Root/mm/vmstat.c

1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/cpu.h>
17#include <linux/vmstat.h>
18#include <linux/sched.h>
19#include <linux/math64.h>
20#include <linux/writeback.h>
21#include <linux/compaction.h>
22
23#ifdef CONFIG_VM_EVENT_COUNTERS
24DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27static void sum_vm_events(unsigned long *ret)
28{
29    int cpu;
30    int i;
31
32    memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34    for_each_online_cpu(cpu) {
35        struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37        for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38            ret[i] += this->event[i];
39    }
40}
41
42/*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46*/
47void all_vm_events(unsigned long *ret)
48{
49    get_online_cpus();
50    sum_vm_events(ret);
51    put_online_cpus();
52}
53EXPORT_SYMBOL_GPL(all_vm_events);
54
55#ifdef CONFIG_HOTPLUG
56/*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62void vm_events_fold_cpu(int cpu)
63{
64    struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65    int i;
66
67    for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68        count_vm_events(i, fold_state->event[i]);
69        fold_state->event[i] = 0;
70    }
71}
72#endif /* CONFIG_HOTPLUG */
73
74#endif /* CONFIG_VM_EVENT_COUNTERS */
75
76/*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82EXPORT_SYMBOL(vm_stat);
83
84#ifdef CONFIG_SMP
85
86int calculate_pressure_threshold(struct zone *zone)
87{
88    int threshold;
89    int watermark_distance;
90
91    /*
92     * As vmstats are not up to date, there is drift between the estimated
93     * and real values. For high thresholds and a high number of CPUs, it
94     * is possible for the min watermark to be breached while the estimated
95     * value looks fine. The pressure threshold is a reduced value such
96     * that even the maximum amount of drift will not accidentally breach
97     * the min watermark
98     */
99    watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100    threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101
102    /*
103     * Maximum threshold is 125
104     */
105    threshold = min(125, threshold);
106
107    return threshold;
108}
109
110int calculate_normal_threshold(struct zone *zone)
111{
112    int threshold;
113    int mem; /* memory in 128 MB units */
114
115    /*
116     * The threshold scales with the number of processors and the amount
117     * of memory per zone. More memory means that we can defer updates for
118     * longer, more processors could lead to more contention.
119      * fls() is used to have a cheap way of logarithmic scaling.
120     *
121     * Some sample thresholds:
122     *
123     * Threshold Processors (fls) Zonesize fls(mem+1)
124     * ------------------------------------------------------------------
125     * 8 1 1 0.9-1 GB 4
126     * 16 2 2 0.9-1 GB 4
127     * 20 2 2 1-2 GB 5
128     * 24 2 2 2-4 GB 6
129     * 28 2 2 4-8 GB 7
130     * 32 2 2 8-16 GB 8
131     * 4 2 2 <128M 1
132     * 30 4 3 2-4 GB 5
133     * 48 4 3 8-16 GB 8
134     * 32 8 4 1-2 GB 4
135     * 32 8 4 0.9-1GB 4
136     * 10 16 5 <128M 1
137     * 40 16 5 900M 4
138     * 70 64 7 2-4 GB 5
139     * 84 64 7 4-8 GB 6
140     * 108 512 9 4-8 GB 6
141     * 125 1024 10 8-16 GB 8
142     * 125 1024 10 16-32 GB 9
143     */
144
145    mem = zone->present_pages >> (27 - PAGE_SHIFT);
146
147    threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148
149    /*
150     * Maximum threshold is 125
151     */
152    threshold = min(125, threshold);
153
154    return threshold;
155}
156
157/*
158 * Refresh the thresholds for each zone.
159 */
160void refresh_zone_stat_thresholds(void)
161{
162    struct zone *zone;
163    int cpu;
164    int threshold;
165
166    for_each_populated_zone(zone) {
167        unsigned long max_drift, tolerate_drift;
168
169        threshold = calculate_normal_threshold(zone);
170
171        for_each_online_cpu(cpu)
172            per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173                            = threshold;
174
175        /*
176         * Only set percpu_drift_mark if there is a danger that
177         * NR_FREE_PAGES reports the low watermark is ok when in fact
178         * the min watermark could be breached by an allocation
179         */
180        tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181        max_drift = num_online_cpus() * threshold;
182        if (max_drift > tolerate_drift)
183            zone->percpu_drift_mark = high_wmark_pages(zone) +
184                    max_drift;
185    }
186}
187
188void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189                int (*calculate_pressure)(struct zone *))
190{
191    struct zone *zone;
192    int cpu;
193    int threshold;
194    int i;
195
196    for (i = 0; i < pgdat->nr_zones; i++) {
197        zone = &pgdat->node_zones[i];
198        if (!zone->percpu_drift_mark)
199            continue;
200
201        threshold = (*calculate_pressure)(zone);
202        for_each_possible_cpu(cpu)
203            per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204                            = threshold;
205    }
206}
207
208/*
209 * For use when we know that interrupts are disabled.
