush.h> |
47 | #include <asm/div64.h> |
48 | |
49 | #include <linux/swapops.h> |
50 | |
51 | #include "internal.h" |
52 | |
53 | #define CREATE_TRACE_POINTS |
54 | #include <trace/events/vmscan.h> |
55 | |
56 | struct scan_control { |
57 | /* Incremented by the number of inactive pages that were scanned */ |
58 | unsigned long nr_scanned; |
59 | |
60 | /* Number of pages freed so far during a call to shrink_zones() */ |
61 | unsigned long nr_reclaimed; |
62 | |
63 | /* How many pages shrink_list() should reclaim */ |
64 | unsigned long nr_to_reclaim; |
65 | |
66 | unsigned long hibernation_mode; |
67 | |
68 | /* This context's GFP mask */ |
69 | gfp_t gfp_mask; |
70 | |
71 | int may_writepage; |
72 | |
73 | /* Can mapped pages be reclaimed? */ |
74 | int may_unmap; |
75 | |
76 | /* Can pages be swapped as part of reclaim? */ |
77 | int may_swap; |
78 | |
79 | int order; |
80 | |
81 | /* Scan (total_size >> priority) pages at once */ |
82 | int priority; |
83 | |
84 | /* |
85 | * The memory cgroup that hit its limit and as a result is the |
86 | * primary target of this reclaim invocation. |
87 | */ |
88 | struct mem_cgroup *target_mem_cgroup; |
89 | |
90 | /* |
91 | * Nodemask of nodes allowed by the caller. If NULL, all nodes |
92 | * are scanned. |
93 | */ |
94 | nodemask_t *nodemask; |
95 | }; |
96 | |
97 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
98 | |
99 | #ifdef ARCH_HAS_PREFETCH |
100 | #define prefetch_prev_lru_page(_page, _base, _field) \ |
101 | do { \ |
102 | if ((_page)->lru.prev != _base) { \ |
103 | struct page *prev; \ |
104 | \ |
105 | prev = lru_to_page(&(_page->lru)); \ |
106 | prefetch(&prev->_field); \ |
107 | } \ |
108 | } while (0) |
109 | #else |
110 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) |
111 | #endif |
112 | |
113 | #ifdef ARCH_HAS_PREFETCHW |
114 | #define prefetchw_prev_lru_page(_page, _base, _field) \ |
115 | do { \ |
116 | if ((_page)->lru.prev != _base) { \ |
117 | struct page *prev; \ |
118 | \ |
119 | prev = lru_to_page(&(_page->lru)); \ |
120 | prefetchw(&prev->_field); \ |
121 | } \ |
122 | } while (0) |
123 | #else |
124 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) |
125 | #endif |
126 | |
127 | /* |
128 | * From 0 .. 100. Higher means more swappy. |
129 | */ |
130 | int vm_swappiness = 60; |
131 | long vm_total_pages; /* The total number of pages which the VM controls */ |
132 | |
133 | static LIST_HEAD(shrinker_list); |
134 | static DECLARE_RWSEM(shrinker_rwsem); |
135 | |
136 | #ifdef CONFIG_MEMCG |
137 | static bool global_reclaim(struct scan_control *sc) |
138 | { |
139 | return !sc->target_mem_cgroup; |
140 | } |
141 | #else |
142 | static bool global_reclaim(struct scan_control *sc) |
143 | { |
144 | return true; |
145 | } |
146 | #endif |
147 | |
148 | static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
149 | { |
150 | if (!mem_cgroup_disabled()) |
151 | return mem_cgroup_get_lru_size(lruvec, lru); |
152 | |
153 | return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); |
154 | } |
155 | |
156 | /* |
157 | * Add a shrinker callback to be called from the vm |
158 | */ |
159 | void register_shrinker(struct shrinker *shrinker) |
160 | { |
161 | atomic_long_set(&shrinker->nr_in_batch, 0); |
162 | down_write(&shrinker_rwsem); |
163 | list_add_tail(&shrinker->list, &shrinker_list); |
164 | up_write(&shrinker_rwsem); |
165 | } |
166 | EXPORT_SYMBOL(register_shrinker); |
167 | |
168 | /* |
169 | * Remove one |
170 | */ |
171 | void unregister_shrinker(struct shrinker *shrinker) |
172 | { |
173 | down_write(&shrinker_rwsem); |
174 | list_del(&shrinker->list); |
175 | up_write(&shrinker_rwsem); |
176 | } |
177 | EXPORT_SYMBOL(unregister_shrinker); |
178 | |
179 | static inline int do_shrinker_shrink(struct shrinker *shrinker, |
180 | struct shrink_control *sc, |
181 | unsigned long nr_to_scan) |
182 | { |
183 | sc->nr_to_scan = nr_to_scan; |
184 | return (*shrinker->shrink)(shrinker, sc); |
185 | } |
186 | |
187 | #define SHRINK_BATCH 128 |
188 | /* |
189 | * Call the shrink functions to age shrinkable caches |
190 | * |
191 | * Here we assume it costs one seek to replace a lru page and that it also |
192 | * takes a seek to recreate a cache object. With this in mind we age equal |
193 | * percentages of the lru and ageable caches. This should balance the seeks |
194 | * generated by these structures. |
195 | * |
196 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
197 | * slab to avoid swapping. |
198 | * |
199 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. |
200 | * |
201 | * `lru_pages' represents the number of on-LRU pages in all the zones which |
202 | * are eligible for the caller's allocation attempt. It is used for balancing |
203 | * slab reclaim versus page reclaim. |
204 | * |
205 | * Returns the number of slab objects which we shrunk. |
206 | */ |
207 | unsigned long shrink_slab(struct shrink_control *shrink, |
208 | unsigned long nr_pages_scanned, |
209 | unsigned long lru_pages) |
210 | { |
211 | struct shrinker *shrinker; |
212 | unsigned long ret = 0; |
213 | |
214 | if (nr_pages_scanned == 0) |
215 | nr_pages_scanned = SWAP_CLUSTER_MAX; |
216 | |
217 | if (!down_read_trylock(&shrinker_rwsem)) { |
218 | /* Assume we'll be able to shrink next time */ |
219 | ret = 1; |
220 | goto out; |
221 | } |
222 | |
223 | list_for_each_entry(shrinker, &shrinker_list, list) { |
224 | unsigned long long delta; |
225 | long total_scan; |
226 | long max_pass; |
227 | int shrink_ret = 0; |
228 | long nr; |
229 | long new_nr; |
230 | long batch_size = shrinker->batch ? shrinker->batch |
231 | : SHRINK_BATCH; |
232 | |
233 | max_pass = do_shrinker_shrink(shrinker, shrink, 0); |
234 | if (max_pass <= 0) |
235 | continue; |
236 | |
237 | /* |
238 | * copy the current shrinker scan count into a local variable |
239 | * and zero it so that other concurrent shrinker invocations |
240 | * don't also do this scanning work. |
241 | */ |
242 | nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); |
243 | |
244 | total_scan = nr; |
245 | delta = (4 * nr_pages_scanned) / shrinker->seeks; |
246 | delta *= max_pass; |
247 | do_div(delta, lru_pages + 1); |
248 | total_scan += delta; |
249 | if (total_scan < 0) { |
250 | printk(KERN_ERR "shrink_slab: %pF negative objects to " |
251 | "delete nr=%ld\n", |
252 | shrinker->shrink, total_scan); |
253 | total_scan = max_pass; |
254 | } |
255 | |
256 | /* |
257 | * We need to avoid excessive windup on filesystem shrinkers |
258 | * due to large numbers of GFP_NOFS allocations causing the |
259 | * shrinkers to return -1 all the time. This results in a large |
260 | * nr being built up so when a shrink that can do some work |
261 | * comes along it empties the entire cache due to nr >>> |
262 | * max_pass. This is bad for sustaining a working set in |
263 | * memory. |
264 | * |
265 | * Hence only allow the shrinker to scan the entire cache when |
266 | * a large delta change is calculated directly. |
267 | */ |
268 | if (delta < max_pass / 4) |
269 | total_scan = min(total_scan, max_pass / 2); |
270 | |
271 | /* |
272 | * Avoid risking looping forever due to too large nr value: |
273 | * never try to free more than twice the estimate number of |
274 | * freeable entries. |
275 | */ |
276 | if (total_scan > max_pass * 2) |
277 | total_scan = max_pass * 2; |
278 | |
279 | trace_mm_shrink_slab_start(shrinker, shrink, nr, |
280 | nr_pages_scanned, lru_pages, |
281 | max_pass, delta, total_scan); |
282 | |
283 | while (total_scan >= batch_size) { |
284 | int nr_before; |
285 | |
286 | nr_before = do_shrinker_shrink(shrinker, shrink, 0); |
287 | shrink_ret = do_shrinker_shrink(shrinker, shrink, |
288 | batch_size); |
289 | if (shrink_ret == -1) |
290 | break; |
291 | if (shrink_ret < nr_before) |
292 | ret += nr_before - shrink_ret; |
293 | count_vm_events(SLABS_SCANNED, batch_size); |
294 | total_scan -= batch_size; |
295 | |
296 | cond_resched(); |
297 | } |
298 | |
299 | /* |
300 | * move the unused scan count back into the shrinker in a |
301 | * manner that handles concurrent updates. If we exhausted the |
302 | * scan, there is no need to do an update. |
303 | */ |
304 | if (total_scan > 0) |
305 | new_nr = atomic_long_add_return(total_scan, |
306 | &shrinker->nr_in_batch); |
307 | else |
308 | new_nr = atomic_long_read(&shrinker->nr_in_batch); |
309 | |
310 | trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); |
311 | } |
312 | up_read(&shrinker_rwsem); |
313 | out: |
314 | cond_resched(); |
315 | return ret; |
316 | } |
317 | |
318 | static inline int is_page_cache_freeable(struct page *page) |
319 | { |
320 | /* |
321 | * A freeable page cache page is referenced only by the caller |
322 | * that isolated the page, the page cache radix tree and |
323 | * optional buffer heads at page->private. |
324 | */ |
325 | return page_count(page) - page_has_private(page) == 2; |
326 | } |
327 | |
328 | static int may_write_to_queue(struct backing_dev_info *bdi, |
329 | struct scan_control *sc) |
330 | { |
331 | if (current->flags & PF_SWAPWRITE) |
332 | return 1; |
333 | if (!bdi_write_congested(bdi)) |
334 | return 1; |
335 | if (bdi == current->backing_dev_info) |
336 | return 1; |
337 | return 0; |
338 | } |
339 | |
340 | /* |
341 | * We detected a synchronous write error writing a page out. Probably |
342 | * -ENOSPC. We need to propagate that into the address_space for a subsequent |
343 | * fsync(), msync() or close(). |
344 | * |
345 | * The tricky part is that after writepage we cannot touch the mapping: nothing |
346 | * prevents it from being freed up. But we have a ref on the page and once |
347 | * that page is locked, the mapping is pinned. |
348 | * |
349 | * We're allowed to run sleeping lock_page() here because we know the caller has |
350 | * __GFP_FS. |
351 | */ |
352 | static void handle_write_error(struct address_space *mapping, |
353 | struct page *page, int error) |
354 | { |
355 | lock_page(page); |
356 | if (page_mapping(page) == mapping) |
357 | mapping_set_error(mapping, error); |
358 | unlock_page(page); |
359 | } |
360 | |
361 | /* possible outcome of pageout() */ |
362 | typedef enum { |
363 | /* failed to write page out, page is locked */ |
364 | PAGE_KEEP, |
365 | /* move page to the active list, page is locked */ |
366 | PAGE_ACTIVATE, |
367 | /* page has been sent to the disk successfully, page is unlocked */ |
368 | PAGE_SUCCESS, |
369 | /* page is clean and locked */ |
370 | PAGE_CLEAN, |
371 | } pageout_t; |
372 | |
373 | /* |
374 | * pageout is called by shrink_page_list() for each dirty page. |
375 | * Calls ->writepage(). |
376 | */ |
377 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
378 | struct scan_control *sc) |
379 | { |
380 | /* |
381 | * If the page is dirty, only perform writeback if that write |
382 | * will be non-blocking. To prevent this allocation from being |
383 | * stalled by pagecache activity. But note that there may be |
384 | * stalls if we need to run get_block(). We could test |
385 | * PagePrivate for that. |
386 | * |
387 | * If this process is currently in __generic_file_aio_write() against |
388 | * this page's queue, we can perform writeback even if that |
389 | * will block. |
390 | * |
391 | * If the page is swapcache, write it back even if that would |
392 | * block, for some throttling. This happens by accident, because |
393 | * swap_backing_dev_info is bust: it doesn't reflect the |
394 | * congestion state of the swapdevs. Easy to fix, if needed. |
395 | */ |
396 | if (!is_page_cache_freeable(page)) |
397 | return PAGE_KEEP; |
398 | if (!mapping) { |
399 | /* |
400 | * Some data journaling orphaned pages can have |
401 | * page->mapping == NULL while being dirty with clean buffers. |
402 | */ |
403 | if (page_has_private(page)) { |
404 | if (try_to_free_buffers(page)) { |
405 | ClearPageDirty(page); |
406 | printk("%s: orphaned page\n", __func__); |
407 | return PAGE_CLEAN; |
408 | } |
409 | } |
410 | return PAGE_KEEP; |
411 | } |
412 | if (mapping->a_ops->writepage == NULL) |
413 | return PAGE_ACTIVATE; |
414 | if (!may_write_to_queue(mapping->backing_dev_info, sc)) |
415 | return PAGE_KEEP; |
416 | |
417 | if (clear_page_dirty_for_io(page)) { |
418 | int res; |
419 | struct writeback_control wbc = { |
420 | .sync_mode = WB_SYNC_NONE, |
421 | .nr_to_write = SWAP_CLUSTER_MAX, |
422 | .range_start = 0, |
423 | .range_end = LLONG_MAX, |
424 | .for_reclaim = 1, |
425 | }; |
426 | |
427 | SetPageReclaim(page); |
428 | res = mapping->a_ops->writepage(page, &wbc); |
429 | if (res < 0) |
430 | handle_write_error(mapping, page, res); |
431 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
432 | ClearPageReclaim(page); |
433 | return PAGE_ACTIVATE; |
434 | } |
435 | |
436 | if (!PageWriteback(page)) { |
437 | /* synchronous write or broken a_ops? */ |
438 | ClearPageReclaim(page); |
439 | } |
440 | trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); |
441 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
442 | return PAGE_SUCCESS; |
443 | } |
444 | |
445 | return PAGE_CLEAN; |
446 | } |
447 | |
448 | /* |
449 | * Same as remove_mapping, but if the page is removed from the mapping, it |
450 | * gets returned with a refcount of 0. |
451 | */ |
452 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
453 | { |
454 | BUG_ON(!PageLocked(page)); |
455 | BUG_ON(mapping != page_mapping(page)); |
456 | |
457 | spin_lock_irq(&mapping->tree_lock); |
458 | /* |
459 | * The non racy check for a busy page. |
460 | * |
461 | * Must be careful with the order of the tests. When someone has |
462 | * a ref to the page, it may be possible that they dirty it then |
463 | * drop the reference. So if PageDirty is tested before page_count |
464 | * here, then the following race may occur: |
465 | * |
466 | * get_user_pages(&page); |
467 | * [user mapping goes away] |
468 | * write_to(page); |
469 | * !PageDirty(page) [good] |
470 | * SetPageDirty(page); |
471 | * put_page(page); |
472 | * !page_count(page) [good, discard it] |
473 | * |
474 | * [oops, our write_to data is lost] |
475 | * |
476 | * Reversing the order of the tests ensures such a situation cannot |
477 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags |
478 | * load is not satisfied before that of page->_count. |
479 | * |
480 | * Note that if SetPageDirty is always performed via set_page_dirty, |
481 | * and thus under tree_lock, then this ordering is not required. |
482 | */ |
483 | if (!page_freeze_refs(page, 2)) |
484 | goto cannot_free; |
485 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
486 | if (unlikely(PageDirty(page))) { |
487 | page_unfreeze_refs(page, 2); |
488 | goto cannot_free; |
489 | } |
490 | |
491 | if (PageSwapCache(page)) { |
492 | swp_entry_t swap = { .val = page_private(page) }; |
493 | __delete_from_swap_cache(page); |
494 | spin_unlock_irq(&mapping->tree_lock); |
495 | swapcache_free(swap, page); |
496 | } else { |
497 | void (*freepage)(struct page *); |
498 | |
499 | freepage = mapping->a_ops->freepage; |
500 | |
501 | __delete_from_page_cache(page); |
502 | spin_unlock_irq(&mapping->tree_lock); |
503 | mem_cgroup_uncharge_cache_page(page); |
504 | |
