Root/
1 | /* |
2 | * sata_mv.c - Marvell SATA support |
3 | * |
4 | * Copyright 2008-2009: Marvell Corporation, all rights reserved. |
5 | * Copyright 2005: EMC Corporation, all rights reserved. |
6 | * Copyright 2005 Red Hat, Inc. All rights reserved. |
7 | * |
8 | * Originally written by Brett Russ. |
9 | * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. |
10 | * |
11 | * Please ALWAYS copy linux-ide@vger.kernel.org on emails. |
12 | * |
13 | * This program is free software; you can redistribute it and/or modify |
14 | * it under the terms of the GNU General Public License as published by |
15 | * the Free Software Foundation; version 2 of the License. |
16 | * |
17 | * This program is distributed in the hope that it will be useful, |
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
20 | * GNU General Public License for more details. |
21 | * |
22 | * You should have received a copy of the GNU General Public License |
23 | * along with this program; if not, write to the Free Software |
24 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
25 | * |
26 | */ |
27 | |
28 | /* |
29 | * sata_mv TODO list: |
30 | * |
31 | * --> Develop a low-power-consumption strategy, and implement it. |
32 | * |
33 | * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. |
34 | * |
35 | * --> [Experiment, Marvell value added] Is it possible to use target |
36 | * mode to cross-connect two Linux boxes with Marvell cards? If so, |
37 | * creating LibATA target mode support would be very interesting. |
38 | * |
39 | * Target mode, for those without docs, is the ability to directly |
40 | * connect two SATA ports. |
41 | */ |
42 | |
43 | /* |
44 | * 80x1-B2 errata PCI#11: |
45 | * |
46 | * Users of the 6041/6081 Rev.B2 chips (current is C0) |
47 | * should be careful to insert those cards only onto PCI-X bus #0, |
48 | * and only in device slots 0..7, not higher. The chips may not |
49 | * work correctly otherwise (note: this is a pretty rare condition). |
50 | */ |
51 | |
52 | #include <linux/kernel.h> |
53 | #include <linux/module.h> |
54 | #include <linux/pci.h> |
55 | #include <linux/init.h> |
56 | #include <linux/blkdev.h> |
57 | #include <linux/delay.h> |
58 | #include <linux/interrupt.h> |
59 | #include <linux/dmapool.h> |
60 | #include <linux/dma-mapping.h> |
61 | #include <linux/device.h> |
62 | #include <linux/clk.h> |
63 | #include <linux/platform_device.h> |
64 | #include <linux/ata_platform.h> |
65 | #include <linux/mbus.h> |
66 | #include <linux/bitops.h> |
67 | #include <linux/gfp.h> |
68 | #include <linux/of.h> |
69 | #include <linux/of_irq.h> |
70 | #include <scsi/scsi_host.h> |
71 | #include <scsi/scsi_cmnd.h> |
72 | #include <scsi/scsi_device.h> |
73 | #include <linux/libata.h> |
74 | |
75 | #define DRV_NAME "sata_mv" |
76 | #define DRV_VERSION "1.28" |
77 | |
78 | /* |
79 | * module options |
80 | */ |
81 | |
82 | static int msi; |
83 | #ifdef CONFIG_PCI |
84 | module_param(msi, int, S_IRUGO); |
85 | MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); |
86 | #endif |
87 | |
88 | static int irq_coalescing_io_count; |
89 | module_param(irq_coalescing_io_count, int, S_IRUGO); |
90 | MODULE_PARM_DESC(irq_coalescing_io_count, |
91 | "IRQ coalescing I/O count threshold (0..255)"); |
92 | |
93 | static int irq_coalescing_usecs; |
94 | module_param(irq_coalescing_usecs, int, S_IRUGO); |
95 | MODULE_PARM_DESC(irq_coalescing_usecs, |
96 | "IRQ coalescing time threshold in usecs"); |
97 | |
98 | enum { |
99 | /* BAR's are enumerated in terms of pci_resource_start() terms */ |
100 | MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ |
101 | MV_IO_BAR = 2, /* offset 0x18: IO space */ |
102 | MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ |
103 | |
104 | MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ |
105 | MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ |
106 | |
107 | /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ |
108 | COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ |
109 | MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ |
110 | MAX_COAL_IO_COUNT = 255, /* completed I/O count */ |
111 | |
112 | MV_PCI_REG_BASE = 0, |
113 | |
114 | /* |
115 | * Per-chip ("all ports") interrupt coalescing feature. |
116 | * This is only for GEN_II / GEN_IIE hardware. |
117 | * |
118 | * Coalescing defers the interrupt until either the IO_THRESHOLD |
119 | * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. |
120 | */ |
121 | COAL_REG_BASE = 0x18000, |
122 | IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), |
123 | ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ |
124 | |
125 | IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), |
126 | IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), |
127 | |
128 | /* |
129 | * Registers for the (unused here) transaction coalescing feature: |
130 | */ |
131 | TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), |
132 | TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), |
133 | |
134 | SATAHC0_REG_BASE = 0x20000, |
135 | FLASH_CTL = 0x1046c, |
136 | GPIO_PORT_CTL = 0x104f0, |
137 | RESET_CFG = 0x180d8, |
138 | |
139 | MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
140 | MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
141 | MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ |
142 | MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, |
143 | |
144 | MV_MAX_Q_DEPTH = 32, |
145 | MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, |
146 | |
147 | /* CRQB needs alignment on a 1KB boundary. Size == 1KB |
148 | * CRPB needs alignment on a 256B boundary. Size == 256B |
149 | * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B |
150 | */ |
151 | MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), |
152 | MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), |
153 | MV_MAX_SG_CT = 256, |
154 | MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), |
155 | |
156 | /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ |
157 | MV_PORT_HC_SHIFT = 2, |
158 | MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ |
159 | /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ |
160 | MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ |
161 | |
162 | /* Host Flags */ |
163 | MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ |
164 | |
165 | MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, |
166 | |
167 | MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, |
168 | |
169 | MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | |
170 | ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, |
171 | |
172 | MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, |
173 | |
174 | CRQB_FLAG_READ = (1 << 0), |
175 | CRQB_TAG_SHIFT = 1, |
176 | CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ |
177 | CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ |
178 | CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ |
179 | CRQB_CMD_ADDR_SHIFT = 8, |
180 | CRQB_CMD_CS = (0x2 << 11), |
181 | CRQB_CMD_LAST = (1 << 15), |
182 | |
183 | CRPB_FLAG_STATUS_SHIFT = 8, |
184 | CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ |
185 | CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ |
186 | |
187 | EPRD_FLAG_END_OF_TBL = (1 << 31), |
188 | |
189 | /* PCI interface registers */ |
190 | |
191 | MV_PCI_COMMAND = 0xc00, |
192 | MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ |
193 | MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ |
194 | |
195 | PCI_MAIN_CMD_STS = 0xd30, |
196 | STOP_PCI_MASTER = (1 << 2), |
197 | PCI_MASTER_EMPTY = (1 << 3), |
198 | GLOB_SFT_RST = (1 << 4), |
199 | |
200 | MV_PCI_MODE = 0xd00, |
201 | MV_PCI_MODE_MASK = 0x30, |
202 | |
203 | MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, |
204 | MV_PCI_DISC_TIMER = 0xd04, |
205 | MV_PCI_MSI_TRIGGER = 0xc38, |
206 | MV_PCI_SERR_MASK = 0xc28, |
207 | MV_PCI_XBAR_TMOUT = 0x1d04, |
208 | MV_PCI_ERR_LOW_ADDRESS = 0x1d40, |
209 | MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, |
210 | MV_PCI_ERR_ATTRIBUTE = 0x1d48, |
211 | MV_PCI_ERR_COMMAND = 0x1d50, |
212 | |
213 | PCI_IRQ_CAUSE = 0x1d58, |
214 | PCI_IRQ_MASK = 0x1d5c, |
215 | PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ |
216 | |
217 | PCIE_IRQ_CAUSE = 0x1900, |
218 | PCIE_IRQ_MASK = 0x1910, |
219 | PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ |
220 | |
221 | /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ |
222 | PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, |
223 | PCI_HC_MAIN_IRQ_MASK = 0x1d64, |
224 | SOC_HC_MAIN_IRQ_CAUSE = 0x20020, |
225 | SOC_HC_MAIN_IRQ_MASK = 0x20024, |
226 | ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ |
227 | DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ |
228 | HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ |
229 | HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ |
230 | DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ |
231 | DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ |
232 | PCI_ERR = (1 << 18), |
233 | TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ |
234 | TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ |
235 | PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ |
236 | PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ |
237 | ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ |
238 | GPIO_INT = (1 << 22), |
239 | SELF_INT = (1 << 23), |
240 | TWSI_INT = (1 << 24), |
241 | HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ |
242 | HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ |
243 | HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ |
244 | |
245 | /* SATAHC registers */ |
246 | HC_CFG = 0x00, |
247 | |
248 | HC_IRQ_CAUSE = 0x14, |
249 | DMA_IRQ = (1 << 0), /* shift by port # */ |
250 | HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ |
251 | DEV_IRQ = (1 << 8), /* shift by port # */ |
252 | |
253 | /* |
254 | * Per-HC (Host-Controller) interrupt coalescing feature. |
255 | * This is present on all chip generations. |
256 | * |
257 | * Coalescing defers the interrupt until either the IO_THRESHOLD |
258 | * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. |
259 | */ |
260 | HC_IRQ_COAL_IO_THRESHOLD = 0x000c, |
261 | HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, |
262 | |
263 | SOC_LED_CTRL = 0x2c, |
264 | SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ |
265 | SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ |
266 | /* with dev activity LED */ |
267 | |
268 | /* Shadow block registers */ |
269 | SHD_BLK = 0x100, |
270 | SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ |
271 | |
272 | /* SATA registers */ |
273 | SATA_STATUS = 0x300, /* ctrl, err regs follow status */ |
274 | SATA_ACTIVE = 0x350, |
275 | FIS_IRQ_CAUSE = 0x364, |
276 | FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ |
277 | |
278 | LTMODE = 0x30c, /* requires read-after-write */ |
279 | LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ |
280 | |
281 | PHY_MODE2 = 0x330, |
282 | PHY_MODE3 = 0x310, |
283 | |
284 | PHY_MODE4 = 0x314, /* requires read-after-write */ |
285 | PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ |
286 | PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ |
287 | PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ |
288 | PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ |
289 | |
290 | SATA_IFCTL = 0x344, |
291 | SATA_TESTCTL = 0x348, |
292 | SATA_IFSTAT = 0x34c, |
293 | VENDOR_UNIQUE_FIS = 0x35c, |
294 | |
295 | FISCFG = 0x360, |
296 | FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ |
297 | FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ |
298 | |
299 | PHY_MODE9_GEN2 = 0x398, |
300 | PHY_MODE9_GEN1 = 0x39c, |
301 | PHYCFG_OFS = 0x3a0, /* only in 65n devices */ |
302 | |
303 | MV5_PHY_MODE = 0x74, |
304 | MV5_LTMODE = 0x30, |
305 | MV5_PHY_CTL = 0x0C, |
306 | SATA_IFCFG = 0x050, |
307 | |
308 | MV_M2_PREAMP_MASK = 0x7e0, |
309 | |
310 | /* Port registers */ |
311 | EDMA_CFG = 0, |
312 | EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ |
313 | EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ |
314 | EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ |
315 | EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ |
316 | EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ |
317 | EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ |
318 | EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ |
319 | |
320 | EDMA_ERR_IRQ_CAUSE = 0x8, |
321 | EDMA_ERR_IRQ_MASK = 0xc, |
322 | EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ |
323 | EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ |
324 | EDMA_ERR_DEV = (1 << 2), /* device error */ |
325 | EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ |
326 | EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ |
327 | EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ |
328 | EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ |
329 | EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ |
330 | EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ |
331 | EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ |
332 | EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ |
333 | EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ |
334 | EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ |
335 | EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ |
336 | |
337 | EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ |
338 | EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ |
339 | EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ |
340 | EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ |
341 | EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ |
342 | |
343 | EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ |
344 | |
345 | EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ |
346 | EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ |
347 | EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ |
348 | EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ |
349 | EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ |
350 | EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ |
351 | |
352 | EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ |
353 | |
354 | EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ |
355 | EDMA_ERR_OVERRUN_5 = (1 << 5), |
356 | EDMA_ERR_UNDERRUN_5 = (1 << 6), |
357 | |
358 | EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | |
359 | EDMA_ERR_LNK_CTRL_RX_1 | |
360 | EDMA_ERR_LNK_CTRL_RX_3 | |
361 | EDMA_ERR_LNK_CTRL_TX, |
362 | |
363 | EDMA_EH_FREEZE = EDMA_ERR_D_PAR | |
364 | EDMA_ERR_PRD_PAR | |
365 | EDMA_ERR_DEV_DCON | |
366 | EDMA_ERR_DEV_CON | |
367 | EDMA_ERR_SERR | |
368 | EDMA_ERR_SELF_DIS | |
369 | EDMA_ERR_CRQB_PAR | |
370 | EDMA_ERR_CRPB_PAR | |
371 | EDMA_ERR_INTRL_PAR | |
372 | EDMA_ERR_IORDY | |
373 | EDMA_ERR_LNK_CTRL_RX_2 | |
374 | EDMA_ERR_LNK_DATA_RX | |
375 | EDMA_ERR_LNK_DATA_TX | |
376 | EDMA_ERR_TRANS_PROTO, |
377 | |
378 | EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | |
379 | EDMA_ERR_PRD_PAR | |
380 | EDMA_ERR_DEV_DCON | |
381 | EDMA_ERR_DEV_CON | |
382 | EDMA_ERR_OVERRUN_5 | |
383 | EDMA_ERR_UNDERRUN_5 | |
384 | EDMA_ERR_SELF_DIS_5 | |
385 | EDMA_ERR_CRQB_PAR | |
386 | EDMA_ERR_CRPB_PAR | |
387 | EDMA_ERR_INTRL_PAR | |
388 | EDMA_ERR_IORDY, |
389 | |
390 | EDMA_REQ_Q_BASE_HI = 0x10, |
391 | EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ |
392 | |
393 | EDMA_REQ_Q_OUT_PTR = 0x18, |
394 | EDMA_REQ_Q_PTR_SHIFT = 5, |
395 | |
396 | EDMA_RSP_Q_BASE_HI = 0x1c, |
397 | EDMA_RSP_Q_IN_PTR = 0x20, |
398 | EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ |
399 | EDMA_RSP_Q_PTR_SHIFT = 3, |
400 | |
401 | EDMA_CMD = 0x28, /* EDMA command register */ |
402 | EDMA_EN = (1 << 0), /* enable EDMA */ |
403 | EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ |
404 | EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ |
405 | |
406 | EDMA_STATUS = 0x30, /* EDMA engine status */ |