210 */
211void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212                int delta)
213{
214    struct per_cpu_pageset __percpu *pcp = zone->pageset;
215    s8 __percpu *p = pcp->vm_stat_diff + item;
216    long x;
217    long t;
218
219    x = delta + __this_cpu_read(*p);
220
221    t = __this_cpu_read(pcp->stat_threshold);
222
223    if (unlikely(x > t || x < -t)) {
224        zone_page_state_add(x, zone, item);
225        x = 0;
226    }
227    __this_cpu_write(*p, x);
228}
229EXPORT_SYMBOL(__mod_zone_page_state);
230
231/*
232 * Optimized increment and decrement functions.
233 *
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
237 *
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
242 * be omitted.
243 *
244 * NOTE: These functions are very performance sensitive. Change only
245 * with care.
246 *
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
253 */
254void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255{
256    struct per_cpu_pageset __percpu *pcp = zone->pageset;
257    s8 __percpu *p = pcp->vm_stat_diff + item;
258    s8 v, t;
259
260    v = __this_cpu_inc_return(*p);
261    t = __this_cpu_read(pcp->stat_threshold);
262    if (unlikely(v > t)) {
263        s8 overstep = t >> 1;
264
265        zone_page_state_add(v + overstep, zone, item);
266        __this_cpu_write(*p, -overstep);
267    }
268}
269
270void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271{
272    __inc_zone_state(page_zone(page), item);
273}
274EXPORT_SYMBOL(__inc_zone_page_state);
275
276void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277{
278    struct per_cpu_pageset __percpu *pcp = zone->pageset;
279    s8 __percpu *p = pcp->vm_stat_diff + item;
280    s8 v, t;
281
282    v = __this_cpu_dec_return(*p);
283    t = __this_cpu_read(pcp->stat_threshold);
284    if (unlikely(v < - t)) {
285        s8 overstep = t >> 1;
286
287        zone_page_state_add(v - overstep, zone, item);
288        __this_cpu_write(*p, overstep);
289    }
290}
291
292void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293{
294    __dec_zone_state(page_zone(page), item);
295}
296EXPORT_SYMBOL(__dec_zone_page_state);
297
298#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
299/*
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302 *
303 * mod_state() modifies the zone counter state through atomic per cpu
304 * operations.
305 *
306 * Overstep mode specifies how overstep should handled:
307 * 0 No overstepping
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
310*/
311static inline void mod_state(struct zone *zone,
312       enum zone_stat_item item, int delta, int overstep_mode)
313{
314    struct per_cpu_pageset __percpu *pcp = zone->pageset;
315    s8 __percpu *p = pcp->vm_stat_diff + item;
316    long o, n, t, z;
317
318    do {
319        z = 0; /* overflow to zone counters */
320
321        /*
322         * The fetching of the stat_threshold is racy. We may apply
323         * a counter threshold to the wrong the cpu if we get
324         * rescheduled while executing here. However, the next
325         * counter update will apply the threshold again and
326         * therefore bring the counter under the threshold again.
327         *
328         * Most of the time the thresholds are the same anyways
329         * for all cpus in a zone.
330         */
331        t = this_cpu_read(pcp->stat_threshold);
332
333        o = this_cpu_read(*p);
334        n = delta + o;
335
336        if (n > t || n < -t) {
337            int os = overstep_mode * (t >> 1) ;
338
339            /* Overflow must be added to zone counters */
340            z = n + os;
341            n = -os;
342        }
343    } while (this_cpu_cmpxchg(*p, o, n) != o);
344
345    if (z)
346        zone_page_state_add(z, zone, item);
347}
348
349void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
350                    int delta)
351{
352    mod_state(zone, item, delta, 0);
353}
354EXPORT_SYMBOL(mod_zone_page_state);
355
356void inc_zone_state(struct zone *zone, enum zone_stat_item item)
357{
358    mod_state(zone, item, 1, 1);
359}
360
361void inc_zone_page_state(struct page *page, enum zone_stat_item item)
362{
363    mod_state(page_zone(page), item, 1, 1);
364}
365EXPORT_SYMBOL(inc_zone_page_state);
366
367void dec_zone_page_state(struct page *page, enum zone_stat_item item)
368{
369    mod_state(page_zone(page), item, -1, -1);
370}
371EXPORT_SYMBOL(dec_zone_page_state);
372#else
373/*
374 * Use interrupt disable to serialize counter updates
375 */
376void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
377                    int delta)
378{
379    unsigned long flags;
380
381    local_irq_save(flags);
382    __mod_zone_page_state(zone, item, delta);
383    local_irq_restore(flags);
384}
385EXPORT_SYMBOL(mod_zone_page_state);
386
387void inc_zone_state(struct zone *zone, enum zone_stat_item item)
388{
389    unsigned long flags;
390
391    local_irq_save(flags);
392    __inc_zone_state(zone, item);
393    local_irq_restore(flags);
394}
395
396void inc_zone_page_state(struct page *page, enum zone_stat_item item)
397{
398    unsigned long flags;
399    struct zone *zone;
400
401    zone = page_zone(page);
402    local_irq_save(flags);
403    __inc_zone_state(zone, item);
404    local_irq_restore(flags);
405}
406EXPORT_SYMBOL(inc_zone_page_state);
407
408void dec_zone_page_state(struct page *page, enum zone_stat_item item)
409{
410    unsigned long flags;
411
412    local_irq_save(flags);
413    __dec_zone_page_state(page, item);
414    local_irq_restore(flags);
415}
416EXPORT_SYMBOL(dec_zone_page_state);
417#endif
418
419/*
420 * Update the zone counters for one cpu.
