Root/
1 | /* |
2 | * linux/mm/vmstat.c |
3 | * |
4 | * Manages VM statistics |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
6 | * |
7 | * zoned VM statistics |
8 | * Copyright (C) 2006 Silicon Graphics, Inc., |
9 | * Christoph Lameter <christoph@lameter.com> |
10 | */ |
11 | #include <linux/fs.h> |
12 | #include <linux/mm.h> |
13 | #include <linux/err.h> |
14 | #include <linux/module.h> |
15 | #include <linux/slab.h> |
16 | #include <linux/cpu.h> |
17 | #include <linux/vmstat.h> |
18 | #include <linux/sched.h> |
19 | #include <linux/math64.h> |
20 | #include <linux/writeback.h> |
21 | #include <linux/compaction.h> |
22 | |
23 | #ifdef CONFIG_VM_EVENT_COUNTERS |
24 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
25 | EXPORT_PER_CPU_SYMBOL(vm_event_states); |
26 | |
27 | static void sum_vm_events(unsigned long *ret) |
28 | { |
29 | int cpu; |
30 | int i; |
31 | |
32 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
33 | |
34 | for_each_online_cpu(cpu) { |
35 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
36 | |
37 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
38 | ret[i] += this->event[i]; |
39 | } |
40 | } |
41 | |
42 | /* |
43 | * Accumulate the vm event counters across all CPUs. |
44 | * The result is unavoidably approximate - it can change |
45 | * during and after execution of this function. |
46 | */ |
47 | void all_vm_events(unsigned long *ret) |
48 | { |
49 | get_online_cpus(); |
50 | sum_vm_events(ret); |
51 | put_online_cpus(); |
52 | } |
53 | EXPORT_SYMBOL_GPL(all_vm_events); |
54 | |
55 | #ifdef CONFIG_HOTPLUG |
56 | /* |
57 | * Fold the foreign cpu events into our own. |
58 | * |
59 | * This is adding to the events on one processor |
60 | * but keeps the global counts constant. |
61 | */ |
62 | void vm_events_fold_cpu(int cpu) |
63 | { |
64 | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); |
65 | int i; |
66 | |
67 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { |
68 | count_vm_events(i, fold_state->event[i]); |
69 | fold_state->event[i] = 0; |
70 | } |
71 | } |
72 | #endif /* CONFIG_HOTPLUG */ |
73 | |
74 | #endif /* CONFIG_VM_EVENT_COUNTERS */ |
75 | |
76 | /* |
77 | * Manage combined zone based / global counters |
78 | * |
79 | * vm_stat contains the global counters |
80 | */ |
81 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; |
82 | EXPORT_SYMBOL(vm_stat); |
83 | |
84 | #ifdef CONFIG_SMP |
85 | |
86 | int calculate_pressure_threshold(struct zone *zone) |
87 | { |
88 | int threshold; |
89 | int watermark_distance; |
90 | |
91 | /* |
92 | * As vmstats are not up to date, there is drift between the estimated |
93 | * and real values. For high thresholds and a high number of CPUs, it |
94 | * is possible for the min watermark to be breached while the estimated |
95 | * value looks fine. The pressure threshold is a reduced value such |
96 | * that even the maximum amount of drift will not accidentally breach |
97 | * the min watermark |
98 | */ |
99 | watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); |
100 | threshold = max(1, (int)(watermark_distance / num_online_cpus())); |
101 | |
102 | /* |
103 | * Maximum threshold is 125 |
104 | */ |
105 | threshold = min(125, threshold); |
106 | |
107 | return threshold; |
108 | } |
109 | |
110 | int calculate_normal_threshold(struct zone *zone) |
111 | { |
112 | int threshold; |
113 | int mem; /* memory in 128 MB units */ |
114 | |
115 | /* |
116 | * The threshold scales with the number of processors and the amount |
117 | * of memory per zone. More memory means that we can defer updates for |
118 | * longer, more processors could lead to more contention. |
119 | * fls() is used to have a cheap way of logarithmic scaling. |
120 | * |
121 | * Some sample thresholds: |
122 | * |
123 | * Threshold Processors (fls) Zonesize fls(mem+1) |
124 | * ------------------------------------------------------------------ |
125 | * 8 1 1 0.9-1 GB 4 |
126 | * 16 2 2 0.9-1 GB 4 |
127 | * 20 2 2 1-2 GB 5 |
128 | * 24 2 2 2-4 GB 6 |
129 | * 28 2 2 4-8 GB 7 |
130 | * 32 2 2 8-16 GB 8 |
131 | * 4 2 2 <128M 1 |
132 | * 30 4 3 2-4 GB 5 |
133 | * 48 4 3 8-16 GB 8 |
134 | * 32 8 4 1-2 GB 4 |
135 | * 32 8 4 0.9-1GB 4 |
136 | * 10 16 5 <128M 1 |
137 | * 40 16 5 900M 4 |
138 | * 70 64 7 2-4 GB 5 |
139 | * 84 64 7 4-8 GB 6 |
140 | * 108 512 9 4-8 GB 6 |
141 | * 125 1024 10 8-16 GB 8 |
142 | * 125 1024 10 16-32 GB 9 |
143 | */ |
144 | |
145 | mem = zone->present_pages >> (27 - PAGE_SHIFT); |
146 | |
147 | threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); |
148 | |
149 | /* |
150 | * Maximum threshold is 125 |
151 | */ |
152 | threshold = min(125, threshold); |
153 | |
154 | return threshold; |
155 | } |
156 | |
157 | /* |
158 | * Refresh the thresholds for each zone. |
159 | */ |
160 | void refresh_zone_stat_thresholds(void) |
161 | { |
162 | struct zone *zone; |
163 | int cpu; |
164 | int threshold; |
165 | |
166 | for_each_populated_zone(zone) { |
167 | unsigned long max_drift, tolerate_drift; |
168 | |
169 | threshold = calculate_normal_threshold(zone); |
170 | |
171 | for_each_online_cpu(cpu) |
172 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold |
173 | = threshold; |
174 | |
175 | /* |
176 | * Only set percpu_drift_mark if there is a danger that |
177 | * NR_FREE_PAGES reports the low watermark is ok when in fact |
178 | * the min watermark could be breached by an allocation |