505 | if (freepage != NULL) |
506 | freepage(page); |
507 | } |
508 | |
509 | return 1; |
510 | |
511 | cannot_free: |
512 | spin_unlock_irq(&mapping->tree_lock); |
513 | return 0; |
514 | } |
515 | |
516 | /* |
517 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if |
518 | * someone else has a ref on the page, abort and return 0. If it was |
519 | * successfully detached, return 1. Assumes the caller has a single ref on |
520 | * this page. |
521 | */ |
522 | int remove_mapping(struct address_space *mapping, struct page *page) |
523 | { |
524 | if (__remove_mapping(mapping, page)) { |
525 | /* |
526 | * Unfreezing the refcount with 1 rather than 2 effectively |
527 | * drops the pagecache ref for us without requiring another |
528 | * atomic operation. |
529 | */ |
530 | page_unfreeze_refs(page, 1); |
531 | return 1; |
532 | } |
533 | return 0; |
534 | } |
535 | |
536 | /** |
537 | * putback_lru_page - put previously isolated page onto appropriate LRU list |
538 | * @page: page to be put back to appropriate lru list |
539 | * |
540 | * Add previously isolated @page to appropriate LRU list. |
541 | * Page may still be unevictable for other reasons. |
542 | * |
543 | * lru_lock must not be held, interrupts must be enabled. |
544 | */ |
545 | void putback_lru_page(struct page *page) |
546 | { |
547 | int lru; |
548 | int active = !!TestClearPageActive(page); |
549 | int was_unevictable = PageUnevictable(page); |
550 | |
551 | VM_BUG_ON(PageLRU(page)); |
552 | |
553 | redo: |
554 | ClearPageUnevictable(page); |
555 | |
556 | if (page_evictable(page, NULL)) { |
557 | /* |
558 | * For evictable pages, we can use the cache. |
559 | * In event of a race, worst case is we end up with an |
560 | * unevictable page on [in]active list. |
561 | * We know how to handle that. |
562 | */ |
563 | lru = active + page_lru_base_type(page); |
564 | lru_cache_add_lru(page, lru); |
565 | } else { |
566 | /* |
567 | * Put unevictable pages directly on zone's unevictable |
568 | * list. |
569 | */ |
570 | lru = LRU_UNEVICTABLE; |
571 | add_page_to_unevictable_list(page); |
572 | /* |
573 | * When racing with an mlock or AS_UNEVICTABLE clearing |
574 | * (page is unlocked) make sure that if the other thread |
575 | * does not observe our setting of PG_lru and fails |
576 | * isolation/check_move_unevictable_pages, |
577 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move |
578 | * the page back to the evictable list. |
579 | * |
580 | * The other side is TestClearPageMlocked() or shmem_lock(). |
581 | */ |
582 | smp_mb(); |
583 | } |
584 | |
585 | /* |
586 | * page's status can change while we move it among lru. If an evictable |
587 | * page is on unevictable list, it never be freed. To avoid that, |
588 | * check after we added it to the list, again. |
589 | */ |
590 | if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { |
591 | if (!isolate_lru_page(page)) { |
592 | put_page(page); |
593 | goto redo; |
594 | } |
595 | /* This means someone else dropped this page from LRU |
596 | * So, it will be freed or putback to LRU again. There is |
597 | * nothing to do here. |
598 | */ |
599 | } |
600 | |
601 | if (was_unevictable && lru != LRU_UNEVICTABLE) |
602 | count_vm_event(UNEVICTABLE_PGRESCUED); |
603 | else if (!was_unevictable && lru == LRU_UNEVICTABLE) |
604 | count_vm_event(UNEVICTABLE_PGCULLED); |
605 | |
606 | put_page(page); /* drop ref from isolate */ |
607 | } |
608 | |
609 | enum page_references { |
610 | PAGEREF_RECLAIM, |
611 | PAGEREF_RECLAIM_CLEAN, |
612 | PAGEREF_KEEP, |
613 | PAGEREF_ACTIVATE, |
614 | }; |
615 | |
616 | static enum page_references page_check_references(struct page *page, |
617 | struct scan_control *sc) |
618 | { |
619 | int referenced_ptes, referenced_page; |
620 | unsigned long vm_flags; |
621 | |
622 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
623 | &vm_flags); |
624 | referenced_page = TestClearPageReferenced(page); |
625 | |
626 | /* |
627 | * Mlock lost the isolation race with us. Let try_to_unmap() |
628 | * move the page to the unevictable list. |
629 | */ |
630 | if (vm_flags & VM_LOCKED) |
631 | return PAGEREF_RECLAIM; |
632 | |
633 | if (referenced_ptes) { |
634 | if (PageSwapBacked(page)) |
635 | return PAGEREF_ACTIVATE; |
636 | /* |
637 | * All mapped pages start out with page table |
638 | * references from the instantiating fault, so we need |
639 | * to look twice if a mapped file page is used more |
640 | * than once. |
641 | * |
642 | * Mark it and spare it for another trip around the |
643 | * inactive list. Another page table reference will |
644 | * lead to its activation. |
645 | * |
646 | * Note: the mark is set for activated pages as well |
647 | * so that recently deactivated but used pages are |
648 | * quickly recovered. |
649 | */ |
650 | SetPageReferenced(page); |
651 | |
652 | if (referenced_page || referenced_ptes > 1) |
653 | return PAGEREF_ACTIVATE; |
654 | |
655 | /* |
656 | * Activate file-backed executable pages after first usage. |
657 | */ |
658 | if (vm_flags & VM_EXEC) |
659 | return PAGEREF_ACTIVATE; |
660 | |
661 | return PAGEREF_KEEP; |
662 | } |
663 | |
664 | /* Reclaim if clean, defer dirty pages to writeback */ |
665 | if (referenced_page && !PageSwapBacked(page)) |
666 | return PAGEREF_RECLAIM_CLEAN; |
667 | |
668 | return PAGEREF_RECLAIM; |
669 | } |
670 | |
671 | /* |
672 | * shrink_page_list() returns the number of reclaimed pages |
673 | */ |
674 | static unsigned long shrink_page_list(struct list_head *page_list, |
675 | struct zone *zone, |
676 | struct scan_control *sc, |
677 | unsigned long *ret_nr_dirty, |
678 | unsigned long *ret_nr_writeback) |
679 | { |
680 | LIST_HEAD(ret_pages); |
681 | LIST_HEAD(free_pages); |
682 | int pgactivate = 0; |
683 | unsigned long nr_dirty = 0; |
684 | unsigned long nr_congested = 0; |
685 | unsigned long nr_reclaimed = 0; |
686 | unsigned long nr_writeback = 0; |
687 | |
688 | cond_resched(); |
689 | |
690 | mem_cgroup_uncharge_start(); |
691 | while (!list_empty(page_list)) { |
692 | enum page_references references; |
693 | struct address_space *mapping; |
694 | struct page *page; |
695 | int may_enter_fs; |
696 | |
697 | cond_resched(); |
698 | |
699 | page = lru_to_page(page_list); |
700 | list_del(&page->lru); |
701 | |
702 | if (!trylock_page(page)) |
703 | goto keep; |
704 | |
705 | VM_BUG_ON(PageActive(page)); |
706 | VM_BUG_ON(page_zone(page) != zone); |
707 | |
708 | sc->nr_scanned++; |
709 | |
710 | if (unlikely(!page_evictable(page, NULL))) |
711 | goto cull_mlocked; |
712 | |
713 | if (!sc->may_unmap && page_mapped(page)) |
714 | goto keep_locked; |
715 | |
716 | /* Double the slab pressure for mapped and swapcache pages */ |
717 | if (page_mapped(page) || PageSwapCache(page)) |
718 | sc->nr_scanned++; |
719 | |
720 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
721 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); |
722 | |
723 | if (PageWriteback(page)) { |
724 | /* |
725 | * memcg doesn't have any dirty pages throttling so we |
726 | * could easily OOM just because too many pages are in |
727 | * writeback and there is nothing else to reclaim. |
728 | * |
729 | * Check __GFP_IO, certainly because a loop driver |
730 | * thread might enter reclaim, and deadlock if it waits |
731 | * on a page for which it is needed to do the write |
732 | * (loop masks off __GFP_IO|__GFP_FS for this reason); |
733 | * but more thought would probably show more reasons. |
734 | * |
735 | * Don't require __GFP_FS, since we're not going into |
736 | * the FS, just waiting on its writeback completion. |
737 | * Worryingly, ext4 gfs2 and xfs allocate pages with |
738 | * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so |
739 | * testing may_enter_fs here is liable to OOM on them. |
740 | */ |
741 | if (global_reclaim(sc) || |
742 | !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { |
743 | /* |
744 | * This is slightly racy - end_page_writeback() |
745 | * might have just cleared PageReclaim, then |
746 | * setting PageReclaim here end up interpreted |
747 | * as PageReadahead - but that does not matter |
748 | * enough to care. What we do want is for this |
749 | * page to have PageReclaim set next time memcg |
750 | * reclaim reaches the tests above, so it will |
751 | * then wait_on_page_writeback() to avoid OOM; |
752 | * and it's also appropriate in global reclaim. |
753 | */ |
754 | SetPageReclaim(page); |
755 | nr_writeback++; |
756 | goto keep_locked; |
757 | } |
758 | wait_on_page_writeback(page); |
759 | } |
760 | |
761 | references = page_check_references(page, sc); |
762 | switch (references) { |
763 | case PAGEREF_ACTIVATE: |
764 | goto activate_locked; |
765 | case PAGEREF_KEEP: |
766 | goto keep_locked; |
767 | case PAGEREF_RECLAIM: |
768 | case PAGEREF_RECLAIM_CLEAN: |
769 | ; /* try to reclaim the page below */ |
770 | } |
771 | |
772 | /* |
773 | * Anonymous process memory has backing store? |
774 | * Try to allocate it some swap space here. |
775 | */ |
776 | if (PageAnon(page) && !PageSwapCache(page)) { |
777 | if (!(sc->gfp_mask & __GFP_IO)) |
778 | goto keep_locked; |
779 | if (!add_to_swap(page)) |
780 | goto activate_locked; |
781 | may_enter_fs = 1; |
782 | } |
783 | |
784 | mapping = page_mapping(page); |
785 | |
786 | /* |
787 | * The page is mapped into the page tables of one or more |
788 | * processes. Try to unmap it here. |
789 | */ |
790 | if (page_mapped(page) && mapping) { |
791 | switch (try_to_unmap(page, TTU_UNMAP)) { |
792 | case SWAP_FAIL: |
793 | goto activate_locked; |
794 | case SWAP_AGAIN: |
795 | goto keep_locked; |
796 | case SWAP_MLOCK: |
797 | goto cull_mlocked; |
798 | case SWAP_SUCCESS: |
799 | ; /* try to free the page below */ |
800 | } |
801 | } |
802 | |
803 | if (PageDirty(page)) { |
804 | nr_dirty++; |
805 | |
806 | /* |
807 | * Only kswapd can writeback filesystem pages to |
808 | * avoid risk of stack overflow but do not writeback |
809 | * unless under significant pressure. |
810 | */ |
811 | if (page_is_file_cache(page) && |
812 | (!current_is_kswapd() || |
813 | sc->priority >= DEF_PRIORITY - 2)) { |
814 | /* |
815 | * Immediately reclaim when written back. |
816 | * Similar in principal to deactivate_page() |
817 | * except we already have the page isolated |
818 | * and know it's dirty |
819 | */ |
820 | inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); |
821 | SetPageReclaim(page); |
822 | |
823 | goto keep_locked; |
824 | } |
825 | |
826 | if (references == PAGEREF_RECLAIM_CLEAN) |
827 | goto keep_locked; |
828 | if (!may_enter_fs) |
829 | goto keep_locked; |
830 | if (!sc->may_writepage) |
831 | goto keep_locked; |
832 | |
833 | /* Page is dirty, try to write it out here */ |
834 | switch (pageout(page, mapping, sc)) { |
835 | case PAGE_KEEP: |
836 | nr_congested++; |
837 | goto keep_locked; |
838 | case PAGE_ACTIVATE: |
839 | goto activate_locked; |
840 | case PAGE_SUCCESS: |
841 | if (PageWriteback(page)) |
842 | goto keep; |
843 | if (PageDirty(page)) |
844 | goto keep; |
845 | |
846 | /* |
847 | * A synchronous write - probably a ramdisk. Go |
848 | * ahead and try to reclaim the page. |
849 | */ |
850 | if (!trylock_page(page)) |
851 | goto keep; |
852 | if (PageDirty(page) || PageWriteback(page)) |
853 | goto keep_locked; |
854 | mapping = page_mapping(page); |
855 | case PAGE_CLEAN: |
856 | ; /* try to free the page below */ |
857 | } |
858 | } |
859 | |
860 | /* |
861 | * If the page has buffers, try to free the buffer mappings |
862 | * associated with this page. If we succeed we try to free |
863 | * the page as well. |
864 | * |
865 | * We do this even if the page is PageDirty(). |
866 | * try_to_release_page() does not perform I/O, but it is |
867 | * possible for a page to have PageDirty set, but it is actually |
868 | * clean (all its buffers are clean). This happens if the |
869 | * buffers were written out directly, with submit_bh(). ext3 |
870 | * will do this, as well as the blockdev mapping. |
871 | * try_to_release_page() will discover that cleanness and will |
872 | * drop the buffers and mark the page clean - it can be freed. |
873 | * |
874 | * Rarely, pages can have buffers and no ->mapping. These are |
875 | * the pages which were not successfully invalidated in |
876 | * truncate_complete_page(). We try to drop those buffers here |
877 | * and if that worked, and the page is no longer mapped into |
878 | * process address space (page_count == 1) it can be freed. |
879 | * Otherwise, leave the page on the LRU so it is swappable. |
880 | */ |
881 | if (page_has_private(page)) { |
882 | if (!try_to_release_page(page, sc->gfp_mask)) |
883 | goto activate_locked; |
884 | if (!mapping && page_count(page) == 1) { |
885 | unlock_page(page); |
886 | if (put_page_testzero(page)) |
887 | goto free_it; |
888 | else { |
889 | /* |
890 | * rare race with speculative reference. |
891 | * the speculative reference will free |
892 | * this page shortly, so we may |
893 | * increment nr_reclaimed here (and |
894 | * leave it off the LRU). |
895 | */ |
896 | nr_reclaimed++; |
897 | continue; |
898 | } |
899 | } |
900 | } |
901 | |
902 | if (!mapping || !__remove_mapping(mapping, page)) |
903 | goto keep_locked; |
904 | |
905 | /* |
906 | * At this point, we have no other references and there is |
907 | * no way to pick any more up (removed from LRU, removed |
908 | * from pagecache). Can use non-atomic bitops now (and |
909 | * we obviously don't have to worry about waking up a process |
910 | * waiting on the page lock, because there are no references. |
911 | */ |
912 | __clear_page_locked(page); |
913 | free_it: |
914 | nr_reclaimed++; |
915 | |
916 | /* |
917 | * Is there need to periodically free_page_list? It would |
918 | * appear not as the counts should be low |
919 | */ |
920 | list_add(&page->lru, &free_pages); |
921 | continue; |
922 | |
923 | cull_mlocked: |
924 | if (PageSwapCache(page)) |
925 | try_to_free_swap(page); |
926 | unlock_page(page); |
927 | putback_lru_page(page); |
928 | continue; |
929 | |
930 | activate_locked: |
931 | /* Not a candidate for swapping, so reclaim swap space. */ |
932 | if (PageSwapCache(page) && vm_swap_full()) |
933 | try_to_free_swap(page); |
934 | VM_BUG_ON(PageActive(page)); |
935 | SetPageActive(page); |
936 | pgactivate++; |
937 | keep_locked: |
938 | unlock_page(page); |
939 | keep: |
940 | list_add(&page->lru, &ret_pages); |
941 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
942 | } |
943 | |
944 | /* |
945 | * Tag a zone as congested if all the dirty pages encountered were |
946 | * backed by a congested BDI. In this case, reclaimers should just |
947 | * back off and wait for congestion to clear because further reclaim |
948 | * will encounter the same problem |
949 | */ |
950 | if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) |
951 | zone_set_flag(zone, ZONE_CONGESTED); |
952 | |
953 | free_hot_cold_page_list(&free_pages, 1); |
954 | |
955 | list_splice(&ret_pages, page_list); |
956 | count_vm_events(PGACTIVATE, pgactivate); |
957 | mem_cgroup_uncharge_end(); |
958 | *ret_nr_dirty += nr_dirty; |
959 | *ret_nr_writeback += nr_writeback; |
960 | return nr_reclaimed; |
961 | } |
962 | |
