Root/
1 | /* |
2 | * processor_idle - idle state submodule to the ACPI processor driver |
3 | * |
4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
6 | * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> |
7 | * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
8 | * - Added processor hotplug support |
9 | * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
10 | * - Added support for C3 on SMP |
11 | * |
12 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
13 | * |
14 | * This program is free software; you can redistribute it and/or modify |
15 | * it under the terms of the GNU General Public License as published by |
16 | * the Free Software Foundation; either version 2 of the License, or (at |
17 | * your option) any later version. |
18 | * |
19 | * This program is distributed in the hope that it will be useful, but |
20 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
22 | * General Public License for more details. |
23 | * |
24 | * You should have received a copy of the GNU General Public License along |
25 | * with this program; if not, write to the Free Software Foundation, Inc., |
26 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
27 | * |
28 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
29 | */ |
30 | |
31 | #include <linux/kernel.h> |
32 | #include <linux/module.h> |
33 | #include <linux/init.h> |
34 | #include <linux/cpufreq.h> |
35 | #include <linux/slab.h> |
36 | #include <linux/acpi.h> |
37 | #include <linux/dmi.h> |
38 | #include <linux/moduleparam.h> |
39 | #include <linux/sched.h> /* need_resched() */ |
40 | #include <linux/pm_qos.h> |
41 | #include <linux/clockchips.h> |
42 | #include <linux/cpuidle.h> |
43 | #include <linux/irqflags.h> |
44 | |
45 | /* |
46 | * Include the apic definitions for x86 to have the APIC timer related defines |
47 | * available also for UP (on SMP it gets magically included via linux/smp.h). |
48 | * asm/acpi.h is not an option, as it would require more include magic. Also |
49 | * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. |
50 | */ |
51 | #ifdef CONFIG_X86 |
52 | #include <asm/apic.h> |
53 | #endif |
54 | |
55 | #include <asm/io.h> |
56 | #include <asm/uaccess.h> |
57 | |
58 | #include <acpi/acpi_bus.h> |
59 | #include <acpi/processor.h> |
60 | #include <asm/processor.h> |
61 | |
62 | #define PREFIX "ACPI: " |
63 | |
64 | #define ACPI_PROCESSOR_CLASS "processor" |
65 | #define _COMPONENT ACPI_PROCESSOR_COMPONENT |
66 | ACPI_MODULE_NAME("processor_idle"); |
67 | #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) |
68 | #define C2_OVERHEAD 1 /* 1us */ |
69 | #define C3_OVERHEAD 1 /* 1us */ |
70 | #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) |
71 | |
72 | static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; |
73 | module_param(max_cstate, uint, 0000); |
74 | static unsigned int nocst __read_mostly; |
75 | module_param(nocst, uint, 0000); |
76 | static int bm_check_disable __read_mostly; |
77 | module_param(bm_check_disable, uint, 0000); |
78 | |
79 | static unsigned int latency_factor __read_mostly = 2; |
80 | module_param(latency_factor, uint, 0644); |
81 | |
82 | static int disabled_by_idle_boot_param(void) |
83 | { |
84 | return boot_option_idle_override == IDLE_POLL || |
85 | boot_option_idle_override == IDLE_FORCE_MWAIT || |
86 | boot_option_idle_override == IDLE_HALT; |
87 | } |
88 | |
89 | /* |
90 | * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. |
91 | * For now disable this. Probably a bug somewhere else. |
92 | * |
93 | * To skip this limit, boot/load with a large max_cstate limit. |
94 | */ |
95 | static int set_max_cstate(const struct dmi_system_id *id) |
96 | { |
97 | if (max_cstate > ACPI_PROCESSOR_MAX_POWER) |
98 | return 0; |
99 | |
100 | printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." |
101 | " Override with \"processor.max_cstate=%d\"\n", id->ident, |
102 | (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); |
103 | |
104 | max_cstate = (long)id->driver_data; |
105 | |
106 | return 0; |
107 | } |
108 | |
109 | /* Actually this shouldn't be __cpuinitdata, would be better to fix the |
110 | callers to only run once -AK */ |
111 | static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { |
112 | { set_max_cstate, "Clevo 5600D", { |
113 | DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), |
114 | DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, |
115 | (void *)2}, |
116 | { set_max_cstate, "Pavilion zv5000", { |
117 | DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), |
118 | DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, |
119 | (void *)1}, |
120 | { set_max_cstate, "Asus L8400B", { |
121 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), |
122 | DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, |
123 | (void *)1}, |
124 | {}, |
125 | }; |
126 | |
127 | |
128 | /* |
129 | * Callers should disable interrupts before the call and enable |
130 | * interrupts after return. |
131 | */ |
132 | static void acpi_safe_halt(void) |
133 | { |
134 | current_thread_info()->status &= ~TS_POLLING; |
135 | /* |
136 | * TS_POLLING-cleared state must be visible before we |
137 | * test NEED_RESCHED: |
138 | */ |
139 | smp_mb(); |