179 | */ |
180 | tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); |
181 | max_drift = num_online_cpus() * threshold; |
182 | if (max_drift > tolerate_drift) |
183 | zone->percpu_drift_mark = high_wmark_pages(zone) + |
184 | max_drift; |
185 | } |
186 | } |
187 | |
188 | void set_pgdat_percpu_threshold(pg_data_t *pgdat, |
189 | int (*calculate_pressure)(struct zone *)) |
190 | { |
191 | struct zone *zone; |
192 | int cpu; |
193 | int threshold; |
194 | int i; |
195 | |
196 | for (i = 0; i < pgdat->nr_zones; i++) { |
197 | zone = &pgdat->node_zones[i]; |
198 | if (!zone->percpu_drift_mark) |
199 | continue; |
200 | |
201 | threshold = (*calculate_pressure)(zone); |
202 | for_each_possible_cpu(cpu) |
203 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold |
204 | = threshold; |
205 | } |
206 | } |
207 | |
208 | /* |
209 | * For use when we know that interrupts are disabled. |
210 | */ |
211 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
212 | int delta) |
213 | { |
214 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
215 | s8 __percpu *p = pcp->vm_stat_diff + item; |
216 | long x; |
217 | long t; |
218 | |
219 | x = delta + __this_cpu_read(*p); |
220 | |
221 | t = __this_cpu_read(pcp->stat_threshold); |
222 | |
223 | if (unlikely(x > t || x < -t)) { |
224 | zone_page_state_add(x, zone, item); |
225 | x = 0; |
226 | } |
227 | __this_cpu_write(*p, x); |
228 | } |
229 | EXPORT_SYMBOL(__mod_zone_page_state); |
230 | |
231 | /* |
232 | * Optimized increment and decrement functions. |
233 | * |
234 | * These are only for a single page and therefore can take a struct page * |
235 | * argument instead of struct zone *. This allows the inclusion of the code |
236 | * generated for page_zone(page) into the optimized functions. |
237 | * |
238 | * No overflow check is necessary and therefore the differential can be |
239 | * incremented or decremented in place which may allow the compilers to |
240 | * generate better code. |
241 | * The increment or decrement is known and therefore one boundary check can |
242 | * be omitted. |
243 | * |
244 | * NOTE: These functions are very performance sensitive. Change only |
245 | * with care. |
246 | * |
247 | * Some processors have inc/dec instructions that are atomic vs an interrupt. |
248 | * However, the code must first determine the differential location in a zone |
249 | * based on the processor number and then inc/dec the counter. There is no |
250 | * guarantee without disabling preemption that the processor will not change |
251 | * in between and therefore the atomicity vs. interrupt cannot be exploited |
252 | * in a useful way here. |
253 | */ |
254 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) |
255 | { |
256 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
257 | s8 __percpu *p = pcp->vm_stat_diff + item; |
258 | s8 v, t; |
259 | |
260 | v = __this_cpu_inc_return(*p); |
261 | t = __this_cpu_read(pcp->stat_threshold); |
262 | if (unlikely(v > t)) { |
263 | s8 overstep = t >> 1; |
264 | |
265 | zone_page_state_add(v + overstep, zone, item); |
266 | __this_cpu_write(*p, -overstep); |
267 | } |
268 | } |
269 | |
270 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) |
271 | { |
272 | __inc_zone_state(page_zone(page), item); |
273 | } |
274 | EXPORT_SYMBOL(__inc_zone_page_state); |
275 | |
276 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) |
277 | { |
278 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
279 | s8 __percpu *p = pcp->vm_stat_diff + item; |
280 | s8 v, t; |
281 | |
282 | v = __this_cpu_dec_return(*p); |
283 | t = __this_cpu_read(pcp->stat_threshold); |
284 | if (unlikely(v < - t)) { |
285 | s8 overstep = t >> 1; |
286 | |
287 | zone_page_state_add(v - overstep, zone, item); |
288 | __this_cpu_write(*p, overstep); |
289 | } |
290 | } |
291 | |
292 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) |
293 | { |
294 | __dec_zone_state(page_zone(page), item); |
295 | } |
296 | EXPORT_SYMBOL(__dec_zone_page_state); |
297 | |
298 | #ifdef CONFIG_HAVE_CMPXCHG_LOCAL |
299 | /* |
300 | * If we have cmpxchg_local support then we do not need to incur the overhead |
301 | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. |
302 | * |
303 | * mod_state() modifies the zone counter state through atomic per cpu |
304 | * operations. |
305 | * |
306 | * Overstep mode specifies how overstep should handled: |
307 | * 0 No overstepping |
308 | * 1 Overstepping half of threshold |
309 | * -1 Overstepping minus half of threshold |
310 | */ |
311 | static inline void mod_state(struct zone *zone, |
312 | enum zone_stat_item item, int delta, int overstep_mode) |
313 | { |
314 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
315 | s8 __percpu *p = pcp->vm_stat_diff + item; |
316 | long o, n, t, z; |
317 | |
318 | do { |
319 | z = 0; /* overflow to zone counters */ |
320 | |
321 | /* |
322 | * The fetching of the stat_threshold is racy. We may apply |
323 | * a counter threshold to the wrong the cpu if we get |
324 | * rescheduled while executing here. However, the next |
325 | * counter update will apply the threshold again and |
326 | * therefore bring the counter under the threshold again. |
327 | * |
328 | * Most of the time the thresholds are the same anyways |
329 | * for all cpus in a zone. |
330 | */ |
331 | t = this_cpu_read(pcp->stat_threshold); |
332 | |