963 | /* |
964 | * Attempt to remove the specified page from its LRU. Only take this page |
965 | * if it is of the appropriate PageActive status. Pages which are being |
966 | * freed elsewhere are also ignored. |
967 | * |
968 | * page: page to consider |
969 | * mode: one of the LRU isolation modes defined above |
970 | * |
971 | * returns 0 on success, -ve errno on failure. |
972 | */ |
973 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
974 | { |
975 | int ret = -EINVAL; |
976 | |
977 | /* Only take pages on the LRU. */ |
978 | if (!PageLRU(page)) |
979 | return ret; |
980 | |
981 | /* Do not give back unevictable pages for compaction */ |
982 | if (PageUnevictable(page)) |
983 | return ret; |
984 | |
985 | ret = -EBUSY; |
986 | |
987 | /* |
988 | * To minimise LRU disruption, the caller can indicate that it only |
989 | * wants to isolate pages it will be able to operate on without |
990 | * blocking - clean pages for the most part. |
991 | * |
992 | * ISOLATE_CLEAN means that only clean pages should be isolated. This |
993 | * is used by reclaim when it is cannot write to backing storage |
994 | * |
995 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages |
996 | * that it is possible to migrate without blocking |
997 | */ |
998 | if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { |
999 | /* All the caller can do on PageWriteback is block */ |
1000 | if (PageWriteback(page)) |
1001 | return ret; |
1002 | |
1003 | if (PageDirty(page)) { |
1004 | struct address_space *mapping; |
1005 | |
1006 | /* ISOLATE_CLEAN means only clean pages */ |
1007 | if (mode & ISOLATE_CLEAN) |
1008 | return ret; |
1009 | |
1010 | /* |
1011 | * Only pages without mappings or that have a |
1012 | * ->migratepage callback are possible to migrate |
1013 | * without blocking |
1014 | */ |
1015 | mapping = page_mapping(page); |
1016 | if (mapping && !mapping->a_ops->migratepage) |
1017 | return ret; |
1018 | } |
1019 | } |
1020 | |
1021 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1022 | return ret; |
1023 | |
1024 | if (likely(get_page_unless_zero(page))) { |
1025 | /* |
1026 | * Be careful not to clear PageLRU until after we're |
1027 | * sure the page is not being freed elsewhere -- the |
1028 | * page release code relies on it. |
1029 | */ |
1030 | ClearPageLRU(page); |
1031 | ret = 0; |
1032 | } |
1033 | |
1034 | return ret; |
1035 | } |
1036 | |
1037 | /* |
1038 | * zone->lru_lock is heavily contended. Some of the functions that |
1039 | * shrink the lists perform better by taking out a batch of pages |
1040 | * and working on them outside the LRU lock. |
1041 | * |
1042 | * For pagecache intensive workloads, this function is the hottest |
1043 | * spot in the kernel (apart from copy_*_user functions). |
1044 | * |
1045 | * Appropriate locks must be held before calling this function. |
1046 | * |
1047 | * @nr_to_scan: The number of pages to look through on the list. |
1048 | * @lruvec: The LRU vector to pull pages from. |
1049 | * @dst: The temp list to put pages on to. |
1050 | * @nr_scanned: The number of pages that were scanned. |
1051 | * @sc: The scan_control struct for this reclaim session |
1052 | * @mode: One of the LRU isolation modes |
1053 | * @lru: LRU list id for isolating |
1054 | * |
1055 | * returns how many pages were moved onto *@dst. |
1056 | */ |
1057 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
1058 | struct lruvec *lruvec, struct list_head *dst, |
1059 | unsigned long *nr_scanned, struct scan_control *sc, |
1060 | isolate_mode_t mode, enum lru_list lru) |
1061 | { |
1062 | struct list_head *src = &lruvec->lists[lru]; |
1063 | unsigned long nr_taken = 0; |
1064 | unsigned long scan; |
1065 | |
1066 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
1067 | struct page *page; |
1068 | int nr_pages; |
1069 | |
1070 | page = lru_to_page(src); |
1071 | prefetchw_prev_lru_page(page, src, flags); |
1072 | |
1073 | VM_BUG_ON(!PageLRU(page)); |
1074 | |
1075 | switch (__isolate_lru_page(page, mode)) { |
1076 | case 0: |
1077 | nr_pages = hpage_nr_pages(page); |
1078 | mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); |
1079 | list_move(&page->lru, dst); |
1080 | nr_taken += nr_pages; |
1081 | break; |
1082 | |
1083 | case -EBUSY: |
1084 | /* else it is being freed elsewhere */ |
1085 | list_move(&page->lru, src); |
1086 | continue; |
1087 | |
1088 | default: |
1089 | BUG(); |
1090 | } |
1091 | } |
1092 | |
1093 | *nr_scanned = scan; |
1094 | trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, |
1095 | nr_taken, mode, is_file_lru(lru)); |
1096 | return nr_taken; |
1097 | } |
1098 | |
1099 | /** |
1100 | * isolate_lru_page - tries to isolate a page from its LRU list |
1101 | * @page: page to isolate from its LRU list |
1102 | * |
1103 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the |
1104 | * vmstat statistic corresponding to whatever LRU list the page was on. |
1105 | * |
1106 | * Returns 0 if the page was removed from an LRU list. |
1107 | * Returns -EBUSY if the page was not on an LRU list. |
1108 | * |
1109 | * The returned page will have PageLRU() cleared. If it was found on |
1110 | * the active list, it will have PageActive set. If it was found on |
1111 | * the unevictable list, it will have the PageUnevictable bit set. That flag |
1112 | * may need to be cleared by the caller before letting the page go. |
1113 | * |
1114 | * The vmstat statistic corresponding to the list on which the page was |
1115 | * found will be decremented. |
1116 | * |
1117 | * Restrictions: |
1118 | * (1) Must be called with an elevated refcount on the page. This is a |
1119 | * fundamentnal difference from isolate_lru_pages (which is called |
1120 | * without a stable reference). |
1121 | * (2) the lru_lock must not be held. |
1122 | * (3) interrupts must be enabled. |
1123 | */ |
1124 | int isolate_lru_page(struct page *page) |
1125 | { |
1126 | int ret = -EBUSY; |
1127 | |
1128 | VM_BUG_ON(!page_count(page)); |
1129 | |
1130 | if (PageLRU(page)) { |
1131 | struct zone *zone = page_zone(page); |
1132 | struct lruvec *lruvec; |
1133 | |
1134 | spin_lock_irq(&zone->lru_lock); |
1135 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1136 | if (PageLRU(page)) { |
1137 | int lru = page_lru(page); |
1138 | get_page(page); |
1139 | ClearPageLRU(page); |
1140 | del_page_from_lru_list(page, lruvec, lru); |
1141 | ret = 0; |
1142 | } |
1143 | spin_unlock_irq(&zone->lru_lock); |
1144 | } |
1145 | return ret; |
1146 | } |
1147 | |
1148 | /* |
1149 | * Are there way too many processes in the direct reclaim path already? |
1150 | */ |
1151 | static int too_many_isolated(struct zone *zone, int file, |
1152 | struct scan_control *sc) |
1153 | { |
1154 | unsigned long inactive, isolated; |
1155 | |
1156 | if (current_is_kswapd()) |
1157 | return 0; |
1158 | |
1159 | if (!global_reclaim(sc)) |
1160 | return 0; |
1161 | |
1162 | if (file) { |
1163 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); |
1164 | isolated = zone_page_state(zone, NR_ISOLATED_FILE); |
1165 | } else { |
1166 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); |
1167 | isolated = zone_page_state(zone, NR_ISOLATED_ANON); |
1168 | } |
1169 | |
1170 | return isolated > inactive; |
1171 | } |
1172 | |
1173 | static noinline_for_stack void |
1174 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
1175 | { |
1176 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1177 | struct zone *zone = lruvec_zone(lruvec); |
1178 | LIST_HEAD(pages_to_free); |
1179 | |
1180 | /* |
1181 | * Put back any unfreeable pages. |
1182 | */ |
1183 | while (!list_empty(page_list)) { |
1184 | struct page *page = lru_to_page(page_list); |
1185 | int lru; |
1186 | |
1187 | VM_BUG_ON(PageLRU(page)); |
1188 | list_del(&page->lru); |
1189 | if (unlikely(!page_evictable(page, NULL))) { |
1190 | spin_unlock_irq(&zone->lru_lock); |
1191 | putback_lru_page(page); |
1192 | spin_lock_irq(&zone->lru_lock); |
1193 | continue; |
1194 | } |
1195 | |
1196 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1197 | |
1198 | SetPageLRU(page); |
1199 | lru = page_lru(page); |
1200 | add_page_to_lru_list(page, lruvec, lru); |
1201 | |
1202 | if (is_active_lru(lru)) { |
1203 | int file = is_file_lru(lru); |
1204 | int numpages = hpage_nr_pages(page); |
1205 | reclaim_stat->recent_rotated[file] += numpages; |
1206 | } |
1207 | if (put_page_testzero(page)) { |
1208 | __ClearPageLRU(page); |
1209 | __ClearPageActive(page); |
1210 | del_page_from_lru_list(page, lruvec, lru); |
1211 | |
1212 | if (unlikely(PageCompound(page))) { |
1213 | spin_unlock_irq(&zone->lru_lock); |
1214 | (*get_compound_page_dtor(page))(page); |
1215 | spin_lock_irq(&zone->lru_lock); |
1216 | } else |
1217 | list_add(&page->lru, &pages_to_free); |
1218 | } |
1219 | } |
1220 | |
1221 | /* |
1222 | * To save our caller's stack, now use input list for pages to free. |
1223 | */ |
1224 | list_splice(&pages_to_free, page_list); |
1225 | } |
1226 | |
1227 | /* |
1228 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1229 | * of reclaimed pages |
1230 | */ |
1231 | static noinline_for_stack unsigned long |
1232 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
1233 | struct scan_control *sc, enum lru_list lru) |
1234 | { |
1235 | LIST_HEAD(page_list); |
1236 | unsigned long nr_scanned; |
1237 | unsigned long nr_reclaimed = 0; |
1238 | unsigned long nr_taken; |
1239 | unsigned long nr_dirty = 0; |
1240 | unsigned long nr_writeback = 0; |
1241 | isolate_mode_t isolate_mode = 0; |
1242 | int file = is_file_lru(lru); |
1243 | struct zone *zone = lruvec_zone(lruvec); |
1244 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1245 | |
1246 | while (unlikely(too_many_isolated(zone, file, sc))) { |
1247 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
1248 | |
1249 | /* We are about to die and free our memory. Return now. */ |
1250 | if (fatal_signal_pending(current)) |
1251 | return SWAP_CLUSTER_MAX; |
1252 | } |
1253 | |
1254 | lru_add_drain(); |
1255 | |
1256 | if (!sc->may_unmap) |
1257 | isolate_mode |= ISOLATE_UNMAPPED; |
1258 | if (!sc->may_writepage) |
1259 | isolate_mode |= ISOLATE_CLEAN; |
1260 | |
1261 | spin_lock_irq(&zone->lru_lock); |
1262 | |
1263 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1264 | &nr_scanned, sc, isolate_mode, lru); |
1265 | |
1266 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
1267 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1268 | |
1269 | if (global_reclaim(sc)) { |
1270 | zone->pages_scanned += nr_scanned; |
1271 | if (current_is_kswapd()) |
1272 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); |
1273 | else |
1274 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); |
1275 | } |
1276 | spin_unlock_irq(&zone->lru_lock); |
1277 | |
1278 | if (nr_taken == 0) |
1279 | return 0; |
1280 | |
1281 | nr_reclaimed = shrink_page_list(&page_list, zone, sc, |
1282 | &nr_dirty, &nr_writeback); |
1283 | |
1284 | spin_lock_irq(&zone->lru_lock); |
1285 | |
1286 | reclaim_stat->recent_scanned[file] += nr_taken; |
1287 | |
1288 | if (global_reclaim(sc)) { |
1289 | if (current_is_kswapd()) |
1290 | __count_zone_vm_events(PGSTEAL_KSWAPD, zone, |
1291 | nr_reclaimed); |
1292 | else |
1293 | __count_zone_vm_events(PGSTEAL_DIRECT, zone, |
1294 | nr_reclaimed); |
1295 | } |
1296 | |
1297 | putback_inactive_pages(lruvec, &page_list); |
1298 | |
1299 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
1300 | |
1301 | spin_unlock_irq(&zone->lru_lock); |
1302 | |
1303 | free_hot_cold_page_list(&page_list, 1); |
1304 | |
1305 | /* |
1306 | * If reclaim is isolating dirty pages under writeback, it implies |
1307 | * that the long-lived page allocation rate is exceeding the page |
1308 | * laundering rate. Either the global limits are not being effective |
1309 | * at throttling processes due to the page distribution throughout |
1310 | * zones or there is heavy usage of a slow backing device. The |
1311 | * only option is to throttle from reclaim context which is not ideal |
1312 | * as there is no guarantee the dirtying process is throttled in the |
1313 | * same way balance_dirty_pages() manages. |
1314 | * |
1315 | * This scales the number of dirty pages that must be under writeback |
1316 | * before throttling depending on priority. It is a simple backoff |
1317 | * function that has the most effect in the range DEF_PRIORITY to |
1318 | * DEF_PRIORITY-2 which is the priority reclaim is considered to be |
1319 | * in trouble and reclaim is considered to be in trouble. |
1320 | * |
1321 | * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle |
1322 | * DEF_PRIORITY-1 50% must be PageWriteback |
1323 | * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble |
1324 | * ... |
1325 | * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any |
1326 | * isolated page is PageWriteback |
1327 | */ |
1328 | if (nr_writeback && nr_writeback >= |
1329 | (nr_taken >> (DEF_PRIORITY - sc->priority))) |
1330 | wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); |
1331 | |
1332 | trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, |
1333 | zone_idx(zone), |
1334 | nr_scanned, nr_reclaimed, |
1335 | sc->priority, |
1336 | trace_shrink_flags(file)); |
1337 | return nr_reclaimed; |
1338 | } |
1339 | |
1340 | /* |
1341 | * This moves pages from the active list to the inactive list. |
1342 | * |
1343 | * We move them the other way if the page is referenced by one or more |
1344 | * processes, from rmap. |
1345 | * |
1346 | * If the pages are mostly unmapped, the processing is fast and it is |
1347 | * appropriate to hold zone->lru_lock across the whole operation. But if |
1348 | * the pages are mapped, the processing is slow (page_referenced()) so we |
1349 | * should drop zone->lru_lock around each page. It's impossible to balance |
1350 | * this, so instead we remove the pages from the LRU while processing them. |
1351 | * It is safe to rely on PG_active against the non-LRU pages in here because |
1352 | * nobody will play with that bit on a non-LRU page. |
1353 | * |
1354 | * The downside is that we have to touch page->_count against each page. |
1355 | * But we had to alter page->flags anyway. |
1356 | */ |
1357 | |
1358 | static void move_active_pages_to_lru(struct lruvec *lruvec, |
1359 | struct list_head *list, |
1360 | struct list_head *pages_to_free, |
1361 | enum lru_list lru) |
1362 | { |
1363 | struct zone *zone = lruvec_zone(lruvec); |
1364 | unsigned long pgmoved = 0; |
1365 | struct page *page; |
1366 | int nr_pages; |
1367 | |
1368 | while (!list_empty(list)) { |
1369 | page = lru_to_page(list); |
1370 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1371 | |
1372 | VM_BUG_ON(PageLRU(page)); |
1373 | SetPageLRU(page); |
1374 | |
1375 | nr_pages = hpage_nr_pages(page); |
1376 | mem_cgroup_update_lru_size(lruvec, lru, nr_pages); |
1377 | list_move(&page->lru, &lruvec->lists[lru]); |
1378 | pgmoved += nr_pages; |
1379 | |
1380 | if (put_page_testzero(page)) { |
1381 | __ClearPageLRU(page); |
1382 | __ClearPageActive(page); |
1383 | del_page_from_lru_list(page, lruvec, lru); |
1384 | |
1385 | if (unlikely(PageCompound(page))) { |
1386 | spin_unlock_irq(&zone->lru_lock); |