407 | EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ |
408 | EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ |
409 | |
410 | EDMA_IORDY_TMOUT = 0x34, |
411 | EDMA_ARB_CFG = 0x38, |
412 | |
413 | EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ |
414 | EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ |
415 | |
416 | BMDMA_CMD = 0x224, /* bmdma command register */ |
417 | BMDMA_STATUS = 0x228, /* bmdma status register */ |
418 | BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ |
419 | BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ |
420 | |
421 | /* Host private flags (hp_flags) */ |
422 | MV_HP_FLAG_MSI = (1 << 0), |
423 | MV_HP_ERRATA_50XXB0 = (1 << 1), |
424 | MV_HP_ERRATA_50XXB2 = (1 << 2), |
425 | MV_HP_ERRATA_60X1B2 = (1 << 3), |
426 | MV_HP_ERRATA_60X1C0 = (1 << 4), |
427 | MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ |
428 | MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ |
429 | MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ |
430 | MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ |
431 | MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ |
432 | MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ |
433 | MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ |
434 | |
435 | /* Port private flags (pp_flags) */ |
436 | MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ |
437 | MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ |
438 | MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ |
439 | MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ |
440 | MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ |
441 | }; |
442 | |
443 | #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) |
444 | #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) |
445 | #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) |
446 | #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) |
447 | #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) |
448 | |
449 | #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) |
450 | #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) |
451 | |
452 | enum { |
453 | /* DMA boundary 0xffff is required by the s/g splitting |
454 | * we need on /length/ in mv_fill-sg(). |
455 | */ |
456 | MV_DMA_BOUNDARY = 0xffffU, |
457 | |
458 | /* mask of register bits containing lower 32 bits |
459 | * of EDMA request queue DMA address |
460 | */ |
461 | EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, |
462 | |
463 | /* ditto, for response queue */ |
464 | EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, |
465 | }; |
466 | |
467 | enum chip_type { |
468 | chip_504x, |
469 | chip_508x, |
470 | chip_5080, |
471 | chip_604x, |
472 | chip_608x, |
473 | chip_6042, |
474 | chip_7042, |
475 | chip_soc, |
476 | }; |
477 | |
478 | /* Command ReQuest Block: 32B */ |
479 | struct mv_crqb { |
480 | __le32 sg_addr; |
481 | __le32 sg_addr_hi; |
482 | __le16 ctrl_flags; |
483 | __le16 ata_cmd[11]; |
484 | }; |
485 | |
486 | struct mv_crqb_iie { |
487 | __le32 addr; |
488 | __le32 addr_hi; |
489 | __le32 flags; |
490 | __le32 len; |
491 | __le32 ata_cmd[4]; |
492 | }; |
493 | |
494 | /* Command ResPonse Block: 8B */ |
495 | struct mv_crpb { |
496 | __le16 id; |
497 | __le16 flags; |
498 | __le32 tmstmp; |
499 | }; |
500 | |
501 | /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ |
502 | struct mv_sg { |
503 | __le32 addr; |
504 | __le32 flags_size; |
505 | __le32 addr_hi; |
506 | __le32 reserved; |
507 | }; |
508 | |
509 | /* |
510 | * We keep a local cache of a few frequently accessed port |
511 | * registers here, to avoid having to read them (very slow) |
512 | * when switching between EDMA and non-EDMA modes. |
513 | */ |
514 | struct mv_cached_regs { |
515 | u32 fiscfg; |
516 | u32 ltmode; |
517 | u32 haltcond; |
518 | u32 unknown_rsvd; |
519 | }; |
520 | |
521 | struct mv_port_priv { |
522 | struct mv_crqb *crqb; |
523 | dma_addr_t crqb_dma; |
524 | struct mv_crpb *crpb; |
525 | dma_addr_t crpb_dma; |
526 | struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; |
527 | dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; |
528 | |
529 | unsigned int req_idx; |
530 | unsigned int resp_idx; |
531 | |
532 | u32 pp_flags; |
533 | struct mv_cached_regs cached; |
534 | unsigned int delayed_eh_pmp_map; |
535 | }; |
536 | |
537 | struct mv_port_signal { |
538 | u32 amps; |
539 | u32 pre; |
540 | }; |
541 | |
542 | struct mv_host_priv { |
543 | u32 hp_flags; |
544 | unsigned int board_idx; |
545 | u32 main_irq_mask; |
546 | struct mv_port_signal signal[8]; |
547 | const struct mv_hw_ops *ops; |
548 | int n_ports; |
549 | void __iomem *base; |
550 | void __iomem *main_irq_cause_addr; |
551 | void __iomem *main_irq_mask_addr; |
552 | u32 irq_cause_offset; |
553 | u32 irq_mask_offset; |
554 | u32 unmask_all_irqs; |
555 | |
556 | #if defined(CONFIG_HAVE_CLK) |
557 | struct clk *clk; |
558 | struct clk **port_clks; |
559 | #endif |
560 | /* |
561 | * These consistent DMA memory pools give us guaranteed |
562 | * alignment for hardware-accessed data structures, |
563 | * and less memory waste in accomplishing the alignment. |
564 | */ |
565 | struct dma_pool *crqb_pool; |
566 | struct dma_pool *crpb_pool; |
567 | struct dma_pool *sg_tbl_pool; |
568 | }; |
569 | |
570 | struct mv_hw_ops { |
571 | void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, |
572 | unsigned int port); |
573 | void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); |
574 | void (*read_preamp)(struct mv_host_priv *hpriv, int idx, |
575 | void __iomem *mmio); |
576 | int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, |
577 | unsigned int n_hc); |
578 | void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); |
579 | void (*reset_bus)(struct ata_host *host, void __iomem *mmio); |
580 | }; |
581 | |
582 | static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); |
583 | static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); |
584 | static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); |
585 | static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); |
586 | static int mv_port_start(struct ata_port *ap); |
587 | static void mv_port_stop(struct ata_port *ap); |
588 | static int mv_qc_defer(struct ata_queued_cmd *qc); |
589 | static void mv_qc_prep(struct ata_queued_cmd *qc); |
590 | static void mv_qc_prep_iie(struct ata_queued_cmd *qc); |
591 | static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); |
592 | static int mv_hardreset(struct ata_link *link, unsigned int *class, |
593 | unsigned long deadline); |
594 | static void mv_eh_freeze(struct ata_port *ap); |
595 | static void mv_eh_thaw(struct ata_port *ap); |
596 | static void mv6_dev_config(struct ata_device *dev); |
597 | |
598 | static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
599 | unsigned int port); |
600 | static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
601 | static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
602 | void __iomem *mmio); |
603 | static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
604 | unsigned int n_hc); |
605 | static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
606 | static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); |
607 | |
608 | static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
609 | unsigned int port); |
610 | static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
611 | static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
612 | void __iomem *mmio); |
613 | static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
614 | unsigned int n_hc); |
615 | static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
616 | static void mv_soc_enable_leds(struct mv_host_priv *hpriv, |
617 | void __iomem *mmio); |
618 | static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, |
619 | void __iomem *mmio); |
620 | static int mv_soc_reset_hc(struct mv_host_priv *hpriv, |
621 | void __iomem *mmio, unsigned int n_hc); |
622 | static void mv_soc_reset_flash(struct mv_host_priv *hpriv, |
623 | void __iomem *mmio); |
624 | static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); |
625 | static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, |
626 | void __iomem *mmio, unsigned int port); |
627 | static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); |
628 | static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, |
629 | unsigned int port_no); |
630 | static int mv_stop_edma(struct ata_port *ap); |
631 | static int mv_stop_edma_engine(void __iomem *port_mmio); |
632 | static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); |
633 | |
634 | static void mv_pmp_select(struct ata_port *ap, int pmp); |
635 | static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, |
636 | unsigned long deadline); |
637 | static int mv_softreset(struct ata_link *link, unsigned int *class, |
638 | unsigned long deadline); |
639 | static void mv_pmp_error_handler(struct ata_port *ap); |
640 | static void mv_process_crpb_entries(struct ata_port *ap, |
641 | struct mv_port_priv *pp); |
642 | |
643 | static void mv_sff_irq_clear(struct ata_port *ap); |
644 | static int mv_check_atapi_dma(struct ata_queued_cmd *qc); |
645 | static void mv_bmdma_setup(struct ata_queued_cmd *qc); |
646 | static void mv_bmdma_start(struct ata_queued_cmd *qc); |
647 | static void mv_bmdma_stop(struct ata_queued_cmd *qc); |
648 | static u8 mv_bmdma_status(struct ata_port *ap); |
649 | static u8 mv_sff_check_status(struct ata_port *ap); |
650 | |
651 | /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below |
652 | * because we have to allow room for worst case splitting of |
653 | * PRDs for 64K boundaries in mv_fill_sg(). |
654 | */ |
655 | static struct scsi_host_template mv5_sht = { |
656 | ATA_BASE_SHT(DRV_NAME), |
657 | .sg_tablesize = MV_MAX_SG_CT / 2, |
658 | .dma_boundary = MV_DMA_BOUNDARY, |
659 | }; |
660 | |
661 | static struct scsi_host_template mv6_sht = { |
662 | ATA_NCQ_SHT(DRV_NAME), |
663 | .can_queue = MV_MAX_Q_DEPTH - 1, |
664 | .sg_tablesize = MV_MAX_SG_CT / 2, |
665 | .dma_boundary = MV_DMA_BOUNDARY, |
666 | }; |
667 | |
668 | static struct ata_port_operations mv5_ops = { |
669 | .inherits = &ata_sff_port_ops, |
670 | |
671 | .lost_interrupt = ATA_OP_NULL, |
672 | |
673 | .qc_defer = mv_qc_defer, |
674 | .qc_prep = mv_qc_prep, |
675 | .qc_issue = mv_qc_issue, |
676 | |
677 | .freeze = mv_eh_freeze, |
678 | .thaw = mv_eh_thaw, |
679 | .hardreset = mv_hardreset, |
680 | |
681 | .scr_read = mv5_scr_read, |
682 | .scr_write = mv5_scr_write, |
683 | |
684 | .port_start = mv_port_start, |
685 | .port_stop = mv_port_stop, |
686 | }; |
687 | |
688 | static struct ata_port_operations mv6_ops = { |
689 | .inherits = &ata_bmdma_port_ops, |
690 | |
691 | .lost_interrupt = ATA_OP_NULL, |
692 | |
693 | .qc_defer = mv_qc_defer, |
694 | .qc_prep = mv_qc_prep, |
695 | .qc_issue = mv_qc_issue, |
696 | |
697 | .dev_config = mv6_dev_config, |
698 | |
699 | .freeze = mv_eh_freeze, |
700 | .thaw = mv_eh_thaw, |
701 | .hardreset = mv_hardreset, |
702 | .softreset = mv_softreset, |
703 | .pmp_hardreset = mv_pmp_hardreset, |
704 | .pmp_softreset = mv_softreset, |
705 | .error_handler = mv_pmp_error_handler, |
706 | |
707 | .scr_read = mv_scr_read, |
708 | .scr_write = mv_scr_write, |
709 | |
710 | .sff_check_status = mv_sff_check_status, |
711 | .sff_irq_clear = mv_sff_irq_clear, |
712 | .check_atapi_dma = mv_check_atapi_dma, |
713 | .bmdma_setup = mv_bmdma_setup, |
714 | .bmdma_start = mv_bmdma_start, |
715 | .bmdma_stop = mv_bmdma_stop, |
716 | .bmdma_status = mv_bmdma_status, |
717 | |
718 | .port_start = mv_port_start, |
719 | .port_stop = mv_port_stop, |
720 | }; |
721 | |
722 | static struct ata_port_operations mv_iie_ops = { |
723 | .inherits = &mv6_ops, |
724 | .dev_config = ATA_OP_NULL, |
725 | .qc_prep = mv_qc_prep_iie, |
726 | }; |
727 | |
728 | static const struct ata_port_info mv_port_info[] = { |
729 | { /* chip_504x */ |
730 | .flags = MV_GEN_I_FLAGS, |
731 | .pio_mask = ATA_PIO4, |
732 | .udma_mask = ATA_UDMA6, |
733 | .port_ops = &mv5_ops, |
734 | }, |
735 | { /* chip_508x */ |
736 | .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, |
737 | .pio_mask = ATA_PIO4, |
738 | .udma_mask = ATA_UDMA6, |
739 | .port_ops = &mv5_ops, |
740 | }, |
741 | { /* chip_5080 */ |
742 | .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, |
743 | .pio_mask = ATA_PIO4, |
744 | .udma_mask = ATA_UDMA6, |
745 | .port_ops = &mv5_ops, |
746 | }, |
747 | { /* chip_604x */ |
748 | .flags = MV_GEN_II_FLAGS, |
749 | .pio_mask = ATA_PIO4, |
750 | .udma_mask = ATA_UDMA6, |
751 | .port_ops = &mv6_ops, |
752 | }, |
753 | { /* chip_608x */ |
754 | .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, |
755 | .pio_mask = ATA_PIO4, |
756 | .udma_mask = ATA_UDMA6, |
757 | .port_ops = &mv6_ops, |
758 | }, |
759 | { /* chip_6042 */ |
760 | .flags = MV_GEN_IIE_FLAGS, |
761 | .pio_mask = ATA_PIO4, |
762 | .udma_mask = ATA_UDMA6, |
763 | .port_ops = &mv_iie_ops, |
764 | }, |
765 | { /* chip_7042 */ |
766 | .flags = MV_GEN_IIE_FLAGS, |
767 | .pio_mask = ATA_PIO4, |
768 | .udma_mask = ATA_UDMA6, |
769 | .port_ops = &mv_iie_ops, |
770 | }, |
771 | { /* chip_soc */ |
772 | .flags = MV_GEN_IIE_FLAGS, |
773 | .pio_mask = ATA_PIO4, |
774 | .udma_mask = ATA_UDMA6, |
775 | .port_ops = &mv_iie_ops, |
776 | }, |
777 | }; |
778 | |
779 | static const struct pci_device_id mv_pci_tbl[] = { |
780 | { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, |
781 | { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, |
782 | { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, |
783 | { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, |
784 | /* RocketRAID 1720/174x have different identifiers */ |
785 | { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, |
786 | { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, |
787 | { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, |
788 | |
789 | { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, |
790 | { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, |
791 | { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, |
792 | { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, |
793 | { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, |
794 | |
795 | { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, |
796 | |
797 | /* Adaptec 1430SA */ |
798 | { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, |
799 | |
800 | /* Marvell 7042 support */ |
801 | { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, |
802 | |
803 | /* Highpoint RocketRAID PCIe series */ |
804 | { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, |
805 | { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, |
806 | |
807 | { } /* terminate list */ |
808 | }; |
809 | |
810 | static const struct mv_hw_ops mv5xxx_ops = { |
811 | .phy_errata = mv5_phy_errata, |
812 | .enable_leds = mv5_enable_leds, |
813 | .read_preamp = mv5_read_preamp, |
814 | .reset_hc = mv5_reset_hc, |
815 | .reset_flash = mv5_reset_flash, |
816 | .reset_bus = mv5_reset_bus, |
817 | }; |
818 | |
819 | static const struct mv_hw_ops mv6xxx_ops = { |
820 | .phy_errata = mv6_phy_errata, |
821 | .enable_leds = mv6_enable_leds, |
822 | .read_preamp = mv6_read_preamp, |
823 | .reset_hc = mv6_reset_hc, |
824 | .reset_flash = mv6_reset_flash, |
825 | .reset_bus = mv_reset_pci_bus, |
826 | }; |
827 | |
828 | static const struct mv_hw_ops mv_soc_ops = { |
829 | .phy_errata = mv6_phy_errata, |
830 | .enable_leds = mv_soc_enable_leds, |
831 | .read_preamp = mv_soc_read_preamp, |
832 | .reset_hc = mv_soc_reset_hc, |
833 | .reset_flash = mv_soc_reset_flash, |
834 | .reset_bus = mv_soc_reset_bus, |
835 | }; |
836 | |
837 | static const struct mv_hw_ops mv_soc_65n_ops = { |
838 | .phy_errata = mv_soc_65n_phy_errata, |
839 | .enable_leds = mv_soc_enable_leds, |
840 | .reset_hc = mv_soc_reset_hc, |
841 | .reset_flash = mv_soc_reset_flash, |
842 | .reset_bus = mv_soc_reset_bus, |