140 | if (!need_resched()) { |
141 | safe_halt(); |
142 | local_irq_disable(); |
143 | } |
144 | current_thread_info()->status |= TS_POLLING; |
145 | } |
146 | |
147 | #ifdef ARCH_APICTIMER_STOPS_ON_C3 |
148 | |
149 | /* |
150 | * Some BIOS implementations switch to C3 in the published C2 state. |
151 | * This seems to be a common problem on AMD boxen, but other vendors |
152 | * are affected too. We pick the most conservative approach: we assume |
153 | * that the local APIC stops in both C2 and C3. |
154 | */ |
155 | static void lapic_timer_check_state(int state, struct acpi_processor *pr, |
156 | struct acpi_processor_cx *cx) |
157 | { |
158 | struct acpi_processor_power *pwr = &pr->power; |
159 | u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; |
160 | |
161 | if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) |
162 | return; |
163 | |
164 | if (amd_e400_c1e_detected) |
165 | type = ACPI_STATE_C1; |
166 | |
167 | /* |
168 | * Check, if one of the previous states already marked the lapic |
169 | * unstable |
170 | */ |
171 | if (pwr->timer_broadcast_on_state < state) |
172 | return; |
173 | |
174 | if (cx->type >= type) |
175 | pr->power.timer_broadcast_on_state = state; |
176 | } |
177 | |
178 | static void __lapic_timer_propagate_broadcast(void *arg) |
179 | { |
180 | struct acpi_processor *pr = (struct acpi_processor *) arg; |
181 | unsigned long reason; |
182 | |
183 | reason = pr->power.timer_broadcast_on_state < INT_MAX ? |
184 | CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; |
185 | |
186 | clockevents_notify(reason, &pr->id); |
187 | } |
188 | |
189 | static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) |
190 | { |
191 | smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, |
192 | (void *)pr, 1); |
193 | } |
194 | |
195 | /* Power(C) State timer broadcast control */ |
196 | static void lapic_timer_state_broadcast(struct acpi_processor *pr, |
197 | struct acpi_processor_cx *cx, |
198 | int broadcast) |
199 | { |
200 | int state = cx - pr->power.states; |
201 | |
202 | if (state >= pr->power.timer_broadcast_on_state) { |
203 | unsigned long reason; |
204 | |
205 | reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : |
206 | CLOCK_EVT_NOTIFY_BROADCAST_EXIT; |
207 | clockevents_notify(reason, &pr->id); |
208 | } |
209 | } |
210 | |
211 | #else |
212 | |
213 | static void lapic_timer_check_state(int state, struct acpi_processor *pr, |
214 | struct acpi_processor_cx *cstate) { } |
215 | static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } |
216 | static void lapic_timer_state_broadcast(struct acpi_processor *pr, |
217 | struct acpi_processor_cx *cx, |
218 | int broadcast) |
219 | { |
220 | } |
221 | |
222 | #endif |
223 | |
224 | static u32 saved_bm_rld; |
225 | |
226 | static void acpi_idle_bm_rld_save(void) |
227 | { |
228 | acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); |
229 | } |
230 | static void acpi_idle_bm_rld_restore(void) |
231 | { |
232 | u32 resumed_bm_rld; |
233 | |
234 | acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); |
235 | |
236 | if (resumed_bm_rld != saved_bm_rld) |
237 | acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); |
238 | } |
239 | |
240 | int acpi_processor_suspend(struct device *dev) |
241 | { |
242 | acpi_idle_bm_rld_save(); |
243 | return 0; |
244 | } |
245 | |
246 | int acpi_processor_resume(struct device *dev) |
247 | { |
248 | acpi_idle_bm_rld_restore(); |
249 | return 0; |
250 | } |
251 | |
252 | #if defined(CONFIG_X86) |
253 | static void tsc_check_state(int state) |
254 | { |
255 | switch (boot_cpu_data.x86_vendor) { |
256 | case X86_VENDOR_AMD: |
257 | case X86_VENDOR_INTEL: |
258 | /* |
259 | * AMD Fam10h TSC will tick in all |
260 | * C/P/S0/S1 states when this bit is set. |
261 | */ |
262 | if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
263 | return; |
264 | |
265 | /*FALL THROUGH*/ |
266 | default: |
267 | /* TSC could halt in idle, so notify users */ |
268 | if (state > ACPI_STATE_C1) |
269 | mark_tsc_unstable("TSC halts in idle"); |
270 | } |
271 | } |
272 | #else |
273 | static void tsc_check_state(int state) { return; } |
274 | #endif |
275 | |
276 | static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) |
277 | { |
278 | |
279 | if (!pr) |
280 | return -EINVAL; |
281 | |
282 | if (!pr->pblk) |
283 | return -ENODEV; |
284 | |
285 | /* if info is obtained from pblk/fadt, type equals state */ |
286 | pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; |
287 | pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; |
288 | |
289 | #ifndef CONFIG_HOTPLUG_CPU |
290 | /* |
291 | * Check for P_LVL2_UP flag before entering C2 and above on |
292 | * an SMP system. |
293 | */ |
294 | if ((num_online_cpus() > 1) && |
295 | !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
296 | return -ENODEV; |
297 | #endif |
298 | |
299 | /* determine C2 and C3 address from pblk */ |
300 | pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; |
301 | pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; |
302 | |
303 | /* determine latencies from FADT */ |
304 | pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency; |
305 | pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency; |