1387 | (*get_compound_page_dtor(page))(page); |
1388 | spin_lock_irq(&zone->lru_lock); |
1389 | } else |
1390 | list_add(&page->lru, pages_to_free); |
1391 | } |
1392 | } |
1393 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1394 | if (!is_active_lru(lru)) |
1395 | __count_vm_events(PGDEACTIVATE, pgmoved); |
1396 | } |
1397 | |
1398 | static void shrink_active_list(unsigned long nr_to_scan, |
1399 | struct lruvec *lruvec, |
1400 | struct scan_control *sc, |
1401 | enum lru_list lru) |
1402 | { |
1403 | unsigned long nr_taken; |
1404 | unsigned long nr_scanned; |
1405 | unsigned long vm_flags; |
1406 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
1407 | LIST_HEAD(l_active); |
1408 | LIST_HEAD(l_inactive); |
1409 | struct page *page; |
1410 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1411 | unsigned long nr_rotated = 0; |
1412 | isolate_mode_t isolate_mode = 0; |
1413 | int file = is_file_lru(lru); |
1414 | struct zone *zone = lruvec_zone(lruvec); |
1415 | |
1416 | lru_add_drain(); |
1417 | |
1418 | if (!sc->may_unmap) |
1419 | isolate_mode |= ISOLATE_UNMAPPED; |
1420 | if (!sc->may_writepage) |
1421 | isolate_mode |= ISOLATE_CLEAN; |
1422 | |
1423 | spin_lock_irq(&zone->lru_lock); |
1424 | |
1425 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1426 | &nr_scanned, sc, isolate_mode, lru); |
1427 | if (global_reclaim(sc)) |
1428 | zone->pages_scanned += nr_scanned; |
1429 | |
1430 | reclaim_stat->recent_scanned[file] += nr_taken; |
1431 | |
1432 | __count_zone_vm_events(PGREFILL, zone, nr_scanned); |
1433 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
1434 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1435 | spin_unlock_irq(&zone->lru_lock); |
1436 | |
1437 | while (!list_empty(&l_hold)) { |
1438 | cond_resched(); |
1439 | page = lru_to_page(&l_hold); |
1440 | list_del(&page->lru); |
1441 | |
1442 | if (unlikely(!page_evictable(page, NULL))) { |
1443 | putback_lru_page(page); |
1444 | continue; |
1445 | } |
1446 | |
1447 | if (unlikely(buffer_heads_over_limit)) { |
1448 | if (page_has_private(page) && trylock_page(page)) { |
1449 | if (page_has_private(page)) |
1450 | try_to_release_page(page, 0); |
1451 | unlock_page(page); |
1452 | } |
1453 | } |
1454 | |
1455 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1456 | &vm_flags)) { |
1457 | nr_rotated += hpage_nr_pages(page); |
1458 | /* |
1459 | * Identify referenced, file-backed active pages and |
1460 | * give them one more trip around the active list. So |
1461 | * that executable code get better chances to stay in |
1462 | * memory under moderate memory pressure. Anon pages |
1463 | * are not likely to be evicted by use-once streaming |
1464 | * IO, plus JVM can create lots of anon VM_EXEC pages, |
1465 | * so we ignore them here. |
1466 | */ |
1467 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
1468 | list_add(&page->lru, &l_active); |
1469 | continue; |
1470 | } |
1471 | } |
1472 | |
1473 | ClearPageActive(page); /* we are de-activating */ |
1474 | list_add(&page->lru, &l_inactive); |
1475 | } |
1476 | |
1477 | /* |
1478 | * Move pages back to the lru list. |
1479 | */ |
1480 | spin_lock_irq(&zone->lru_lock); |
1481 | /* |
1482 | * Count referenced pages from currently used mappings as rotated, |
1483 | * even though only some of them are actually re-activated. This |
1484 | * helps balance scan pressure between file and anonymous pages in |
1485 | * get_scan_ratio. |
1486 | */ |
1487 | reclaim_stat->recent_rotated[file] += nr_rotated; |
1488 | |
1489 | move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1490 | move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); |
1491 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
1492 | spin_unlock_irq(&zone->lru_lock); |
1493 | |
1494 | free_hot_cold_page_list(&l_hold, 1); |
1495 | } |
1496 | |
1497 | #ifdef CONFIG_SWAP |
1498 | static int inactive_anon_is_low_global(struct zone *zone) |
1499 | { |
1500 | unsigned long active, inactive; |
1501 | |
1502 | active = zone_page_state(zone, NR_ACTIVE_ANON); |
1503 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); |
1504 | |
1505 | if (inactive * zone->inactive_ratio < active) |
1506 | return 1; |
1507 | |
1508 | return 0; |
1509 | } |
1510 | |
1511 | /** |
1512 | * inactive_anon_is_low - check if anonymous pages need to be deactivated |
1513 | * @lruvec: LRU vector to check |
1514 | * |
1515 | * Returns true if the zone does not have enough inactive anon pages, |
1516 | * meaning some active anon pages need to be deactivated. |
1517 | */ |
1518 | static int inactive_anon_is_low(struct lruvec *lruvec) |
1519 | { |
1520 | /* |
1521 | * If we don't have swap space, anonymous page deactivation |
1522 | * is pointless. |
1523 | */ |
1524 | if (!total_swap_pages) |
1525 | return 0; |
1526 | |
1527 | if (!mem_cgroup_disabled()) |
1528 | return mem_cgroup_inactive_anon_is_low(lruvec); |
1529 | |
1530 | return inactive_anon_is_low_global(lruvec_zone(lruvec)); |
1531 | } |
1532 | #else |
1533 | static inline int inactive_anon_is_low(struct lruvec *lruvec) |
1534 | { |
1535 | return 0; |
1536 | } |
1537 | #endif |
1538 | |
1539 | static int inactive_file_is_low_global(struct zone *zone) |
1540 | { |
1541 | unsigned long active, inactive; |
1542 | |
1543 | active = zone_page_state(zone, NR_ACTIVE_FILE); |
1544 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); |
1545 | |
1546 | return (active > inactive); |
1547 | } |
1548 | |
1549 | /** |
1550 | * inactive_file_is_low - check if file pages need to be deactivated |
1551 | * @lruvec: LRU vector to check |
1552 | * |
1553 | * When the system is doing streaming IO, memory pressure here |
1554 | * ensures that active file pages get deactivated, until more |
1555 | * than half of the file pages are on the inactive list. |
1556 | * |
1557 | * Once we get to that situation, protect the system's working |
1558 | * set from being evicted by disabling active file page aging. |
1559 | * |
1560 | * This uses a different ratio than the anonymous pages, because |
1561 | * the page cache uses a use-once replacement algorithm. |
1562 | */ |
1563 | static int inactive_file_is_low(struct lruvec *lruvec) |
1564 | { |
1565 | if (!mem_cgroup_disabled()) |
1566 | return mem_cgroup_inactive_file_is_low(lruvec); |
1567 | |
1568 | return inactive_file_is_low_global(lruvec_zone(lruvec)); |
1569 | } |
1570 | |
1571 | static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) |
1572 | { |
1573 | if (is_file_lru(lru)) |
1574 | return inactive_file_is_low(lruvec); |
1575 | else |
1576 | return inactive_anon_is_low(lruvec); |
1577 | } |
1578 | |
1579 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
1580 | struct lruvec *lruvec, struct scan_control *sc) |
1581 | { |
1582 | if (is_active_lru(lru)) { |
1583 | if (inactive_list_is_low(lruvec, lru)) |
1584 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
1585 | return 0; |
1586 | } |
1587 | |
1588 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
1589 | } |
1590 | |
1591 | static int vmscan_swappiness(struct scan_control *sc) |
1592 | { |
1593 | if (global_reclaim(sc)) |
1594 | return vm_swappiness; |
1595 | return mem_cgroup_swappiness(sc->target_mem_cgroup); |
1596 | } |
1597 | |
1598 | /* |
1599 | * Determine how aggressively the anon and file LRU lists should be |
1600 | * scanned. The relative value of each set of LRU lists is determined |
1601 | * by looking at the fraction of the pages scanned we did rotate back |
1602 | * onto the active list instead of evict. |
1603 | * |
1604 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
1605 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan |
1606 | */ |
1607 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
1608 | unsigned long *nr) |
1609 | { |
1610 | unsigned long anon, file, free; |
1611 | unsigned long anon_prio, file_prio; |
1612 | unsigned long ap, fp; |
1613 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1614 | u64 fraction[2], denominator; |
1615 | enum lru_list lru; |
1616 | int noswap = 0; |
1617 | bool force_scan = false; |
1618 | struct zone *zone = lruvec_zone(lruvec); |
1619 | |
1620 | /* |
1621 | * If the zone or memcg is small, nr[l] can be 0. This |
1622 | * results in no scanning on this priority and a potential |
1623 | * priority drop. Global direct reclaim can go to the next |
1624 | * zone and tends to have no problems. Global kswapd is for |
1625 | * zone balancing and it needs to scan a minimum amount. When |
1626 | * reclaiming for a memcg, a priority drop can cause high |
1627 | * latencies, so it's better to scan a minimum amount there as |
1628 | * well. |
1629 | */ |
1630 | if (current_is_kswapd() && zone->all_unreclaimable) |
1631 | force_scan = true; |
1632 | if (!global_reclaim(sc)) |
1633 | force_scan = true; |
1634 | |
1635 | /* If we have no swap space, do not bother scanning anon pages. */ |
1636 | if (!sc->may_swap || (nr_swap_pages <= 0)) { |
1637 | noswap = 1; |
1638 | fraction[0] = 0; |
1639 | fraction[1] = 1; |
1640 | denominator = 1; |
1641 | goto out; |
1642 | } |
1643 | |
1644 | anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + |
1645 | get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1646 | file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + |
1647 | get_lru_size(lruvec, LRU_INACTIVE_FILE); |
1648 | |
1649 | if (global_reclaim(sc)) { |
1650 | free = zone_page_state(zone, NR_FREE_PAGES); |
1651 | /* If we have very few page cache pages, |
1652 | force-scan anon pages. */ |
1653 | if (unlikely(file + free <= high_wmark_pages(zone))) { |
1654 | fraction[0] = 1; |
1655 | fraction[1] = 0; |
1656 | denominator = 1; |
1657 | goto out; |
1658 | } |
1659 | } |
1660 | |
1661 | /* |
1662 | * With swappiness at 100, anonymous and file have the same priority. |
1663 | * This scanning priority is essentially the inverse of IO cost. |
1664 | */ |
1665 | anon_prio = vmscan_swappiness(sc); |
1666 | file_prio = 200 - anon_prio; |
1667 | |
1668 | /* |
1669 | * OK, so we have swap space and a fair amount of page cache |
1670 | * pages. We use the recently rotated / recently scanned |
1671 | * ratios to determine how valuable each cache is. |
1672 | * |
1673 | * Because workloads change over time (and to avoid overflow) |
1674 | * we keep these statistics as a floating average, which ends |
1675 | * up weighing recent references more than old ones. |
1676 | * |
1677 | * anon in [0], file in [1] |
1678 | */ |
1679 | spin_lock_irq(&zone->lru_lock); |
1680 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
1681 | reclaim_stat->recent_scanned[0] /= 2; |
1682 | reclaim_stat->recent_rotated[0] /= 2; |
1683 | } |
1684 | |
1685 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
1686 | reclaim_stat->recent_scanned[1] /= 2; |
1687 | reclaim_stat->recent_rotated[1] /= 2; |
1688 | } |
1689 | |
1690 | /* |
1691 | * The amount of pressure on anon vs file pages is inversely |
1692 | * proportional to the fraction of recently scanned pages on |
1693 | * each list that were recently referenced and in active use. |
1694 | */ |
1695 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
1696 | ap /= reclaim_stat->recent_rotated[0] + 1; |
1697 | |
1698 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
1699 | fp /= reclaim_stat->recent_rotated[1] + 1; |
1700 | spin_unlock_irq(&zone->lru_lock); |
1701 | |
1702 | fraction[0] = ap; |
1703 | fraction[1] = fp; |
1704 | denominator = ap + fp + 1; |
1705 | out: |
1706 | for_each_evictable_lru(lru) { |
1707 | int file = is_file_lru(lru); |
1708 | unsigned long scan; |
1709 | |
1710 | scan = get_lru_size(lruvec, lru); |
1711 | if (sc->priority || noswap || !vmscan_swappiness(sc)) { |
1712 | scan >>= sc->priority; |
1713 | if (!scan && force_scan) |
1714 | scan = SWAP_CLUSTER_MAX; |
1715 | scan = div64_u64(scan * fraction[file], denominator); |
1716 | } |
1717 | nr[lru] = scan; |
1718 | } |
1719 | } |
1720 | |
1721 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
1722 | static bool in_reclaim_compaction(struct scan_control *sc) |
1723 | { |
1724 | if (COMPACTION_BUILD && sc->order && |
1725 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
1726 | sc->priority < DEF_PRIORITY - 2)) |
1727 | return true; |
1728 | |
1729 | return false; |
1730 | } |
1731 | |
1732 | /* |
1733 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
1734 | * order-0 pages before compacting the zone. should_continue_reclaim() returns |
1735 | * true if more pages should be reclaimed such that when the page allocator |
1736 | * calls try_to_compact_zone() that it will have enough free pages to succeed. |
1737 | * It will give up earlier than that if there is difficulty reclaiming pages. |
1738 | */ |
1739 | static inline bool should_continue_reclaim(struct lruvec *lruvec, |
1740 | unsigned long nr_reclaimed, |
1741 | unsigned long nr_scanned, |
1742 | struct scan_control *sc) |
1743 | { |
1744 | unsigned long pages_for_compaction; |
1745 | unsigned long inactive_lru_pages; |
1746 | |
1747 | /* If not in reclaim/compaction mode, stop */ |
1748 | if (!in_reclaim_compaction(sc)) |
1749 | return false; |
1750 | |
1751 | /* Consider stopping depending on scan and reclaim activity */ |
1752 | if (sc->gfp_mask & __GFP_REPEAT) { |
1753 | /* |
1754 | * For __GFP_REPEAT allocations, stop reclaiming if the |
1755 | * full LRU list has been scanned and we are still failing |
1756 | * to reclaim pages. This full LRU scan is potentially |
1757 | * expensive but a __GFP_REPEAT caller really wants to succeed |
1758 | */ |
1759 | if (!nr_reclaimed && !nr_scanned) |
1760 | return false; |
1761 | } else { |
1762 | /* |
1763 | * For non-__GFP_REPEAT allocations which can presumably |
1764 | * fail without consequence, stop if we failed to reclaim |
1765 | * any pages from the last SWAP_CLUSTER_MAX number of |
1766 | * pages that were scanned. This will return to the |
1767 | * caller faster at the risk reclaim/compaction and |
1768 | * the resulting allocation attempt fails |
1769 | */ |
1770 | if (!nr_reclaimed) |
1771 | return false; |
1772 | } |
1773 | |
1774 | /* |
1775 | * If we have not reclaimed enough pages for compaction and the |
1776 | * inactive lists are large enough, continue reclaiming |
1777 | */ |
1778 | pages_for_compaction = (2UL << sc->order); |
1779 | inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE); |
1780 | if (nr_swap_pages > 0) |
1781 | inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1782 | if (sc->nr_reclaimed < pages_for_compaction && |
1783 | inactive_lru_pages > pages_for_compaction) |
1784 | return true; |
1785 | |
1786 | /* If compaction would go ahead or the allocation would succeed, stop */ |
1787 | switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) { |
1788 | case COMPACT_PARTIAL: |
1789 | case COMPACT_CONTINUE: |
1790 | return false; |
1791 | default: |
1792 | return true; |
1793 | } |
1794 | } |
1795 | |
1796 | /* |
1797 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. |
1798 | */ |
1799 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
1800 | { |
1801 | unsigned long nr[NR_LRU_LISTS]; |
1802 | unsigned long nr_to_scan; |
1803 | enum lru_list lru; |
1804 | unsigned long nr_reclaimed, nr_scanned; |