421 *
422 * The cpu specified must be either the current cpu or a processor that
423 * is not online. If it is the current cpu then the execution thread must
424 * be pinned to the current cpu.
425 *
426 * Note that refresh_cpu_vm_stats strives to only access
427 * node local memory. The per cpu pagesets on remote zones are placed
428 * in the memory local to the processor using that pageset. So the
429 * loop over all zones will access a series of cachelines local to
430 * the processor.
431 *
432 * The call to zone_page_state_add updates the cachelines with the
433 * statistics in the remote zone struct as well as the global cachelines
434 * with the global counters. These could cause remote node cache line
435 * bouncing and will have to be only done when necessary.
436 */
437void refresh_cpu_vm_stats(int cpu)
438{
439    struct zone *zone;
440    int i;
441    int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442
443    for_each_populated_zone(zone) {
444        struct per_cpu_pageset *p;
445
446        p = per_cpu_ptr(zone->pageset, cpu);
447
448        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449            if (p->vm_stat_diff[i]) {
450                unsigned long flags;
451                int v;
452
453                local_irq_save(flags);
454                v = p->vm_stat_diff[i];
455                p->vm_stat_diff[i] = 0;
456                local_irq_restore(flags);
457                atomic_long_add(v, &zone->vm_stat[i]);
458                global_diff[i] += v;
459#ifdef CONFIG_NUMA
460                /* 3 seconds idle till flush */
461                p->expire = 3;
462#endif
463            }
464        cond_resched();
465#ifdef CONFIG_NUMA
466        /*
467         * Deal with draining the remote pageset of this
468         * processor
469         *
470         * Check if there are pages remaining in this pageset
471         * if not then there is nothing to expire.
472         */
473        if (!p->expire || !p->pcp.count)
474            continue;
475
476        /*
477         * We never drain zones local to this processor.
478         */
479        if (zone_to_nid(zone) == numa_node_id()) {
480            p->expire = 0;
481            continue;
482        }
483
484        p->expire--;
485        if (p->expire)
486            continue;
487
488        if (p->pcp.count)
489            drain_zone_pages(zone, &p->pcp);
490#endif
491    }
492
493    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
494        if (global_diff[i])
495            atomic_long_add(global_diff[i], &vm_stat[i]);
496}
497
498#endif
499
500#ifdef CONFIG_NUMA
501/*
502 * zonelist = the list of zones passed to the allocator
503 * z = the zone from which the allocation occurred.
504 *
505 * Must be called with interrupts disabled.
506 *
507 * When __GFP_OTHER_NODE is set assume the node of the preferred
508 * zone is the local node. This is useful for daemons who allocate
509 * memory on behalf of other processes.
510 */
511void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
512{
513    if (z->zone_pgdat == preferred_zone->zone_pgdat) {
514        __inc_zone_state(z, NUMA_HIT);
515    } else {
516        __inc_zone_state(z, NUMA_MISS);
517        __inc_zone_state(preferred_zone, NUMA_FOREIGN);
518    }
519    if (z->node == ((flags & __GFP_OTHER_NODE) ?
520            preferred_zone->node : numa_node_id()))
521        __inc_zone_state(z, NUMA_LOCAL);
522    else
523        __inc_zone_state(z, NUMA_OTHER);
524}
525#endif
526
527#ifdef CONFIG_COMPACTION
528
529struct contig_page_info {
530    unsigned long free_pages;
531    unsigned long free_blocks_total;
532    unsigned long free_blocks_suitable;
533};
534
535/*
536 * Calculate the number of free pages in a zone, how many contiguous
537 * pages are free and how many are large enough to satisfy an allocation of
538 * the target size. Note that this function makes no attempt to estimate
539 * how many suitable free blocks there *might* be if MOVABLE pages were
540 * migrated. Calculating that is possible, but expensive and can be
541 * figured out from userspace
542 */
543static void fill_contig_page_info(struct zone *zone,
544                unsigned int suitable_order,
545                struct contig_page_info *info)
546{
547    unsigned int order;
548
549    info->free_pages = 0;
550    info->free_blocks_total = 0;
551    info->free_blocks_suitable = 0;
552
553    for (order = 0; order < MAX_ORDER; order++) {
554        unsigned long blocks;
555
556        /* Count number of free blocks */
557        blocks = zone->free_area[order].nr_free;
558        info->free_blocks_total += blocks;
559
560        /* Count free base pages */
561        info->free_pages += blocks << order;
562
563        /* Count the suitable free blocks */
564        if (order >= suitable_order)
565            info->free_blocks_suitable += blocks <<
566                        (order - suitable_order);
567    }
568}
569
570/*
571 * A fragmentation index only makes sense if an allocation of a requested
572 * size would fail. If that is true, the fragmentation index indicates
573 * whether external fragmentation or a lack of memory was the problem.