843 | }; |
844 | |
845 | /* |
846 | * Functions |
847 | */ |
848 | |
849 | static inline void writelfl(unsigned long data, void __iomem *addr) |
850 | { |
851 | writel(data, addr); |
852 | (void) readl(addr); /* flush to avoid PCI posted write */ |
853 | } |
854 | |
855 | static inline unsigned int mv_hc_from_port(unsigned int port) |
856 | { |
857 | return port >> MV_PORT_HC_SHIFT; |
858 | } |
859 | |
860 | static inline unsigned int mv_hardport_from_port(unsigned int port) |
861 | { |
862 | return port & MV_PORT_MASK; |
863 | } |
864 | |
865 | /* |
866 | * Consolidate some rather tricky bit shift calculations. |
867 | * This is hot-path stuff, so not a function. |
868 | * Simple code, with two return values, so macro rather than inline. |
869 | * |
870 | * port is the sole input, in range 0..7. |
871 | * shift is one output, for use with main_irq_cause / main_irq_mask registers. |
872 | * hardport is the other output, in range 0..3. |
873 | * |
874 | * Note that port and hardport may be the same variable in some cases. |
875 | */ |
876 | #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ |
877 | { \ |
878 | shift = mv_hc_from_port(port) * HC_SHIFT; \ |
879 | hardport = mv_hardport_from_port(port); \ |
880 | shift += hardport * 2; \ |
881 | } |
882 | |
883 | static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) |
884 | { |
885 | return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); |
886 | } |
887 | |
888 | static inline void __iomem *mv_hc_base_from_port(void __iomem *base, |
889 | unsigned int port) |
890 | { |
891 | return mv_hc_base(base, mv_hc_from_port(port)); |
892 | } |
893 | |
894 | static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) |
895 | { |
896 | return mv_hc_base_from_port(base, port) + |
897 | MV_SATAHC_ARBTR_REG_SZ + |
898 | (mv_hardport_from_port(port) * MV_PORT_REG_SZ); |
899 | } |
900 | |
901 | static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) |
902 | { |
903 | void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); |
904 | unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; |
905 | |
906 | return hc_mmio + ofs; |
907 | } |
908 | |
909 | static inline void __iomem *mv_host_base(struct ata_host *host) |
910 | { |
911 | struct mv_host_priv *hpriv = host->private_data; |
912 | return hpriv->base; |
913 | } |
914 | |
915 | static inline void __iomem *mv_ap_base(struct ata_port *ap) |
916 | { |
917 | return mv_port_base(mv_host_base(ap->host), ap->port_no); |
918 | } |
919 | |
920 | static inline int mv_get_hc_count(unsigned long port_flags) |
921 | { |
922 | return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); |
923 | } |
924 | |
925 | /** |
926 | * mv_save_cached_regs - (re-)initialize cached port registers |
927 | * @ap: the port whose registers we are caching |
928 | * |
929 | * Initialize the local cache of port registers, |
930 | * so that reading them over and over again can |
931 | * be avoided on the hotter paths of this driver. |
932 | * This saves a few microseconds each time we switch |
933 | * to/from EDMA mode to perform (eg.) a drive cache flush. |
934 | */ |
935 | static void mv_save_cached_regs(struct ata_port *ap) |
936 | { |
937 | void __iomem *port_mmio = mv_ap_base(ap); |
938 | struct mv_port_priv *pp = ap->private_data; |
939 | |
940 | pp->cached.fiscfg = readl(port_mmio + FISCFG); |
941 | pp->cached.ltmode = readl(port_mmio + LTMODE); |
942 | pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); |
943 | pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); |
944 | } |
945 | |
946 | /** |
947 | * mv_write_cached_reg - write to a cached port register |
948 | * @addr: hardware address of the register |
949 | * @old: pointer to cached value of the register |
950 | * @new: new value for the register |
951 | * |
952 | * Write a new value to a cached register, |
953 | * but only if the value is different from before. |
954 | */ |
955 | static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) |
956 | { |
957 | if (new != *old) { |
958 | unsigned long laddr; |
959 | *old = new; |
960 | /* |
961 | * Workaround for 88SX60x1-B2 FEr SATA#13: |
962 | * Read-after-write is needed to prevent generating 64-bit |
963 | * write cycles on the PCI bus for SATA interface registers |
964 | * at offsets ending in 0x4 or 0xc. |
965 | * |
966 | * Looks like a lot of fuss, but it avoids an unnecessary |
967 | * +1 usec read-after-write delay for unaffected registers. |
968 | */ |
969 | laddr = (long)addr & 0xffff; |
970 | if (laddr >= 0x300 && laddr <= 0x33c) { |
971 | laddr &= 0x000f; |
972 | if (laddr == 0x4 || laddr == 0xc) { |
973 | writelfl(new, addr); /* read after write */ |
974 | return; |
975 | } |
976 | } |
977 | writel(new, addr); /* unaffected by the errata */ |
978 | } |
979 | } |
980 | |
981 | static void mv_set_edma_ptrs(void __iomem *port_mmio, |
982 | struct mv_host_priv *hpriv, |
983 | struct mv_port_priv *pp) |
984 | { |
985 | u32 index; |
986 | |
987 | /* |
988 | * initialize request queue |
989 | */ |
990 | pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ |
991 | index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; |
992 | |
993 | WARN_ON(pp->crqb_dma & 0x3ff); |
994 | writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); |
995 | writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, |
996 | port_mmio + EDMA_REQ_Q_IN_PTR); |
997 | writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); |
998 | |
999 | /* |
1000 | * initialize response queue |
1001 | */ |
1002 | pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ |
1003 | index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; |
1004 | |
1005 | WARN_ON(pp->crpb_dma & 0xff); |
1006 | writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); |
1007 | writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); |
1008 | writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, |
1009 | port_mmio + EDMA_RSP_Q_OUT_PTR); |
1010 | } |
1011 | |
1012 | static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) |
1013 | { |
1014 | /* |
1015 | * When writing to the main_irq_mask in hardware, |
1016 | * we must ensure exclusivity between the interrupt coalescing bits |
1017 | * and the corresponding individual port DONE_IRQ bits. |
1018 | * |
1019 | * Note that this register is really an "IRQ enable" register, |
1020 | * not an "IRQ mask" register as Marvell's naming might suggest. |
1021 | */ |
1022 | if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) |
1023 | mask &= ~DONE_IRQ_0_3; |
1024 | if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) |
1025 | mask &= ~DONE_IRQ_4_7; |
1026 | writelfl(mask, hpriv->main_irq_mask_addr); |
1027 | } |
1028 | |
1029 | static void mv_set_main_irq_mask(struct ata_host *host, |
1030 | u32 disable_bits, u32 enable_bits) |
1031 | { |
1032 | struct mv_host_priv *hpriv = host->private_data; |
1033 | u32 old_mask, new_mask; |
1034 | |
1035 | old_mask = hpriv->main_irq_mask; |
1036 | new_mask = (old_mask & ~disable_bits) | enable_bits; |
1037 | if (new_mask != old_mask) { |
1038 | hpriv->main_irq_mask = new_mask; |
1039 | mv_write_main_irq_mask(new_mask, hpriv); |
1040 | } |
1041 | } |
1042 | |
1043 | static void mv_enable_port_irqs(struct ata_port *ap, |
1044 | unsigned int port_bits) |
1045 | { |
1046 | unsigned int shift, hardport, port = ap->port_no; |
1047 | u32 disable_bits, enable_bits; |
1048 | |
1049 | MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); |
1050 | |
1051 | disable_bits = (DONE_IRQ | ERR_IRQ) << shift; |
1052 | enable_bits = port_bits << shift; |
1053 | mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); |
1054 | } |
1055 | |
1056 | static void mv_clear_and_enable_port_irqs(struct ata_port *ap, |
1057 | void __iomem *port_mmio, |
1058 | unsigned int port_irqs) |
1059 | { |
1060 | struct mv_host_priv *hpriv = ap->host->private_data; |
1061 | int hardport = mv_hardport_from_port(ap->port_no); |
1062 | void __iomem *hc_mmio = mv_hc_base_from_port( |
1063 | mv_host_base(ap->host), ap->port_no); |
1064 | u32 hc_irq_cause; |
1065 | |
1066 | /* clear EDMA event indicators, if any */ |
1067 | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); |
1068 | |
1069 | /* clear pending irq events */ |
1070 | hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); |
1071 | writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); |
1072 | |
1073 | /* clear FIS IRQ Cause */ |
1074 | if (IS_GEN_IIE(hpriv)) |
1075 | writelfl(0, port_mmio + FIS_IRQ_CAUSE); |
1076 | |
1077 | mv_enable_port_irqs(ap, port_irqs); |
1078 | } |
1079 | |
1080 | static void mv_set_irq_coalescing(struct ata_host *host, |
1081 | unsigned int count, unsigned int usecs) |
1082 | { |
1083 | struct mv_host_priv *hpriv = host->private_data; |
1084 | void __iomem *mmio = hpriv->base, *hc_mmio; |
1085 | u32 coal_enable = 0; |
1086 | unsigned long flags; |
1087 | unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; |
1088 | const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | |
1089 | ALL_PORTS_COAL_DONE; |
1090 | |
1091 | /* Disable IRQ coalescing if either threshold is zero */ |
1092 | if (!usecs || !count) { |
1093 | clks = count = 0; |
1094 | } else { |
1095 | /* Respect maximum limits of the hardware */ |
1096 | clks = usecs * COAL_CLOCKS_PER_USEC; |
1097 | if (clks > MAX_COAL_TIME_THRESHOLD) |
1098 | clks = MAX_COAL_TIME_THRESHOLD; |
1099 | if (count > MAX_COAL_IO_COUNT) |
1100 | count = MAX_COAL_IO_COUNT; |
1101 | } |
1102 | |
1103 | spin_lock_irqsave(&host->lock, flags); |
1104 | mv_set_main_irq_mask(host, coal_disable, 0); |
1105 | |
1106 | if (is_dual_hc && !IS_GEN_I(hpriv)) { |
1107 | /* |
1108 | * GEN_II/GEN_IIE with dual host controllers: |
1109 | * one set of global thresholds for the entire chip. |
1110 | */ |
1111 | writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); |
1112 | writel(count, mmio + IRQ_COAL_IO_THRESHOLD); |
1113 | /* clear leftover coal IRQ bit */ |
1114 | writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); |
1115 | if (count) |
1116 | coal_enable = ALL_PORTS_COAL_DONE; |
1117 | clks = count = 0; /* force clearing of regular regs below */ |
1118 | } |
1119 | |
1120 | /* |
1121 | * All chips: independent thresholds for each HC on the chip. |
1122 | */ |
1123 | hc_mmio = mv_hc_base_from_port(mmio, 0); |
1124 | writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); |
1125 | writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); |
1126 | writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); |
1127 | if (count) |
1128 | coal_enable |= PORTS_0_3_COAL_DONE; |
1129 | if (is_dual_hc) { |
1130 | hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); |
1131 | writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); |
1132 | writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); |
1133 | writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); |
1134 | if (count) |
1135 | coal_enable |= PORTS_4_7_COAL_DONE; |
1136 | } |
1137 | |
1138 | mv_set_main_irq_mask(host, 0, coal_enable); |
1139 | spin_unlock_irqrestore(&host->lock, flags); |
1140 | } |
1141 | |
1142 | /** |
1143 | * mv_start_edma - Enable eDMA engine |
1144 | * @base: port base address |
1145 | * @pp: port private data |
1146 | * |
1147 | * Verify the local cache of the eDMA state is accurate with a |
1148 | * WARN_ON. |
1149 | * |
1150 | * LOCKING: |
1151 | * Inherited from caller. |
1152 | */ |
1153 | static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, |
1154 | struct mv_port_priv *pp, u8 protocol) |
1155 | { |
1156 | int want_ncq = (protocol == ATA_PROT_NCQ); |
1157 | |
1158 | if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { |
1159 | int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); |
1160 | if (want_ncq != using_ncq) |
1161 | mv_stop_edma(ap); |
1162 | } |
1163 | if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { |
1164 | struct mv_host_priv *hpriv = ap->host->private_data; |
1165 | |
1166 | mv_edma_cfg(ap, want_ncq, 1); |
1167 | |
1168 | mv_set_edma_ptrs(port_mmio, hpriv, pp); |
1169 | mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); |
1170 | |
1171 | writelfl(EDMA_EN, port_mmio + EDMA_CMD); |
1172 | pp->pp_flags |= MV_PP_FLAG_EDMA_EN; |
1173 | } |
1174 | } |
1175 | |
1176 | static void mv_wait_for_edma_empty_idle(struct ata_port *ap) |
1177 | { |
1178 | void __iomem *port_mmio = mv_ap_base(ap); |
1179 | const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); |
1180 | const int per_loop = 5, timeout = (15 * 1000 / per_loop); |
1181 | int i; |
1182 | |
1183 | /* |
1184 | * Wait for the EDMA engine to finish transactions in progress. |
1185 | * No idea what a good "timeout" value might be, but measurements |
1186 | * indicate that it often requires hundreds of microseconds |
1187 | * with two drives in-use. So we use the 15msec value above |
1188 | * as a rough guess at what even more drives might require. |
1189 | */ |
1190 | for (i = 0; i < timeout; ++i) { |
1191 | u32 edma_stat = readl(port_mmio + EDMA_STATUS); |
1192 | if ((edma_stat & empty_idle) == empty_idle) |
1193 | break; |
1194 | udelay(per_loop); |
1195 | } |
1196 | /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ |
1197 | } |
1198 | |
1199 | /** |
1200 | * mv_stop_edma_engine - Disable eDMA engine |
1201 | * @port_mmio: io base address |
1202 | * |
1203 | * LOCKING: |
1204 | * Inherited from caller. |
1205 | */ |
1206 | static int mv_stop_edma_engine(void __iomem *port_mmio) |
1207 | { |
1208 | int i; |
1209 | |
1210 | /* Disable eDMA. The disable bit auto clears. */ |
1211 | writelfl(EDMA_DS, port_mmio + EDMA_CMD); |
1212 | |
1213 | /* Wait for the chip to confirm eDMA is off. */ |
1214 | for (i = 10000; i > 0; i--) { |
1215 | u32 reg = readl(port_mmio + EDMA_CMD); |
1216 | if (!(reg & EDMA_EN)) |
1217 | return 0; |
1218 | udelay(10); |
1219 | } |
1220 | return -EIO; |
1221 | } |
1222 | |
1223 | static int mv_stop_edma(struct ata_port *ap) |
1224 | { |
1225 | void __iomem *port_mmio = mv_ap_base(ap); |
1226 | struct mv_port_priv *pp = ap->private_data; |
1227 | int err = 0; |
1228 | |
1229 | if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) |
1230 | return 0; |
1231 | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
1232 | mv_wait_for_edma_empty_idle(ap); |
1233 | if (mv_stop_edma_engine(port_mmio)) { |
1234 | ata_port_err(ap, "Unable to stop eDMA\n"); |
1235 | err = -EIO; |
1236 | } |
1237 | mv_edma_cfg(ap, 0, 0); |
1238 | return err; |
1239 | } |
1240 | |
1241 | #ifdef ATA_DEBUG |
1242 | static void mv_dump_mem(void __iomem *start, unsigned bytes) |
1243 | { |
1244 | int b, w; |
1245 | for (b = 0; b < bytes; ) { |
1246 | DPRINTK("%p: ", start + b); |
1247 | for (w = 0; b < bytes && w < 4; w++) { |
1248 | printk("%08x ", readl(start + b)); |
1249 | b += sizeof(u32); |
1250 | } |
1251 | printk("\n"); |
1252 | } |
1253 | } |
1254 | #endif |
1255 | |
1256 | static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) |
1257 | { |
1258 | #ifdef ATA_DEBUG |
1259 | int b, w; |
1260 | u32 dw; |
1261 | for (b = 0; b < bytes; ) { |
1262 | DPRINTK("%02x: ", b); |
1263 | for (w = 0; b < bytes && w < 4; w++) { |
1264 | (void) pci_read_config_dword(pdev, b, &dw); |
1265 | printk("%08x ", dw); |
1266 | b += sizeof(u32); |
1267 | } |
1268 | printk("\n"); |
1269 | } |
1270 | #endif |
1271 | } |
1272 | static void mv_dump_all_regs(void __iomem *mmio_base, int port, |
1273 | struct pci_dev *pdev) |
1274 | { |
1275 | #ifdef ATA_DEBUG |
1276 | void __iomem *hc_base = mv_hc_base(mmio_base, |
1277 | port >> MV_PORT_HC_SHIFT); |
1278 | void __iomem *port_base; |
1279 | int start_port, num_ports, p, start_hc, num_hcs, hc; |
1280 | |
1281 | if (0 > port) { |
1282 | start_hc = start_port = 0; |
1283 | num_ports = 8; /* shld be benign for 4 port devs */ |
1284 | num_hcs = 2; |
1285 | } else { |
1286 | start_hc = port >> MV_PORT_HC_SHIFT; |
1287 | start_port = port; |
1288 | num_ports = num_hcs = 1; |
1289 | } |
1290 | DPRINTK("All registers for port(s) %u-%u:\n", start_port, |