333 | o = this_cpu_read(*p); |
334 | n = delta + o; |
335 | |
336 | if (n > t || n < -t) { |
337 | int os = overstep_mode * (t >> 1) ; |
338 | |
339 | /* Overflow must be added to zone counters */ |
340 | z = n + os; |
341 | n = -os; |
342 | } |
343 | } while (this_cpu_cmpxchg(*p, o, n) != o); |
344 | |
345 | if (z) |
346 | zone_page_state_add(z, zone, item); |
347 | } |
348 | |
349 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
350 | int delta) |
351 | { |
352 | mod_state(zone, item, delta, 0); |
353 | } |
354 | EXPORT_SYMBOL(mod_zone_page_state); |
355 | |
356 | void inc_zone_state(struct zone *zone, enum zone_stat_item item) |
357 | { |
358 | mod_state(zone, item, 1, 1); |
359 | } |
360 | |
361 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
362 | { |
363 | mod_state(page_zone(page), item, 1, 1); |
364 | } |
365 | EXPORT_SYMBOL(inc_zone_page_state); |
366 | |
367 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
368 | { |
369 | mod_state(page_zone(page), item, -1, -1); |
370 | } |
371 | EXPORT_SYMBOL(dec_zone_page_state); |
372 | #else |
373 | /* |
374 | * Use interrupt disable to serialize counter updates |
375 | */ |
376 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
377 | int delta) |
378 | { |
379 | unsigned long flags; |
380 | |
381 | local_irq_save(flags); |
382 | __mod_zone_page_state(zone, item, delta); |
383 | local_irq_restore(flags); |
384 | } |
385 | EXPORT_SYMBOL(mod_zone_page_state); |
386 | |
387 | void inc_zone_state(struct zone *zone, enum zone_stat_item item) |
388 | { |
389 | unsigned long flags; |
390 | |
391 | local_irq_save(flags); |
392 | __inc_zone_state(zone, item); |
393 | local_irq_restore(flags); |
394 | } |
395 | |
396 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
397 | { |
398 | unsigned long flags; |
399 | struct zone *zone; |
400 | |
401 | zone = page_zone(page); |
402 | local_irq_save(flags); |
403 | __inc_zone_state(zone, item); |
404 | local_irq_restore(flags); |
405 | } |
406 | EXPORT_SYMBOL(inc_zone_page_state); |
407 | |
408 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
409 | { |
410 | unsigned long flags; |
411 | |
412 | local_irq_save(flags); |
413 | __dec_zone_page_state(page, item); |
414 | local_irq_restore(flags); |
415 | } |
416 | EXPORT_SYMBOL(dec_zone_page_state); |
417 | #endif |
418 | |
419 | /* |
420 | * Update the zone counters for one cpu. |
421 | * |
422 | * The cpu specified must be either the current cpu or a processor that |
423 | * is not online. If it is the current cpu then the execution thread must |
424 | * be pinned to the current cpu. |
425 | * |
426 | * Note that refresh_cpu_vm_stats strives to only access |
427 | * node local memory. The per cpu pagesets on remote zones are placed |
428 | * in the memory local to the processor using that pageset. So the |
429 | * loop over all zones will access a series of cachelines local to |
430 | * the processor. |
431 | * |
432 | * The call to zone_page_state_add updates the cachelines with the |
433 | * statistics in the remote zone struct as well as the global cachelines |
434 | * with the global counters. These could cause remote node cache line |
435 | * bouncing and will have to be only done when necessary. |
436 | */ |
437 | void refresh_cpu_vm_stats(int cpu) |
438 | { |
439 | struct zone *zone; |
440 | int i; |
441 | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
442 | |
443 | for_each_populated_zone(zone) { |
444 | struct per_cpu_pageset *p; |
445 | |
446 | p = per_cpu_ptr(zone->pageset, cpu); |
447 | |
448 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
449 | if (p->vm_stat_diff[i]) { |
450 | unsigned long flags; |
451 | int v; |
452 | |
453 | local_irq_save(flags); |
454 | v = p->vm_stat_diff[i]; |
455 | p->vm_stat_diff[i] = 0; |
456 | local_irq_restore(flags); |
457 | atomic_long_add(v, &zone->vm_stat[i]); |
458 | global_diff[i] += v; |
459 | #ifdef CONFIG_NUMA |
460 | /* 3 seconds idle till flush */ |
461 | p->expire = 3; |
462 | #endif |
463 | } |
464 | cond_resched(); |
465 | #ifdef CONFIG_NUMA |
466 | /* |
467 | * Deal with draining the remote pageset of this |
468 | * processor |
469 | * |
470 | * Check if there are pages remaining in this pageset |
471 | * if not then there is nothing to expire. |
472 | */ |
473 | if (!p->expire || !p->pcp.count) |
474 | continue; |
475 | |
476 | /* |
477 | * We never drain zones local to this processor. |
478 | */ |
479 | if (zone_to_nid(zone) == numa_node_id()) { |
480 | p->expire = 0; |
481 | continue; |
482 | } |
483 | |
484 | p->expire--; |
485 | if (p->expire) |
486 | continue; |
487 | |
488 | if (p->pcp.count) |
489 | drain_zone_pages(zone, &p->pcp); |
490 | #endif |
491 | } |
492 | |
493 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
494 | if (global_diff[i]) |
495 | atomic_long_add(global_diff[i], &vm_stat[i]); |
496 | } |
497 | |
498 | #endif |
499 | |
500 | #ifdef CONFIG_NUMA |
501 | /* |
502 | * zonelist = the list of zones passed to the allocator |
503 | * z = the zone from which the allocation occurred. |
504 | * |
505 | * Must be called with interrupts disabled. |
506 | * |
507 | * When __GFP_OTHER_NODE is set assume the node of the preferred |
508 | * zone is the local node. This is useful for daemons who allocate |
509 | * memory on behalf of other processes. |
510 | */ |
511 | void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) |
512 | { |