574 * The value can be used to determine if page reclaim or compaction
575 * should be used
576 */
577static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
578{
579    unsigned long requested = 1UL << order;
580
581    if (!info->free_blocks_total)
582        return 0;
583
584    /* Fragmentation index only makes sense when a request would fail */
585    if (info->free_blocks_suitable)
586        return -1000;
587
588    /*
589     * Index is between 0 and 1 so return within 3 decimal places
590     *
591     * 0 => allocation would fail due to lack of memory
592     * 1 => allocation would fail due to fragmentation
593     */
594    return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
595}
596
597/* Same as __fragmentation index but allocs contig_page_info on stack */
598int fragmentation_index(struct zone *zone, unsigned int order)
599{
600    struct contig_page_info info;
601
602    fill_contig_page_info(zone, order, &info);
603    return __fragmentation_index(order, &info);
604}
605#endif
606
607#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
608#include <linux/proc_fs.h>
609#include <linux/seq_file.h>
610
611static char * const migratetype_names[MIGRATE_TYPES] = {
612    "Unmovable",
613    "Reclaimable",
614    "Movable",
615    "Reserve",
616#ifdef CONFIG_CMA
617    "CMA",
618#endif
619    "Isolate",
620};
621
622static void *frag_start(struct seq_file *m, loff_t *pos)
623{
624    pg_data_t *pgdat;
625    loff_t node = *pos;
626    for (pgdat = first_online_pgdat();
627         pgdat && node;
628         pgdat = next_online_pgdat(pgdat))
629        --node;
630
631    return pgdat;
632}
633
634static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
635{
636    pg_data_t *pgdat = (pg_data_t *)arg;
637
638    (*pos)++;
639    return next_online_pgdat(pgdat);
640}
641
642static void frag_stop(struct seq_file *m, void *arg)
643{
644}
645
646/* Walk all the zones in a node and print using a callback */
647static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
648        void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
649{
650    struct zone *zone;
651    struct zone *node_zones = pgdat->node_zones;
652    unsigned long flags;
653
654    for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
655        if (!populated_zone(zone))
656            continue;
657
658        spin_lock_irqsave(&zone->lock, flags);
659        print(m, pgdat, zone);
660        spin_unlock_irqrestore(&zone->lock, flags);
661    }
662}
663#endif
664
665#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
666#ifdef CONFIG_ZONE_DMA
667#define TEXT_FOR_DMA(xx) xx "_dma",
668#else
669#define TEXT_FOR_DMA(xx)
670#endif
671
672#ifdef CONFIG_ZONE_DMA32
673#define TEXT_FOR_DMA32(xx) xx "_dma32",
674#else
675#define TEXT_FOR_DMA32(xx)
676#endif
677
678#ifdef CONFIG_HIGHMEM
679#define TEXT_FOR_HIGHMEM(xx) xx "_high",
680#else
681#define TEXT_FOR_HIGHMEM(xx)
682#endif
683
684#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
685                    TEXT_FOR_HIGHMEM(xx) xx "_movable",
686
687const char * const vmstat_text[] = {
688    /* Zoned VM counters */
689    "nr_free_pages",
690    "nr_inactive_anon",
691    "nr_active_anon",
692    "nr_inactive_file",
693    "nr_active_file",
694    "nr_unevictable",
695    "nr_mlock",
696    "nr_anon_pages",
697    "nr_mapped",
698    "nr_file_pages",
699    "nr_dirty",
700    "nr_writeback",
701    "nr_slab_reclaimable",
702    "nr_slab_unreclaimable",
703    "nr_page_table_pages",
704    "nr_kernel_stack",
705    "nr_unstable",
706    "nr_bounce",
707    "nr_vmscan_write",
708    "nr_vmscan_immediate_reclaim",
709    "nr_writeback_temp",
710    "nr_isolated_anon",
711    "nr_isolated_file",
712    "nr_shmem",
713    "nr_dirtied",
714    "nr_written",
715
716#ifdef CONFIG_NUMA
717    "numa_hit",
718    "numa_miss",
719    "numa_foreign",
720    "numa_interleave",
721    "numa_local",
722    "numa_other",
723#endif
724    "nr_anon_transparent_hugepages",
725    "nr_dirty_threshold",
726    "nr_dirty_background_threshold",
727
728#ifdef CONFIG_VM_EVENT_COUNTERS
729    "pgpgin",
730    "pgpgout",
731    "pswpin",
732    "pswpout",
733
734    TEXTS_FOR_ZONES("pgalloc")
735
736    "pgfree",
737    "pgactivate",
738    "pgdeactivate",
739
740    "pgfault",
741    "pgmajfault",
742
743    TEXTS_FOR_ZONES("pgrefill")
744    TEXTS_FOR_ZONES("pgsteal_kswapd")
745    TEXTS_FOR_ZONES("pgsteal_direct")
746    TEXTS_FOR_ZONES("pgscan_kswapd")
747    TEXTS_FOR_ZONES("pgscan_direct")
748    "pgscan_direct_throttle",
749
750#ifdef CONFIG_NUMA
751    "zone_reclaim_failed",
752#endif
753    "pginodesteal",
754    "slabs_scanned",
755    "kswapd_inodesteal",
756    "kswapd_low_wmark_hit_quickly",