306 | |
307 | /* |
308 | * FADT specified C2 latency must be less than or equal to |
309 | * 100 microseconds. |
310 | */ |
311 | if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { |
312 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
313 | "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency)); |
314 | /* invalidate C2 */ |
315 | pr->power.states[ACPI_STATE_C2].address = 0; |
316 | } |
317 | |
318 | /* |
319 | * FADT supplied C3 latency must be less than or equal to |
320 | * 1000 microseconds. |
321 | */ |
322 | if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { |
323 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
324 | "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency)); |
325 | /* invalidate C3 */ |
326 | pr->power.states[ACPI_STATE_C3].address = 0; |
327 | } |
328 | |
329 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
330 | "lvl2[0x%08x] lvl3[0x%08x]\n", |
331 | pr->power.states[ACPI_STATE_C2].address, |
332 | pr->power.states[ACPI_STATE_C3].address)); |
333 | |
334 | return 0; |
335 | } |
336 | |
337 | static int acpi_processor_get_power_info_default(struct acpi_processor *pr) |
338 | { |
339 | if (!pr->power.states[ACPI_STATE_C1].valid) { |
340 | /* set the first C-State to C1 */ |
341 | /* all processors need to support C1 */ |
342 | pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; |
343 | pr->power.states[ACPI_STATE_C1].valid = 1; |
344 | pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; |
345 | } |
346 | /* the C0 state only exists as a filler in our array */ |
347 | pr->power.states[ACPI_STATE_C0].valid = 1; |
348 | return 0; |
349 | } |
350 | |
351 | static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) |
352 | { |
353 | acpi_status status = 0; |
354 | u64 count; |
355 | int current_count; |
356 | int i; |
357 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
358 | union acpi_object *cst; |
359 | |
360 | |
361 | if (nocst) |
362 | return -ENODEV; |
363 | |
364 | current_count = 0; |
365 | |
366 | status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); |
367 | if (ACPI_FAILURE(status)) { |
368 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); |
369 | return -ENODEV; |
370 | } |
371 | |
372 | cst = buffer.pointer; |
373 | |
374 | /* There must be at least 2 elements */ |
375 | if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { |
376 | printk(KERN_ERR PREFIX "not enough elements in _CST\n"); |
377 | status = -EFAULT; |
378 | goto end; |
379 | } |
380 | |
381 | count = cst->package.elements[0].integer.value; |
382 | |
383 | /* Validate number of power states. */ |
384 | if (count < 1 || count != cst->package.count - 1) { |
385 | printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); |
386 | status = -EFAULT; |
387 | goto end; |
388 | } |
389 | |
390 | /* Tell driver that at least _CST is supported. */ |
391 | pr->flags.has_cst = 1; |
392 | |
393 | for (i = 1; i <= count; i++) { |
394 | union acpi_object *element; |
395 | union acpi_object *obj; |
396 | struct acpi_power_register *reg; |
397 | struct acpi_processor_cx cx; |
398 | |
399 | memset(&cx, 0, sizeof(cx)); |
400 | |
401 | element = &(cst->package.elements[i]); |
402 | if (element->type != ACPI_TYPE_PACKAGE) |
403 | continue; |
404 | |
405 | if (element->package.count != 4) |
406 | continue; |
407 | |
408 | obj = &(element->package.elements[0]); |
409 | |
410 | if (obj->type != ACPI_TYPE_BUFFER) |
411 | continue; |
412 | |
413 | reg = (struct acpi_power_register *)obj->buffer.pointer; |
414 | |
415 | if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && |
416 | (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) |
417 | continue; |
418 | |
419 | /* There should be an easy way to extract an integer... */ |
420 | obj = &(element->package.elements[1]); |
421 | if (obj->type != ACPI_TYPE_INTEGER) |
422 | continue; |
423 | |
424 | cx.type = obj->integer.value; |
425 | /* |
426 | * Some buggy BIOSes won't list C1 in _CST - |
427 | * Let acpi_processor_get_power_info_default() handle them later |
428 | */ |
429 | if (i == 1 && cx.type != ACPI_STATE_C1) |
430 | current_count++; |
431 | |
432 | cx.address = reg->address; |
433 | cx.index = current_count + 1; |
434 | |
435 | cx.entry_method = ACPI_CSTATE_SYSTEMIO; |
436 | if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { |
437 | if (acpi_processor_ffh_cstate_probe |
438 | (pr->id, &cx, reg) == 0) { |
439 | cx.entry_method = ACPI_CSTATE_FFH; |
440 | } else if (cx.type == ACPI_STATE_C1) { |
441 | /* |
442 | * C1 is a special case where FIXED_HARDWARE |
443 | * can be handled in non-MWAIT way as well. |
444 | * In that case, save this _CST entry info. |
445 | * Otherwise, ignore this info and continue. |
446 | */ |
447 | cx.entry_method = ACPI_CSTATE_HALT; |
448 | snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); |
449 | } else { |
450 | continue; |
451 | } |
452 | if (cx.type == ACPI_STATE_C1 && |
453 | (boot_option_idle_override == IDLE_NOMWAIT)) { |
454 | /* |
455 | * In most cases the C1 space_id obtained from |
456 | * _CST object is FIXED_HARDWARE access mode. |
457 | * But when the option of idle=halt is added, |
458 | * the entry_method type should be changed from |