1805 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; |
1806 | struct blk_plug plug; |
1807 | |
1808 | restart: |
1809 | nr_reclaimed = 0; |
1810 | nr_scanned = sc->nr_scanned; |
1811 | get_scan_count(lruvec, sc, nr); |
1812 | |
1813 | blk_start_plug(&plug); |
1814 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
1815 | nr[LRU_INACTIVE_FILE]) { |
1816 | for_each_evictable_lru(lru) { |
1817 | if (nr[lru]) { |
1818 | nr_to_scan = min_t(unsigned long, |
1819 | nr[lru], SWAP_CLUSTER_MAX); |
1820 | nr[lru] -= nr_to_scan; |
1821 | |
1822 | nr_reclaimed += shrink_list(lru, nr_to_scan, |
1823 | lruvec, sc); |
1824 | } |
1825 | } |
1826 | /* |
1827 | * On large memory systems, scan >> priority can become |
1828 | * really large. This is fine for the starting priority; |
1829 | * we want to put equal scanning pressure on each zone. |
1830 | * However, if the VM has a harder time of freeing pages, |
1831 | * with multiple processes reclaiming pages, the total |
1832 | * freeing target can get unreasonably large. |
1833 | */ |
1834 | if (nr_reclaimed >= nr_to_reclaim && |
1835 | sc->priority < DEF_PRIORITY) |
1836 | break; |
1837 | } |
1838 | blk_finish_plug(&plug); |
1839 | sc->nr_reclaimed += nr_reclaimed; |
1840 | |
1841 | /* |
1842 | * Even if we did not try to evict anon pages at all, we want to |
1843 | * rebalance the anon lru active/inactive ratio. |
1844 | */ |
1845 | if (inactive_anon_is_low(lruvec)) |
1846 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
1847 | sc, LRU_ACTIVE_ANON); |
1848 | |
1849 | /* reclaim/compaction might need reclaim to continue */ |
1850 | if (should_continue_reclaim(lruvec, nr_reclaimed, |
1851 | sc->nr_scanned - nr_scanned, sc)) |
1852 | goto restart; |
1853 | |
1854 | throttle_vm_writeout(sc->gfp_mask); |
1855 | } |
1856 | |
1857 | static void shrink_zone(struct zone *zone, struct scan_control *sc) |
1858 | { |
1859 | struct mem_cgroup *root = sc->target_mem_cgroup; |
1860 | struct mem_cgroup_reclaim_cookie reclaim = { |
1861 | .zone = zone, |
1862 | .priority = sc->priority, |
1863 | }; |
1864 | struct mem_cgroup *memcg; |
1865 | |
1866 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
1867 | do { |
1868 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
1869 | |
1870 | shrink_lruvec(lruvec, sc); |
1871 | |
1872 | /* |
1873 | * Limit reclaim has historically picked one memcg and |
1874 | * scanned it with decreasing priority levels until |
1875 | * nr_to_reclaim had been reclaimed. This priority |
1876 | * cycle is thus over after a single memcg. |
1877 | * |
1878 | * Direct reclaim and kswapd, on the other hand, have |
1879 | * to scan all memory cgroups to fulfill the overall |
1880 | * scan target for the zone. |
1881 | */ |
1882 | if (!global_reclaim(sc)) { |
1883 | mem_cgroup_iter_break(root, memcg); |
1884 | break; |
1885 | } |
1886 | memcg = mem_cgroup_iter(root, memcg, &reclaim); |
1887 | } while (memcg); |
1888 | } |
1889 | |
1890 | /* Returns true if compaction should go ahead for a high-order request */ |
1891 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
1892 | { |
1893 | unsigned long balance_gap, watermark; |
1894 | bool watermark_ok; |
1895 | |
1896 | /* Do not consider compaction for orders reclaim is meant to satisfy */ |
1897 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) |
1898 | return false; |
1899 | |
1900 | /* |
1901 | * Compaction takes time to run and there are potentially other |
1902 | * callers using the pages just freed. Continue reclaiming until |
1903 | * there is a buffer of free pages available to give compaction |
1904 | * a reasonable chance of completing and allocating the page |
1905 | */ |
1906 | balance_gap = min(low_wmark_pages(zone), |
1907 | (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
1908 | KSWAPD_ZONE_BALANCE_GAP_RATIO); |
1909 | watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); |
1910 | watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); |
1911 | |
1912 | /* |
1913 | * If compaction is deferred, reclaim up to a point where |
1914 | * compaction will have a chance of success when re-enabled |
1915 | */ |
1916 | if (compaction_deferred(zone, sc->order)) |
1917 | return watermark_ok; |
1918 | |
1919 | /* If compaction is not ready to start, keep reclaiming */ |
1920 | if (!compaction_suitable(zone, sc->order)) |
1921 | return false; |
1922 | |
1923 | return watermark_ok; |
1924 | } |
1925 | |
1926 | /* |
1927 | * This is the direct reclaim path, for page-allocating processes. We only |
1928 | * try to reclaim pages from zones which will satisfy the caller's allocation |
1929 | * request. |
1930 | * |
1931 | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). |
1932 | * Because: |
1933 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order |
1934 | * allocation or |
1935 | * b) The target zone may be at high_wmark_pages(zone) but the lower zones |
1936 | * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' |
1937 | * zone defense algorithm. |
1938 | * |
1939 | * If a zone is deemed to be full of pinned pages then just give it a light |
1940 | * scan then give up on it. |
1941 | * |
1942 | * This function returns true if a zone is being reclaimed for a costly |
1943 | * high-order allocation and compaction is ready to begin. This indicates to |
1944 | * the caller that it should consider retrying the allocation instead of |
1945 | * further reclaim. |
1946 | */ |
1947 | static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1948 | { |
1949 | struct zoneref *z; |
1950 | struct zone *zone; |
1951 | unsigned long nr_soft_reclaimed; |
1952 | unsigned long nr_soft_scanned; |
1953 | bool aborted_reclaim = false; |
1954 | |
1955 | /* |
1956 | * If the number of buffer_heads in the machine exceeds the maximum |
1957 | * allowed level, force direct reclaim to scan the highmem zone as |
1958 | * highmem pages could be pinning lowmem pages storing buffer_heads |
1959 | */ |
1960 | if (buffer_heads_over_limit) |
1961 | sc->gfp_mask |= __GFP_HIGHMEM; |
1962 | |
1963 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1964 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
1965 | if (!populated_zone(zone)) |
1966 | continue; |
1967 | /* |
1968 | * Take care memory controller reclaiming has small influence |
1969 | * to global LRU. |
1970 | */ |
1971 | if (global_reclaim(sc)) { |
1972 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1973 | continue; |
1974 | if (zone->all_unreclaimable && |
1975 | sc->priority != DEF_PRIORITY) |
1976 | continue; /* Let kswapd poll it */ |
1977 | if (COMPACTION_BUILD) { |
1978 | /* |
1979 | * If we already have plenty of memory free for |
1980 | * compaction in this zone, don't free any more. |
1981 | * Even though compaction is invoked for any |
1982 | * non-zero order, only frequent costly order |
1983 | * reclamation is disruptive enough to become a |
1984 | * noticeable problem, like transparent huge |
1985 | * page allocations. |
1986 | */ |
1987 | if (compaction_ready(zone, sc)) { |
1988 | aborted_reclaim = true; |
1989 | continue; |
1990 | } |
1991 | } |
1992 | /* |
1993 | * This steals pages from memory cgroups over softlimit |
1994 | * and returns the number of reclaimed pages and |
1995 | * scanned pages. This works for global memory pressure |
1996 | * and balancing, not for a memcg's limit. |
1997 | */ |
1998 | nr_soft_scanned = 0; |
1999 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
2000 | sc->order, sc->gfp_mask, |
2001 | &nr_soft_scanned); |
2002 | sc->nr_reclaimed += nr_soft_reclaimed; |
2003 | sc->nr_scanned += nr_soft_scanned; |
2004 | /* need some check for avoid more shrink_zone() */ |
2005 | } |
2006 | |
2007 | shrink_zone(zone, sc); |
2008 | } |
2009 | |
2010 | return aborted_reclaim; |
2011 | } |
2012 | |
2013 | static bool zone_reclaimable(struct zone *zone) |
2014 | { |
2015 | return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; |
2016 | } |
2017 | |
2018 | /* All zones in zonelist are unreclaimable? */ |
2019 | static bool all_unreclaimable(struct zonelist *zonelist, |
2020 | struct scan_control *sc) |
2021 | { |
2022 | struct zoneref *z; |
2023 | struct zone *zone; |
2024 | |
2025 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
2026 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
2027 | if (!populated_zone(zone)) |
2028 | continue; |
2029 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2030 | continue; |
2031 | if (!zone->all_unreclaimable) |
2032 | return false; |
2033 | } |
2034 | |
2035 | return true; |
2036 | } |
2037 | |
2038 | /* |
2039 | * This is the main entry point to direct page reclaim. |
2040 | * |
2041 | * If a full scan of the inactive list fails to free enough memory then we |
2042 | * are "out of memory" and something needs to be killed. |
2043 | * |
2044 | * If the caller is !__GFP_FS then the probability of a failure is reasonably |
2045 | * high - the zone may be full of dirty or under-writeback pages, which this |
2046 | * caller can't do much about. We kick the writeback threads and take explicit |
2047 | * naps in the hope that some of these pages can be written. But if the |
2048 | * allocating task holds filesystem locks which prevent writeout this might not |
2049 | * work, and the allocation attempt will fail. |
2050 | * |
2051 | * returns: 0, if no pages reclaimed |
2052 | * else, the number of pages reclaimed |
2053 | */ |
2054 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
2055 | struct scan_control *sc, |
2056 | struct shrink_control *shrink) |
2057 | { |
2058 | unsigned long total_scanned = 0; |
2059 | struct reclaim_state *reclaim_state = current->reclaim_state; |
2060 | struct zoneref *z; |
2061 | struct zone *zone; |
2062 | unsigned long writeback_threshold; |
2063 | bool aborted_reclaim; |
2064 | |
2065 | delayacct_freepages_start(); |
2066 | |
2067 | if (global_reclaim(sc)) |
2068 | count_vm_event(ALLOCSTALL); |
2069 | |
2070 | do { |
2071 | sc->nr_scanned = 0; |
2072 | aborted_reclaim = shrink_zones(zonelist, sc); |
2073 | |
2074 | /* |
2075 | * Don't shrink slabs when reclaiming memory from |
2076 | * over limit cgroups |
2077 | */ |
2078 | if (global_reclaim(sc)) { |
2079 | unsigned long lru_pages = 0; |
2080 | for_each_zone_zonelist(zone, z, zonelist, |
2081 | gfp_zone(sc->gfp_mask)) { |
2082 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2083 | continue; |
2084 | |
2085 | lru_pages += zone_reclaimable_pages(zone); |
2086 | } |
2087 | |
2088 | shrink_slab(shrink, sc->nr_scanned, lru_pages); |
2089 | if (reclaim_state) { |
2090 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
2091 | reclaim_state->reclaimed_slab = 0; |
2092 | } |
2093 | } |
2094 | total_scanned += sc->nr_scanned; |
2095 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
2096 | goto out; |
2097 | |
2098 | /* |
2099 | * Try to write back as many pages as we just scanned. This |
2100 | * tends to cause slow streaming writers to write data to the |
2101 | * disk smoothly, at the dirtying rate, which is nice. But |
2102 | * that's undesirable in laptop mode, where we *want* lumpy |
2103 | * writeout. So in laptop mode, write out the whole world. |
2104 | */ |
2105 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2106 | if (total_scanned > writeback_threshold) { |
2107 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2108 | WB_REASON_TRY_TO_FREE_PAGES); |
2109 | sc->may_writepage = 1; |
2110 | } |
2111 | |
2112 | /* Take a nap, wait for some writeback to complete */ |
2113 | if (!sc->hibernation_mode && sc->nr_scanned && |
2114 | sc->priority < DEF_PRIORITY - 2) { |
2115 | struct zone *preferred_zone; |
2116 | |
2117 | first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), |
2118 | &cpuset_current_mems_allowed, |
2119 | &preferred_zone); |
2120 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); |
2121 | } |
2122 | } while (--sc->priority >= 0); |
2123 | |
2124 | out: |
2125 | delayacct_freepages_end(); |
2126 | |
2127 | if (sc->nr_reclaimed) |
2128 | return sc->nr_reclaimed; |
2129 | |
2130 | /* |
2131 | * As hibernation is going on, kswapd is freezed so that it can't mark |
2132 | * the zone into all_unreclaimable. Thus bypassing all_unreclaimable |
2133 | * check. |
2134 | */ |
2135 | if (oom_killer_disabled) |
2136 | return 0; |
2137 | |
2138 | /* Aborted reclaim to try compaction? don't OOM, then */ |
2139 | if (aborted_reclaim) |
2140 | return 1; |
2141 | |
2142 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
2143 | if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) |
2144 | return 1; |
2145 | |
2146 | return 0; |
2147 | } |
2148 | |
2149 | static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) |
2150 | { |
2151 | struct zone *zone; |
2152 | unsigned long pfmemalloc_reserve = 0; |
2153 | unsigned long free_pages = 0; |
2154 | int i; |
2155 | bool wmark_ok; |
2156 | |
2157 | for (i = 0; i <= ZONE_NORMAL; i++) { |
2158 | zone = &pgdat->node_zones[i]; |
2159 | pfmemalloc_reserve += min_wmark_pages(zone); |
2160 | free_pages += zone_page_state(zone, NR_FREE_PAGES); |
2161 | } |
2162 | |
2163 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
2164 | |
2165 | /* kswapd must be awake if processes are being throttled */ |
2166 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { |
2167 | pgdat->classzone_idx = min(pgdat->classzone_idx, |
2168 | (enum zone_type)ZONE_NORMAL); |
2169 | wake_up_interruptible(&pgdat->kswapd_wait); |
2170 | } |
2171 | |
2172 | return wmark_ok; |
2173 | } |
2174 | |
2175 | /* |
2176 | * Throttle direct reclaimers if backing storage is backed by the network |
2177 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously |
2178 | * depleted. kswapd will continue to make progress and wake the processes |
2179 | * when the low watermark is reached |
2180 | */ |
2181 | static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
2182 | nodemask_t *nodemask) |
2183 | { |
2184 | struct zone *zone; |
2185 | int high_zoneidx = gfp_zone(gfp_mask); |
2186 | pg_data_t *pgdat; |
2187 | |
2188 | /* |
2189 | * Kernel threads should not be throttled as they may be indirectly |
2190 | * responsible for cleaning pages necessary for reclaim to make forward |
2191 | * progress. kjournald for example may enter direct reclaim while |
2192 | * committing a transaction where throttling it could forcing other |
2193 | * processes to block on log_wait_commit(). |
2194 | */ |
2195 | if (current->flags & PF_KTHREAD) |
2196 | return; |
2197 | |
2198 | /* Check if the pfmemalloc reserves are ok */ |
2199 | first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); |
2200 | pgdat = zone->zone_pgdat; |
2201 | if (pfmemalloc_watermark_ok(pgdat)) |
2202 | return; |
2203 | |
2204 | /* Account for the throttling */ |
2205 | count_vm_event(PGSCAN_DIRECT_THROTTLE); |
2206 | |
2207 | /* |
2208 | * If the caller cannot enter the filesystem, it's possible that it |
2209 | * is due to the caller holding an FS lock or performing a journal |
2210 | * transaction in the case of a filesystem like ext[3|4]. In this case, |
2211 | * it is not safe to block on pfmemalloc_wait as kswapd could be |
2212 | * blocked waiting on the same lock. Instead, throttle for up to a |
2213 | * second before continuing. |