513 | if (z->zone_pgdat == preferred_zone->zone_pgdat) { |
514 | __inc_zone_state(z, NUMA_HIT); |
515 | } else { |
516 | __inc_zone_state(z, NUMA_MISS); |
517 | __inc_zone_state(preferred_zone, NUMA_FOREIGN); |
518 | } |
519 | if (z->node == ((flags & __GFP_OTHER_NODE) ? |
520 | preferred_zone->node : numa_node_id())) |
521 | __inc_zone_state(z, NUMA_LOCAL); |
522 | else |
523 | __inc_zone_state(z, NUMA_OTHER); |
524 | } |
525 | #endif |
526 | |
527 | #ifdef CONFIG_COMPACTION |
528 | |
529 | struct contig_page_info { |
530 | unsigned long free_pages; |
531 | unsigned long free_blocks_total; |
532 | unsigned long free_blocks_suitable; |
533 | }; |
534 | |
535 | /* |
536 | * Calculate the number of free pages in a zone, how many contiguous |
537 | * pages are free and how many are large enough to satisfy an allocation of |
538 | * the target size. Note that this function makes no attempt to estimate |
539 | * how many suitable free blocks there *might* be if MOVABLE pages were |
540 | * migrated. Calculating that is possible, but expensive and can be |
541 | * figured out from userspace |
542 | */ |
543 | static void fill_contig_page_info(struct zone *zone, |
544 | unsigned int suitable_order, |
545 | struct contig_page_info *info) |
546 | { |
547 | unsigned int order; |
548 | |
549 | info->free_pages = 0; |
550 | info->free_blocks_total = 0; |
551 | info->free_blocks_suitable = 0; |
552 | |
553 | for (order = 0; order < MAX_ORDER; order++) { |
554 | unsigned long blocks; |
555 | |
556 | /* Count number of free blocks */ |
557 | blocks = zone->free_area[order].nr_free; |
558 | info->free_blocks_total += blocks; |
559 | |
560 | /* Count free base pages */ |
561 | info->free_pages += blocks << order; |
562 | |
563 | /* Count the suitable free blocks */ |
564 | if (order >= suitable_order) |
565 | info->free_blocks_suitable += blocks << |
566 | (order - suitable_order); |
567 | } |
568 | } |
569 | |
570 | /* |
571 | * A fragmentation index only makes sense if an allocation of a requested |
572 | * size would fail. If that is true, the fragmentation index indicates |
573 | * whether external fragmentation or a lack of memory was the problem. |
574 | * The value can be used to determine if page reclaim or compaction |
575 | * should be used |
576 | */ |
577 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) |
578 | { |
579 | unsigned long requested = 1UL << order; |
580 | |
581 | if (!info->free_blocks_total) |
582 | return 0; |
583 | |
584 | /* Fragmentation index only makes sense when a request would fail */ |
585 | if (info->free_blocks_suitable) |
586 | return -1000; |
587 | |
588 | /* |
589 | * Index is between 0 and 1 so return within 3 decimal places |
590 | * |
591 | * 0 => allocation would fail due to lack of memory |
592 | * 1 => allocation would fail due to fragmentation |
593 | */ |
594 | return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); |
595 | } |
596 | |
597 | /* Same as __fragmentation index but allocs contig_page_info on stack */ |
598 | int fragmentation_index(struct zone *zone, unsigned int order) |
599 | { |
600 | struct contig_page_info info; |
601 | |
602 | fill_contig_page_info(zone, order, &info); |
603 | return __fragmentation_index(order, &info); |
604 | } |
605 | #endif |
606 | |
607 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) |
608 | #include <linux/proc_fs.h> |
609 | #include <linux/seq_file.h> |
610 | |
611 | static char * const migratetype_names[MIGRATE_TYPES] = { |
612 | "Unmovable", |
613 | "Reclaimable", |
614 | "Movable", |
615 | "Reserve", |
616 | #ifdef CONFIG_CMA |
617 | "CMA", |
618 | #endif |
619 | "Isolate", |
620 | }; |
621 | |
622 | static void *frag_start(struct seq_file *m, loff_t *pos) |
623 | { |
624 | pg_data_t *pgdat; |
625 | loff_t node = *pos; |
626 | for (pgdat = first_online_pgdat(); |
627 | pgdat && node; |
628 | pgdat = next_online_pgdat(pgdat)) |
629 | --node; |
630 | |
631 | return pgdat; |
632 | } |
633 | |
634 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) |
635 | { |
636 | pg_data_t *pgdat = (pg_data_t *)arg; |
637 | |
638 | (*pos)++; |
639 | return next_online_pgdat(pgdat); |
640 | } |
641 | |
642 | static void frag_stop(struct seq_file *m, void *arg) |
643 | { |
644 | } |
645 | |
646 | /* Walk all the zones in a node and print using a callback */ |
647 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, |
648 | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) |
649 | { |
650 | struct zone *zone; |
651 | struct zone *node_zones = pgdat->node_zones; |
652 | unsigned long flags; |
653 | |
654 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { |
655 | if (!populated_zone(zone)) |
656 | continue; |
657 | |
658 | spin_lock_irqsave(&zone->lock, flags); |
659 | print(m, pgdat, zone); |
660 | spin_unlock_irqrestore(&zone->lock, flags); |
661 | } |
662 | } |
663 | #endif |
664 | |
665 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) |
666 | #ifdef CONFIG_ZONE_DMA |
667 | #define TEXT_FOR_DMA(xx) xx "_dma", |
668 | #else |
669 | #define TEXT_FOR_DMA(xx) |
670 | #endif |
671 | |
672 | #ifdef CONFIG_ZONE_DMA32 |
673 | #define TEXT_FOR_DMA32(xx) xx "_dma32", |
674 | #else |
675 | #define TEXT_FOR_DMA32(xx) |
676 | #endif |
677 | |
678 | #ifdef CONFIG_HIGHMEM |
679 | #define TEXT_FOR_HIGHMEM(xx) xx "_high", |
680 | #else |
681 | #define TEXT_FOR_HIGHMEM(xx) |
682 | #endif |
683 | |