459 | * CSTATE_FFH to CSTATE_HALT. |
460 | * When the option of idle=nomwait is added, |
461 | * the C1 entry_method type should be |
462 | * CSTATE_HALT. |
463 | */ |
464 | cx.entry_method = ACPI_CSTATE_HALT; |
465 | snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); |
466 | } |
467 | } else { |
468 | snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", |
469 | cx.address); |
470 | } |
471 | |
472 | if (cx.type == ACPI_STATE_C1) { |
473 | cx.valid = 1; |
474 | } |
475 | |
476 | obj = &(element->package.elements[2]); |
477 | if (obj->type != ACPI_TYPE_INTEGER) |
478 | continue; |
479 | |
480 | cx.latency = obj->integer.value; |
481 | |
482 | obj = &(element->package.elements[3]); |
483 | if (obj->type != ACPI_TYPE_INTEGER) |
484 | continue; |
485 | |
486 | cx.power = obj->integer.value; |
487 | |
488 | current_count++; |
489 | memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); |
490 | |
491 | /* |
492 | * We support total ACPI_PROCESSOR_MAX_POWER - 1 |
493 | * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) |
494 | */ |
495 | if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { |
496 | printk(KERN_WARNING |
497 | "Limiting number of power states to max (%d)\n", |
498 | ACPI_PROCESSOR_MAX_POWER); |
499 | printk(KERN_WARNING |
500 | "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); |
501 | break; |
502 | } |
503 | } |
504 | |
505 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", |
506 | current_count)); |
507 | |
508 | /* Validate number of power states discovered */ |
509 | if (current_count < 2) |
510 | status = -EFAULT; |
511 | |
512 | end: |
513 | kfree(buffer.pointer); |
514 | |
515 | return status; |
516 | } |
517 | |
518 | static void acpi_processor_power_verify_c3(struct acpi_processor *pr, |
519 | struct acpi_processor_cx *cx) |
520 | { |
521 | static int bm_check_flag = -1; |
522 | static int bm_control_flag = -1; |
523 | |
524 | |
525 | if (!cx->address) |
526 | return; |
527 | |
528 | /* |
529 | * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) |
530 | * DMA transfers are used by any ISA device to avoid livelock. |
531 | * Note that we could disable Type-F DMA (as recommended by |
532 | * the erratum), but this is known to disrupt certain ISA |
533 | * devices thus we take the conservative approach. |
534 | */ |
535 | else if (errata.piix4.fdma) { |
536 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
537 | "C3 not supported on PIIX4 with Type-F DMA\n")); |
538 | return; |
539 | } |
540 | |
541 | /* All the logic here assumes flags.bm_check is same across all CPUs */ |
542 | if (bm_check_flag == -1) { |
543 | /* Determine whether bm_check is needed based on CPU */ |
544 | acpi_processor_power_init_bm_check(&(pr->flags), pr->id); |
545 | bm_check_flag = pr->flags.bm_check; |
546 | bm_control_flag = pr->flags.bm_control; |
547 | } else { |
548 | pr->flags.bm_check = bm_check_flag; |
549 | pr->flags.bm_control = bm_control_flag; |
550 | } |
551 | |
552 | if (pr->flags.bm_check) { |
553 | if (!pr->flags.bm_control) { |
554 | if (pr->flags.has_cst != 1) { |
555 | /* bus mastering control is necessary */ |
556 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
557 | "C3 support requires BM control\n")); |
558 | return; |
559 | } else { |
560 | /* Here we enter C3 without bus mastering */ |
561 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
562 | "C3 support without BM control\n")); |
563 | } |
564 | } |
565 | } else { |
566 | /* |
567 | * WBINVD should be set in fadt, for C3 state to be |
568 | * supported on when bm_check is not required. |
569 | */ |
570 | if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { |
571 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
572 | "Cache invalidation should work properly" |
573 | " for C3 to be enabled on SMP systems\n")); |
574 | return; |
575 | } |
576 | } |
577 | |
578 | /* |
579 | * Otherwise we've met all of our C3 requirements. |
580 | * Normalize the C3 latency to expidite policy. Enable |
581 | * checking of bus mastering status (bm_check) so we can |
582 | * use this in our C3 policy |
583 | */ |
584 | cx->valid = 1; |
585 | |
586 | /* |
587 | * On older chipsets, BM_RLD needs to be set |
588 | * in order for Bus Master activity to wake the |
589 | * system from C3. Newer chipsets handle DMA |
590 | * during C3 automatically and BM_RLD is a NOP. |
591 | * In either case, the proper way to |
592 | * handle BM_RLD is to set it and leave it set. |
593 | */ |
594 | acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); |
595 | |
596 | return; |
597 | } |
598 | |
599 | static int acpi_processor_power_verify(struct acpi_processor *pr) |
600 | { |
601 | unsigned int i; |
602 | unsigned int working = 0; |
603 | |
604 | pr->power.timer_broadcast_on_state = INT_MAX; |
605 | |
606 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
607 | struct acpi_processor_cx *cx = &pr->power.states[i]; |
608 | |
609 | switch (cx->type) { |
610 | case ACPI_STATE_C1: |
611 | cx->valid = 1; |
612 | break; |
613 | |
614 | case ACPI_STATE_C2: |
615 | if (!cx->address) |
616 | break; |
617 | cx->valid = 1; |
618 | break; |
619 | |
620 | case ACPI_STATE_C3: |
621 | acpi_processor_power_verify_c3(pr, cx); |
622 | break; |
623 | } |