2214 | */ |
2215 | if (!(gfp_mask & __GFP_FS)) { |
2216 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, |
2217 | pfmemalloc_watermark_ok(pgdat), HZ); |
2218 | return; |
2219 | } |
2220 | |
2221 | /* Throttle until kswapd wakes the process */ |
2222 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, |
2223 | pfmemalloc_watermark_ok(pgdat)); |
2224 | } |
2225 | |
2226 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
2227 | gfp_t gfp_mask, nodemask_t *nodemask) |
2228 | { |
2229 | unsigned long nr_reclaimed; |
2230 | struct scan_control sc = { |
2231 | .gfp_mask = gfp_mask, |
2232 | .may_writepage = !laptop_mode, |
2233 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
2234 | .may_unmap = 1, |
2235 | .may_swap = 1, |
2236 | .order = order, |
2237 | .priority = DEF_PRIORITY, |
2238 | .target_mem_cgroup = NULL, |
2239 | .nodemask = nodemask, |
2240 | }; |
2241 | struct shrink_control shrink = { |
2242 | .gfp_mask = sc.gfp_mask, |
2243 | }; |
2244 | |
2245 | throttle_direct_reclaim(gfp_mask, zonelist, nodemask); |
2246 | |
2247 | /* |
2248 | * Do not enter reclaim if fatal signal is pending. 1 is returned so |
2249 | * that the page allocator does not consider triggering OOM |
2250 | */ |
2251 | if (fatal_signal_pending(current)) |
2252 | return 1; |
2253 | |
2254 | trace_mm_vmscan_direct_reclaim_begin(order, |
2255 | sc.may_writepage, |
2256 | gfp_mask); |
2257 | |
2258 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
2259 | |
2260 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); |
2261 | |
2262 | return nr_reclaimed; |
2263 | } |
2264 | |
2265 | #ifdef CONFIG_MEMCG |
2266 | |
2267 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, |
2268 | gfp_t gfp_mask, bool noswap, |
2269 | struct zone *zone, |
2270 | unsigned long *nr_scanned) |
2271 | { |
2272 | struct scan_control sc = { |
2273 | .nr_scanned = 0, |
2274 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
2275 | .may_writepage = !laptop_mode, |
2276 | .may_unmap = 1, |
2277 | .may_swap = !noswap, |
2278 | .order = 0, |
2279 | .priority = 0, |
2280 | .target_mem_cgroup = memcg, |
2281 | }; |
2282 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
2283 | |
2284 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2285 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
2286 | |
2287 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
2288 | sc.may_writepage, |
2289 | sc.gfp_mask); |
2290 | |
2291 | /* |
2292 | * NOTE: Although we can get the priority field, using it |
2293 | * here is not a good idea, since it limits the pages we can scan. |
2294 | * if we don't reclaim here, the shrink_zone from balance_pgdat |
2295 | * will pick up pages from other mem cgroup's as well. We hack |
2296 | * the priority and make it zero. |
2297 | */ |
2298 | shrink_lruvec(lruvec, &sc); |
2299 | |
2300 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); |
2301 | |
2302 | *nr_scanned = sc.nr_scanned; |
2303 | return sc.nr_reclaimed; |
2304 | } |
2305 | |
2306 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
2307 | gfp_t gfp_mask, |
2308 | bool noswap) |
2309 | { |
2310 | struct zonelist *zonelist; |
2311 | unsigned long nr_reclaimed; |
2312 | int nid; |
2313 | struct scan_control sc = { |
2314 | .may_writepage = !laptop_mode, |
2315 | .may_unmap = 1, |
2316 | .may_swap = !noswap, |
2317 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
2318 | .order = 0, |
2319 | .priority = DEF_PRIORITY, |
2320 | .target_mem_cgroup = memcg, |
2321 | .nodemask = NULL, /* we don't care the placement */ |
2322 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2323 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
2324 | }; |
2325 | struct shrink_control shrink = { |
2326 | .gfp_mask = sc.gfp_mask, |
2327 | }; |
2328 | |
2329 | /* |
2330 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't |
2331 | * take care of from where we get pages. So the node where we start the |
2332 | * scan does not need to be the current node. |
2333 | */ |
2334 | nid = mem_cgroup_select_victim_node(memcg); |
2335 | |
2336 | zonelist = NODE_DATA(nid)->node_zonelists; |
2337 | |
2338 | trace_mm_vmscan_memcg_reclaim_begin(0, |
2339 | sc.may_writepage, |
2340 | sc.gfp_mask); |
2341 | |
2342 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
2343 | |
2344 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); |
2345 | |
2346 | return nr_reclaimed; |
2347 | } |
2348 | #endif |
2349 | |
2350 | static void age_active_anon(struct zone *zone, struct scan_control *sc) |
2351 | { |
2352 | struct mem_cgroup *memcg; |
2353 | |
2354 | if (!total_swap_pages) |
2355 | return; |
2356 | |
2357 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
2358 | do { |
2359 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
2360 | |
2361 | if (inactive_anon_is_low(lruvec)) |
2362 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
2363 | sc, LRU_ACTIVE_ANON); |
2364 | |
2365 | memcg = mem_cgroup_iter(NULL, memcg, NULL); |
2366 | } while (memcg); |
2367 | } |
2368 | |
2369 | /* |
2370 | * pgdat_balanced is used when checking if a node is balanced for high-order |
2371 | * allocations. Only zones that meet watermarks and are in a zone allowed |
2372 | * by the callers classzone_idx are added to balanced_pages. The total of |
2373 | * balanced pages must be at least 25% of the zones allowed by classzone_idx |
2374 | * for the node to be considered balanced. Forcing all zones to be balanced |
2375 | * for high orders can cause excessive reclaim when there are imbalanced zones. |
2376 | * The choice of 25% is due to |
2377 | * o a 16M DMA zone that is balanced will not balance a zone on any |
2378 | * reasonable sized machine |
2379 | * o On all other machines, the top zone must be at least a reasonable |
2380 | * percentage of the middle zones. For example, on 32-bit x86, highmem |
2381 | * would need to be at least 256M for it to be balance a whole node. |
2382 | * Similarly, on x86-64 the Normal zone would need to be at least 1G |
2383 | * to balance a node on its own. These seemed like reasonable ratios. |
2384 | */ |
2385 | static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages, |
2386 | int classzone_idx) |
2387 | { |
2388 | unsigned long present_pages = 0; |
2389 | int i; |
2390 | |
2391 | for (i = 0; i <= classzone_idx; i++) |
2392 | present_pages += pgdat->node_zones[i].present_pages; |
2393 | |
2394 | /* A special case here: if zone has no page, we think it's balanced */ |
2395 | return balanced_pages >= (present_pages >> 2); |
2396 | } |
2397 | |
2398 | /* |
2399 | * Prepare kswapd for sleeping. This verifies that there are no processes |
2400 | * waiting in throttle_direct_reclaim() and that watermarks have been met. |
2401 | * |
2402 | * Returns true if kswapd is ready to sleep |
2403 | */ |
2404 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, |
2405 | int classzone_idx) |
2406 | { |
2407 | int i; |
2408 | unsigned long balanced = 0; |
2409 | bool all_zones_ok = true; |
2410 | |
2411 | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ |
2412 | if (remaining) |
2413 | return false; |
2414 | |
2415 | /* |
2416 | * There is a potential race between when kswapd checks its watermarks |
2417 | * and a process gets throttled. There is also a potential race if |
2418 | * processes get throttled, kswapd wakes, a large process exits therby |
2419 | * balancing the zones that causes kswapd to miss a wakeup. If kswapd |
2420 | * is going to sleep, no process should be sleeping on pfmemalloc_wait |
2421 | * so wake them now if necessary. If necessary, processes will wake |
2422 | * kswapd and get throttled again |
2423 | */ |
2424 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) { |
2425 | wake_up(&pgdat->pfmemalloc_wait); |
2426 | return false; |
2427 | } |
2428 | |
2429 | /* Check the watermark levels */ |
2430 | for (i = 0; i <= classzone_idx; i++) { |
2431 | struct zone *zone = pgdat->node_zones + i; |
2432 | |
2433 | if (!populated_zone(zone)) |
2434 | continue; |
2435 | |
2436 | /* |
2437 | * balance_pgdat() skips over all_unreclaimable after |
2438 | * DEF_PRIORITY. Effectively, it considers them balanced so |
2439 | * they must be considered balanced here as well if kswapd |
2440 | * is to sleep |
2441 | */ |
2442 | if (zone->all_unreclaimable) { |
2443 | balanced += zone->present_pages; |
2444 | continue; |
2445 | } |
2446 | |
2447 | if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone), |
2448 | i, 0)) |
2449 | all_zones_ok = false; |
2450 | else |
2451 | balanced += zone->present_pages; |
2452 | } |
2453 | |
2454 | /* |
2455 | * For high-order requests, the balanced zones must contain at least |
2456 | * 25% of the nodes pages for kswapd to sleep. For order-0, all zones |
2457 | * must be balanced |
2458 | */ |
2459 | if (order) |
2460 | return pgdat_balanced(pgdat, balanced, classzone_idx); |
2461 | else |
2462 | return all_zones_ok; |
2463 | } |
2464 | |
2465 | /* |
2466 | * For kswapd, balance_pgdat() will work across all this node's zones until |
2467 | * they are all at high_wmark_pages(zone). |
2468 | * |
2469 | * Returns the final order kswapd was reclaiming at |
2470 | * |
2471 | * There is special handling here for zones which are full of pinned pages. |
2472 | * This can happen if the pages are all mlocked, or if they are all used by |
2473 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. |
2474 | * What we do is to detect the case where all pages in the zone have been |
2475 | * scanned twice and there has been zero successful reclaim. Mark the zone as |
2476 | * dead and from now on, only perform a short scan. Basically we're polling |
2477 | * the zone for when the problem goes away. |
2478 | * |
2479 | * kswapd scans the zones in the highmem->normal->dma direction. It skips |
2480 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
2481 | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the |
2482 | * lower zones regardless of the number of free pages in the lower zones. This |
2483 | * interoperates with the page allocator fallback scheme to ensure that aging |
2484 | * of pages is balanced across the zones. |
2485 | */ |
2486 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order, |
2487 | int *classzone_idx) |
2488 | { |
2489 | int all_zones_ok; |
2490 | unsigned long balanced; |
2491 | int i; |
2492 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
2493 | unsigned long total_scanned; |
2494 | struct reclaim_state *reclaim_state = current->reclaim_state; |
2495 | unsigned long nr_soft_reclaimed; |
2496 | unsigned long nr_soft_scanned; |
2497 | struct scan_control sc = { |
2498 | .gfp_mask = GFP_KERNEL, |
2499 | .may_unmap = 1, |
2500 | .may_swap = 1, |
2501 | /* |
2502 | * kswapd doesn't want to be bailed out while reclaim. because |
2503 | * we want to put equal scanning pressure on each zone. |
2504 | */ |
2505 | .nr_to_reclaim = ULONG_MAX, |
2506 | .order = order, |
2507 | .target_mem_cgroup = NULL, |
2508 | }; |
2509 | struct shrink_control shrink = { |
2510 | .gfp_mask = sc.gfp_mask, |
2511 | }; |
2512 | loop_again: |
2513 | total_scanned = 0; |
2514 | sc.priority = DEF_PRIORITY; |
2515 | sc.nr_reclaimed = 0; |
2516 | sc.may_writepage = !laptop_mode; |
2517 | count_vm_event(PAGEOUTRUN); |
2518 | |
2519 | do { |
2520 | unsigned long lru_pages = 0; |
2521 | int has_under_min_watermark_zone = 0; |
2522 | |
2523 | all_zones_ok = 1; |
2524 | balanced = 0; |
2525 | |
2526 | /* |
2527 | * Scan in the highmem->dma direction for the highest |
2528 | * zone which needs scanning |
2529 | */ |
2530 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { |
2531 | struct zone *zone = pgdat->node_zones + i; |
2532 | |
2533 | if (!populated_zone(zone)) |
2534 | continue; |
2535 | |
2536 | if (zone->all_unreclaimable && |
2537 | sc.priority != DEF_PRIORITY) |
2538 | continue; |
2539 | |
2540 | /* |
2541 | * Do some background aging of the anon list, to give |
2542 | * pages a chance to be referenced before reclaiming. |
2543 | */ |
2544 | age_active_anon(zone, &sc); |
2545 | |
2546 | /* |
2547 | * If the number of buffer_heads in the machine |
2548 | * exceeds the maximum allowed level and this node |
2549 | * has a highmem zone, force kswapd to reclaim from |
2550 | * it to relieve lowmem pressure. |
2551 | */ |
2552 | if (buffer_heads_over_limit && is_highmem_idx(i)) { |
2553 | end_zone = i; |
2554 | break; |
2555 | } |
2556 | |
2557 | if (!zone_watermark_ok_safe(zone, order, |
2558 | high_wmark_pages(zone), 0, 0)) { |
2559 | end_zone = i; |
2560 | break; |
2561 | } else { |
2562 | /* If balanced, clear the congested flag */ |
2563 | zone_clear_flag(zone, ZONE_CONGESTED); |
2564 | } |
2565 | } |
2566 | if (i < 0) |
2567 | goto out; |
2568 | |
2569 | for (i = 0; i <= end_zone; i++) { |
2570 | struct zone *zone = pgdat->node_zones + i; |
2571 | |
2572 | lru_pages += zone_reclaimable_pages(zone); |
2573 | } |
2574 | |
2575 | /* |
2576 | * Now scan the zone in the dma->highmem direction, stopping |
2577 | * at the last zone which needs scanning. |
2578 | * |
2579 | * We do this because the page allocator works in the opposite |
2580 | * direction. This prevents the page allocator from allocating |
2581 | * pages behind kswapd's direction of progress, which would |
2582 | * cause too much scanning of the lower zones. |
2583 | */ |
2584 | for (i = 0; i <= end_zone; i++) { |
2585 | struct zone *zone = pgdat->node_zones + i; |
2586 | int nr_slab, testorder; |
2587 | unsigned long balance_gap; |
2588 | |
2589 | if (!populated_zone(zone)) |
2590 | continue; |
2591 | |
2592 | if (zone->all_unreclaimable && |
2593 | sc.priority != DEF_PRIORITY) |
2594 | continue; |
2595 | |
2596 | sc.nr_scanned = 0; |
2597 | |
2598 | nr_soft_scanned = 0; |
2599 | /* |
2600 | * Call soft limit reclaim before calling shrink_zone. |
2601 | */ |
2602 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
2603 | order, sc.gfp_mask, |
2604 | &nr_soft_scanned); |
2605 | sc.nr_reclaimed += nr_soft_reclaimed; |
2606 | total_scanned += nr_soft_scanned; |
2607 | |
2608 | /* |
2609 | * We put equal pressure on every zone, unless |
2610 | * one zone has way too many pages free |
2611 | * already. The "too many pages" is defined |
2612 | * as the high wmark plus a "gap" where the |
2613 | * gap is either the low watermark or 1% |
2614 | * of the zone, whichever is smaller. |
2615 | */ |
2616 | balance_gap = min(low_wmark_pages(zone), |
2617 | (zone->present_pages + |
2618 | KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
2619 | KSWAPD_ZONE_BALANCE_GAP_RATIO); |
2620 | /* |
2621 | * Kswapd reclaims only single pages with compaction |
2622 | * enabled. Trying too hard to reclaim until contiguous |
2623 | * free pages have become available can hurt performance |
2624 | * by evicting too much useful data from memory. |
2625 | * Do not reclaim more than needed for compaction. |
2626 | */ |
2627 | testorder = order; |
2628 | if (COMPACTION_BUILD && order && |
2629 | compaction_suitable(zone, order) != |
2630 | COMPACT_SKIPPED) |
2631 | testorder = 0; |
2632 | |
2633 | if ((buffer_heads_over_limit && is_highmem_idx(i)) || |
2634 | !zone_watermark_ok_safe(zone, testorder, |