684 | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ |
685 | TEXT_FOR_HIGHMEM(xx) xx "_movable", |
686 | |
687 | const char * const vmstat_text[] = { |
688 | /* Zoned VM counters */ |
689 | "nr_free_pages", |
690 | "nr_inactive_anon", |
691 | "nr_active_anon", |
692 | "nr_inactive_file", |
693 | "nr_active_file", |
694 | "nr_unevictable", |
695 | "nr_mlock", |
696 | "nr_anon_pages", |
697 | "nr_mapped", |
698 | "nr_file_pages", |
699 | "nr_dirty", |
700 | "nr_writeback", |
701 | "nr_slab_reclaimable", |
702 | "nr_slab_unreclaimable", |
703 | "nr_page_table_pages", |
704 | "nr_kernel_stack", |
705 | "nr_unstable", |
706 | "nr_bounce", |
707 | "nr_vmscan_write", |
708 | "nr_vmscan_immediate_reclaim", |
709 | "nr_writeback_temp", |
710 | "nr_isolated_anon", |
711 | "nr_isolated_file", |
712 | "nr_shmem", |
713 | "nr_dirtied", |
714 | "nr_written", |
715 | |
716 | #ifdef CONFIG_NUMA |
717 | "numa_hit", |
718 | "numa_miss", |
719 | "numa_foreign", |
720 | "numa_interleave", |
721 | "numa_local", |
722 | "numa_other", |
723 | #endif |
724 | "nr_anon_transparent_hugepages", |
725 | "nr_dirty_threshold", |
726 | "nr_dirty_background_threshold", |
727 | |
728 | #ifdef CONFIG_VM_EVENT_COUNTERS |
729 | "pgpgin", |
730 | "pgpgout", |
731 | "pswpin", |
732 | "pswpout", |
733 | |
734 | TEXTS_FOR_ZONES("pgalloc") |
735 | |
736 | "pgfree", |
737 | "pgactivate", |
738 | "pgdeactivate", |
739 | |
740 | "pgfault", |
741 | "pgmajfault", |
742 | |
743 | TEXTS_FOR_ZONES("pgrefill") |
744 | TEXTS_FOR_ZONES("pgsteal_kswapd") |
745 | TEXTS_FOR_ZONES("pgsteal_direct") |
746 | TEXTS_FOR_ZONES("pgscan_kswapd") |
747 | TEXTS_FOR_ZONES("pgscan_direct") |
748 | "pgscan_direct_throttle", |
749 | |
750 | #ifdef CONFIG_NUMA |
751 | "zone_reclaim_failed", |
752 | #endif |
753 | "pginodesteal", |
754 | "slabs_scanned", |
755 | "kswapd_inodesteal", |
756 | "kswapd_low_wmark_hit_quickly", |
757 | "kswapd_high_wmark_hit_quickly", |
758 | "kswapd_skip_congestion_wait", |
759 | "pageoutrun", |
760 | "allocstall", |
761 | |
762 | "pgrotated", |
763 | |
764 | #ifdef CONFIG_COMPACTION |
765 | "compact_blocks_moved", |
766 | "compact_pages_moved", |
767 | "compact_pagemigrate_failed", |
768 | "compact_stall", |
769 | "compact_fail", |
770 | "compact_success", |
771 | #endif |
772 | |
773 | #ifdef CONFIG_HUGETLB_PAGE |
774 | "htlb_buddy_alloc_success", |
775 | "htlb_buddy_alloc_fail", |
776 | #endif |
777 | "unevictable_pgs_culled", |
778 | "unevictable_pgs_scanned", |
779 | "unevictable_pgs_rescued", |
780 | "unevictable_pgs_mlocked", |
781 | "unevictable_pgs_munlocked", |
782 | "unevictable_pgs_cleared", |
783 | "unevictable_pgs_stranded", |
784 | "unevictable_pgs_mlockfreed", |
785 | |
786 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
787 | "thp_fault_alloc", |
788 | "thp_fault_fallback", |
789 | "thp_collapse_alloc", |
790 | "thp_collapse_alloc_failed", |
791 | "thp_split", |
792 | #endif |
793 | |
794 | #endif /* CONFIG_VM_EVENTS_COUNTERS */ |
795 | }; |
796 | #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ |
797 | |
798 | |
799 | #ifdef CONFIG_PROC_FS |
800 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, |
801 | struct zone *zone) |
802 | { |
803 | int order; |
804 | |
805 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
806 | for (order = 0; order < MAX_ORDER; ++order) |
807 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); |
808 | seq_putc(m, '\n'); |
809 | } |
810 | |
811 | /* |
812 | * This walks the free areas for each zone. |
813 | */ |
814 | static int frag_show(struct seq_file *m, void *arg) |
815 | { |
816 | pg_data_t *pgdat = (pg_data_t *)arg; |
817 | walk_zones_in_node(m, pgdat, frag_show_print); |
818 | return 0; |
819 | } |
820 | |
821 | static void pagetypeinfo_showfree_print(struct seq_file *m, |
822 | pg_data_t *pgdat, struct zone *zone) |
823 | { |
824 | int order, mtype; |
825 | |
826 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { |
827 | seq_printf(m, "Node %4d, zone %8s, type %12s ", |
828 | pgdat->node_id, |
829 | zone->name, |
830 | migratetype_names[mtype]); |
831 | for (order = 0; order < MAX_ORDER; ++order) { |
832 | unsigned long freecount = 0; |
833 | struct free_area *area; |
834 | struct list_head *curr; |
835 | |
836 | area = &(zone->free_area[order]); |
837 | |
838 | list_for_each(curr, &area->free_list[mtype]) |
839 | freecount++; |
840 | seq_printf(m, "%6lu ", freecount); |
841 | } |
842 | seq_putc(m, '\n'); |
843 | } |
844 | } |
845 | |
846 | /* Print out the free pages at each order for each migatetype */ |
847 | static int pagetypeinfo_showfree(struct seq_file *m, void *arg) |
848 | { |
849 | int order; |
850 | pg_data_t *pgdat = (pg_data_t *)arg; |
851 | |
852 | /* Print header */ |
853 | seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); |
854 | for (order = 0; order < MAX_ORDER; ++order) |
855 | seq_printf(m, "%6d ", order); |
856 | seq_putc(m, '\n'); |
857 | |
858 | walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); |
859 | |
860 | return 0; |
861 | } |
862 | |
863 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, |
864 | pg_data_t *pgdat, struct zone *zone) |
865 | { |
866 | int mtype; |
867 | unsigned long pfn; |
868 | unsigned long start_pfn = zone->zone_start_pfn; |
869 | unsigned long end_pfn = start_pfn + zone->spanned_pages; |
870 | unsigned long count[MIGRATE_TYPES] = { 0, }; |
871 | |