624 | if (!cx->valid) |
625 | continue; |
626 | |
627 | lapic_timer_check_state(i, pr, cx); |
628 | tsc_check_state(cx->type); |
629 | working++; |
630 | } |
631 | |
632 | lapic_timer_propagate_broadcast(pr); |
633 | |
634 | return (working); |
635 | } |
636 | |
637 | static int acpi_processor_get_power_info(struct acpi_processor *pr) |
638 | { |
639 | unsigned int i; |
640 | int result; |
641 | |
642 | |
643 | /* NOTE: the idle thread may not be running while calling |
644 | * this function */ |
645 | |
646 | /* Zero initialize all the C-states info. */ |
647 | memset(pr->power.states, 0, sizeof(pr->power.states)); |
648 | |
649 | result = acpi_processor_get_power_info_cst(pr); |
650 | if (result == -ENODEV) |
651 | result = acpi_processor_get_power_info_fadt(pr); |
652 | |
653 | if (result) |
654 | return result; |
655 | |
656 | acpi_processor_get_power_info_default(pr); |
657 | |
658 | pr->power.count = acpi_processor_power_verify(pr); |
659 | |
660 | /* |
661 | * if one state of type C2 or C3 is available, mark this |
662 | * CPU as being "idle manageable" |
663 | */ |
664 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { |
665 | if (pr->power.states[i].valid) { |
666 | pr->power.count = i; |
667 | if (pr->power.states[i].type >= ACPI_STATE_C2) |
668 | pr->flags.power = 1; |
669 | } |
670 | } |
671 | |
672 | return 0; |
673 | } |
674 | |
675 | /** |
676 | * acpi_idle_bm_check - checks if bus master activity was detected |
677 | */ |
678 | static int acpi_idle_bm_check(void) |
679 | { |
680 | u32 bm_status = 0; |
681 | |
682 | if (bm_check_disable) |
683 | return 0; |
684 | |
685 | acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); |
686 | if (bm_status) |
687 | acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); |
688 | /* |
689 | * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect |
690 | * the true state of bus mastering activity; forcing us to |
691 | * manually check the BMIDEA bit of each IDE channel. |
692 | */ |
693 | else if (errata.piix4.bmisx) { |
694 | if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) |
695 | || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) |
696 | bm_status = 1; |
697 | } |
698 | return bm_status; |
699 | } |
700 | |
701 | /** |
702 | * acpi_idle_do_entry - a helper function that does C2 and C3 type entry |
703 | * @cx: cstate data |
704 | * |
705 | * Caller disables interrupt before call and enables interrupt after return. |
706 | */ |
707 | static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) |
708 | { |
709 | /* Don't trace irqs off for idle */ |
710 | stop_critical_timings(); |
711 | if (cx->entry_method == ACPI_CSTATE_FFH) { |
712 | /* Call into architectural FFH based C-state */ |
713 | acpi_processor_ffh_cstate_enter(cx); |
714 | } else if (cx->entry_method == ACPI_CSTATE_HALT) { |
715 | acpi_safe_halt(); |
716 | } else { |
717 | /* IO port based C-state */ |
718 | inb(cx->address); |
719 | /* Dummy wait op - must do something useless after P_LVL2 read |
720 | because chipsets cannot guarantee that STPCLK# signal |
721 | gets asserted in time to freeze execution properly. */ |
722 | inl(acpi_gbl_FADT.xpm_timer_block.address); |
723 | } |
724 | start_critical_timings(); |
725 | } |
726 | |
727 | /** |
728 | * acpi_idle_enter_c1 - enters an ACPI C1 state-type |
729 | * @dev: the target CPU |
730 | * @drv: cpuidle driver containing cpuidle state info |
731 | * @index: index of target state |
732 | * |
733 | * This is equivalent to the HALT instruction. |
734 | */ |
735 | static int acpi_idle_enter_c1(struct cpuidle_device *dev, |
736 | struct cpuidle_driver *drv, int index) |
737 | { |
738 | ktime_t kt1, kt2; |
739 | s64 idle_time; |
740 | struct acpi_processor *pr; |
741 | struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; |
742 | struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); |
743 | |
744 | pr = __this_cpu_read(processors); |
745 | dev->last_residency = 0; |
746 | |
747 | if (unlikely(!pr)) |
748 | return -EINVAL; |
749 | |
750 | local_irq_disable(); |
751 | |
752 | |
753 | lapic_timer_state_broadcast(pr, cx, 1); |
754 | kt1 = ktime_get_real(); |
755 | acpi_idle_do_entry(cx); |
756 | kt2 = ktime_get_real(); |
757 | idle_time = ktime_to_us(ktime_sub(kt2, kt1)); |
758 | |
759 | /* Update device last_residency*/ |
760 | dev->last_residency = (int)idle_time; |
761 | |
762 | local_irq_enable(); |
763 | lapic_timer_state_broadcast(pr, cx, 0); |
764 | |
765 | return index; |
766 | } |
767 | |
768 | |
769 | /** |
770 | * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining) |
771 | * @dev: the target CPU |
772 | * @index: the index of suggested state |
773 | */ |
774 | static int acpi_idle_play_dead(struct cpuidle_device *dev, int index) |
775 | { |
776 | struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; |
777 | struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); |
778 | |
779 | ACPI_FLUSH_CPU_CACHE(); |
780 | |
781 | while (1) { |
782 | |
783 | if (cx->entry_method == ACPI_CSTATE_HALT) |
784 | safe_halt(); |
785 | else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) { |
786 | inb(cx->address); |
787 | /* See comment in acpi_idle_do_entry() */ |
788 | inl(acpi_gbl_FADT.xpm_timer_block.address); |