2635 | high_wmark_pages(zone) + balance_gap, |
2636 | end_zone, 0)) { |
2637 | shrink_zone(zone, &sc); |
2638 | |
2639 | reclaim_state->reclaimed_slab = 0; |
2640 | nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); |
2641 | sc.nr_reclaimed += reclaim_state->reclaimed_slab; |
2642 | total_scanned += sc.nr_scanned; |
2643 | |
2644 | if (nr_slab == 0 && !zone_reclaimable(zone)) |
2645 | zone->all_unreclaimable = 1; |
2646 | } |
2647 | |
2648 | /* |
2649 | * If we've done a decent amount of scanning and |
2650 | * the reclaim ratio is low, start doing writepage |
2651 | * even in laptop mode |
2652 | */ |
2653 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && |
2654 | total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) |
2655 | sc.may_writepage = 1; |
2656 | |
2657 | if (zone->all_unreclaimable) { |
2658 | if (end_zone && end_zone == i) |
2659 | end_zone--; |
2660 | continue; |
2661 | } |
2662 | |
2663 | if (!zone_watermark_ok_safe(zone, testorder, |
2664 | high_wmark_pages(zone), end_zone, 0)) { |
2665 | all_zones_ok = 0; |
2666 | /* |
2667 | * We are still under min water mark. This |
2668 | * means that we have a GFP_ATOMIC allocation |
2669 | * failure risk. Hurry up! |
2670 | */ |
2671 | if (!zone_watermark_ok_safe(zone, order, |
2672 | min_wmark_pages(zone), end_zone, 0)) |
2673 | has_under_min_watermark_zone = 1; |
2674 | } else { |
2675 | /* |
2676 | * If a zone reaches its high watermark, |
2677 | * consider it to be no longer congested. It's |
2678 | * possible there are dirty pages backed by |
2679 | * congested BDIs but as pressure is relieved, |
2680 | * speculatively avoid congestion waits |
2681 | */ |
2682 | zone_clear_flag(zone, ZONE_CONGESTED); |
2683 | if (i <= *classzone_idx) |
2684 | balanced += zone->present_pages; |
2685 | } |
2686 | |
2687 | } |
2688 | |
2689 | /* |
2690 | * If the low watermark is met there is no need for processes |
2691 | * to be throttled on pfmemalloc_wait as they should not be |
2692 | * able to safely make forward progress. Wake them |
2693 | */ |
2694 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && |
2695 | pfmemalloc_watermark_ok(pgdat)) |
2696 | wake_up(&pgdat->pfmemalloc_wait); |
2697 | |
2698 | if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx))) |
2699 | break; /* kswapd: all done */ |
2700 | /* |
2701 | * OK, kswapd is getting into trouble. Take a nap, then take |
2702 | * another pass across the zones. |
2703 | */ |
2704 | if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) { |
2705 | if (has_under_min_watermark_zone) |
2706 | count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); |
2707 | else |
2708 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
2709 | } |
2710 | |
2711 | /* |
2712 | * We do this so kswapd doesn't build up large priorities for |
2713 | * example when it is freeing in parallel with allocators. It |
2714 | * matches the direct reclaim path behaviour in terms of impact |
2715 | * on zone->*_priority. |
2716 | */ |
2717 | if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) |
2718 | break; |
2719 | } while (--sc.priority >= 0); |
2720 | out: |
2721 | |
2722 | /* |
2723 | * order-0: All zones must meet high watermark for a balanced node |
2724 | * high-order: Balanced zones must make up at least 25% of the node |
2725 | * for the node to be balanced |
2726 | */ |
2727 | if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) { |
2728 | cond_resched(); |
2729 | |
2730 | try_to_freeze(); |
2731 | |
2732 | /* |
2733 | * Fragmentation may mean that the system cannot be |
2734 | * rebalanced for high-order allocations in all zones. |
2735 | * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, |
2736 | * it means the zones have been fully scanned and are still |
2737 | * not balanced. For high-order allocations, there is |
2738 | * little point trying all over again as kswapd may |
2739 | * infinite loop. |
2740 | * |
2741 | * Instead, recheck all watermarks at order-0 as they |
2742 | * are the most important. If watermarks are ok, kswapd will go |
2743 | * back to sleep. High-order users can still perform direct |
2744 | * reclaim if they wish. |
2745 | */ |
2746 | if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) |
2747 | order = sc.order = 0; |
2748 | |
2749 | goto loop_again; |
2750 | } |
2751 | |
2752 | /* |
2753 | * If kswapd was reclaiming at a higher order, it has the option of |
2754 | * sleeping without all zones being balanced. Before it does, it must |
2755 | * ensure that the watermarks for order-0 on *all* zones are met and |
2756 | * that the congestion flags are cleared. The congestion flag must |
2757 | * be cleared as kswapd is the only mechanism that clears the flag |
2758 | * and it is potentially going to sleep here. |
2759 | */ |
2760 | if (order) { |
2761 | int zones_need_compaction = 1; |
2762 | |
2763 | for (i = 0; i <= end_zone; i++) { |
2764 | struct zone *zone = pgdat->node_zones + i; |
2765 | |
2766 | if (!populated_zone(zone)) |
2767 | continue; |
2768 | |
2769 | if (zone->all_unreclaimable && |
2770 | sc.priority != DEF_PRIORITY) |
2771 | continue; |
2772 | |
2773 | /* Would compaction fail due to lack of free memory? */ |
2774 | if (COMPACTION_BUILD && |
2775 | compaction_suitable(zone, order) == COMPACT_SKIPPED) |
2776 | goto loop_again; |
2777 | |
2778 | /* Confirm the zone is balanced for order-0 */ |
2779 | if (!zone_watermark_ok(zone, 0, |
2780 | high_wmark_pages(zone), 0, 0)) { |
2781 | order = sc.order = 0; |
2782 | goto loop_again; |
2783 | } |
2784 | |
2785 | /* Check if the memory needs to be defragmented. */ |
2786 | if (zone_watermark_ok(zone, order, |
2787 | low_wmark_pages(zone), *classzone_idx, 0)) |
2788 | zones_need_compaction = 0; |
2789 | |
2790 | /* If balanced, clear the congested flag */ |
2791 | zone_clear_flag(zone, ZONE_CONGESTED); |
2792 | } |
2793 | |
2794 | if (zones_need_compaction) |
2795 | compact_pgdat(pgdat, order); |
2796 | } |
2797 | |
2798 | /* |
2799 | * Return the order we were reclaiming at so prepare_kswapd_sleep() |
2800 | * makes a decision on the order we were last reclaiming at. However, |
2801 | * if another caller entered the allocator slow path while kswapd |
2802 | * was awake, order will remain at the higher level |
2803 | */ |
2804 | *classzone_idx = end_zone; |
2805 | return order; |
2806 | } |
2807 | |
2808 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
2809 | { |
2810 | long remaining = 0; |
2811 | DEFINE_WAIT(wait); |
2812 | |
2813 | if (freezing(current) || kthread_should_stop()) |
2814 | return; |
2815 | |
2816 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
2817 | |
2818 | /* Try to sleep for a short interval */ |
2819 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
2820 | remaining = schedule_timeout(HZ/10); |
2821 | finish_wait(&pgdat->kswapd_wait, &wait); |
2822 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
2823 | } |
2824 | |
2825 | /* |
2826 | * After a short sleep, check if it was a premature sleep. If not, then |
2827 | * go fully to sleep until explicitly woken up. |
2828 | */ |
2829 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
2830 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
2831 | |
2832 | /* |
2833 | * vmstat counters are not perfectly accurate and the estimated |
2834 | * value for counters such as NR_FREE_PAGES can deviate from the |
2835 | * true value by nr_online_cpus * threshold. To avoid the zone |
2836 | * watermarks being breached while under pressure, we reduce the |
2837 | * per-cpu vmstat threshold while kswapd is awake and restore |
2838 | * them before going back to sleep. |
2839 | */ |
2840 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); |
2841 | |
2842 | if (!kthread_should_stop()) |
2843 | schedule(); |
2844 | |
2845 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
2846 | } else { |
2847 | if (remaining) |
2848 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); |
2849 | else |
2850 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); |
2851 | } |
2852 | finish_wait(&pgdat->kswapd_wait, &wait); |
2853 | } |
2854 | |
2855 | /* |
2856 | * The background pageout daemon, started as a kernel thread |
2857 | * from the init process. |
2858 | * |
2859 | * This basically trickles out pages so that we have _some_ |
2860 | * free memory available even if there is no other activity |
2861 | * that frees anything up. This is needed for things like routing |
2862 | * etc, where we otherwise might have all activity going on in |
2863 | * asynchronous contexts that cannot page things out. |
2864 | * |
2865 | * If there are applications that are active memory-allocators |
2866 | * (most normal use), this basically shouldn't matter. |
2867 | */ |
2868 | static int kswapd(void *p) |
2869 | { |
2870 | unsigned long order, new_order; |
2871 | unsigned balanced_order; |
2872 | int classzone_idx, new_classzone_idx; |
2873 | int balanced_classzone_idx; |
2874 | pg_data_t *pgdat = (pg_data_t*)p; |
2875 | struct task_struct *tsk = current; |
2876 | |
2877 | struct reclaim_state reclaim_state = { |
2878 | .reclaimed_slab = 0, |
2879 | }; |
2880 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
2881 | |
2882 | lockdep_set_current_reclaim_state(GFP_KERNEL); |
2883 | |
2884 | if (!cpumask_empty(cpumask)) |
2885 | set_cpus_allowed_ptr(tsk, cpumask); |
2886 | current->reclaim_state = &reclaim_state; |
2887 | |
2888 | /* |
2889 | * Tell the memory management that we're a "memory allocator", |
2890 | * and that if we need more memory we should get access to it |
2891 | * regardless (see "__alloc_pages()"). "kswapd" should |
2892 | * never get caught in the normal page freeing logic. |
2893 | * |
2894 | * (Kswapd normally doesn't need memory anyway, but sometimes |
2895 | * you need a small amount of memory in order to be able to |
2896 | * page out something else, and this flag essentially protects |
2897 | * us from recursively trying to free more memory as we're |
2898 | * trying to free the first piece of memory in the first place). |
2899 | */ |
2900 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
2901 | set_freezable(); |
2902 | |
2903 | order = new_order = 0; |
2904 | balanced_order = 0; |
2905 | classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; |
2906 | balanced_classzone_idx = classzone_idx; |
2907 | for ( ; ; ) { |
2908 | int ret; |
2909 | |
2910 | /* |
2911 | * If the last balance_pgdat was unsuccessful it's unlikely a |
2912 | * new request of a similar or harder type will succeed soon |
2913 | * so consider going to sleep on the basis we reclaimed at |
2914 | */ |
2915 | if (balanced_classzone_idx >= new_classzone_idx && |
2916 | balanced_order == new_order) { |
2917 | new_order = pgdat->kswapd_max_order; |
2918 | new_classzone_idx = pgdat->classzone_idx; |
2919 | pgdat->kswapd_max_order = 0; |
2920 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
2921 | } |
2922 | |
2923 | if (order < new_order || classzone_idx > new_classzone_idx) { |
2924 | /* |
2925 | * Don't sleep if someone wants a larger 'order' |
2926 | * allocation or has tigher zone constraints |
2927 | */ |
2928 | order = new_order; |
2929 | classzone_idx = new_classzone_idx; |
2930 | } else { |
2931 | kswapd_try_to_sleep(pgdat, balanced_order, |
2932 | balanced_classzone_idx); |
2933 | order = pgdat->kswapd_max_order; |
2934 | classzone_idx = pgdat->classzone_idx; |
2935 | new_order = order; |
2936 | new_classzone_idx = classzone_idx; |
2937 | pgdat->kswapd_max_order = 0; |
2938 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
2939 | } |
2940 | |
2941 | ret = try_to_freeze(); |
2942 | if (kthread_should_stop()) |
2943 | break; |
2944 | |
2945 | /* |
2946 | * We can speed up thawing tasks if we don't call balance_pgdat |
2947 | * after returning from the refrigerator |
2948 | */ |
2949 | if (!ret) { |
2950 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); |
2951 | balanced_classzone_idx = classzone_idx; |
2952 | balanced_order = balance_pgdat(pgdat, order, |
2953 | &balanced_classzone_idx); |
2954 | } |
2955 | } |
2956 | return 0; |
2957 | } |
2958 | |
2959 | /* |
2960 | * A zone is low on free memory, so wake its kswapd task to service it. |
2961 | */ |
2962 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) |
2963 | { |
2964 | pg_data_t *pgdat; |
2965 | |
2966 | if (!populated_zone(zone)) |
2967 | return; |
2968 | |
2969 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2970 | return; |
2971 | pgdat = zone->zone_pgdat; |
2972 | if (pgdat->kswapd_max_order < order) { |
2973 | pgdat->kswapd_max_order = order; |
2974 | pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); |
2975 | } |
2976 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
2977 | return; |
2978 | if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) |
2979 | return; |
2980 | |
2981 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); |
2982 | wake_up_interruptible(&pgdat->kswapd_wait); |
2983 | } |
2984 | |
2985 | /* |
2986 | * The reclaimable count would be mostly accurate. |
2987 | * The less reclaimable pages may be |
2988 | * - mlocked pages, which will be moved to unevictable list when encountered |
2989 | * - mapped pages, which may require several travels to be reclaimed |
2990 | * - dirty pages, which is not "instantly" reclaimable |
2991 | */ |
2992 | unsigned long global_reclaimable_pages(void) |
2993 | { |
2994 | int nr; |
2995 | |
2996 | nr = global_page_state(NR_ACTIVE_FILE) + |
2997 | global_page_state(NR_INACTIVE_FILE); |
2998 | |
2999 | if (nr_swap_pages > 0) |
3000 | nr += global_page_state(NR_ACTIVE_ANON) + |
3001 | global_page_state(NR_INACTIVE_ANON); |
3002 | |
3003 | return nr; |
3004 | } |
3005 | |
3006 | unsigned long zone_reclaimable_pages(struct zone *zone) |
3007 | { |
3008 | int nr; |
3009 | |
3010 | nr = zone_page_state(zone, NR_ACTIVE_FILE) + |
3011 | zone_page_state(zone, NR_INACTIVE_FILE); |
3012 | |
3013 | if (nr_swap_pages > 0) |
3014 | nr += zone_page_state(zone, NR_ACTIVE_ANON) + |
3015 | zone_page_state(zone, NR_INACTIVE_ANON); |
3016 | |
3017 | return nr; |
3018 | } |
3019 | |
3020 | #ifdef CONFIG_HIBERNATION |
3021 | /* |
3022 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
3023 | * freed pages. |
3024 | * |
3025 | * Rather than trying to age LRUs the aim is to preserve the overall |
3026 | * LRU order by reclaiming preferentially |
3027 | * inactive > active > active referenced > active mapped |
3028 | */ |
3029 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
3030 | { |
3031 | struct reclaim_state reclaim_state; |
3032 | struct scan_control sc = { |
3033 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
3034 | .may_swap = 1, |
3035 | .may_unmap = 1, |
3036 | .may_writepage = 1, |
3037 | .nr_to_reclaim = nr_to_reclaim, |
3038 | .hibernation_mode = 1, |
3039 | .order = 0, |
3040 | .priority = DEF_PRIORITY, |
3041 | }; |
3042 | struct shrink_control shrink = { |
3043 | .gfp_mask = sc.gfp_mask, |
3044 | }; |
3045 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
3046 | struct task_struct *p = current; |
3047 | unsigned long nr_reclaimed; |
3048 | |
3049 | p->flags |= PF_MEMALLOC; |
3050 | lockdep_set_current_reclaim_state(sc.gfp_mask); |