757    "kswapd_high_wmark_hit_quickly",
758    "kswapd_skip_congestion_wait",
759    "pageoutrun",
760    "allocstall",
761
762    "pgrotated",
763
764#ifdef CONFIG_COMPACTION
765    "compact_blocks_moved",
766    "compact_pages_moved",
767    "compact_pagemigrate_failed",
768    "compact_stall",
769    "compact_fail",
770    "compact_success",
771#endif
772
773#ifdef CONFIG_HUGETLB_PAGE
774    "htlb_buddy_alloc_success",
775    "htlb_buddy_alloc_fail",
776#endif
777    "unevictable_pgs_culled",
778    "unevictable_pgs_scanned",
779    "unevictable_pgs_rescued",
780    "unevictable_pgs_mlocked",
781    "unevictable_pgs_munlocked",
782    "unevictable_pgs_cleared",
783    "unevictable_pgs_stranded",
784    "unevictable_pgs_mlockfreed",
785
786#ifdef CONFIG_TRANSPARENT_HUGEPAGE
787    "thp_fault_alloc",
788    "thp_fault_fallback",
789    "thp_collapse_alloc",
790    "thp_collapse_alloc_failed",
791    "thp_split",
792#endif
793
794#endif /* CONFIG_VM_EVENTS_COUNTERS */
795};
796#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
797
798
799#ifdef CONFIG_PROC_FS
800static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
801                        struct zone *zone)
802{
803    int order;
804
805    seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
806    for (order = 0; order < MAX_ORDER; ++order)
807        seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
808    seq_putc(m, '\n');
809}
810
811/*
812 * This walks the free areas for each zone.
813 */
814static int frag_show(struct seq_file *m, void *arg)
815{
816    pg_data_t *pgdat = (pg_data_t *)arg;
817    walk_zones_in_node(m, pgdat, frag_show_print);
818    return 0;
819}
820
821static void pagetypeinfo_showfree_print(struct seq_file *m,
822                    pg_data_t *pgdat, struct zone *zone)
823{
824    int order, mtype;
825
826    for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
827        seq_printf(m, "Node %4d, zone %8s, type %12s ",
828                    pgdat->node_id,
829                    zone->name,
830                    migratetype_names[mtype]);
831        for (order = 0; order < MAX_ORDER; ++order) {
832            unsigned long freecount = 0;
833            struct free_area *area;
834            struct list_head *curr;
835
836            area = &(zone->free_area[order]);
837
838            list_for_each(curr, &area->free_list[mtype])
839                freecount++;
840            seq_printf(m, "%6lu ", freecount);
841        }
842        seq_putc(m, '\n');
843    }
844}
845
846/* Print out the free pages at each order for each migatetype */
847static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
848{
849    int order;
850    pg_data_t *pgdat = (pg_data_t *)arg;
851
852    /* Print header */
853    seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
854    for (order = 0; order < MAX_ORDER; ++order)
855        seq_printf(m, "%6d ", order);
856    seq_putc(m, '\n');
857
858    walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
859
860    return 0;
861}
862
863static void pagetypeinfo_showblockcount_print(struct seq_file *m,
864                    pg_data_t *pgdat, struct zone *zone)
865{
866    int mtype;
867    unsigned long pfn;
868    unsigned long start_pfn = zone->zone_start_pfn;
869    unsigned long end_pfn = start_pfn + zone->spanned_pages;
870    unsigned long count[MIGRATE_TYPES] = { 0, };
871
872    for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
873        struct page *page;
874
875        if (!pfn_valid(pfn))
876            continue;
877
878        page = pfn_to_page(pfn);
879
880        /* Watch for unexpected holes punched in the memmap */
881        if (!memmap_valid_within(pfn, page, zone))
882            continue;
883
884        mtype = get_pageblock_migratetype(page);
885
886        if (mtype < MIGRATE_TYPES)
887            count[mtype]++;
888    }
889
890    /* Print counts */
891    seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
892    for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
893        seq_printf(m, "%12lu ", count[mtype]);
894    seq_putc(m, '\n');
895}
896
897/* Print out the free pages at each order for each migratetype */
898static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
899{
900    int mtype;
901    pg_data_t *pgdat = (pg_data_t *)arg;
902
903    seq_printf(m, "\n%-23s", "Number of blocks type ");
904    for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
905        seq_printf(m, "%12s ", migratetype_names[mtype]);
906    seq_putc(m, '\n');
907    walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
908
909    return 0;
910}
911
912/*
913 * This prints out statistics in relation to grouping pages by mobility.