789 | } else |
790 | return -ENODEV; |
791 | } |
792 | |
793 | /* Never reached */ |
794 | return 0; |
795 | } |
796 | |
797 | /** |
798 | * acpi_idle_enter_simple - enters an ACPI state without BM handling |
799 | * @dev: the target CPU |
800 | * @drv: cpuidle driver with cpuidle state information |
801 | * @index: the index of suggested state |
802 | */ |
803 | static int acpi_idle_enter_simple(struct cpuidle_device *dev, |
804 | struct cpuidle_driver *drv, int index) |
805 | { |
806 | struct acpi_processor *pr; |
807 | struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; |
808 | struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); |
809 | ktime_t kt1, kt2; |
810 | s64 idle_time_ns; |
811 | s64 idle_time; |
812 | |
813 | pr = __this_cpu_read(processors); |
814 | dev->last_residency = 0; |
815 | |
816 | if (unlikely(!pr)) |
817 | return -EINVAL; |
818 | |
819 | local_irq_disable(); |
820 | |
821 | |
822 | if (cx->entry_method != ACPI_CSTATE_FFH) { |
823 | current_thread_info()->status &= ~TS_POLLING; |
824 | /* |
825 | * TS_POLLING-cleared state must be visible before we test |
826 | * NEED_RESCHED: |
827 | */ |
828 | smp_mb(); |
829 | |
830 | if (unlikely(need_resched())) { |
831 | current_thread_info()->status |= TS_POLLING; |
832 | local_irq_enable(); |
833 | return -EINVAL; |
834 | } |
835 | } |
836 | |
837 | /* |
838 | * Must be done before busmaster disable as we might need to |
839 | * access HPET ! |
840 | */ |
841 | lapic_timer_state_broadcast(pr, cx, 1); |
842 | |
843 | if (cx->type == ACPI_STATE_C3) |
844 | ACPI_FLUSH_CPU_CACHE(); |
845 | |
846 | kt1 = ktime_get_real(); |
847 | /* Tell the scheduler that we are going deep-idle: */ |
848 | sched_clock_idle_sleep_event(); |
849 | acpi_idle_do_entry(cx); |
850 | kt2 = ktime_get_real(); |
851 | idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); |
852 | idle_time = idle_time_ns; |
853 | do_div(idle_time, NSEC_PER_USEC); |
854 | |
855 | /* Update device last_residency*/ |
856 | dev->last_residency = (int)idle_time; |
857 | |
858 | /* Tell the scheduler how much we idled: */ |
859 | sched_clock_idle_wakeup_event(idle_time_ns); |
860 | |
861 | local_irq_enable(); |
862 | if (cx->entry_method != ACPI_CSTATE_FFH) |
863 | current_thread_info()->status |= TS_POLLING; |
864 | |
865 | lapic_timer_state_broadcast(pr, cx, 0); |
866 | return index; |
867 | } |
868 | |
869 | static int c3_cpu_count; |
870 | static DEFINE_RAW_SPINLOCK(c3_lock); |
871 | |
872 | /** |
873 | * acpi_idle_enter_bm - enters C3 with proper BM handling |
874 | * @dev: the target CPU |
875 | * @drv: cpuidle driver containing state data |
876 | * @index: the index of suggested state |
877 | * |
878 | * If BM is detected, the deepest non-C3 idle state is entered instead. |
879 | */ |
880 | static int acpi_idle_enter_bm(struct cpuidle_device *dev, |
881 | struct cpuidle_driver *drv, int index) |
882 | { |
883 | struct acpi_processor *pr; |
884 | struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; |
885 | struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); |
886 | ktime_t kt1, kt2; |
887 | s64 idle_time_ns; |
888 | s64 idle_time; |
889 | |
890 | |
891 | pr = __this_cpu_read(processors); |
892 | dev->last_residency = 0; |
893 | |
894 | if (unlikely(!pr)) |
895 | return -EINVAL; |
896 | |
897 | if (!cx->bm_sts_skip && acpi_idle_bm_check()) { |
898 | if (drv->safe_state_index >= 0) { |
899 | return drv->states[drv->safe_state_index].enter(dev, |
900 | drv, drv->safe_state_index); |
901 | } else { |
902 | local_irq_disable(); |
903 | acpi_safe_halt(); |
904 | local_irq_enable(); |
905 | return -EBUSY; |
906 | } |
907 | } |
908 | |
909 | local_irq_disable(); |
910 | |
911 | |
912 | if (cx->entry_method != ACPI_CSTATE_FFH) { |
913 | current_thread_info()->status &= ~TS_POLLING; |
914 | /* |
915 | * TS_POLLING-cleared state must be visible before we test |
916 | * NEED_RESCHED: |
917 | */ |
918 | smp_mb(); |
919 | |
920 | if (unlikely(need_resched())) { |
921 | current_thread_info()->status |= TS_POLLING; |
922 | local_irq_enable(); |
923 | return -EINVAL; |
924 | } |
925 | } |
926 | |
927 | acpi_unlazy_tlb(smp_processor_id()); |
928 | |
929 | /* Tell the scheduler that we are going deep-idle: */ |
930 | sched_clock_idle_sleep_event(); |
931 | /* |
932 | * Must be done before busmaster disable as we might need to |
933 | * access HPET ! |
934 | */ |
935 | lapic_timer_state_broadcast(pr, cx, 1); |
936 | |
937 | kt1 = ktime_get_real(); |
938 | /* |
939 | * disable bus master |
940 | * bm_check implies we need ARB_DIS |
941 | * !bm_check implies we need cache flush |
942 | * bm_control implies whether we can do ARB_DIS |
943 | * |
944 | * That leaves a case where bm_check is set and bm_control is |
945 | * not set. In that case we cannot do much, we enter C3 |
946 | * without doing anything. |
947 | */ |
948 | if (pr->flags.bm_check && pr->flags.bm_control) { |
949 | raw_spin_lock(&c3_lock); |
950 | c3_cpu_count++; |
951 | /* Disable bus master arbitration when all CPUs are in C3 */ |
952 | if (c3_cpu_count == num_online_cpus()) |
953 | acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); |
954 | raw_spin_unlock(&c3_lock); |
955 | } else if (!pr->flags.bm_check) { |