1291 | num_ports > 1 ? num_ports - 1 : start_port); |
1292 | |
1293 | if (NULL != pdev) { |
1294 | DPRINTK("PCI config space regs:\n"); |
1295 | mv_dump_pci_cfg(pdev, 0x68); |
1296 | } |
1297 | DPRINTK("PCI regs:\n"); |
1298 | mv_dump_mem(mmio_base+0xc00, 0x3c); |
1299 | mv_dump_mem(mmio_base+0xd00, 0x34); |
1300 | mv_dump_mem(mmio_base+0xf00, 0x4); |
1301 | mv_dump_mem(mmio_base+0x1d00, 0x6c); |
1302 | for (hc = start_hc; hc < start_hc + num_hcs; hc++) { |
1303 | hc_base = mv_hc_base(mmio_base, hc); |
1304 | DPRINTK("HC regs (HC %i):\n", hc); |
1305 | mv_dump_mem(hc_base, 0x1c); |
1306 | } |
1307 | for (p = start_port; p < start_port + num_ports; p++) { |
1308 | port_base = mv_port_base(mmio_base, p); |
1309 | DPRINTK("EDMA regs (port %i):\n", p); |
1310 | mv_dump_mem(port_base, 0x54); |
1311 | DPRINTK("SATA regs (port %i):\n", p); |
1312 | mv_dump_mem(port_base+0x300, 0x60); |
1313 | } |
1314 | #endif |
1315 | } |
1316 | |
1317 | static unsigned int mv_scr_offset(unsigned int sc_reg_in) |
1318 | { |
1319 | unsigned int ofs; |
1320 | |
1321 | switch (sc_reg_in) { |
1322 | case SCR_STATUS: |
1323 | case SCR_CONTROL: |
1324 | case SCR_ERROR: |
1325 | ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); |
1326 | break; |
1327 | case SCR_ACTIVE: |
1328 | ofs = SATA_ACTIVE; /* active is not with the others */ |
1329 | break; |
1330 | default: |
1331 | ofs = 0xffffffffU; |
1332 | break; |
1333 | } |
1334 | return ofs; |
1335 | } |
1336 | |
1337 | static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) |
1338 | { |
1339 | unsigned int ofs = mv_scr_offset(sc_reg_in); |
1340 | |
1341 | if (ofs != 0xffffffffU) { |
1342 | *val = readl(mv_ap_base(link->ap) + ofs); |
1343 | return 0; |
1344 | } else |
1345 | return -EINVAL; |
1346 | } |
1347 | |
1348 | static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) |
1349 | { |
1350 | unsigned int ofs = mv_scr_offset(sc_reg_in); |
1351 | |
1352 | if (ofs != 0xffffffffU) { |
1353 | void __iomem *addr = mv_ap_base(link->ap) + ofs; |
1354 | if (sc_reg_in == SCR_CONTROL) { |
1355 | /* |
1356 | * Workaround for 88SX60x1 FEr SATA#26: |
1357 | * |
1358 | * COMRESETs have to take care not to accidentally |
1359 | * put the drive to sleep when writing SCR_CONTROL. |
1360 | * Setting bits 12..15 prevents this problem. |
1361 | * |
1362 | * So if we see an outbound COMMRESET, set those bits. |
1363 | * Ditto for the followup write that clears the reset. |
1364 | * |
1365 | * The proprietary driver does this for |
1366 | * all chip versions, and so do we. |
1367 | */ |
1368 | if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) |
1369 | val |= 0xf000; |
1370 | } |
1371 | writelfl(val, addr); |
1372 | return 0; |
1373 | } else |
1374 | return -EINVAL; |
1375 | } |
1376 | |
1377 | static void mv6_dev_config(struct ata_device *adev) |
1378 | { |
1379 | /* |
1380 | * Deal with Gen-II ("mv6") hardware quirks/restrictions: |
1381 | * |
1382 | * Gen-II does not support NCQ over a port multiplier |
1383 | * (no FIS-based switching). |
1384 | */ |
1385 | if (adev->flags & ATA_DFLAG_NCQ) { |
1386 | if (sata_pmp_attached(adev->link->ap)) { |
1387 | adev->flags &= ~ATA_DFLAG_NCQ; |
1388 | ata_dev_info(adev, |
1389 | "NCQ disabled for command-based switching\n"); |
1390 | } |
1391 | } |
1392 | } |
1393 | |
1394 | static int mv_qc_defer(struct ata_queued_cmd *qc) |
1395 | { |
1396 | struct ata_link *link = qc->dev->link; |
1397 | struct ata_port *ap = link->ap; |
1398 | struct mv_port_priv *pp = ap->private_data; |
1399 | |
1400 | /* |
1401 | * Don't allow new commands if we're in a delayed EH state |
1402 | * for NCQ and/or FIS-based switching. |
1403 | */ |
1404 | if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) |
1405 | return ATA_DEFER_PORT; |
1406 | |
1407 | /* PIO commands need exclusive link: no other commands [DMA or PIO] |
1408 | * can run concurrently. |
1409 | * set excl_link when we want to send a PIO command in DMA mode |
1410 | * or a non-NCQ command in NCQ mode. |
1411 | * When we receive a command from that link, and there are no |
1412 | * outstanding commands, mark a flag to clear excl_link and let |
1413 | * the command go through. |
1414 | */ |
1415 | if (unlikely(ap->excl_link)) { |
1416 | if (link == ap->excl_link) { |
1417 | if (ap->nr_active_links) |
1418 | return ATA_DEFER_PORT; |
1419 | qc->flags |= ATA_QCFLAG_CLEAR_EXCL; |
1420 | return 0; |
1421 | } else |
1422 | return ATA_DEFER_PORT; |
1423 | } |
1424 | |
1425 | /* |
1426 | * If the port is completely idle, then allow the new qc. |
1427 | */ |
1428 | if (ap->nr_active_links == 0) |
1429 | return 0; |
1430 | |
1431 | /* |
1432 | * The port is operating in host queuing mode (EDMA) with NCQ |
1433 | * enabled, allow multiple NCQ commands. EDMA also allows |
1434 | * queueing multiple DMA commands but libata core currently |
1435 | * doesn't allow it. |
1436 | */ |
1437 | if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && |
1438 | (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { |
1439 | if (ata_is_ncq(qc->tf.protocol)) |
1440 | return 0; |
1441 | else { |
1442 | ap->excl_link = link; |
1443 | return ATA_DEFER_PORT; |
1444 | } |
1445 | } |
1446 | |
1447 | return ATA_DEFER_PORT; |
1448 | } |
1449 | |
1450 | static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) |
1451 | { |
1452 | struct mv_port_priv *pp = ap->private_data; |
1453 | void __iomem *port_mmio; |
1454 | |
1455 | u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; |
1456 | u32 ltmode, *old_ltmode = &pp->cached.ltmode; |
1457 | u32 haltcond, *old_haltcond = &pp->cached.haltcond; |
1458 | |
1459 | ltmode = *old_ltmode & ~LTMODE_BIT8; |
1460 | haltcond = *old_haltcond | EDMA_ERR_DEV; |
1461 | |
1462 | if (want_fbs) { |
1463 | fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; |
1464 | ltmode = *old_ltmode | LTMODE_BIT8; |
1465 | if (want_ncq) |
1466 | haltcond &= ~EDMA_ERR_DEV; |
1467 | else |
1468 | fiscfg |= FISCFG_WAIT_DEV_ERR; |
1469 | } else { |
1470 | fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); |
1471 | } |
1472 | |
1473 | port_mmio = mv_ap_base(ap); |
1474 | mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); |
1475 | mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); |
1476 | mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); |
1477 | } |
1478 | |
1479 | static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) |
1480 | { |
1481 | struct mv_host_priv *hpriv = ap->host->private_data; |
1482 | u32 old, new; |
1483 | |
1484 | /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ |
1485 | old = readl(hpriv->base + GPIO_PORT_CTL); |
1486 | if (want_ncq) |
1487 | new = old | (1 << 22); |
1488 | else |
1489 | new = old & ~(1 << 22); |
1490 | if (new != old) |
1491 | writel(new, hpriv->base + GPIO_PORT_CTL); |
1492 | } |
1493 | |
1494 | /** |
1495 | * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma |
1496 | * @ap: Port being initialized |
1497 | * |
1498 | * There are two DMA modes on these chips: basic DMA, and EDMA. |
1499 | * |
1500 | * Bit-0 of the "EDMA RESERVED" register enables/disables use |
1501 | * of basic DMA on the GEN_IIE versions of the chips. |
1502 | * |
1503 | * This bit survives EDMA resets, and must be set for basic DMA |
1504 | * to function, and should be cleared when EDMA is active. |
1505 | */ |
1506 | static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) |
1507 | { |
1508 | struct mv_port_priv *pp = ap->private_data; |
1509 | u32 new, *old = &pp->cached.unknown_rsvd; |
1510 | |
1511 | if (enable_bmdma) |
1512 | new = *old | 1; |
1513 | else |
1514 | new = *old & ~1; |
1515 | mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); |
1516 | } |
1517 | |
1518 | /* |
1519 | * SOC chips have an issue whereby the HDD LEDs don't always blink |
1520 | * during I/O when NCQ is enabled. Enabling a special "LED blink" mode |
1521 | * of the SOC takes care of it, generating a steady blink rate when |
1522 | * any drive on the chip is active. |
1523 | * |
1524 | * Unfortunately, the blink mode is a global hardware setting for the SOC, |
1525 | * so we must use it whenever at least one port on the SOC has NCQ enabled. |
1526 | * |
1527 | * We turn "LED blink" off when NCQ is not in use anywhere, because the normal |
1528 | * LED operation works then, and provides better (more accurate) feedback. |
1529 | * |
1530 | * Note that this code assumes that an SOC never has more than one HC onboard. |
1531 | */ |
1532 | static void mv_soc_led_blink_enable(struct ata_port *ap) |
1533 | { |
1534 | struct ata_host *host = ap->host; |
1535 | struct mv_host_priv *hpriv = host->private_data; |
1536 | void __iomem *hc_mmio; |
1537 | u32 led_ctrl; |
1538 | |
1539 | if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) |
1540 | return; |
1541 | hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; |
1542 | hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); |
1543 | led_ctrl = readl(hc_mmio + SOC_LED_CTRL); |
1544 | writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); |
1545 | } |
1546 | |
1547 | static void mv_soc_led_blink_disable(struct ata_port *ap) |
1548 | { |
1549 | struct ata_host *host = ap->host; |
1550 | struct mv_host_priv *hpriv = host->private_data; |
1551 | void __iomem *hc_mmio; |
1552 | u32 led_ctrl; |
1553 | unsigned int port; |
1554 | |
1555 | if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) |
1556 | return; |
1557 | |
1558 | /* disable led-blink only if no ports are using NCQ */ |
1559 | for (port = 0; port < hpriv->n_ports; port++) { |
1560 | struct ata_port *this_ap = host->ports[port]; |
1561 | struct mv_port_priv *pp = this_ap->private_data; |
1562 | |
1563 | if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) |
1564 | return; |
1565 | } |
1566 | |
1567 | hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; |
1568 | hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); |
1569 | led_ctrl = readl(hc_mmio + SOC_LED_CTRL); |
1570 | writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); |
1571 | } |
1572 | |
1573 | static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) |
1574 | { |
1575 | u32 cfg; |
1576 | struct mv_port_priv *pp = ap->private_data; |
1577 | struct mv_host_priv *hpriv = ap->host->private_data; |
1578 | void __iomem *port_mmio = mv_ap_base(ap); |
1579 | |
1580 | /* set up non-NCQ EDMA configuration */ |
1581 | cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ |
1582 | pp->pp_flags &= |
1583 | ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); |
1584 | |
1585 | if (IS_GEN_I(hpriv)) |
1586 | cfg |= (1 << 8); /* enab config burst size mask */ |
1587 | |
1588 | else if (IS_GEN_II(hpriv)) { |
1589 | cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; |
1590 | mv_60x1_errata_sata25(ap, want_ncq); |
1591 | |
1592 | } else if (IS_GEN_IIE(hpriv)) { |
1593 | int want_fbs = sata_pmp_attached(ap); |
1594 | /* |
1595 | * Possible future enhancement: |
1596 | * |
1597 | * The chip can use FBS with non-NCQ, if we allow it, |
1598 | * But first we need to have the error handling in place |
1599 | * for this mode (datasheet section 7.3.15.4.2.3). |
1600 | * So disallow non-NCQ FBS for now. |
1601 | */ |
1602 | want_fbs &= want_ncq; |
1603 | |
1604 | mv_config_fbs(ap, want_ncq, want_fbs); |
1605 | |
1606 | if (want_fbs) { |
1607 | pp->pp_flags |= MV_PP_FLAG_FBS_EN; |
1608 | cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ |
1609 | } |
1610 | |
1611 | cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ |
1612 | if (want_edma) { |
1613 | cfg |= (1 << 22); /* enab 4-entry host queue cache */ |
1614 | if (!IS_SOC(hpriv)) |
1615 | cfg |= (1 << 18); /* enab early completion */ |
1616 | } |
1617 | if (hpriv->hp_flags & MV_HP_CUT_THROUGH) |
1618 | cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ |
1619 | mv_bmdma_enable_iie(ap, !want_edma); |
1620 | |
1621 | if (IS_SOC(hpriv)) { |
1622 | if (want_ncq) |
1623 | mv_soc_led_blink_enable(ap); |
1624 | else |
1625 | mv_soc_led_blink_disable(ap); |
1626 | } |
1627 | } |
1628 | |
1629 | if (want_ncq) { |
1630 | cfg |= EDMA_CFG_NCQ; |
1631 | pp->pp_flags |= MV_PP_FLAG_NCQ_EN; |
1632 | } |
1633 | |
1634 | writelfl(cfg, port_mmio + EDMA_CFG); |
1635 | } |
1636 | |
1637 | static void mv_port_free_dma_mem(struct ata_port *ap) |
1638 | { |
1639 | struct mv_host_priv *hpriv = ap->host->private_data; |
1640 | struct mv_port_priv *pp = ap->private_data; |
1641 | int tag; |
1642 | |
1643 | if (pp->crqb) { |
1644 | dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); |
1645 | pp->crqb = NULL; |
1646 | } |
1647 | if (pp->crpb) { |
1648 | dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); |
1649 | pp->crpb = NULL; |
1650 | } |
1651 | /* |
1652 | * For GEN_I, there's no NCQ, so we have only a single sg_tbl. |
1653 | * For later hardware, we have one unique sg_tbl per NCQ tag. |
1654 | */ |
1655 | for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { |
1656 | if (pp->sg_tbl[tag]) { |
1657 | if (tag == 0 || !IS_GEN_I(hpriv)) |
1658 | dma_pool_free(hpriv->sg_tbl_pool, |
1659 | pp->sg_tbl[tag], |
1660 | pp->sg_tbl_dma[tag]); |
1661 | pp->sg_tbl[tag] = NULL; |
1662 | } |
1663 | } |
1664 | } |
1665 | |
1666 | /** |
1667 | * mv_port_start - Port specific init/start routine. |
1668 | * @ap: ATA channel to manipulate |
1669 | * |
1670 | * Allocate and point to DMA memory, init port private memory, |
1671 | * zero indices. |
1672 | * |
1673 | * LOCKING: |
1674 | * Inherited from caller. |
1675 | */ |
1676 | static int mv_port_start(struct ata_port *ap) |
1677 | { |
1678 | struct device *dev = ap->host->dev; |
1679 | struct mv_host_priv *hpriv = ap->host->private_data; |
1680 | struct mv_port_priv *pp; |
1681 | unsigned long flags; |
1682 | int tag; |
1683 | |
1684 | pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); |
1685 | if (!pp) |
1686 | return -ENOMEM; |
1687 | ap->private_data = pp; |
1688 | |
1689 | pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); |
1690 | if (!pp->crqb) |
1691 | return -ENOMEM; |
1692 | memset(pp->crqb, 0, MV_CRQB_Q_SZ); |
1693 | |
1694 | pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); |
1695 | if (!pp->crpb) |
1696 | goto out_port_free_dma_mem; |
1697 | memset(pp->crpb, 0, MV_CRPB_Q_SZ); |
1698 | |
1699 | /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ |
1700 | if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) |
1701 | ap->flags |= ATA_FLAG_AN; |
1702 | /* |
1703 | * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. |
1704 | * For later hardware, we need one unique sg_tbl per NCQ tag. |
1705 | */ |
1706 | for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { |
1707 | if (tag == 0 || !IS_GEN_I(hpriv)) { |
1708 | pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, |
1709 | GFP_KERNEL, &pp->sg_tbl_dma[tag]); |
1710 | if (!pp->sg_tbl[tag]) |
1711 | goto out_port_free_dma_mem; |
1712 | } else { |
1713 | pp->sg_tbl[tag] = pp->sg_tbl[0]; |
1714 | pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; |
1715 | } |
1716 | } |
1717 | |
1718 | spin_lock_irqsave(ap->lock, flags); |
1719 | mv_save_cached_regs(ap); |
1720 | mv_edma_cfg(ap, 0, 0); |
1721 | spin_unlock_irqrestore(ap->lock, flags); |
1722 | |
1723 | return 0; |
1724 | |
1725 | out_port_free_dma_mem: |
1726 | mv_port_free_dma_mem(ap); |
1727 | return -ENOMEM; |
1728 | } |
1729 | |
1730 | /** |
1731 | * mv_port_stop - Port specific cleanup/stop routine. |
1732 | * @ap: ATA channel to manipulate |
1733 | * |
1734 | * Stop DMA, cleanup port memory. |
1735 | * |
1736 | * LOCKING: |
1737 | * This routine uses the host lock to protect the DMA stop. |
1738 | */ |
1739 | static void mv_port_stop(struct ata_port *ap) |
1740 | { |
1741 | unsigned long flags; |
1742 | |
1743 | spin_lock_irqsave(ap->lock, flags); |
1744 | mv_stop_edma(ap); |
1745 | mv_enable_port_irqs(ap, 0); |
1746 | spin_unlock_irqrestore(ap->lock, flags); |
1747 | mv_port_free_dma_mem(ap); |
1748 | } |
1749 | |
1750 | /** |