872 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
873 | struct page *page; |
874 | |
875 | if (!pfn_valid(pfn)) |
876 | continue; |
877 | |
878 | page = pfn_to_page(pfn); |
879 | |
880 | /* Watch for unexpected holes punched in the memmap */ |
881 | if (!memmap_valid_within(pfn, page, zone)) |
882 | continue; |
883 | |
884 | mtype = get_pageblock_migratetype(page); |
885 | |
886 | if (mtype < MIGRATE_TYPES) |
887 | count[mtype]++; |
888 | } |
889 | |
890 | /* Print counts */ |
891 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
892 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
893 | seq_printf(m, "%12lu ", count[mtype]); |
894 | seq_putc(m, '\n'); |
895 | } |
896 | |
897 | /* Print out the free pages at each order for each migratetype */ |
898 | static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) |
899 | { |
900 | int mtype; |
901 | pg_data_t *pgdat = (pg_data_t *)arg; |
902 | |
903 | seq_printf(m, "\n%-23s", "Number of blocks type "); |
904 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
905 | seq_printf(m, "%12s ", migratetype_names[mtype]); |
906 | seq_putc(m, '\n'); |
907 | walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); |
908 | |
909 | return 0; |
910 | } |
911 | |
912 | /* |
913 | * This prints out statistics in relation to grouping pages by mobility. |
914 | * It is expensive to collect so do not constantly read the file. |
915 | */ |
916 | static int pagetypeinfo_show(struct seq_file *m, void *arg) |
917 | { |
918 | pg_data_t *pgdat = (pg_data_t *)arg; |
919 | |
920 | /* check memoryless node */ |
921 | if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) |
922 | return 0; |
923 | |
924 | seq_printf(m, "Page block order: %d\n", pageblock_order); |
925 | seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); |
926 | seq_putc(m, '\n'); |
927 | pagetypeinfo_showfree(m, pgdat); |
928 | pagetypeinfo_showblockcount(m, pgdat); |
929 | |
930 | return 0; |
931 | } |
932 | |
933 | static const struct seq_operations fragmentation_op = { |
934 | .start = frag_start, |
935 | .next = frag_next, |
936 | .stop = frag_stop, |
937 | .show = frag_show, |
938 | }; |
939 | |
940 | static int fragmentation_open(struct inode *inode, struct file *file) |
941 | { |
942 | return seq_open(file, &fragmentation_op); |
943 | } |
944 | |
945 | static const struct file_operations fragmentation_file_operations = { |
946 | .open = fragmentation_open, |
947 | .read = seq_read, |
948 | .llseek = seq_lseek, |
949 | .release = seq_release, |
950 | }; |
951 | |
952 | static const struct seq_operations pagetypeinfo_op = { |
953 | .start = frag_start, |
954 | .next = frag_next, |
955 | .stop = frag_stop, |
956 | .show = pagetypeinfo_show, |
957 | }; |
958 | |
959 | static int pagetypeinfo_open(struct inode *inode, struct file *file) |
960 | { |
961 | return seq_open(file, &pagetypeinfo_op); |
962 | } |
963 | |
964 | static const struct file_operations pagetypeinfo_file_ops = { |
965 | .open = pagetypeinfo_open, |
966 | .read = seq_read, |
967 | .llseek = seq_lseek, |
968 | .release = seq_release, |
969 | }; |
970 | |
971 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |
972 | struct zone *zone) |
973 | { |
974 | int i; |
975 | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); |
976 | seq_printf(m, |
977 | "\n pages free %lu" |
978 | "\n min %lu" |
979 | "\n low %lu" |
980 | "\n high %lu" |
981 | "\n scanned %lu" |
982 | "\n spanned %lu" |
983 | "\n present %lu", |
984 | zone_page_state(zone, NR_FREE_PAGES), |
985 | min_wmark_pages(zone), |
986 | low_wmark_pages(zone), |
987 | high_wmark_pages(zone), |
988 | zone->pages_scanned, |
989 | zone->spanned_pages, |
990 | zone->present_pages); |
991 | |
992 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
993 | seq_printf(m, "\n %-12s %lu", vmstat_text[i], |
994 | zone_page_state(zone, i)); |
995 | |
996 | seq_printf(m, |
997 | "\n protection: (%lu", |
998 | zone->lowmem_reserve[0]); |
999 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) |
1000 | seq_printf(m, ", %lu", zone->lowmem_reserve[i]); |
1001 | seq_printf(m, |
1002 | ")" |
1003 | "\n pagesets"); |
1004 | for_each_online_cpu(i) { |
1005 | struct per_cpu_pageset *pageset; |
1006 | |
1007 | pageset = per_cpu_ptr(zone->pageset, i); |
1008 | seq_printf(m, |
1009 | "\n cpu: %i" |
1010 | "\n count: %i" |
1011 | "\n high: %i" |
1012 | "\n batch: %i", |
1013 | i, |
1014 | pageset->pcp.count, |
1015 | pageset->pcp.high, |
1016 | pageset->pcp.batch); |
1017 | #ifdef CONFIG_SMP |
1018 | seq_printf(m, "\n vm stats threshold: %d", |
1019 | pageset->stat_threshold); |
1020 | #endif |
1021 | } |
1022 | seq_printf(m, |
1023 | "\n all_unreclaimable: %u" |
1024 | "\n start_pfn: %lu" |
1025 | "\n inactive_ratio: %u", |
1026 | zone->all_unreclaimable, |
1027 | zone->zone_start_pfn, |
1028 | zone->inactive_ratio); |
1029 | seq_putc(m, '\n'); |
1030 | } |
1031 | |
1032 | /* |
1033 | * Output information about zones in @pgdat. |
1034 | */ |
1035 | static int zoneinfo_show(struct seq_file *m, void *arg) |
1036 | { |
1037 | pg_data_t *pgdat = (pg_data_t *)arg; |
1038 | walk_zones_in_node(m, pgdat, zoneinfo_show_print); |
1039 | return 0; |
1040 | } |
1041 | |
1042 | static const struct seq_operations zoneinfo_op = { |
1043 | .start = frag_start, /* iterate over all zones. The same as in |
1044 | * fragmentation. */ |
1045 | .next = frag_next, |
1046 | .stop = frag_stop, |