956 | ACPI_FLUSH_CPU_CACHE(); |
957 | } |
958 | |
959 | acpi_idle_do_entry(cx); |
960 | |
961 | /* Re-enable bus master arbitration */ |
962 | if (pr->flags.bm_check && pr->flags.bm_control) { |
963 | raw_spin_lock(&c3_lock); |
964 | acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); |
965 | c3_cpu_count--; |
966 | raw_spin_unlock(&c3_lock); |
967 | } |
968 | kt2 = ktime_get_real(); |
969 | idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); |
970 | idle_time = idle_time_ns; |
971 | do_div(idle_time, NSEC_PER_USEC); |
972 | |
973 | /* Update device last_residency*/ |
974 | dev->last_residency = (int)idle_time; |
975 | |
976 | /* Tell the scheduler how much we idled: */ |
977 | sched_clock_idle_wakeup_event(idle_time_ns); |
978 | |
979 | local_irq_enable(); |
980 | if (cx->entry_method != ACPI_CSTATE_FFH) |
981 | current_thread_info()->status |= TS_POLLING; |
982 | |
983 | lapic_timer_state_broadcast(pr, cx, 0); |
984 | return index; |
985 | } |
986 | |
987 | struct cpuidle_driver acpi_idle_driver = { |
988 | .name = "acpi_idle", |
989 | .owner = THIS_MODULE, |
990 | }; |
991 | |
992 | /** |
993 | * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE |
994 | * device i.e. per-cpu data |
995 | * |
996 | * @pr: the ACPI processor |
997 | */ |
998 | static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr) |
999 | { |
1000 | int i, count = CPUIDLE_DRIVER_STATE_START; |
1001 | struct acpi_processor_cx *cx; |
1002 | struct cpuidle_state_usage *state_usage; |
1003 | struct cpuidle_device *dev = &pr->power.dev; |
1004 | |
1005 | if (!pr->flags.power_setup_done) |
1006 | return -EINVAL; |
1007 | |
1008 | if (pr->flags.power == 0) { |
1009 | return -EINVAL; |
1010 | } |
1011 | |
1012 | dev->cpu = pr->id; |
1013 | |
1014 | if (max_cstate == 0) |
1015 | max_cstate = 1; |
1016 | |
1017 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
1018 | cx = &pr->power.states[i]; |
1019 | state_usage = &dev->states_usage[count]; |
1020 | |
1021 | if (!cx->valid) |
1022 | continue; |
1023 | |
1024 | #ifdef CONFIG_HOTPLUG_CPU |
1025 | if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && |
1026 | !pr->flags.has_cst && |
1027 | !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
1028 | continue; |
1029 | #endif |
1030 | |
1031 | cpuidle_set_statedata(state_usage, cx); |
1032 | |
1033 | count++; |
1034 | if (count == CPUIDLE_STATE_MAX) |
1035 | break; |
1036 | } |
1037 | |
1038 | dev->state_count = count; |
1039 | |
1040 | if (!count) |
1041 | return -EINVAL; |
1042 | |
1043 | return 0; |
1044 | } |
1045 | |
1046 | /** |
1047 | * acpi_processor_setup_cpuidle states- prepares and configures cpuidle |
1048 | * global state data i.e. idle routines |
1049 | * |
1050 | * @pr: the ACPI processor |
1051 | */ |
1052 | static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr) |
1053 | { |
1054 | int i, count = CPUIDLE_DRIVER_STATE_START; |
1055 | struct acpi_processor_cx *cx; |
1056 | struct cpuidle_state *state; |
1057 | struct cpuidle_driver *drv = &acpi_idle_driver; |
1058 | |
1059 | if (!pr->flags.power_setup_done) |
1060 | return -EINVAL; |
1061 | |
1062 | if (pr->flags.power == 0) |
1063 | return -EINVAL; |
1064 | |
1065 | drv->safe_state_index = -1; |
1066 | for (i = 0; i < CPUIDLE_STATE_MAX; i++) { |
1067 | drv->states[i].name[0] = '\0'; |
1068 | drv->states[i].desc[0] = '\0'; |
1069 | } |
1070 | |
1071 | if (max_cstate == 0) |
1072 | max_cstate = 1; |
1073 | |
1074 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
1075 | cx = &pr->power.states[i]; |
1076 | |
1077 | if (!cx->valid) |
1078 | continue; |
1079 | |
1080 | #ifdef CONFIG_HOTPLUG_CPU |
1081 | if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && |
1082 | !pr->flags.has_cst && |
1083 | !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
1084 | continue; |
1085 | #endif |
1086 | |
1087 | state = &drv->states[count]; |
1088 | snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); |
1089 | strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); |
1090 | state->exit_latency = cx->latency; |
1091 | state->target_residency = cx->latency * latency_factor; |
1092 | |
1093 | state->flags = 0; |
1094 | switch (cx->type) { |
1095 | case ACPI_STATE_C1: |
1096 | if (cx->entry_method == ACPI_CSTATE_FFH) |
1097 | state->flags |= CPUIDLE_FLAG_TIME_VALID; |
1098 | |
1099 | state->enter = acpi_idle_enter_c1; |
1100 | state->enter_dead = acpi_idle_play_dead; |
1101 | drv->safe_state_index = count; |
1102 | break; |
1103 | |
1104 | case ACPI_STATE_C2: |
1105 | state->flags |= CPUIDLE_FLAG_TIME_VALID; |
1106 | state->enter = acpi_idle_enter_simple; |
1107 | state->enter_dead = acpi_idle_play_dead; |
1108 | drv->safe_state_index = count; |
1109 | break; |
1110 | |
1111 | case ACPI_STATE_C3: |
1112 | state->flags |= CPUIDLE_FLAG_TIME_VALID; |
1113 | state->enter = pr->flags.bm_check ? |
1114 | acpi_idle_enter_bm : |
1115 | acpi_idle_enter_simple; |
1116 | break; |
1117 | } |
1118 | |
1119 | count++; |
1120 | if (count == CPUIDLE_STATE_MAX) |
1121 | break; |
1122 | } |
1123 | |
1124 | drv->state_count = count; |
1125 | |
1126 | if (!count) |
1127 | return -EINVAL; |
1128 | |
1129 | return 0; |
1130 | } |
1131 | |