914 * It is expensive to collect so do not constantly read the file.
915 */
916static int pagetypeinfo_show(struct seq_file *m, void *arg)
917{
918    pg_data_t *pgdat = (pg_data_t *)arg;
919
920    /* check memoryless node */
921    if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
922        return 0;
923
924    seq_printf(m, "Page block order: %d\n", pageblock_order);
925    seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
926    seq_putc(m, '\n');
927    pagetypeinfo_showfree(m, pgdat);
928    pagetypeinfo_showblockcount(m, pgdat);
929
930    return 0;
931}
932
933static const struct seq_operations fragmentation_op = {
934    .start = frag_start,
935    .next = frag_next,
936    .stop = frag_stop,
937    .show = frag_show,
938};
939
940static int fragmentation_open(struct inode *inode, struct file *file)
941{
942    return seq_open(file, &fragmentation_op);
943}
944
945static const struct file_operations fragmentation_file_operations = {
946    .open = fragmentation_open,
947    .read = seq_read,
948    .llseek = seq_lseek,
949    .release = seq_release,
950};
951
952static const struct seq_operations pagetypeinfo_op = {
953    .start = frag_start,
954    .next = frag_next,
955    .stop = frag_stop,
956    .show = pagetypeinfo_show,
957};
958
959static int pagetypeinfo_open(struct inode *inode, struct file *file)
960{
961    return seq_open(file, &pagetypeinfo_op);
962}
963
964static const struct file_operations pagetypeinfo_file_ops = {
965    .open = pagetypeinfo_open,
966    .read = seq_read,
967    .llseek = seq_lseek,
968    .release = seq_release,
969};
970
971static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
972                            struct zone *zone)
973{
974    int i;
975    seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
976    seq_printf(m,
977           "\n pages free %lu"
978           "\n min %lu"
979           "\n low %lu"
980           "\n high %lu"
981           "\n scanned %lu"
982           "\n spanned %lu"
983           "\n present %lu",
984           zone_page_state(zone, NR_FREE_PAGES),
985           min_wmark_pages(zone),
986           low_wmark_pages(zone),
987           high_wmark_pages(zone),
988           zone->pages_scanned,
989           zone->spanned_pages,
990           zone->present_pages);
991
992    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
993        seq_printf(m, "\n %-12s %lu", vmstat_text[i],
994                zone_page_state(zone, i));
995
996    seq_printf(m,
997           "\n protection: (%lu",
998           zone->lowmem_reserve[0]);
999    for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1000        seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1001    seq_printf(m,
1002           ")"
1003           "\n pagesets");
1004    for_each_online_cpu(i) {
1005        struct per_cpu_pageset *pageset;
1006
1007        pageset = per_cpu_ptr(zone->pageset, i);
1008        seq_printf(m,
1009               "\n cpu: %i"
1010               "\n count: %i"
1011               "\n high: %i"
1012               "\n batch: %i",
1013               i,
1014               pageset->pcp.count,
1015               pageset->pcp.high,
1016               pageset->pcp.batch);
1017#ifdef CONFIG_SMP
1018        seq_printf(m, "\n vm stats threshold: %d",
1019                pageset->stat_threshold);
1020#endif
1021    }
1022    seq_printf(m,
1023           "\n all_unreclaimable: %u"
1024           "\n start_pfn: %lu"
1025           "\n inactive_ratio: %u",
1026           zone->all_unreclaimable,
1027           zone->zone_start_pfn,
1028           zone->inactive_ratio);
1029    seq_putc(m, '\n');
1030}
1031
1032/*
1033 * Output information about zones in @pgdat.