1751 | * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries |
1752 | * @qc: queued command whose SG list to source from |
1753 | * |
1754 | * Populate the SG list and mark the last entry. |
1755 | * |
1756 | * LOCKING: |
1757 | * Inherited from caller. |
1758 | */ |
1759 | static void mv_fill_sg(struct ata_queued_cmd *qc) |
1760 | { |
1761 | struct mv_port_priv *pp = qc->ap->private_data; |
1762 | struct scatterlist *sg; |
1763 | struct mv_sg *mv_sg, *last_sg = NULL; |
1764 | unsigned int si; |
1765 | |
1766 | mv_sg = pp->sg_tbl[qc->tag]; |
1767 | for_each_sg(qc->sg, sg, qc->n_elem, si) { |
1768 | dma_addr_t addr = sg_dma_address(sg); |
1769 | u32 sg_len = sg_dma_len(sg); |
1770 | |
1771 | while (sg_len) { |
1772 | u32 offset = addr & 0xffff; |
1773 | u32 len = sg_len; |
1774 | |
1775 | if (offset + len > 0x10000) |
1776 | len = 0x10000 - offset; |
1777 | |
1778 | mv_sg->addr = cpu_to_le32(addr & 0xffffffff); |
1779 | mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); |
1780 | mv_sg->flags_size = cpu_to_le32(len & 0xffff); |
1781 | mv_sg->reserved = 0; |
1782 | |
1783 | sg_len -= len; |
1784 | addr += len; |
1785 | |
1786 | last_sg = mv_sg; |
1787 | mv_sg++; |
1788 | } |
1789 | } |
1790 | |
1791 | if (likely(last_sg)) |
1792 | last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); |
1793 | mb(); /* ensure data structure is visible to the chipset */ |
1794 | } |
1795 | |
1796 | static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) |
1797 | { |
1798 | u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | |
1799 | (last ? CRQB_CMD_LAST : 0); |
1800 | *cmdw = cpu_to_le16(tmp); |
1801 | } |
1802 | |
1803 | /** |
1804 | * mv_sff_irq_clear - Clear hardware interrupt after DMA. |
1805 | * @ap: Port associated with this ATA transaction. |
1806 | * |
1807 | * We need this only for ATAPI bmdma transactions, |
1808 | * as otherwise we experience spurious interrupts |
1809 | * after libata-sff handles the bmdma interrupts. |
1810 | */ |
1811 | static void mv_sff_irq_clear(struct ata_port *ap) |
1812 | { |
1813 | mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); |
1814 | } |
1815 | |
1816 | /** |
1817 | * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. |
1818 | * @qc: queued command to check for chipset/DMA compatibility. |
1819 | * |
1820 | * The bmdma engines cannot handle speculative data sizes |
1821 | * (bytecount under/over flow). So only allow DMA for |
1822 | * data transfer commands with known data sizes. |
1823 | * |
1824 | * LOCKING: |
1825 | * Inherited from caller. |
1826 | */ |
1827 | static int mv_check_atapi_dma(struct ata_queued_cmd *qc) |
1828 | { |
1829 | struct scsi_cmnd *scmd = qc->scsicmd; |
1830 | |
1831 | if (scmd) { |
1832 | switch (scmd->cmnd[0]) { |
1833 | case READ_6: |
1834 | case READ_10: |
1835 | case READ_12: |
1836 | case WRITE_6: |
1837 | case WRITE_10: |
1838 | case WRITE_12: |
1839 | case GPCMD_READ_CD: |
1840 | case GPCMD_SEND_DVD_STRUCTURE: |
1841 | case GPCMD_SEND_CUE_SHEET: |
1842 | return 0; /* DMA is safe */ |
1843 | } |
1844 | } |
1845 | return -EOPNOTSUPP; /* use PIO instead */ |
1846 | } |
1847 | |
1848 | /** |
1849 | * mv_bmdma_setup - Set up BMDMA transaction |
1850 | * @qc: queued command to prepare DMA for. |
1851 | * |
1852 | * LOCKING: |
1853 | * Inherited from caller. |
1854 | */ |
1855 | static void mv_bmdma_setup(struct ata_queued_cmd *qc) |
1856 | { |
1857 | struct ata_port *ap = qc->ap; |
1858 | void __iomem *port_mmio = mv_ap_base(ap); |
1859 | struct mv_port_priv *pp = ap->private_data; |
1860 | |
1861 | mv_fill_sg(qc); |
1862 | |
1863 | /* clear all DMA cmd bits */ |
1864 | writel(0, port_mmio + BMDMA_CMD); |
1865 | |
1866 | /* load PRD table addr. */ |
1867 | writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, |
1868 | port_mmio + BMDMA_PRD_HIGH); |
1869 | writelfl(pp->sg_tbl_dma[qc->tag], |
1870 | port_mmio + BMDMA_PRD_LOW); |
1871 | |
1872 | /* issue r/w command */ |
1873 | ap->ops->sff_exec_command(ap, &qc->tf); |
1874 | } |
1875 | |
1876 | /** |
1877 | * mv_bmdma_start - Start a BMDMA transaction |
1878 | * @qc: queued command to start DMA on. |
1879 | * |
1880 | * LOCKING: |
1881 | * Inherited from caller. |
1882 | */ |
1883 | static void mv_bmdma_start(struct ata_queued_cmd *qc) |
1884 | { |
1885 | struct ata_port *ap = qc->ap; |
1886 | void __iomem *port_mmio = mv_ap_base(ap); |
1887 | unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); |
1888 | u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; |
1889 | |
1890 | /* start host DMA transaction */ |
1891 | writelfl(cmd, port_mmio + BMDMA_CMD); |
1892 | } |
1893 | |
1894 | /** |
1895 | * mv_bmdma_stop - Stop BMDMA transfer |
1896 | * @qc: queued command to stop DMA on. |
1897 | * |
1898 | * Clears the ATA_DMA_START flag in the bmdma control register |
1899 | * |
1900 | * LOCKING: |
1901 | * Inherited from caller. |
1902 | */ |
1903 | static void mv_bmdma_stop_ap(struct ata_port *ap) |
1904 | { |
1905 | void __iomem *port_mmio = mv_ap_base(ap); |
1906 | u32 cmd; |
1907 | |
1908 | /* clear start/stop bit */ |
1909 | cmd = readl(port_mmio + BMDMA_CMD); |
1910 | if (cmd & ATA_DMA_START) { |
1911 | cmd &= ~ATA_DMA_START; |
1912 | writelfl(cmd, port_mmio + BMDMA_CMD); |
1913 | |
1914 | /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ |
1915 | ata_sff_dma_pause(ap); |
1916 | } |
1917 | } |
1918 | |
1919 | static void mv_bmdma_stop(struct ata_queued_cmd *qc) |
1920 | { |
1921 | mv_bmdma_stop_ap(qc->ap); |
1922 | } |
1923 | |
1924 | /** |
1925 | * mv_bmdma_status - Read BMDMA status |
1926 | * @ap: port for which to retrieve DMA status. |
1927 | * |
1928 | * Read and return equivalent of the sff BMDMA status register. |
1929 | * |
1930 | * LOCKING: |
1931 | * Inherited from caller. |
1932 | */ |
1933 | static u8 mv_bmdma_status(struct ata_port *ap) |
1934 | { |
1935 | void __iomem *port_mmio = mv_ap_base(ap); |
1936 | u32 reg, status; |
1937 | |
1938 | /* |
1939 | * Other bits are valid only if ATA_DMA_ACTIVE==0, |
1940 | * and the ATA_DMA_INTR bit doesn't exist. |
1941 | */ |
1942 | reg = readl(port_mmio + BMDMA_STATUS); |
1943 | if (reg & ATA_DMA_ACTIVE) |
1944 | status = ATA_DMA_ACTIVE; |
1945 | else if (reg & ATA_DMA_ERR) |
1946 | status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; |
1947 | else { |
1948 | /* |
1949 | * Just because DMA_ACTIVE is 0 (DMA completed), |
1950 | * this does _not_ mean the device is "done". |
1951 | * So we should not yet be signalling ATA_DMA_INTR |
1952 | * in some cases. Eg. DSM/TRIM, and perhaps others. |
1953 | */ |
1954 | mv_bmdma_stop_ap(ap); |
1955 | if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) |
1956 | status = 0; |
1957 | else |
1958 | status = ATA_DMA_INTR; |
1959 | } |
1960 | return status; |
1961 | } |
1962 | |
1963 | static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) |
1964 | { |
1965 | struct ata_taskfile *tf = &qc->tf; |
1966 | /* |
1967 | * Workaround for 88SX60x1 FEr SATA#24. |
1968 | * |
1969 | * Chip may corrupt WRITEs if multi_count >= 4kB. |
1970 | * Note that READs are unaffected. |
1971 | * |
1972 | * It's not clear if this errata really means "4K bytes", |
1973 | * or if it always happens for multi_count > 7 |
1974 | * regardless of device sector_size. |
1975 | * |
1976 | * So, for safety, any write with multi_count > 7 |
1977 | * gets converted here into a regular PIO write instead: |
1978 | */ |
1979 | if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { |
1980 | if (qc->dev->multi_count > 7) { |
1981 | switch (tf->command) { |
1982 | case ATA_CMD_WRITE_MULTI: |
1983 | tf->command = ATA_CMD_PIO_WRITE; |
1984 | break; |
1985 | case ATA_CMD_WRITE_MULTI_FUA_EXT: |
1986 | tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ |
1987 | /* fall through */ |
1988 | case ATA_CMD_WRITE_MULTI_EXT: |
1989 | tf->command = ATA_CMD_PIO_WRITE_EXT; |
1990 | break; |
1991 | } |
1992 | } |
1993 | } |
1994 | } |
1995 | |
1996 | /** |
1997 | * mv_qc_prep - Host specific command preparation. |
1998 | * @qc: queued command to prepare |
1999 | * |
2000 | * This routine simply redirects to the general purpose routine |
2001 | * if command is not DMA. Else, it handles prep of the CRQB |
2002 | * (command request block), does some sanity checking, and calls |
2003 | * the SG load routine. |
2004 | * |
2005 | * LOCKING: |
2006 | * Inherited from caller. |
2007 | */ |
2008 | static void mv_qc_prep(struct ata_queued_cmd *qc) |
2009 | { |
2010 | struct ata_port *ap = qc->ap; |
2011 | struct mv_port_priv *pp = ap->private_data; |
2012 | __le16 *cw; |
2013 | struct ata_taskfile *tf = &qc->tf; |
2014 | u16 flags = 0; |
2015 | unsigned in_index; |
2016 | |
2017 | switch (tf->protocol) { |
2018 | case ATA_PROT_DMA: |
2019 | if (tf->command == ATA_CMD_DSM) |
2020 | return; |
2021 | /* fall-thru */ |
2022 | case ATA_PROT_NCQ: |
2023 | break; /* continue below */ |
2024 | case ATA_PROT_PIO: |
2025 | mv_rw_multi_errata_sata24(qc); |
2026 | return; |
2027 | default: |
2028 | return; |
2029 | } |
2030 | |
2031 | /* Fill in command request block |
2032 | */ |
2033 | if (!(tf->flags & ATA_TFLAG_WRITE)) |
2034 | flags |= CRQB_FLAG_READ; |
2035 | WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
2036 | flags |= qc->tag << CRQB_TAG_SHIFT; |
2037 | flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; |
2038 | |
2039 | /* get current queue index from software */ |
2040 | in_index = pp->req_idx; |
2041 | |
2042 | pp->crqb[in_index].sg_addr = |
2043 | cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); |
2044 | pp->crqb[in_index].sg_addr_hi = |
2045 | cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); |
2046 | pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); |
2047 | |
2048 | cw = &pp->crqb[in_index].ata_cmd[0]; |
2049 | |
2050 | /* Sadly, the CRQB cannot accommodate all registers--there are |
2051 | * only 11 bytes...so we must pick and choose required |
2052 | * registers based on the command. So, we drop feature and |
2053 | * hob_feature for [RW] DMA commands, but they are needed for |
2054 | * NCQ. NCQ will drop hob_nsect, which is not needed there |
2055 | * (nsect is used only for the tag; feat/hob_feat hold true nsect). |
2056 | */ |
2057 | switch (tf->command) { |
2058 | case ATA_CMD_READ: |
2059 | case ATA_CMD_READ_EXT: |
2060 | case ATA_CMD_WRITE: |
2061 | case ATA_CMD_WRITE_EXT: |
2062 | case ATA_CMD_WRITE_FUA_EXT: |
2063 | mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); |
2064 | break; |
2065 | case ATA_CMD_FPDMA_READ: |
2066 | case ATA_CMD_FPDMA_WRITE: |
2067 | mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); |
2068 | mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); |
2069 | break; |
2070 | default: |
2071 | /* The only other commands EDMA supports in non-queued and |
2072 | * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none |
2073 | * of which are defined/used by Linux. If we get here, this |
2074 | * driver needs work. |
2075 | * |
2076 | * FIXME: modify libata to give qc_prep a return value and |
2077 | * return error here. |
2078 | */ |
2079 | BUG_ON(tf->command); |
2080 | break; |
2081 | } |
2082 | mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); |
2083 | mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); |
2084 | mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); |
2085 | mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); |
2086 | mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); |
2087 | mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); |
2088 | mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); |
2089 | mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); |
2090 | mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ |
2091 | |
2092 | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
2093 | return; |
2094 | mv_fill_sg(qc); |
2095 | } |
2096 | |
2097 | /** |
2098 | * mv_qc_prep_iie - Host specific command preparation. |
2099 | * @qc: queued command to prepare |
2100 | * |
2101 | * This routine simply redirects to the general purpose routine |
2102 | * if command is not DMA. Else, it handles prep of the CRQB |
2103 | * (command request block), does some sanity checking, and calls |
2104 | * the SG load routine. |
2105 | * |
2106 | * LOCKING: |
2107 | * Inherited from caller. |
2108 | */ |
2109 | static void mv_qc_prep_iie(struct ata_queued_cmd *qc) |
2110 | { |
2111 | struct ata_port *ap = qc->ap; |
2112 | struct mv_port_priv *pp = ap->private_data; |
2113 | struct mv_crqb_iie *crqb; |
2114 | struct ata_taskfile *tf = &qc->tf; |
2115 | unsigned in_index; |
2116 | u32 flags = 0; |
2117 | |
2118 | if ((tf->protocol != ATA_PROT_DMA) && |
2119 | (tf->protocol != ATA_PROT_NCQ)) |
2120 | return; |
2121 | if (tf->command == ATA_CMD_DSM) |
2122 | return; /* use bmdma for this */ |
2123 | |
2124 | /* Fill in Gen IIE command request block */ |
2125 | if (!(tf->flags & ATA_TFLAG_WRITE)) |
2126 | flags |= CRQB_FLAG_READ; |
2127 | |
2128 | WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
2129 | flags |= qc->tag << CRQB_TAG_SHIFT; |
2130 | flags |= qc->tag << CRQB_HOSTQ_SHIFT; |
2131 | flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; |
2132 | |
2133 | /* get current queue index from software */ |
2134 | in_index = pp->req_idx; |
2135 | |
2136 | crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; |
2137 | crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); |
2138 | crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); |
2139 | crqb->flags = cpu_to_le32(flags); |
2140 | |
2141 | crqb->ata_cmd[0] = cpu_to_le32( |
2142 | (tf->command << 16) | |
2143 | (tf->feature << 24) |
2144 | ); |
2145 | crqb->ata_cmd[1] = cpu_to_le32( |
2146 | (tf->lbal << 0) | |
2147 | (tf->lbam << 8) | |
2148 | (tf->lbah << 16) | |
2149 | (tf->device << 24) |
2150 | ); |
2151 | crqb->ata_cmd[2] = cpu_to_le32( |
2152 | (tf->hob_lbal << 0) | |
2153 | (tf->hob_lbam << 8) | |
2154 | (tf->hob_lbah << 16) | |
2155 | (tf->hob_feature << 24) |
2156 | ); |
2157 | crqb->ata_cmd[3] = cpu_to_le32( |
2158 | (tf->nsect << 0) | |
2159 | (tf->hob_nsect << 8) |
2160 | ); |
2161 | |
2162 | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
2163 | return; |
2164 | mv_fill_sg(qc); |
2165 | } |
2166 | |
2167 | /** |
2168 | * mv_sff_check_status - fetch device status, if valid |
2169 | * @ap: ATA port to fetch status from |
2170 | * |
2171 | * When using command issue via mv_qc_issue_fis(), |
2172 | * the initial ATA_BUSY state does not show up in the |
2173 | * ATA status (shadow) register. This can confuse libata! |
2174 | * |
2175 | * So we have a hook here to fake ATA_BUSY for that situation, |
2176 | * until the first time a BUSY, DRQ, or ERR bit is seen. |
2177 | * |
2178 | * The rest of the time, it simply returns the ATA status register. |
2179 | */ |
2180 | static u8 mv_sff_check_status(struct ata_port *ap) |
2181 | { |
2182 | u8 stat = ioread8(ap->ioaddr.status_addr); |
2183 | struct mv_port_priv *pp = ap->private_data; |
2184 | |
2185 | if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { |
2186 | if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) |
2187 | pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; |
2188 | else |
2189 | stat = ATA_BUSY; |
2190 | } |
2191 | return stat; |
2192 | } |
2193 | |
2194 | /** |
2195 | * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register |
2196 | * @fis: fis to be sent |
2197 | * @nwords: number of 32-bit words in the fis |
2198 | */ |
2199 | static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) |
2200 | { |
2201 | void __iomem *port_mmio = mv_ap_base(ap); |
2202 | u32 ifctl, old_ifctl, ifstat; |
2203 | int i, timeout = 200, final_word = nwords - 1; |
2204 | |
2205 | /* Initiate FIS transmission mode */ |
2206 | old_ifctl = readl(port_mmio + SATA_IFCTL); |
2207 | ifctl = 0x100 | (old_ifctl & 0xf); |
2208 | writelfl(ifctl, port_mmio + SATA_IFCTL); |
2209 | |
2210 | /* Send all words of the FIS except for the final word */ |
2211 | for (i = 0; i < final_word; ++i) |