1047 | .show = zoneinfo_show, |
1048 | }; |
1049 | |
1050 | static int zoneinfo_open(struct inode *inode, struct file *file) |
1051 | { |
1052 | return seq_open(file, &zoneinfo_op); |
1053 | } |
1054 | |
1055 | static const struct file_operations proc_zoneinfo_file_operations = { |
1056 | .open = zoneinfo_open, |
1057 | .read = seq_read, |
1058 | .llseek = seq_lseek, |
1059 | .release = seq_release, |
1060 | }; |
1061 | |
1062 | enum writeback_stat_item { |
1063 | NR_DIRTY_THRESHOLD, |
1064 | NR_DIRTY_BG_THRESHOLD, |
1065 | NR_VM_WRITEBACK_STAT_ITEMS, |
1066 | }; |
1067 | |
1068 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
1069 | { |
1070 | unsigned long *v; |
1071 | int i, stat_items_size; |
1072 | |
1073 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
1074 | return NULL; |
1075 | stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + |
1076 | NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); |
1077 | |
1078 | #ifdef CONFIG_VM_EVENT_COUNTERS |
1079 | stat_items_size += sizeof(struct vm_event_state); |
1080 | #endif |
1081 | |
1082 | v = kmalloc(stat_items_size, GFP_KERNEL); |
1083 | m->private = v; |
1084 | if (!v) |
1085 | return ERR_PTR(-ENOMEM); |
1086 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
1087 | v[i] = global_page_state(i); |
1088 | v += NR_VM_ZONE_STAT_ITEMS; |
1089 | |
1090 | global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, |
1091 | v + NR_DIRTY_THRESHOLD); |
1092 | v += NR_VM_WRITEBACK_STAT_ITEMS; |
1093 | |
1094 | #ifdef CONFIG_VM_EVENT_COUNTERS |
1095 | all_vm_events(v); |
1096 | v[PGPGIN] /= 2; /* sectors -> kbytes */ |
1097 | v[PGPGOUT] /= 2; |
1098 | #endif |
1099 | return (unsigned long *)m->private + *pos; |
1100 | } |
1101 | |
1102 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |
1103 | { |
1104 | (*pos)++; |
1105 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
1106 | return NULL; |
1107 | return (unsigned long *)m->private + *pos; |
1108 | } |
1109 | |
1110 | static int vmstat_show(struct seq_file *m, void *arg) |
1111 | { |
1112 | unsigned long *l = arg; |
1113 | unsigned long off = l - (unsigned long *)m->private; |
1114 | |
1115 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); |
1116 | return 0; |
1117 | } |
1118 | |
1119 | static void vmstat_stop(struct seq_file *m, void *arg) |
1120 | { |
1121 | kfree(m->private); |
1122 | m->private = NULL; |
1123 | } |
1124 | |
1125 | static const struct seq_operations vmstat_op = { |
1126 | .start = vmstat_start, |
1127 | .next = vmstat_next, |
1128 | .stop = vmstat_stop, |
1129 | .show = vmstat_show, |
1130 | }; |
1131 | |
1132 | static int vmstat_open(struct inode *inode, struct file *file) |
1133 | { |
1134 | return seq_open(file, &vmstat_op); |
1135 | } |
1136 | |
1137 | static const struct file_operations proc_vmstat_file_operations = { |
1138 | .open = vmstat_open, |
1139 | .read = seq_read, |
1140 | .llseek = seq_lseek, |
1141 | .release = seq_release, |
1142 | }; |
1143 | #endif /* CONFIG_PROC_FS */ |
1144 | |
1145 | #ifdef CONFIG_SMP |
1146 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); |
1147 | int sysctl_stat_interval __read_mostly = HZ; |
1148 | |
1149 | static void vmstat_update(struct work_struct *w) |
1150 | { |
1151 | refresh_cpu_vm_stats(smp_processor_id()); |
1152 | schedule_delayed_work(&__get_cpu_var(vmstat_work), |
1153 | round_jiffies_relative(sysctl_stat_interval)); |
1154 | } |
1155 | |
1156 | static void __cpuinit start_cpu_timer(int cpu) |
1157 | { |
1158 | struct delayed_work *work = &per_cpu(vmstat_work, cpu); |
1159 | |
1160 | INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); |
1161 | schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); |
1162 | } |
1163 | |
1164 | /* |
1165 | * Use the cpu notifier to insure that the thresholds are recalculated |
1166 | * when necessary. |
1167 | */ |
1168 | static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, |
1169 | unsigned long action, |
1170 | void *hcpu) |
1171 | { |
1172 | long cpu = (long)hcpu; |
1173 | |
1174 | switch (action) { |
1175 | case CPU_ONLINE: |
1176 | case CPU_ONLINE_FROZEN: |
1177 | refresh_zone_stat_thresholds(); |
1178 | start_cpu_timer(cpu); |
1179 | node_set_state(cpu_to_node(cpu), N_CPU); |
1180 | break; |
1181 | case CPU_DOWN_PREPARE: |
1182 | case CPU_DOWN_PREPARE_FROZEN: |
1183 | cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); |
1184 | per_cpu(vmstat_work, cpu).work.func = NULL; |
1185 | break; |
1186 | case CPU_DOWN_FAILED: |
1187 | case CPU_DOWN_FAILED_FROZEN: |
1188 | start_cpu_timer(cpu); |
1189 | break; |
1190 | case CPU_DEAD: |
1191 | case CPU_DEAD_FROZEN: |
1192 | refresh_zone_stat_thresholds(); |
1193 | break; |
1194 | default: |
1195 | break; |
1196 | } |
1197 | return NOTIFY_OK; |
1198 | } |
1199 | |
1200 | static struct notifier_block __cpuinitdata vmstat_notifier = |
1201 | { &vmstat_cpuup_callback, NULL, 0 }; |
1202 | #endif |
1203 | |
1204 | static int __init setup_vmstat(void) |
1205 | { |
1206 | #ifdef CONFIG_SMP |
1207 | int cpu; |
1208 | |
1209 | register_cpu_notifier(&vmstat_notifier); |
1210 | |
1211 | for_each_online_cpu(cpu) |
1212 | start_cpu_timer(cpu); |
1213 | #endif |
1214 | #ifdef CONFIG_PROC_FS |
1215 | proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); |
1216 | proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); |
1217 | proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); |