1034 */
1035static int zoneinfo_show(struct seq_file *m, void *arg)
1036{
1037    pg_data_t *pgdat = (pg_data_t *)arg;
1038    walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1039    return 0;
1040}
1041
1042static const struct seq_operations zoneinfo_op = {
1043    .start = frag_start, /* iterate over all zones. The same as in
1044                   * fragmentation. */
1045    .next = frag_next,
1046    .stop = frag_stop,
1047    .show = zoneinfo_show,
1048};
1049
1050static int zoneinfo_open(struct inode *inode, struct file *file)
1051{
1052    return seq_open(file, &zoneinfo_op);
1053}
1054
1055static const struct file_operations proc_zoneinfo_file_operations = {
1056    .open = zoneinfo_open,
1057    .read = seq_read,
1058    .llseek = seq_lseek,
1059    .release = seq_release,
1060};
1061
1062enum writeback_stat_item {
1063    NR_DIRTY_THRESHOLD,
1064    NR_DIRTY_BG_THRESHOLD,
1065    NR_VM_WRITEBACK_STAT_ITEMS,
1066};
1067
1068static void *vmstat_start(struct seq_file *m, loff_t *pos)
1069{
1070    unsigned long *v;
1071    int i, stat_items_size;
1072
1073    if (*pos >= ARRAY_SIZE(vmstat_text))
1074        return NULL;
1075    stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1076              NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1077
1078#ifdef CONFIG_VM_EVENT_COUNTERS
1079    stat_items_size += sizeof(struct vm_event_state);
1080#endif
1081
1082    v = kmalloc(stat_items_size, GFP_KERNEL);
1083    m->private = v;
1084    if (!v)
1085        return ERR_PTR(-ENOMEM);
1086    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1087        v[i] = global_page_state(i);
1088    v += NR_VM_ZONE_STAT_ITEMS;
1089
1090    global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1091                v + NR_DIRTY_THRESHOLD);
1092    v += NR_VM_WRITEBACK_STAT_ITEMS;
1093
1094#ifdef CONFIG_VM_EVENT_COUNTERS
1095    all_vm_events(v);
1096    v[PGPGIN] /= 2; /* sectors -> kbytes */
1097    v[PGPGOUT] /= 2;
1098#endif
1099    return (unsigned long *)m->private + *pos;
1100}
1101
1102static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1103{
1104    (*pos)++;
1105    if (*pos >= ARRAY_SIZE(vmstat_text))
1106        return NULL;
1107    return (unsigned long *)m->private + *pos;
1108}
1109
1110static int vmstat_show(struct seq_file *m, void *arg)
1111{
1112    unsigned long *l = arg;
1113    unsigned long off = l - (unsigned long *)m->private;
1114
1115    seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1116    return 0;
1117}
1118
1119static void vmstat_stop(struct seq_file *m, void *arg)
1120{
1121    kfree(m->private);
1122    m->private = NULL;
1123}
1124
1125static const struct seq_operations vmstat_op = {
1126    .start = vmstat_start,
1127    .next = vmstat_next,
1128    .stop = vmstat_stop,
1129    .show = vmstat_show,
1130};
1131
1132static int vmstat_open(struct inode *inode, struct file *file)
1133{
1134    return seq_open(file, &vmstat_op);
1135}
1136
1137static const struct file_operations proc_vmstat_file_operations = {
1138    .open = vmstat_open,
1139    .read = seq_read,
1140    .llseek = seq_lseek,
1141    .release = seq_release,
1142};
1143#endif /* CONFIG_PROC_FS */
1144
1145#ifdef CONFIG_SMP
1146static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1147int sysctl_stat_interval __read_mostly = HZ;
1148
1149static void vmstat_update(struct work_struct *w)
1150{
1151    refresh_cpu_vm_stats(smp_processor_id());
1152    schedule_delayed_work(&__get_cpu_var(vmstat_work),
1153        round_jiffies_relative(sysctl_stat_interval));
1154}
1155
1156static void __cpuinit start_cpu_timer(int cpu)
1157{
1158    struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1159
1160    INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1161    schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1162}
1163
1164/*
1165 * Use the cpu notifier to insure that the thresholds are recalculated
1166 * when necessary.
1167 */
1168static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1169        unsigned long action,
1170        void *hcpu)
1171{
1172    long cpu = (long)hcpu;
1173
1174    switch (action) {
1175    case CPU_ONLINE:
1176    case CPU_ONLINE_FROZEN:
1177        refresh_zone_stat_thresholds();
1178        start_cpu_timer(cpu);
1179        node_set_state(cpu_to_node(cpu), N_CPU);
1180        break;
1181    case CPU_DOWN_PREPARE:
1182    case CPU_DOWN_PREPARE_FROZEN:
1183        cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1184        per_cpu(vmstat_work, cpu).work.func = NULL;
1185        break;
1186    case CPU_DOWN_FAILED:
1187    case CPU_DOWN_FAILED_FROZEN:
1188        start_cpu_timer(cpu);
1189        break;
1190    case CPU_DEAD:
1191    case CPU_DEAD_FROZEN:
1192        refresh_zone_stat_thresholds();
1193        break;
1194    default:
1195        break;
1196    }
1197    return NOTIFY_OK;
1198}
1199
1200static struct notifier_block __cpuinitdata vmstat_notifier =
1201    { &vmstat_cpuup_callback, NULL, 0 };
1202#endif
1203
1204static int __init setup_vmstat(void)
1205{
1206#ifdef CONFIG_SMP
1207    int cpu;
1208
1209    register_cpu_notifier(&vmstat_notifier);
1210
1211    for_each_online_cpu(cpu)
1212        start_cpu_timer(cpu);
1213#endif
1214#ifdef CONFIG_PROC_FS
1215    proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1216    proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1217    proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1218    proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1219#endif
1220    return 0;
1221}
1222module_init(setup_vmstat)
1223
1224#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1225#include <linux/debugfs.h>
1226
1227
1228/*
1229 * Return an index indicating how much of the available free memory is
1230 * unusable for an allocation of the requested size.