1132 | int acpi_processor_hotplug(struct acpi_processor *pr) |
1133 | { |
1134 | int ret = 0; |
1135 | |
1136 | if (disabled_by_idle_boot_param()) |
1137 | return 0; |
1138 | |
1139 | if (!pr) |
1140 | return -EINVAL; |
1141 | |
1142 | if (nocst) { |
1143 | return -ENODEV; |
1144 | } |
1145 | |
1146 | if (!pr->flags.power_setup_done) |
1147 | return -ENODEV; |
1148 | |
1149 | cpuidle_pause_and_lock(); |
1150 | cpuidle_disable_device(&pr->power.dev); |
1151 | acpi_processor_get_power_info(pr); |
1152 | if (pr->flags.power) { |
1153 | acpi_processor_setup_cpuidle_cx(pr); |
1154 | ret = cpuidle_enable_device(&pr->power.dev); |
1155 | } |
1156 | cpuidle_resume_and_unlock(); |
1157 | |
1158 | return ret; |
1159 | } |
1160 | |
1161 | int acpi_processor_cst_has_changed(struct acpi_processor *pr) |
1162 | { |
1163 | int cpu; |
1164 | struct acpi_processor *_pr; |
1165 | |
1166 | if (disabled_by_idle_boot_param()) |
1167 | return 0; |
1168 | |
1169 | if (!pr) |
1170 | return -EINVAL; |
1171 | |
1172 | if (nocst) |
1173 | return -ENODEV; |
1174 | |
1175 | if (!pr->flags.power_setup_done) |
1176 | return -ENODEV; |
1177 | |
1178 | /* |
1179 | * FIXME: Design the ACPI notification to make it once per |
1180 | * system instead of once per-cpu. This condition is a hack |
1181 | * to make the code that updates C-States be called once. |
1182 | */ |
1183 | |
1184 | if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) { |
1185 | |
1186 | cpuidle_pause_and_lock(); |
1187 | /* Protect against cpu-hotplug */ |
1188 | get_online_cpus(); |
1189 | |
1190 | /* Disable all cpuidle devices */ |
1191 | for_each_online_cpu(cpu) { |
1192 | _pr = per_cpu(processors, cpu); |
1193 | if (!_pr || !_pr->flags.power_setup_done) |
1194 | continue; |
1195 | cpuidle_disable_device(&_pr->power.dev); |
1196 | } |
1197 | |
1198 | /* Populate Updated C-state information */ |
1199 | acpi_processor_setup_cpuidle_states(pr); |
1200 | |
1201 | /* Enable all cpuidle devices */ |
1202 | for_each_online_cpu(cpu) { |
1203 | _pr = per_cpu(processors, cpu); |
1204 | if (!_pr || !_pr->flags.power_setup_done) |
1205 | continue; |
1206 | acpi_processor_get_power_info(_pr); |
1207 | if (_pr->flags.power) { |
1208 | acpi_processor_setup_cpuidle_cx(_pr); |
1209 | cpuidle_enable_device(&_pr->power.dev); |
1210 | } |
1211 | } |
1212 | put_online_cpus(); |
1213 | cpuidle_resume_and_unlock(); |
1214 | } |
1215 | |
1216 | return 0; |
1217 | } |
1218 | |
1219 | static int acpi_processor_registered; |
1220 | |
1221 | int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, |
1222 | struct acpi_device *device) |
1223 | { |
1224 | acpi_status status = 0; |
1225 | int retval; |
1226 | static int first_run; |
1227 | |
1228 | if (disabled_by_idle_boot_param()) |
1229 | return 0; |
1230 | |
1231 | if (!first_run) { |
1232 | dmi_check_system(processor_power_dmi_table); |
1233 | max_cstate = acpi_processor_cstate_check(max_cstate); |
1234 | if (max_cstate < ACPI_C_STATES_MAX) |
1235 | printk(KERN_NOTICE |
1236 | "ACPI: processor limited to max C-state %d\n", |
1237 | max_cstate); |
1238 | first_run++; |
1239 | } |
1240 | |
1241 | if (!pr) |
1242 | return -EINVAL; |
1243 | |
1244 | if (acpi_gbl_FADT.cst_control && !nocst) { |
1245 | status = |
1246 | acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); |
1247 | if (ACPI_FAILURE(status)) { |
1248 | ACPI_EXCEPTION((AE_INFO, status, |
1249 | "Notifying BIOS of _CST ability failed")); |
1250 | } |
1251 | } |
1252 | |
1253 | acpi_processor_get_power_info(pr); |
1254 | pr->flags.power_setup_done = 1; |
1255 | |
1256 | /* |
1257 | * Install the idle handler if processor power management is supported. |
1258 | * Note that we use previously set idle handler will be used on |
1259 | * platforms that only support C1. |
1260 | */ |
1261 | if (pr->flags.power) { |
1262 | /* Register acpi_idle_driver if not already registered */ |
1263 | if (!acpi_processor_registered) { |
1264 | acpi_processor_setup_cpuidle_states(pr); |
1265 | retval = cpuidle_register_driver(&acpi_idle_driver); |
1266 | if (retval) |
1267 | return retval; |
1268 | printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n", |
1269 | acpi_idle_driver.name); |
1270 | } |
1271 | /* Register per-cpu cpuidle_device. Cpuidle driver |
1272 | * must already be registered before registering device |
1273 | */ |
1274 | acpi_processor_setup_cpuidle_cx(pr); |
1275 | retval = cpuidle_register_device(&pr->power.dev); |
1276 | if (retval) { |
1277 | if (acpi_processor_registered == 0) |
1278 | cpuidle_unregister_driver(&acpi_idle_driver); |
1279 | return retval; |
1280 | } |
1281 | acpi_processor_registered++; |
1282 | } |
1283 | return 0; |
1284 | } |
1285 | |
1286 | int acpi_processor_power_exit(struct acpi_processor *pr, |
1287 | struct acpi_device *device) |
1288 | { |
1289 | if (disabled_by_idle_boot_param()) |
1290 | return 0; |
1291 | |
1292 | if (pr->flags.power) { |
1293 | cpuidle_unregister_device(&pr->power.dev); |
1294 | acpi_processor_registered--; |
1295 | if (acpi_processor_registered == 0) |
1296 | cpuidle_unregister_driver(&acpi_idle_driver); |
1297 | } |
1298 | |
1299 | pr->flags.power_setup_done = 0; |
1300 | return 0; |
1301 | } |
1302 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9