3051 | reclaim_state.reclaimed_slab = 0; |
3052 | p->reclaim_state = &reclaim_state; |
3053 | |
3054 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
3055 | |
3056 | p->reclaim_state = NULL; |
3057 | lockdep_clear_current_reclaim_state(); |
3058 | p->flags &= ~PF_MEMALLOC; |
3059 | |
3060 | return nr_reclaimed; |
3061 | } |
3062 | #endif /* CONFIG_HIBERNATION */ |
3063 | |
3064 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3065 | not required for correctness. So if the last cpu in a node goes |
3066 | away, we get changed to run anywhere: as the first one comes back, |
3067 | restore their cpu bindings. */ |
3068 | static int __devinit cpu_callback(struct notifier_block *nfb, |
3069 | unsigned long action, void *hcpu) |
3070 | { |
3071 | int nid; |
3072 | |
3073 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
3074 | for_each_node_state(nid, N_HIGH_MEMORY) { |
3075 | pg_data_t *pgdat = NODE_DATA(nid); |
3076 | const struct cpumask *mask; |
3077 | |
3078 | mask = cpumask_of_node(pgdat->node_id); |
3079 | |
3080 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
3081 | /* One of our CPUs online: restore mask */ |
3082 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
3083 | } |
3084 | } |
3085 | return NOTIFY_OK; |
3086 | } |
3087 | |
3088 | /* |
3089 | * This kswapd start function will be called by init and node-hot-add. |
3090 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. |
3091 | */ |
3092 | int kswapd_run(int nid) |
3093 | { |
3094 | pg_data_t *pgdat = NODE_DATA(nid); |
3095 | int ret = 0; |
3096 | |
3097 | if (pgdat->kswapd) |
3098 | return 0; |
3099 | |
3100 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); |
3101 | if (IS_ERR(pgdat->kswapd)) { |
3102 | /* failure at boot is fatal */ |
3103 | BUG_ON(system_state == SYSTEM_BOOTING); |
3104 | printk("Failed to start kswapd on node %d\n",nid); |
3105 | ret = -1; |
3106 | } |
3107 | return ret; |
3108 | } |
3109 | |
3110 | /* |
3111 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
3112 | * hold lock_memory_hotplug(). |
3113 | */ |
3114 | void kswapd_stop(int nid) |
3115 | { |
3116 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; |
3117 | |
3118 | if (kswapd) { |
3119 | kthread_stop(kswapd); |
3120 | NODE_DATA(nid)->kswapd = NULL; |
3121 | } |
3122 | } |
3123 | |
3124 | static int __init kswapd_init(void) |
3125 | { |
3126 | int nid; |
3127 | |
3128 | swap_setup(); |
3129 | for_each_node_state(nid, N_HIGH_MEMORY) |
3130 | kswapd_run(nid); |
3131 | hotcpu_notifier(cpu_callback, 0); |
3132 | return 0; |
3133 | } |
3134 | |
3135 | module_init(kswapd_init) |
3136 | |
3137 | #ifdef CONFIG_NUMA |
3138 | /* |
3139 | * Zone reclaim mode |
3140 | * |
3141 | * If non-zero call zone_reclaim when the number of free pages falls below |
3142 | * the watermarks. |
3143 | */ |
3144 | int zone_reclaim_mode __read_mostly; |
3145 | |
3146 | #define RECLAIM_OFF 0 |
3147 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
3148 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
3149 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ |
3150 | |
3151 | /* |
3152 | * Priority for ZONE_RECLAIM. This determines the fraction of pages |
3153 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
3154 | * a zone. |
3155 | */ |
3156 | #define ZONE_RECLAIM_PRIORITY 4 |
3157 | |
3158 | /* |
3159 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to |
3160 | * occur. |
3161 | */ |
3162 | int sysctl_min_unmapped_ratio = 1; |
3163 | |
3164 | /* |
3165 | * If the number of slab pages in a zone grows beyond this percentage then |
3166 | * slab reclaim needs to occur. |
3167 | */ |
3168 | int sysctl_min_slab_ratio = 5; |
3169 | |
3170 | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) |
3171 | { |
3172 | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); |
3173 | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + |
3174 | zone_page_state(zone, NR_ACTIVE_FILE); |
3175 | |
3176 | /* |
3177 | * It's possible for there to be more file mapped pages than |
3178 | * accounted for by the pages on the file LRU lists because |
3179 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED |
3180 | */ |
3181 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; |
3182 | } |
3183 | |
3184 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ |
3185 | static long zone_pagecache_reclaimable(struct zone *zone) |
3186 | { |
3187 | long nr_pagecache_reclaimable; |
3188 | long delta = 0; |
3189 | |
3190 | /* |
3191 | * If RECLAIM_SWAP is set, then all file pages are considered |
3192 | * potentially reclaimable. Otherwise, we have to worry about |
3193 | * pages like swapcache and zone_unmapped_file_pages() provides |
3194 | * a better estimate |
3195 | */ |
3196 | if (zone_reclaim_mode & RECLAIM_SWAP) |
3197 | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); |
3198 | else |
3199 | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); |
3200 | |
3201 | /* If we can't clean pages, remove dirty pages from consideration */ |
3202 | if (!(zone_reclaim_mode & RECLAIM_WRITE)) |
3203 | delta += zone_page_state(zone, NR_FILE_DIRTY); |
3204 | |
3205 | /* Watch for any possible underflows due to delta */ |
3206 | if (unlikely(delta > nr_pagecache_reclaimable)) |
3207 | delta = nr_pagecache_reclaimable; |
3208 | |
3209 | return nr_pagecache_reclaimable - delta; |
3210 | } |
3211 | |
3212 | /* |
3213 | * Try to free up some pages from this zone through reclaim. |
3214 | */ |
3215 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
3216 | { |
3217 | /* Minimum pages needed in order to stay on node */ |
3218 | const unsigned long nr_pages = 1 << order; |
3219 | struct task_struct *p = current; |
3220 | struct reclaim_state reclaim_state; |
3221 | struct scan_control sc = { |
3222 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), |
3223 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), |
3224 | .may_swap = 1, |
3225 | .nr_to_reclaim = max_t(unsigned long, nr_pages, |
3226 | SWAP_CLUSTER_MAX), |
3227 | .gfp_mask = gfp_mask, |
3228 | .order = order, |
3229 | .priority = ZONE_RECLAIM_PRIORITY, |
3230 | }; |
3231 | struct shrink_control shrink = { |
3232 | .gfp_mask = sc.gfp_mask, |
3233 | }; |
3234 | unsigned long nr_slab_pages0, nr_slab_pages1; |
3235 | |
3236 | cond_resched(); |
3237 | /* |
3238 | * We need to be able to allocate from the reserves for RECLAIM_SWAP |
3239 | * and we also need to be able to write out pages for RECLAIM_WRITE |
3240 | * and RECLAIM_SWAP. |
3241 | */ |
3242 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; |
3243 | lockdep_set_current_reclaim_state(gfp_mask); |
3244 | reclaim_state.reclaimed_slab = 0; |
3245 | p->reclaim_state = &reclaim_state; |
3246 | |
3247 | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { |
3248 | /* |
3249 | * Free memory by calling shrink zone with increasing |
3250 | * priorities until we have enough memory freed. |
3251 | */ |
3252 | do { |
3253 | shrink_zone(zone, &sc); |
3254 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
3255 | } |
3256 | |
3257 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3258 | if (nr_slab_pages0 > zone->min_slab_pages) { |
3259 | /* |
3260 | * shrink_slab() does not currently allow us to determine how |
3261 | * many pages were freed in this zone. So we take the current |
3262 | * number of slab pages and shake the slab until it is reduced |
3263 | * by the same nr_pages that we used for reclaiming unmapped |
3264 | * pages. |
3265 | * |
3266 | * Note that shrink_slab will free memory on all zones and may |
3267 | * take a long time. |
3268 | */ |
3269 | for (;;) { |
3270 | unsigned long lru_pages = zone_reclaimable_pages(zone); |
3271 | |
3272 | /* No reclaimable slab or very low memory pressure */ |
3273 | if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) |
3274 | break; |
3275 | |
3276 | /* Freed enough memory */ |
3277 | nr_slab_pages1 = zone_page_state(zone, |
3278 | NR_SLAB_RECLAIMABLE); |
3279 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) |
3280 | break; |
3281 | } |
3282 | |
3283 | /* |
3284 | * Update nr_reclaimed by the number of slab pages we |
3285 | * reclaimed from this zone. |
3286 | */ |
3287 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3288 | if (nr_slab_pages1 < nr_slab_pages0) |
3289 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; |
3290 | } |
3291 | |
3292 | p->reclaim_state = NULL; |
3293 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
3294 | lockdep_clear_current_reclaim_state(); |
3295 | return sc.nr_reclaimed >= nr_pages; |
3296 | } |
3297 | |
3298 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
3299 | { |
3300 | int node_id; |
3301 | int ret; |
3302 | |
3303 | /* |
3304 | * Zone reclaim reclaims unmapped file backed pages and |
3305 | * slab pages if we are over the defined limits. |
3306 | * |
3307 | * A small portion of unmapped file backed pages is needed for |
3308 | * file I/O otherwise pages read by file I/O will be immediately |
3309 | * thrown out if the zone is overallocated. So we do not reclaim |
3310 | * if less than a specified percentage of the zone is used by |
3311 | * unmapped file backed pages. |
3312 | */ |
3313 | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && |
3314 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) |
3315 | return ZONE_RECLAIM_FULL; |
3316 | |
3317 | if (zone->all_unreclaimable) |
3318 | return ZONE_RECLAIM_FULL; |
3319 | |
3320 | /* |
3321 | * Do not scan if the allocation should not be delayed. |
3322 | */ |
3323 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
3324 | return ZONE_RECLAIM_NOSCAN; |
3325 | |
3326 | /* |
3327 | * Only run zone reclaim on the local zone or on zones that do not |
3328 | * have associated processors. This will favor the local processor |
3329 | * over remote processors and spread off node memory allocations |
3330 | * as wide as possible. |
3331 | */ |
3332 | node_id = zone_to_nid(zone); |
3333 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
3334 | return ZONE_RECLAIM_NOSCAN; |
3335 | |
3336 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) |
3337 | return ZONE_RECLAIM_NOSCAN; |
3338 | |
3339 | ret = __zone_reclaim(zone, gfp_mask, order); |
3340 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); |
3341 | |
3342 | if (!ret) |
3343 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); |
3344 | |
3345 | return ret; |
3346 | } |
3347 | #endif |
3348 | |
3349 | /* |
3350 | * page_evictable - test whether a page is evictable |
3351 | * @page: the page to test |
3352 | * @vma: the VMA in which the page is or will be mapped, may be NULL |
3353 | * |
3354 | * Test whether page is evictable--i.e., should be placed on active/inactive |
3355 | * lists vs unevictable list. The vma argument is !NULL when called from the |
3356 | * fault path to determine how to instantate a new page. |
3357 | * |
3358 | * Reasons page might not be evictable: |
3359 | * (1) page's mapping marked unevictable |
3360 | * (2) page is part of an mlocked VMA |
3361 | * |
3362 | */ |
3363 | int page_evictable(struct page *page, struct vm_area_struct *vma) |
3364 | { |
3365 | |
3366 | if (mapping_unevictable(page_mapping(page))) |
3367 | return 0; |
3368 | |
3369 | if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page))) |
3370 | return 0; |
3371 | |
3372 | return 1; |
3373 | } |
3374 | |
3375 | #ifdef CONFIG_SHMEM |
3376 | /** |
3377 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3378 | * @pages: array of pages to check |
3379 | * @nr_pages: number of pages to check |
3380 | * |
3381 | * Checks pages for evictability and moves them to the appropriate lru list. |
3382 | * |
3383 | * This function is only used for SysV IPC SHM_UNLOCK. |
3384 | */ |
3385 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
3386 | { |
3387 | struct lruvec *lruvec; |
3388 | struct zone *zone = NULL; |
3389 | int pgscanned = 0; |
3390 | int pgrescued = 0; |
3391 | int i; |
3392 | |
3393 | for (i = 0; i < nr_pages; i++) { |
3394 | struct page *page = pages[i]; |
3395 | struct zone *pagezone; |
3396 | |
3397 | pgscanned++; |
3398 | pagezone = page_zone(page); |
3399 | if (pagezone != zone) { |
3400 | if (zone) |
3401 | spin_unlock_irq(&zone->lru_lock); |
3402 | zone = pagezone; |
3403 | spin_lock_irq(&zone->lru_lock); |
3404 | } |
3405 | lruvec = mem_cgroup_page_lruvec(page, zone); |
3406 | |
3407 | if (!PageLRU(page) || !PageUnevictable(page)) |
3408 | continue; |
3409 | |
3410 | if (page_evictable(page, NULL)) { |
3411 | enum lru_list lru = page_lru_base_type(page); |
3412 | |
3413 | VM_BUG_ON(PageActive(page)); |
3414 | ClearPageUnevictable(page); |
3415 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
3416 | add_page_to_lru_list(page, lruvec, lru); |
3417 | pgrescued++; |
3418 | } |
3419 | } |
3420 | |
3421 | if (zone) { |
3422 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
3423 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); |
3424 | spin_unlock_irq(&zone->lru_lock); |
3425 | } |
3426 | } |
3427 | #endif /* CONFIG_SHMEM */ |
3428 | |
3429 | static void warn_scan_unevictable_pages(void) |
3430 | { |
3431 | printk_once(KERN_WARNING |
3432 | "%s: The scan_unevictable_pages sysctl/node-interface has been " |
3433 | "disabled for lack of a legitimate use case. If you have " |
3434 | "one, please send an email to linux-mm@kvack.org.\n", |
3435 | current->comm); |
3436 | } |
3437 | |
3438 | /* |
3439 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of |
3440 | * all nodes' unevictable lists for evictable pages |
3441 | */ |
3442 | unsigned long scan_unevictable_pages; |
3443 | |
3444 | int scan_unevictable_handler(struct ctl_table *table, int write, |
3445 | void __user *buffer, |
3446 | size_t *length, loff_t *ppos) |
3447 | { |
3448 | warn_scan_unevictable_pages(); |
3449 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
3450 | scan_unevictable_pages = 0; |
3451 | return 0; |
3452 | } |
3453 | |
3454 | #ifdef CONFIG_NUMA |
3455 | /* |
3456 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of |
3457 | * a specified node's per zone unevictable lists for evictable pages. |
3458 | */ |
3459 | |
3460 | static ssize_t read_scan_unevictable_node(struct device *dev, |
3461 | struct device_attribute *attr, |
3462 | char *buf) |
3463 | { |
3464 | warn_scan_unevictable_pages(); |
3465 | return sprintf(buf, "0\n"); /* always zero; should fit... */ |
3466 | } |
3467 | |
3468 | static ssize_t write_scan_unevictable_node(struct device *dev, |
3469 | struct device_attribute *attr, |
3470 | const char *buf, size_t count) |
3471 | { |
3472 | warn_scan_unevictable_pages(); |
3473 | return 1; |
3474 | } |
3475 | |
3476 | |
3477 | static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, |
3478 | read_scan_unevictable_node, |
3479 | write_scan_unevictable_node); |
3480 | |
3481 | int scan_unevictable_register_node(struct node *node) |
3482 | { |
3483 | return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); |
3484 | } |
3485 | |
3486 | void scan_unevictable_unregister_node(struct node *node) |
3487 | { |
3488 | device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); |
3489 | } |
3490 | #endif |
3491 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9