2212 | writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); |
2213 | |
2214 | /* Flag end-of-transmission, and then send the final word */ |
2215 | writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); |
2216 | writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); |
2217 | |
2218 | /* |
2219 | * Wait for FIS transmission to complete. |
2220 | * This typically takes just a single iteration. |
2221 | */ |
2222 | do { |
2223 | ifstat = readl(port_mmio + SATA_IFSTAT); |
2224 | } while (!(ifstat & 0x1000) && --timeout); |
2225 | |
2226 | /* Restore original port configuration */ |
2227 | writelfl(old_ifctl, port_mmio + SATA_IFCTL); |
2228 | |
2229 | /* See if it worked */ |
2230 | if ((ifstat & 0x3000) != 0x1000) { |
2231 | ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", |
2232 | __func__, ifstat); |
2233 | return AC_ERR_OTHER; |
2234 | } |
2235 | return 0; |
2236 | } |
2237 | |
2238 | /** |
2239 | * mv_qc_issue_fis - Issue a command directly as a FIS |
2240 | * @qc: queued command to start |
2241 | * |
2242 | * Note that the ATA shadow registers are not updated |
2243 | * after command issue, so the device will appear "READY" |
2244 | * if polled, even while it is BUSY processing the command. |
2245 | * |
2246 | * So we use a status hook to fake ATA_BUSY until the drive changes state. |
2247 | * |
2248 | * Note: we don't get updated shadow regs on *completion* |
2249 | * of non-data commands. So avoid sending them via this function, |
2250 | * as they will appear to have completed immediately. |
2251 | * |
2252 | * GEN_IIE has special registers that we could get the result tf from, |
2253 | * but earlier chipsets do not. For now, we ignore those registers. |
2254 | */ |
2255 | static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) |
2256 | { |
2257 | struct ata_port *ap = qc->ap; |
2258 | struct mv_port_priv *pp = ap->private_data; |
2259 | struct ata_link *link = qc->dev->link; |
2260 | u32 fis[5]; |
2261 | int err = 0; |
2262 | |
2263 | ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); |
2264 | err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); |
2265 | if (err) |
2266 | return err; |
2267 | |
2268 | switch (qc->tf.protocol) { |
2269 | case ATAPI_PROT_PIO: |
2270 | pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; |
2271 | /* fall through */ |
2272 | case ATAPI_PROT_NODATA: |
2273 | ap->hsm_task_state = HSM_ST_FIRST; |
2274 | break; |
2275 | case ATA_PROT_PIO: |
2276 | pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; |
2277 | if (qc->tf.flags & ATA_TFLAG_WRITE) |
2278 | ap->hsm_task_state = HSM_ST_FIRST; |
2279 | else |
2280 | ap->hsm_task_state = HSM_ST; |
2281 | break; |
2282 | default: |
2283 | ap->hsm_task_state = HSM_ST_LAST; |
2284 | break; |
2285 | } |
2286 | |
2287 | if (qc->tf.flags & ATA_TFLAG_POLLING) |
2288 | ata_sff_queue_pio_task(link, 0); |
2289 | return 0; |
2290 | } |
2291 | |
2292 | /** |
2293 | * mv_qc_issue - Initiate a command to the host |
2294 | * @qc: queued command to start |
2295 | * |
2296 | * This routine simply redirects to the general purpose routine |
2297 | * if command is not DMA. Else, it sanity checks our local |
2298 | * caches of the request producer/consumer indices then enables |
2299 | * DMA and bumps the request producer index. |
2300 | * |
2301 | * LOCKING: |
2302 | * Inherited from caller. |
2303 | */ |
2304 | static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) |
2305 | { |
2306 | static int limit_warnings = 10; |
2307 | struct ata_port *ap = qc->ap; |
2308 | void __iomem *port_mmio = mv_ap_base(ap); |
2309 | struct mv_port_priv *pp = ap->private_data; |
2310 | u32 in_index; |
2311 | unsigned int port_irqs; |
2312 | |
2313 | pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ |
2314 | |
2315 | switch (qc->tf.protocol) { |
2316 | case ATA_PROT_DMA: |
2317 | if (qc->tf.command == ATA_CMD_DSM) { |
2318 | if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ |
2319 | return AC_ERR_OTHER; |
2320 | break; /* use bmdma for this */ |
2321 | } |
2322 | /* fall thru */ |
2323 | case ATA_PROT_NCQ: |
2324 | mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); |
2325 | pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; |
2326 | in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; |
2327 | |
2328 | /* Write the request in pointer to kick the EDMA to life */ |
2329 | writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, |
2330 | port_mmio + EDMA_REQ_Q_IN_PTR); |
2331 | return 0; |
2332 | |
2333 | case ATA_PROT_PIO: |
2334 | /* |
2335 | * Errata SATA#16, SATA#24: warn if multiple DRQs expected. |
2336 | * |
2337 | * Someday, we might implement special polling workarounds |
2338 | * for these, but it all seems rather unnecessary since we |
2339 | * normally use only DMA for commands which transfer more |
2340 | * than a single block of data. |
2341 | * |
2342 | * Much of the time, this could just work regardless. |
2343 | * So for now, just log the incident, and allow the attempt. |
2344 | */ |
2345 | if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { |
2346 | --limit_warnings; |
2347 | ata_link_warn(qc->dev->link, DRV_NAME |
2348 | ": attempting PIO w/multiple DRQ: " |
2349 | "this may fail due to h/w errata\n"); |
2350 | } |
2351 | /* drop through */ |
2352 | case ATA_PROT_NODATA: |
2353 | case ATAPI_PROT_PIO: |
2354 | case ATAPI_PROT_NODATA: |
2355 | if (ap->flags & ATA_FLAG_PIO_POLLING) |
2356 | qc->tf.flags |= ATA_TFLAG_POLLING; |
2357 | break; |
2358 | } |
2359 | |
2360 | if (qc->tf.flags & ATA_TFLAG_POLLING) |
2361 | port_irqs = ERR_IRQ; /* mask device interrupt when polling */ |
2362 | else |
2363 | port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ |
2364 | |
2365 | /* |
2366 | * We're about to send a non-EDMA capable command to the |
2367 | * port. Turn off EDMA so there won't be problems accessing |
2368 | * shadow block, etc registers. |
2369 | */ |
2370 | mv_stop_edma(ap); |
2371 | mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); |
2372 | mv_pmp_select(ap, qc->dev->link->pmp); |
2373 | |
2374 | if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { |
2375 | struct mv_host_priv *hpriv = ap->host->private_data; |
2376 | /* |
2377 | * Workaround for 88SX60x1 FEr SATA#25 (part 2). |
2378 | * |
2379 | * After any NCQ error, the READ_LOG_EXT command |
2380 | * from libata-eh *must* use mv_qc_issue_fis(). |
2381 | * Otherwise it might fail, due to chip errata. |
2382 | * |
2383 | * Rather than special-case it, we'll just *always* |
2384 | * use this method here for READ_LOG_EXT, making for |
2385 | * easier testing. |
2386 | */ |
2387 | if (IS_GEN_II(hpriv)) |
2388 | return mv_qc_issue_fis(qc); |
2389 | } |
2390 | return ata_bmdma_qc_issue(qc); |
2391 | } |
2392 | |
2393 | static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) |
2394 | { |
2395 | struct mv_port_priv *pp = ap->private_data; |
2396 | struct ata_queued_cmd *qc; |
2397 | |
2398 | if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) |
2399 | return NULL; |
2400 | qc = ata_qc_from_tag(ap, ap->link.active_tag); |
2401 | if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) |
2402 | return qc; |
2403 | return NULL; |
2404 | } |
2405 | |
2406 | static void mv_pmp_error_handler(struct ata_port *ap) |
2407 | { |
2408 | unsigned int pmp, pmp_map; |
2409 | struct mv_port_priv *pp = ap->private_data; |
2410 | |
2411 | if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { |
2412 | /* |
2413 | * Perform NCQ error analysis on failed PMPs |
2414 | * before we freeze the port entirely. |
2415 | * |
2416 | * The failed PMPs are marked earlier by mv_pmp_eh_prep(). |
2417 | */ |
2418 | pmp_map = pp->delayed_eh_pmp_map; |
2419 | pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; |
2420 | for (pmp = 0; pmp_map != 0; pmp++) { |
2421 | unsigned int this_pmp = (1 << pmp); |
2422 | if (pmp_map & this_pmp) { |
2423 | struct ata_link *link = &ap->pmp_link[pmp]; |
2424 | pmp_map &= ~this_pmp; |
2425 | ata_eh_analyze_ncq_error(link); |
2426 | } |
2427 | } |
2428 | ata_port_freeze(ap); |
2429 | } |
2430 | sata_pmp_error_handler(ap); |
2431 | } |
2432 | |
2433 | static unsigned int mv_get_err_pmp_map(struct ata_port *ap) |
2434 | { |
2435 | void __iomem *port_mmio = mv_ap_base(ap); |
2436 | |
2437 | return readl(port_mmio + SATA_TESTCTL) >> 16; |
2438 | } |
2439 | |
2440 | static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) |
2441 | { |
2442 | struct ata_eh_info *ehi; |
2443 | unsigned int pmp; |
2444 | |
2445 | /* |
2446 | * Initialize EH info for PMPs which saw device errors |
2447 | */ |
2448 | ehi = &ap->link.eh_info; |
2449 | for (pmp = 0; pmp_map != 0; pmp++) { |
2450 | unsigned int this_pmp = (1 << pmp); |
2451 | if (pmp_map & this_pmp) { |
2452 | struct ata_link *link = &ap->pmp_link[pmp]; |
2453 | |
2454 | pmp_map &= ~this_pmp; |
2455 | ehi = &link->eh_info; |
2456 | ata_ehi_clear_desc(ehi); |
2457 | ata_ehi_push_desc(ehi, "dev err"); |
2458 | ehi->err_mask |= AC_ERR_DEV; |
2459 | ehi->action |= ATA_EH_RESET; |
2460 | ata_link_abort(link); |
2461 | } |
2462 | } |
2463 | } |
2464 | |
2465 | static int mv_req_q_empty(struct ata_port *ap) |
2466 | { |
2467 | void __iomem *port_mmio = mv_ap_base(ap); |
2468 | u32 in_ptr, out_ptr; |
2469 | |
2470 | in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) |
2471 | >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
2472 | out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) |
2473 | >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
2474 | return (in_ptr == out_ptr); /* 1 == queue_is_empty */ |
2475 | } |
2476 | |
2477 | static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) |
2478 | { |
2479 | struct mv_port_priv *pp = ap->private_data; |
2480 | int failed_links; |
2481 | unsigned int old_map, new_map; |
2482 | |
2483 | /* |
2484 | * Device error during FBS+NCQ operation: |
2485 | * |
2486 | * Set a port flag to prevent further I/O being enqueued. |
2487 | * Leave the EDMA running to drain outstanding commands from this port. |
2488 | * Perform the post-mortem/EH only when all responses are complete. |
2489 | * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). |
2490 | */ |
2491 | if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { |
2492 | pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; |
2493 | pp->delayed_eh_pmp_map = 0; |
2494 | } |
2495 | old_map = pp->delayed_eh_pmp_map; |
2496 | new_map = old_map | mv_get_err_pmp_map(ap); |
2497 | |
2498 | if (old_map != new_map) { |
2499 | pp->delayed_eh_pmp_map = new_map; |
2500 | mv_pmp_eh_prep(ap, new_map & ~old_map); |
2501 | } |
2502 | failed_links = hweight16(new_map); |
2503 | |
2504 | ata_port_info(ap, |
2505 | "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", |
2506 | __func__, pp->delayed_eh_pmp_map, |
2507 | ap->qc_active, failed_links, |
2508 | ap->nr_active_links); |
2509 | |
2510 | if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { |
2511 | mv_process_crpb_entries(ap, pp); |
2512 | mv_stop_edma(ap); |
2513 | mv_eh_freeze(ap); |
2514 | ata_port_info(ap, "%s: done\n", __func__); |
2515 | return 1; /* handled */ |
2516 | } |
2517 | ata_port_info(ap, "%s: waiting\n", __func__); |
2518 | return 1; /* handled */ |
2519 | } |
2520 | |
2521 | static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) |
2522 | { |
2523 | /* |
2524 | * Possible future enhancement: |
2525 | * |
2526 | * FBS+non-NCQ operation is not yet implemented. |
2527 | * See related notes in mv_edma_cfg(). |
2528 | * |
2529 | * Device error during FBS+non-NCQ operation: |
2530 | * |
2531 | * We need to snapshot the shadow registers for each failed command. |
2532 | * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). |
2533 | */ |
2534 | return 0; /* not handled */ |
2535 | } |
2536 | |
2537 | static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) |
2538 | { |
2539 | struct mv_port_priv *pp = ap->private_data; |
2540 | |
2541 | if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) |
2542 | return 0; /* EDMA was not active: not handled */ |
2543 | if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) |
2544 | return 0; /* FBS was not active: not handled */ |
2545 | |
2546 | if (!(edma_err_cause & EDMA_ERR_DEV)) |
2547 | return 0; /* non DEV error: not handled */ |
2548 | edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; |
2549 | if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) |
2550 | return 0; /* other problems: not handled */ |
2551 | |
2552 | if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { |
2553 | /* |
2554 | * EDMA should NOT have self-disabled for this case. |
2555 | * If it did, then something is wrong elsewhere, |
2556 | * and we cannot handle it here. |
2557 | */ |
2558 | if (edma_err_cause & EDMA_ERR_SELF_DIS) { |
2559 | ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", |
2560 | __func__, edma_err_cause, pp->pp_flags); |
2561 | return 0; /* not handled */ |
2562 | } |
2563 | return mv_handle_fbs_ncq_dev_err(ap); |
2564 | } else { |
2565 | /* |
2566 | * EDMA should have self-disabled for this case. |
2567 | * If it did not, then something is wrong elsewhere, |
2568 | * and we cannot handle it here. |
2569 | */ |
2570 | if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { |
2571 | ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", |
2572 | __func__, edma_err_cause, pp->pp_flags); |
2573 | return 0; /* not handled */ |
2574 | } |
2575 | return mv_handle_fbs_non_ncq_dev_err(ap); |
2576 | } |
2577 | return 0; /* not handled */ |
2578 | } |
2579 | |
2580 | static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) |
2581 | { |
2582 | struct ata_eh_info *ehi = &ap->link.eh_info; |
2583 | char *when = "idle"; |
2584 | |
2585 | ata_ehi_clear_desc(ehi); |
2586 | if (edma_was_enabled) { |
2587 | when = "EDMA enabled"; |
2588 | } else { |
2589 | struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); |
2590 | if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) |
2591 | when = "polling"; |
2592 | } |
2593 | ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); |
2594 | ehi->err_mask |= AC_ERR_OTHER; |
2595 | ehi->action |= ATA_EH_RESET; |
2596 | ata_port_freeze(ap); |
2597 | } |
2598 | |
2599 | /** |
2600 | * mv_err_intr - Handle error interrupts on the port |
2601 | * @ap: ATA channel to manipulate |
2602 | * |
2603 | * Most cases require a full reset of the chip's state machine, |
2604 | * which also performs a COMRESET. |
2605 | * Also, if the port disabled DMA, update our cached copy to match. |
2606 | * |
2607 | * LOCKING: |
2608 | * Inherited from caller. |
2609 | */ |
2610 | static void mv_err_intr(struct ata_port *ap) |
2611 | { |
2612 | void __iomem *port_mmio = mv_ap_base(ap); |
2613 | u32 edma_err_cause, eh_freeze_mask, serr = 0; |
2614 | u32 fis_cause = 0; |
2615 | struct mv_port_priv *pp = ap->private_data; |
2616 | struct mv_host_priv *hpriv = ap->host->private_data; |
2617 | unsigned int action = 0, err_mask = 0; |
2618 | struct ata_eh_info *ehi = &ap->link.eh_info; |
2619 | struct ata_queued_cmd *qc; |
2620 | int abort = 0; |
2621 | |
2622 | /* |
2623 | * Read and clear the SError and err_cause bits. |
2624 | * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear |
2625 | * the FIS_IRQ_CAUSE register before clearing edma_err_cause. |
2626 | */ |
2627 | sata_scr_read(&ap->link, SCR_ERROR, &serr); |
2628 | sata_scr_write_flush(&ap->link, SCR_ERROR, serr); |
2629 | |
2630 | edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); |
2631 | if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { |
2632 | fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); |
2633 | writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); |
2634 | } |
2635 | writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); |
2636 | |
2637 | if (edma_err_cause & EDMA_ERR_DEV) { |
2638 | /* |
2639 | * Device errors during FIS-based switching operation |
2640 | * require special handling. |
2641 | */ |