1231 */
1232static int unusable_free_index(unsigned int order,
1233                struct contig_page_info *info)
1234{
1235    /* No free memory is interpreted as all free memory is unusable */
1236    if (info->free_pages == 0)
1237        return 1000;
1238
1239    /*
1240     * Index should be a value between 0 and 1. Return a value to 3
1241     * decimal places.
1242     *
1243     * 0 => no fragmentation
1244     * 1 => high fragmentation
1245     */
1246    return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1247
1248}
1249
1250static void unusable_show_print(struct seq_file *m,
1251                    pg_data_t *pgdat, struct zone *zone)
1252{
1253    unsigned int order;
1254    int index;
1255    struct contig_page_info info;
1256
1257    seq_printf(m, "Node %d, zone %8s ",
1258                pgdat->node_id,
1259                zone->name);
1260    for (order = 0; order < MAX_ORDER; ++order) {
1261        fill_contig_page_info(zone, order, &info);
1262        index = unusable_free_index(order, &info);
1263        seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1264    }
1265
1266    seq_putc(m, '\n');
1267}
1268
1269/*
1270 * Display unusable free space index
1271 *
1272 * The unusable free space index measures how much of the available free
1273 * memory cannot be used to satisfy an allocation of a given size and is a
1274 * value between 0 and 1. The higher the value, the more of free memory is
1275 * unusable and by implication, the worse the external fragmentation is. This
1276 * can be expressed as a percentage by multiplying by 100.
1277 */
1278static int unusable_show(struct seq_file *m, void *arg)
1279{
1280    pg_data_t *pgdat = (pg_data_t *)arg;
1281
1282    /* check memoryless node */
1283    if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1284        return 0;
1285
1286    walk_zones_in_node(m, pgdat, unusable_show_print);
1287
1288    return 0;
1289}
1290
1291static const struct seq_operations unusable_op = {
1292    .start = frag_start,
1293    .next = frag_next,
1294    .stop = frag_stop,
1295    .show = unusable_show,
1296};
1297
1298static int unusable_open(struct inode *inode, struct file *file)
1299{
1300    return seq_open(file, &unusable_op);
1301}
1302
1303static const struct file_operations unusable_file_ops = {
1304    .open = unusable_open,
1305    .read = seq_read,
1306    .llseek = seq_lseek,
1307    .release = seq_release,
1308};
1309
1310static void extfrag_show_print(struct seq_file *m,
1311                    pg_data_t *pgdat, struct zone *zone)
1312{
1313    unsigned int order;
1314    int index;
1315
1316    /* Alloc on stack as interrupts are disabled for zone walk */
1317    struct contig_page_info info;
1318
1319    seq_printf(m, "Node %d, zone %8s ",
1320                pgdat->node_id,
1321                zone->name);
1322    for (order = 0; order < MAX_ORDER; ++order) {
1323        fill_contig_page_info(zone, order, &info);
1324        index = __fragmentation_index(order, &info);
1325        seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1326    }
1327
1328    seq_putc(m, '\n');
1329}
1330
1331/*
1332 * Display fragmentation index for orders that allocations would fail for
1333 */
1334static int extfrag_show(struct seq_file *m, void *arg)
1335{
1336    pg_data_t *pgdat = (pg_data_t *)arg;
1337
1338    walk_zones_in_node(m, pgdat, extfrag_show_print);
1339
1340    return 0;
1341}
1342
1343static const struct seq_operations extfrag_op = {
1344    .start = frag_start,
1345    .next = frag_next,
1346    .stop = frag_stop,
1347    .show = extfrag_show,
1348};
1349
1350static int extfrag_open(struct inode *inode, struct file *file)
1351{
1352    return seq_open(file, &extfrag_op);
1353}
1354
1355static const struct file_operations extfrag_file_ops = {
1356    .open = extfrag_open,
1357    .read = seq_read,
1358    .llseek = seq_lseek,
1359    .release = seq_release,
1360};
1361
1362static int __init extfrag_debug_init(void)
1363{
1364    struct dentry *extfrag_debug_root;
1365
1366    extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1367    if (!extfrag_debug_root)
1368        return -ENOMEM;
1369
1370    if (!debugfs_create_file("unusable_index", 0444,
1371            extfrag_debug_root, NULL, &unusable_file_ops))
1372        goto fail;
1373
1374    if (!debugfs_create_file("extfrag_index", 0444,
1375            extfrag_debug_root, NULL, &extfrag_file_ops))
1376        goto fail;
1377
1378    return 0;
1379fail:
1380    debugfs_remove_recursive(extfrag_debug_root);
1381    return -ENOMEM;
1382}
1383
1384module_init(extfrag_debug_init);
1385#endif
1386

Archive Download this file



interactive