1218 | proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); |
1219 | #endif |
1220 | return 0; |
1221 | } |
1222 | module_init(setup_vmstat) |
1223 | |
1224 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) |
1225 | #include <linux/debugfs.h> |
1226 | |
1227 | |
1228 | /* |
1229 | * Return an index indicating how much of the available free memory is |
1230 | * unusable for an allocation of the requested size. |
1231 | */ |
1232 | static int unusable_free_index(unsigned int order, |
1233 | struct contig_page_info *info) |
1234 | { |
1235 | /* No free memory is interpreted as all free memory is unusable */ |
1236 | if (info->free_pages == 0) |
1237 | return 1000; |
1238 | |
1239 | /* |
1240 | * Index should be a value between 0 and 1. Return a value to 3 |
1241 | * decimal places. |
1242 | * |
1243 | * 0 => no fragmentation |
1244 | * 1 => high fragmentation |
1245 | */ |
1246 | return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); |
1247 | |
1248 | } |
1249 | |
1250 | static void unusable_show_print(struct seq_file *m, |
1251 | pg_data_t *pgdat, struct zone *zone) |
1252 | { |
1253 | unsigned int order; |
1254 | int index; |
1255 | struct contig_page_info info; |
1256 | |
1257 | seq_printf(m, "Node %d, zone %8s ", |
1258 | pgdat->node_id, |
1259 | zone->name); |
1260 | for (order = 0; order < MAX_ORDER; ++order) { |
1261 | fill_contig_page_info(zone, order, &info); |
1262 | index = unusable_free_index(order, &info); |
1263 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); |
1264 | } |
1265 | |
1266 | seq_putc(m, '\n'); |
1267 | } |
1268 | |
1269 | /* |
1270 | * Display unusable free space index |
1271 | * |
1272 | * The unusable free space index measures how much of the available free |
1273 | * memory cannot be used to satisfy an allocation of a given size and is a |
1274 | * value between 0 and 1. The higher the value, the more of free memory is |
1275 | * unusable and by implication, the worse the external fragmentation is. This |
1276 | * can be expressed as a percentage by multiplying by 100. |
1277 | */ |
1278 | static int unusable_show(struct seq_file *m, void *arg) |
1279 | { |
1280 | pg_data_t *pgdat = (pg_data_t *)arg; |
1281 | |
1282 | /* check memoryless node */ |
1283 | if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) |
1284 | return 0; |
1285 | |
1286 | walk_zones_in_node(m, pgdat, unusable_show_print); |
1287 | |
1288 | return 0; |
1289 | } |
1290 | |
1291 | static const struct seq_operations unusable_op = { |
1292 | .start = frag_start, |
1293 | .next = frag_next, |
1294 | .stop = frag_stop, |
1295 | .show = unusable_show, |
1296 | }; |
1297 | |
1298 | static int unusable_open(struct inode *inode, struct file *file) |
1299 | { |
1300 | return seq_open(file, &unusable_op); |
1301 | } |
1302 | |
1303 | static const struct file_operations unusable_file_ops = { |
1304 | .open = unusable_open, |
1305 | .read = seq_read, |
1306 | .llseek = seq_lseek, |
1307 | .release = seq_release, |
1308 | }; |
1309 | |
1310 | static void extfrag_show_print(struct seq_file *m, |
1311 | pg_data_t *pgdat, struct zone *zone) |
1312 | { |
1313 | unsigned int order; |
1314 | int index; |
1315 | |
1316 | /* Alloc on stack as interrupts are disabled for zone walk */ |
1317 | struct contig_page_info info; |
1318 | |
1319 | seq_printf(m, "Node %d, zone %8s ", |
1320 | pgdat->node_id, |
1321 | zone->name); |
1322 | for (order = 0; order < MAX_ORDER; ++order) { |
1323 | fill_contig_page_info(zone, order, &info); |
1324 | index = __fragmentation_index(order, &info); |
1325 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); |
1326 | } |
1327 | |
1328 | seq_putc(m, '\n'); |
1329 | } |
1330 | |
1331 | /* |
1332 | * Display fragmentation index for orders that allocations would fail for |
1333 | */ |
1334 | static int extfrag_show(struct seq_file *m, void *arg) |
1335 | { |
1336 | pg_data_t *pgdat = (pg_data_t *)arg; |
1337 | |
1338 | walk_zones_in_node(m, pgdat, extfrag_show_print); |
1339 | |
1340 | return 0; |
1341 | } |
1342 | |
1343 | static const struct seq_operations extfrag_op = { |
1344 | .start = frag_start, |
1345 | .next = frag_next, |
1346 | .stop = frag_stop, |
1347 | .show = extfrag_show, |
1348 | }; |
1349 | |
1350 | static int extfrag_open(struct inode *inode, struct file *file) |
1351 | { |
1352 | return seq_open(file, &extfrag_op); |
1353 | } |
1354 | |
1355 | static const struct file_operations extfrag_file_ops = { |
1356 | .open = extfrag_open, |
1357 | .read = seq_read, |
1358 | .llseek = seq_lseek, |
1359 | .release = seq_release, |
1360 | }; |
1361 | |
1362 | static int __init extfrag_debug_init(void) |
1363 | { |
1364 | struct dentry *extfrag_debug_root; |
1365 | |
1366 | extfrag_debug_root = debugfs_create_dir("extfrag", NULL); |
1367 | if (!extfrag_debug_root) |
1368 | return -ENOMEM; |
1369 | |
1370 | if (!debugfs_create_file("unusable_index", 0444, |
1371 | extfrag_debug_root, NULL, &unusable_file_ops)) |
1372 | goto fail; |
1373 | |
1374 | if (!debugfs_create_file("extfrag_index", 0444, |
1375 | extfrag_debug_root, NULL, &extfrag_file_ops)) |
1376 | goto fail; |
1377 | |
1378 | return 0; |
1379 | fail: |
1380 | debugfs_remove_recursive(extfrag_debug_root); |
1381 | return -ENOMEM; |
1382 | } |
1383 | |
1384 | module_init(extfrag_debug_init); |
1385 | #endif |
1386 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9