2642 | if (mv_handle_dev_err(ap, edma_err_cause)) |
2643 | return; |
2644 | } |
2645 | |
2646 | qc = mv_get_active_qc(ap); |
2647 | ata_ehi_clear_desc(ehi); |
2648 | ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", |
2649 | edma_err_cause, pp->pp_flags); |
2650 | |
2651 | if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { |
2652 | ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); |
2653 | if (fis_cause & FIS_IRQ_CAUSE_AN) { |
2654 | u32 ec = edma_err_cause & |
2655 | ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); |
2656 | sata_async_notification(ap); |
2657 | if (!ec) |
2658 | return; /* Just an AN; no need for the nukes */ |
2659 | ata_ehi_push_desc(ehi, "SDB notify"); |
2660 | } |
2661 | } |
2662 | /* |
2663 | * All generations share these EDMA error cause bits: |
2664 | */ |
2665 | if (edma_err_cause & EDMA_ERR_DEV) { |
2666 | err_mask |= AC_ERR_DEV; |
2667 | action |= ATA_EH_RESET; |
2668 | ata_ehi_push_desc(ehi, "dev error"); |
2669 | } |
2670 | if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | |
2671 | EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | |
2672 | EDMA_ERR_INTRL_PAR)) { |
2673 | err_mask |= AC_ERR_ATA_BUS; |
2674 | action |= ATA_EH_RESET; |
2675 | ata_ehi_push_desc(ehi, "parity error"); |
2676 | } |
2677 | if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { |
2678 | ata_ehi_hotplugged(ehi); |
2679 | ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? |
2680 | "dev disconnect" : "dev connect"); |
2681 | action |= ATA_EH_RESET; |
2682 | } |
2683 | |
2684 | /* |
2685 | * Gen-I has a different SELF_DIS bit, |
2686 | * different FREEZE bits, and no SERR bit: |
2687 | */ |
2688 | if (IS_GEN_I(hpriv)) { |
2689 | eh_freeze_mask = EDMA_EH_FREEZE_5; |
2690 | if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { |
2691 | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
2692 | ata_ehi_push_desc(ehi, "EDMA self-disable"); |
2693 | } |
2694 | } else { |
2695 | eh_freeze_mask = EDMA_EH_FREEZE; |
2696 | if (edma_err_cause & EDMA_ERR_SELF_DIS) { |
2697 | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
2698 | ata_ehi_push_desc(ehi, "EDMA self-disable"); |
2699 | } |
2700 | if (edma_err_cause & EDMA_ERR_SERR) { |
2701 | ata_ehi_push_desc(ehi, "SError=%08x", serr); |
2702 | err_mask |= AC_ERR_ATA_BUS; |
2703 | action |= ATA_EH_RESET; |
2704 | } |
2705 | } |
2706 | |
2707 | if (!err_mask) { |
2708 | err_mask = AC_ERR_OTHER; |
2709 | action |= ATA_EH_RESET; |
2710 | } |
2711 | |
2712 | ehi->serror |= serr; |
2713 | ehi->action |= action; |
2714 | |
2715 | if (qc) |
2716 | qc->err_mask |= err_mask; |
2717 | else |
2718 | ehi->err_mask |= err_mask; |
2719 | |
2720 | if (err_mask == AC_ERR_DEV) { |
2721 | /* |
2722 | * Cannot do ata_port_freeze() here, |
2723 | * because it would kill PIO access, |
2724 | * which is needed for further diagnosis. |
2725 | */ |
2726 | mv_eh_freeze(ap); |
2727 | abort = 1; |
2728 | } else if (edma_err_cause & eh_freeze_mask) { |
2729 | /* |
2730 | * Note to self: ata_port_freeze() calls ata_port_abort() |
2731 | */ |
2732 | ata_port_freeze(ap); |
2733 | } else { |
2734 | abort = 1; |
2735 | } |
2736 | |
2737 | if (abort) { |
2738 | if (qc) |
2739 | ata_link_abort(qc->dev->link); |
2740 | else |
2741 | ata_port_abort(ap); |
2742 | } |
2743 | } |
2744 | |
2745 | static bool mv_process_crpb_response(struct ata_port *ap, |
2746 | struct mv_crpb *response, unsigned int tag, int ncq_enabled) |
2747 | { |
2748 | u8 ata_status; |
2749 | u16 edma_status = le16_to_cpu(response->flags); |
2750 | |
2751 | /* |
2752 | * edma_status from a response queue entry: |
2753 | * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). |
2754 | * MSB is saved ATA status from command completion. |
2755 | */ |
2756 | if (!ncq_enabled) { |
2757 | u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; |
2758 | if (err_cause) { |
2759 | /* |
2760 | * Error will be seen/handled by |
2761 | * mv_err_intr(). So do nothing at all here. |
2762 | */ |
2763 | return false; |
2764 | } |
2765 | } |
2766 | ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; |
2767 | if (!ac_err_mask(ata_status)) |
2768 | return true; |
2769 | /* else: leave it for mv_err_intr() */ |
2770 | return false; |
2771 | } |
2772 | |
2773 | static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) |
2774 | { |
2775 | void __iomem *port_mmio = mv_ap_base(ap); |
2776 | struct mv_host_priv *hpriv = ap->host->private_data; |
2777 | u32 in_index; |
2778 | bool work_done = false; |
2779 | u32 done_mask = 0; |
2780 | int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); |
2781 | |
2782 | /* Get the hardware queue position index */ |
2783 | in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) |
2784 | >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
2785 | |
2786 | /* Process new responses from since the last time we looked */ |
2787 | while (in_index != pp->resp_idx) { |
2788 | unsigned int tag; |
2789 | struct mv_crpb *response = &pp->crpb[pp->resp_idx]; |
2790 | |
2791 | pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; |
2792 | |
2793 | if (IS_GEN_I(hpriv)) { |
2794 | /* 50xx: no NCQ, only one command active at a time */ |
2795 | tag = ap->link.active_tag; |
2796 | } else { |
2797 | /* Gen II/IIE: get command tag from CRPB entry */ |
2798 | tag = le16_to_cpu(response->id) & 0x1f; |
2799 | } |
2800 | if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) |
2801 | done_mask |= 1 << tag; |
2802 | work_done = true; |
2803 | } |
2804 | |
2805 | if (work_done) { |
2806 | ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); |
2807 | |
2808 | /* Update the software queue position index in hardware */ |
2809 | writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | |
2810 | (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), |
2811 | port_mmio + EDMA_RSP_Q_OUT_PTR); |
2812 | } |
2813 | } |
2814 | |
2815 | static void mv_port_intr(struct ata_port *ap, u32 port_cause) |
2816 | { |
2817 | struct mv_port_priv *pp; |
2818 | int edma_was_enabled; |
2819 | |
2820 | /* |
2821 | * Grab a snapshot of the EDMA_EN flag setting, |
2822 | * so that we have a consistent view for this port, |
2823 | * even if something we call of our routines changes it. |
2824 | */ |
2825 | pp = ap->private_data; |
2826 | edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); |
2827 | /* |
2828 | * Process completed CRPB response(s) before other events. |
2829 | */ |
2830 | if (edma_was_enabled && (port_cause & DONE_IRQ)) { |
2831 | mv_process_crpb_entries(ap, pp); |
2832 | if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) |
2833 | mv_handle_fbs_ncq_dev_err(ap); |
2834 | } |
2835 | /* |
2836 | * Handle chip-reported errors, or continue on to handle PIO. |
2837 | */ |
2838 | if (unlikely(port_cause & ERR_IRQ)) { |
2839 | mv_err_intr(ap); |
2840 | } else if (!edma_was_enabled) { |
2841 | struct ata_queued_cmd *qc = mv_get_active_qc(ap); |
2842 | if (qc) |
2843 | ata_bmdma_port_intr(ap, qc); |
2844 | else |
2845 | mv_unexpected_intr(ap, edma_was_enabled); |
2846 | } |
2847 | } |
2848 | |
2849 | /** |
2850 | * mv_host_intr - Handle all interrupts on the given host controller |
2851 | * @host: host specific structure |
2852 | * @main_irq_cause: Main interrupt cause register for the chip. |
2853 | * |
2854 | * LOCKING: |
2855 | * Inherited from caller. |
2856 | */ |
2857 | static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) |
2858 | { |
2859 | struct mv_host_priv *hpriv = host->private_data; |
2860 | void __iomem *mmio = hpriv->base, *hc_mmio; |
2861 | unsigned int handled = 0, port; |
2862 | |
2863 | /* If asserted, clear the "all ports" IRQ coalescing bit */ |
2864 | if (main_irq_cause & ALL_PORTS_COAL_DONE) |
2865 | writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); |
2866 | |
2867 | for (port = 0; port < hpriv->n_ports; port++) { |
2868 | struct ata_port *ap = host->ports[port]; |
2869 | unsigned int p, shift, hardport, port_cause; |
2870 | |
2871 | MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); |
2872 | /* |
2873 | * Each hc within the host has its own hc_irq_cause register, |
2874 | * where the interrupting ports bits get ack'd. |
2875 | */ |
2876 | if (hardport == 0) { /* first port on this hc ? */ |
2877 | u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; |
2878 | u32 port_mask, ack_irqs; |
2879 | /* |
2880 | * Skip this entire hc if nothing pending for any ports |
2881 | */ |
2882 | if (!hc_cause) { |
2883 | port += MV_PORTS_PER_HC - 1; |
2884 | continue; |
2885 | } |
2886 | /* |
2887 | * We don't need/want to read the hc_irq_cause register, |
2888 | * because doing so hurts performance, and |
2889 | * main_irq_cause already gives us everything we need. |
2890 | * |
2891 | * But we do have to *write* to the hc_irq_cause to ack |
2892 | * the ports that we are handling this time through. |
2893 | * |
2894 | * This requires that we create a bitmap for those |
2895 | * ports which interrupted us, and use that bitmap |
2896 | * to ack (only) those ports via hc_irq_cause. |
2897 | */ |
2898 | ack_irqs = 0; |
2899 | if (hc_cause & PORTS_0_3_COAL_DONE) |
2900 | ack_irqs = HC_COAL_IRQ; |
2901 | for (p = 0; p < MV_PORTS_PER_HC; ++p) { |
2902 | if ((port + p) >= hpriv->n_ports) |
2903 | break; |
2904 | port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); |
2905 | if (hc_cause & port_mask) |
2906 | ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; |
2907 | } |
2908 | hc_mmio = mv_hc_base_from_port(mmio, port); |
2909 | writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); |
2910 | handled = 1; |
2911 | } |
2912 | /* |
2913 | * Handle interrupts signalled for this port: |
2914 | */ |
2915 | port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); |
2916 | if (port_cause) |
2917 | mv_port_intr(ap, port_cause); |
2918 | } |
2919 | return handled; |
2920 | } |
2921 | |
2922 | static int mv_pci_error(struct ata_host *host, void __iomem *mmio) |
2923 | { |
2924 | struct mv_host_priv *hpriv = host->private_data; |
2925 | struct ata_port *ap; |
2926 | struct ata_queued_cmd *qc; |
2927 | struct ata_eh_info *ehi; |
2928 | unsigned int i, err_mask, printed = 0; |
2929 | u32 err_cause; |
2930 | |
2931 | err_cause = readl(mmio + hpriv->irq_cause_offset); |
2932 | |
2933 | dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); |
2934 | |
2935 | DPRINTK("All regs @ PCI error\n"); |
2936 | mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); |
2937 | |
2938 | writelfl(0, mmio + hpriv->irq_cause_offset); |
2939 | |
2940 | for (i = 0; i < host->n_ports; i++) { |
2941 | ap = host->ports[i]; |
2942 | if (!ata_link_offline(&ap->link)) { |
2943 | ehi = &ap->link.eh_info; |
2944 | ata_ehi_clear_desc(ehi); |
2945 | if (!printed++) |
2946 | ata_ehi_push_desc(ehi, |
2947 | "PCI err cause 0x%08x", err_cause); |
2948 | err_mask = AC_ERR_HOST_BUS; |
2949 | ehi->action = ATA_EH_RESET; |
2950 | qc = ata_qc_from_tag(ap, ap->link.active_tag); |
2951 | if (qc) |
2952 | qc->err_mask |= err_mask; |
2953 | else |
2954 | ehi->err_mask |= err_mask; |
2955 | |
2956 | ata_port_freeze(ap); |
2957 | } |
2958 | } |
2959 | return 1; /* handled */ |
2960 | } |
2961 | |
2962 | /** |
2963 | * mv_interrupt - Main interrupt event handler |
2964 | * @irq: unused |
2965 | * @dev_instance: private data; in this case the host structure |
2966 | * |
2967 | * Read the read only register to determine if any host |
2968 | * controllers have pending interrupts. If so, call lower level |
2969 | * routine to handle. Also check for PCI errors which are only |
2970 | * reported here. |
2971 | * |
2972 | * LOCKING: |
2973 | * This routine holds the host lock while processing pending |
2974 | * interrupts. |
2975 | */ |
2976 | static irqreturn_t mv_interrupt(int irq, void *dev_instance) |
2977 | { |
2978 | struct ata_host *host = dev_instance; |
2979 | struct mv_host_priv *hpriv = host->private_data; |
2980 | unsigned int handled = 0; |
2981 | int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; |
2982 | u32 main_irq_cause, pending_irqs; |
2983 | |
2984 | spin_lock(&host->lock); |
2985 | |
2986 | /* for MSI: block new interrupts while in here */ |
2987 | if (using_msi) |
2988 | mv_write_main_irq_mask(0, hpriv); |
2989 | |
2990 | main_irq_cause = readl(hpriv->main_irq_cause_addr); |
2991 | pending_irqs = main_irq_cause & hpriv->main_irq_mask; |
2992 | /* |
2993 | * Deal with cases where we either have nothing pending, or have read |
2994 | * a bogus register value which can indicate HW removal or PCI fault. |
2995 | */ |
2996 | if (pending_irqs && main_irq_cause != 0xffffffffU) { |
2997 | if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) |
2998 | handled = mv_pci_error(host, hpriv->base); |
2999 | else |
3000 | handled = mv_host_intr(host, pending_irqs); |
3001 | } |
3002 | |
3003 | /* for MSI: unmask; interrupt cause bits will retrigger now */ |
3004 | if (using_msi) |
3005 | mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); |
3006 | |
3007 | spin_unlock(&host->lock); |
3008 | |
3009 | return IRQ_RETVAL(handled); |
3010 | } |
3011 | |
3012 | static unsigned int mv5_scr_offset(unsigned int sc_reg_in) |
3013 | { |
3014 | unsigned int ofs; |
3015 | |
3016 | switch (sc_reg_in) { |
3017 | case SCR_STATUS: |
3018 | case SCR_ERROR: |
3019 | case SCR_CONTROL: |
3020 | ofs = sc_reg_in * sizeof(u32); |
3021 | break; |
3022 | default: |
3023 | ofs = 0xffffffffU; |
3024 | break; |
3025 | } |
3026 | return ofs; |
3027 | } |
3028 | |
3029 | static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) |
3030 | { |
3031 | struct mv_host_priv *hpriv = link->ap->host->private_data; |
3032 | void __iomem *mmio = hpriv->base; |
3033 | void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); |
3034 | unsigned int ofs = mv5_scr_offset(sc_reg_in); |
3035 | |
3036 | if (ofs != 0xffffffffU) { |
3037 | *val = readl(addr + ofs); |
3038 | return 0; |
3039 | } else |
3040 | return -EINVAL; |
3041 | } |
3042 | |
3043 | static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) |
3044 | { |
3045 | struct mv_host_priv *hpriv = link->ap->host->private_data; |
3046 | void __iomem *mmio = hpriv->base; |
3047 | void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); |
3048 | unsigned int ofs = mv5_scr_offset(sc_reg_in); |
3049 | |
3050 | if (ofs != 0xffffffffU) { |
3051 | writelfl(val, addr + ofs); |
3052 | return 0; |
3053 | } else |
3054 | return -EINVAL; |
3055 | } |
3056 | |
3057 | static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) |
3058 | { |
3059 | struct pci_dev *pdev = to_pci_dev(host->dev); |
3060 | int early_5080; |
3061 | |
3062 | early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); |
3063 | |
3064 | if (!early_5080) { |
3065 | u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
3066 | tmp |= (1 << 0); |
3067 | writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
3068 | } |
3069 | |
3070 | mv_reset_pci_bus(host, mmio); |
3071 | } |
3072 | |
3073 | static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
3074 | { |
3075 | writel(0x0fcfffff, mmio + FLASH_CTL); |
3076 | } |
3077 | |
3078 | static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
3079 | void __iomem *mmio) |
3080 | { |
3081 | void __iomem *phy_mmio = mv5_phy_base(mmio, idx); |
3082 | u32 tmp; |
3083 | |
3084 | tmp = readl(phy_mmio + MV5_PHY_MODE); |
3085 | |
3086 | hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ |
3087 | hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ |
3088 | } |
3089 | |
3090 | static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
3091 | { |
3092 | u32 tmp; |
3093 | |
3094 | writel(0, mmio + GPIO_PORT_CTL); |
3095 | |
3096 | /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ |
3097 | |
3098 | tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
3099 | tmp |= ~(1 << 0); |
3100 | writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
3101 | } |
3102 | |
3103 | static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
3104 | unsigned int port) |
3105 | { |
3106 | void __iomem *phy_mmio = mv5_phy_base(mmio, port); |
3107 | const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); |
3108 | u32 tmp; |
3109 | int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); |
3110 | |
3111 | if (fix_apm_sq) { |
3112 | tmp = readl(phy_mmio + MV5_LTMODE); |
3113 | tmp |= (1 << 19); |
3114 | writel(tmp, phy_mmio + MV5_LTMODE); |
3115 | |
3116 | tmp = readl(phy_mmio + MV5_PHY_CTL); |
3117 | tmp &= ~0x3; |
3118 | tmp |= 0x1; |
3119 | writel(tmp, phy_mmio + MV5_PHY_CTL); |
3120 | } |
3121 | |
3122 | tmp = readl(phy_mmio + MV5_PHY_MODE); |
3123 | tmp &= ~mask; |
3124 | tmp |= hpriv->signal[port].pre; |
3125 | tmp |= hpriv->signal[port].amps; |
3126 | writel(tmp, phy_mmio + MV5_PHY_MODE); |
3127 | } |
3128 | |
3129 | |
3130 | #undef ZERO |
3131 | #define ZERO(reg) writel(0, port_mmio + (reg)) |
3132 | static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, |
3133 | unsigned int port) |
3134 | { |
3135 | void __iomem *port_mmio = mv_port_base(mmio, port); |
3136 | |
3137 | mv_reset_channel(hpriv, mmio, port); |
3138 | |
3139 | ZERO(0x028); /* command */ |
3140 | writel(0x11f, port_mmio + EDMA_CFG); |
3141 | ZERO(0x004); /* timer */ |
3142 | ZERO(0x008); /* irq err cause */ |
3143 | ZERO(0x00c); /* irq err mask */ |
3144 | ZERO(0x010); /* rq bah */ |
3145 | ZERO(0x014); /* rq inp */ |
3146 | ZERO(0x018); /* rq outp */ |
3147 | ZERO(0x01c); /* respq bah */ |
3148 | ZERO(0x024); /* respq outp */ |
3149 | ZERO(0x020); /* respq inp */ |
3150 | ZERO(0x02c); /* test control */ |
3151 | writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); |
3152 | } |
3153 | #undef ZERO |
3154 | |
3155 | #define ZERO(reg) writel(0, hc_mmio + (reg)) |
3156 | static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
3157 | unsigned int hc) |
3158 | { |
3159 | void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
3160 | u32 tmp; |
3161 | |
3162 | ZERO(0x00c); |
3163 | ZERO(0x010); |
3164 | ZERO(0x014); |
3165 | ZERO(0x018); |
3166 | |
3167 | tmp = readl(hc_mmio + 0x20); |
3168 | tmp &= 0x1c1c1c1c; |
3169 | tmp |= 0x03030303; |
3170 | writel(tmp, hc_mmio + 0x20); |
3171 | } |
3172 | #undef ZERO |
3173 | |
3174 | static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
3175 | unsigned int n_hc) |
3176 | { |
3177 | unsigned int hc, port; |
3178 | |
3179 | for (hc = 0; hc < n_hc; hc++) { |
3180 | for (port = 0; port < MV_PORTS_PER_HC; port++) |
3181 | mv5_reset_hc_port(hpriv, mmio, |
3182 | (hc * MV_PORTS_PER_HC) + port); |
3183 | |
3184 | mv5_reset_one_hc(hpriv, mmio, hc); |
3185 | } |
3186 | |
3187 | return 0; |
3188 | } |
3189 | |
3190 | #undef ZERO |
3191 | #define ZERO(reg) writel(0, mmio + (reg)) |
3192 | static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) |
3193 | { |
3194 | struct mv_host_priv *hpriv = host->private_data; |
3195 | u32 tmp; |
3196 | |
3197 | tmp = readl(mmio + MV_PCI_MODE); |
3198 | tmp &= 0xff00ffff; |
3199 | writel(tmp, mmio + MV_PCI_MODE); |
3200 | |
3201 | ZERO(MV_PCI_DISC_TIMER); |
3202 | ZERO(MV_PCI_MSI_TRIGGER); |
3203 | writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); |
3204 | ZERO(MV_PCI_SERR_MASK); |
3205 | ZERO(hpriv->irq_cause_offset); |
3206 | ZERO(hpriv->irq_mask_offset); |
3207 | ZERO(MV_PCI_ERR_LOW_ADDRESS); |
3208 | ZERO(MV_PCI_ERR_HIGH_ADDRESS); |
3209 | ZERO(MV_PCI_ERR_ATTRIBUTE); |
3210 | ZERO(MV_PCI_ERR_COMMAND); |
3211 | } |
3212 | #undef ZERO |
3213 | |
3214 | static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
3215 | { |
3216 | u32 tmp; |
3217 | |
3218 | mv5_reset_flash(hpriv, mmio); |
3219 | |
3220 | tmp = readl(mmio + GPIO_PORT_CTL); |
3221 | tmp &= 0x3; |
3222 | tmp |= (1 << 5) | (1 << 6); |
3223 | writel(tmp, mmio + GPIO_PORT_CTL); |
3224 | } |
3225 | |
3226 | /** |
3227 | * mv6_reset_hc - Perform the 6xxx global soft reset |
3228 | * @mmio: base address of the HBA |
3229 | * |
3230 | * This routine only applies to 6xxx parts. |
3231 | * |
3232 | * LOCKING: |
3233 | * Inherited from caller. |
3234 | */ |
3235 | static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
3236 | unsigned int n_hc) |
3237 | { |
3238 | void __iomem *reg = mmio + PCI_MAIN_CMD_STS; |
3239 | int i, rc = 0; |
3240 | u32 t; |
3241 | |
3242 | /* Following procedure defined in PCI "main command and status |
3243 | * register" table. |
3244 | */ |
3245 | t = readl(reg); |
3246 | writel(t | STOP_PCI_MASTER, reg); |
3247 | |
3248 | for (i = 0; i < 1000; i++) { |
3249 | udelay(1); |
3250 | t = readl(reg); |
3251 | if (PCI_MASTER_EMPTY & t) |
3252 | break; |
3253 | } |
3254 | if (!(PCI_MASTER_EMPTY & t)) { |
3255 | printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); |
3256 | rc = 1; |
3257 | goto done; |
3258 | } |
3259 | |
3260 | /* set reset */ |
3261 | i = 5; |
3262 | do { |
3263 | writel(t | GLOB_SFT_RST, reg); |
3264 | t = readl(reg); |
3265 | udelay(1); |
3266 | } while (!(GLOB_SFT_RST & t) && (i-- > 0)); |
3267 | |
3268 | if (!(GLOB_SFT_RST & t)) { |
3269 | printk(KERN_ERR DRV_NAME ": can't set global reset\n"); |
3270 | rc = 1; |
3271 | goto done; |
3272 | } |
3273 | |
3274 | /* clear reset and *reenable the PCI master* (not mentioned in spec) */ |
3275 | i = 5; |
3276 | do { |
3277 | writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); |
3278 | t = readl(reg); |
3279 | udelay(1); |
3280 | } while ((GLOB_SFT_RST & t) && (i-- > 0)); |
3281 | |
3282 | if (GLOB_SFT_RST & t) { |
3283 | printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); |
3284 | rc = 1; |
3285 | } |
3286 | done: |
3287 | return rc; |
3288 | } |
3289 | |
3290 | static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
3291 | void __iomem *mmio) |
3292 | { |
3293 | void __iomem *port_mmio; |
3294 | u32 tmp; |
3295 | |
3296 | tmp = readl(mmio + RESET_CFG); |
3297 | if ((tmp & (1 << 0)) == 0) { |
3298 | hpriv->signal[idx].amps = 0x7 << 8; |
3299 | hpriv->signal[idx].pre = 0x1 << 5; |
3300 | return; |
3301 | } |
3302 | |
3303 | port_mmio = mv_port_base(mmio, idx); |
3304 | tmp = readl(port_mmio + PHY_MODE2); |
3305 | |
3306 | hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
3307 | hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
3308 | } |
3309 | |
3310 | static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
3311 | { |
3312 | writel(0x00000060, mmio + GPIO_PORT_CTL); |
3313 | } |
3314 | |
3315 | static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
3316 | unsigned int port) |
3317 | { |
3318 | void __iomem *port_mmio = mv_port_base(mmio, port); |
3319 | |
3320 | u32 hp_flags = hpriv->hp_flags; |
3321 | int fix_phy_mode2 = |
3322 | hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
3323 | int fix_phy_mode4 = |
3324 | hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
3325 | u32 m2, m3; |
3326 | |
3327 | if (fix_phy_mode2) { |
3328 | m2 = readl(port_mmio + PHY_MODE2); |
3329 | m2 &= ~(1 << 16); |
3330 | m2 |= (1 << 31); |
3331 | writel(m2, port_mmio + PHY_MODE2); |
3332 | |
3333 | udelay(200); |
3334 | |
3335 | m2 = readl(port_mmio + PHY_MODE2); |
3336 | m2 &= ~((1 << 16) | (1 << 31)); |
3337 | writel(m2, port_mmio + PHY_MODE2); |
3338 | |
3339 | udelay(200); |
3340 | } |
3341 | |
3342 | /* |
3343 | * Gen-II/IIe PHY_MODE3 errata RM#2: |
3344 | * Achieves better receiver noise performance than the h/w default: |
3345 | */ |
3346 | m3 = readl(port_mmio + PHY_MODE3); |
3347 | m3 = (m3 & 0x1f) | (0x5555601 << 5); |
3348 | |
3349 | /* Guideline 88F5182 (GL# SATA-S11) */ |
3350 | if (IS_SOC(hpriv)) |
3351 | m3 &= ~0x1c; |
3352 | |
3353 | if (fix_phy_mode4) { |
3354 | u32 m4 = readl(port_mmio + PHY_MODE4); |
3355 | /* |
3356 | * Enforce reserved-bit restrictions on GenIIe devices only. |
3357 | * For earlier chipsets, force only the internal config field |
3358 | * (workaround for errata FEr SATA#10 part 1). |
3359 | */ |
3360 | if (IS_GEN_IIE(hpriv)) |
3361 | m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; |
3362 | else |
3363 | m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; |
3364 | writel(m4, port_mmio + PHY_MODE4); |
3365 | } |
3366 | /* |
3367 | * Workaround for 60x1-B2 errata SATA#13: |
3368 | * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, |
3369 | * so we must always rewrite PHY_MODE3 after PHY_MODE4. |
3370 | * Or ensure we use writelfl() when writing PHY_MODE4. |
3371 | */ |
3372 | writel(m3, port_mmio + PHY_MODE3); |
3373 | |
3374 | /* Revert values of pre-emphasis and signal amps to the saved ones */ |
3375 | m2 = readl(port_mmio + PHY_MODE2); |
3376 | |
3377 | m2 &= ~MV_M2_PREAMP_MASK; |
3378 | m2 |= hpriv->signal[port].amps; |
3379 | m2 |= hpriv->signal[port].pre; |
3380 | m2 &= ~(1 << 16); |
3381 | |
3382 | /* according to mvSata 3.6.1, some IIE values are fixed */ |
3383 | if (IS_GEN_IIE(hpriv)) { |
3384 | m2 &= ~0xC30FF01F; |
3385 | m2 |= 0x0000900F; |
3386 | } |
3387 | |
3388 | writel(m2, port_mmio + PHY_MODE2); |
3389 | } |
3390 | |
3391 | /* TODO: use the generic LED interface to configure the SATA Presence */ |
3392 | /* & Acitivy LEDs on the board */ |
3393 | static void mv_soc_enable_leds(struct mv_host_priv *hpriv, |
3394 | void __iomem *mmio) |
3395 | { |
3396 | return; |
3397 | } |
3398 | |
3399 | static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, |
3400 | void __iomem *mmio) |
3401 | { |
3402 | void __iomem *port_mmio; |
3403 | u32 tmp; |
3404 | |
3405 | port_mmio = mv_port_base(mmio, idx); |
3406 | tmp = readl(port_mmio + PHY_MODE2); |
3407 | |
3408 | hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
3409 | hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
3410 | } |
3411 | |
3412 | #undef ZERO |
3413 | #define ZERO(reg) writel(0, port_mmio + (reg)) |
3414 | static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, |
3415 | void __iomem *mmio, unsigned int port) |
3416 | { |
3417 | void __iomem *port_mmio = mv_port_base(mmio, port); |
3418 | |
3419 | mv_reset_channel(hpriv, mmio, port); |
3420 | |
3421 | ZERO(0x028); /* command */ |
3422 | writel(0x101f, port_mmio + EDMA_CFG); |
3423 | ZERO(0x004); /* timer */ |
3424 | ZERO(0x008); /* irq err cause */ |
3425 | ZERO(0x00c); /* irq err mask */ |
3426 | ZERO(0x010); /* rq bah */ |
3427 | ZERO(0x014); /* rq inp */ |
3428 | ZERO(0x018); /* rq outp */ |
3429 | ZERO(0x01c); /* respq bah */ |
3430 | ZERO(0x024); /* respq outp */ |
3431 | ZERO(0x020); /* respq inp */ |
3432 | ZERO(0x02c); /* test control */ |
3433 | writel(0x800, port_mmio + EDMA_IORDY_TMOUT); |
3434 | } |
3435 | |
3436 | #undef ZERO |
3437 | |
3438 | #define ZERO(reg) writel(0, hc_mmio + (reg)) |
3439 | static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, |
3440 | void __iomem *mmio) |
3441 | { |
3442 | void __iomem *hc_mmio = mv_hc_base(mmio, 0); |
3443 | |
3444 | ZERO(0x00c); |
3445 | ZERO(0x010); |
3446 | ZERO(0x014); |
3447 | |
3448 | } |
3449 | |
3450 | #undef ZERO |
3451 | |
3452 | static int mv_soc_reset_hc(struct mv_host_priv *hpriv, |
3453 | void __iomem *mmio, unsigned int n_hc) |
3454 | { |
3455 | unsigned int port; |
3456 | |
3457 | for (port = 0; port < hpriv->n_ports; port++) |
3458 | mv_soc_reset_hc_port(hpriv, mmio, port); |
3459 | |
3460 | mv_soc_reset_one_hc(hpriv, mmio); |
3461 | |
3462 | return 0; |
3463 | } |
3464 | |
3465 | static void mv_soc_reset_flash(struct mv_host_priv *hpriv, |
3466 | void __iomem *mmio) |
3467 | { |
3468 | return; |
3469 | } |
3470 | |
3471 | static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) |
3472 | { |
3473 | return; |
3474 | } |
3475 | |
3476 | static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, |
3477 | void __iomem *mmio, unsigned int port) |
3478 | { |
3479 | void __iomem *port_mmio = mv_port_base(mmio, port); |
3480 | u32 reg; |
3481 | |
3482 | reg = readl(port_mmio + PHY_MODE3); |
3483 | reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ |
3484 | reg |= (0x1 << 27); |
3485 | reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ |
3486 | reg |= (0x1 << 29); |
3487 | writel(reg, port_mmio + PHY_MODE3); |
3488 | |
3489 | reg = readl(port_mmio + PHY_MODE4); |
3490 | reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ |
3491 | reg |= (0x1 << 16); |
3492 | writel(reg, port_mmio + PHY_MODE4); |
3493 | |
3494 | reg = readl(port_mmio + PHY_MODE9_GEN2); |
3495 | reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ |
3496 | reg |= 0x8; |
3497 | reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ |
3498 | writel(reg, port_mmio + PHY_MODE9_GEN2); |
3499 | |
3500 | reg = readl(port_mmio + PHY_MODE9_GEN1); |
3501 | reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ |
3502 | reg |= 0x8; |
3503 | reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ |
3504 | writel(reg, port_mmio + PHY_MODE9_GEN1); |
3505 | } |
3506 | |
3507 | /** |
3508 | * soc_is_65 - check if the soc is 65 nano device |
3509 | * |
3510 | * Detect the type of the SoC, this is done by reading the PHYCFG_OFS |
3511 | * register, this register should contain non-zero value and it exists only |
3512 | * in the 65 nano devices, when reading it from older devices we get 0. |
3513 | */ |
3514 | static bool soc_is_65n(struct mv_host_priv *hpriv) |
3515 | { |
3516 | void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); |
3517 | |
3518 | if (readl(port0_mmio + PHYCFG_OFS)) |
3519 | return true; |
3520 | return false; |
3521 | } |
3522 | |
3523 | static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) |
3524 | { |
3525 | u32 ifcfg = readl(port_mmio + SATA_IFCFG); |
3526 | |
3527 | ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ |
3528 | if (want_gen2i) |
3529 | ifcfg |= (1 << 7); /* enable gen2i speed */ |
3530 | writelfl(ifcfg, port_mmio + SATA_IFCFG); |
3531 | } |
3532 | |
3533 | static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, |
3534 | unsigned int port_no) |
3535 | { |
3536 | void __iomem *port_mmio = mv_port_base(mmio, port_no); |
3537 | |
3538 | /* |
3539 | * The datasheet warns against setting EDMA_RESET when EDMA is active |
3540 | * (but doesn't say what the problem might be). So we first try |
3541 | * to disable the EDMA engine before doing the EDMA_RESET operation. |
3542 | */ |
3543 | mv_stop_edma_engine(port_mmio); |
3544 | writelfl(EDMA_RESET, port_mmio + EDMA_CMD); |
3545 | |
3546 | if (!IS_GEN_I(hpriv)) { |
3547 | /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ |
3548 | mv_setup_ifcfg(port_mmio, 1); |
3549 | } |
3550 | /* |
3551 | * Strobing EDMA_RESET here causes a hard reset of the SATA transport, |
3552 | * link, and physical layers. It resets all SATA interface registers |
3553 | * (except for SATA_IFCFG), and issues a COMRESET to the dev. |
3554 | */ |
3555 | writelfl(EDMA_RESET, port_mmio + EDMA_CMD); |
3556 | udelay(25); /* allow reset propagation */ |
3557 | writelfl(0, port_mmio + EDMA_CMD); |
3558 | |
3559 | hpriv->ops->phy_errata(hpriv, mmio, port_no); |
3560 | |
3561 | if (IS_GEN_I(hpriv)) |
3562 | mdelay(1); |
3563 | } |
3564 | |
3565 | static void mv_pmp_select(struct ata_port *ap, int pmp) |
3566 | { |
3567 | if (sata_pmp_supported(ap)) { |
3568 | void __iomem *port_mmio = mv_ap_base(ap); |
3569 | u32 reg = readl(port_mmio + SATA_IFCTL); |
3570 | int old = reg & 0xf; |
3571 | |
3572 | if (old != pmp) { |
3573 | reg = (reg & ~0xf) | pmp; |
3574 | writelfl(reg, port_mmio + SATA_IFCTL); |
3575 | } |
3576 | } |
3577 | } |
3578 | |
3579 | static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, |
3580 | unsigned long deadline) |
3581 | { |
3582 | mv_pmp_select(link->ap, sata_srst_pmp(link)); |
3583 | return sata_std_hardreset(link, class, deadline); |
3584 | } |
3585 | |
3586 | static int mv_softreset(struct ata_link *link, unsigned int *class, |
3587 | unsigned long deadline) |
3588 | { |
3589 | mv_pmp_select(link->ap, sata_srst_pmp(link)); |
3590 | return ata_sff_softreset(link, class, deadline); |
3591 | } |
3592 | |
3593 | static int mv_hardreset(struct ata_link *link, unsigned int *class, |
3594 | unsigned long deadline) |
3595 | { |
3596 | struct ata_port *ap = link->ap; |
3597 | struct mv_host_priv *hpriv = ap->host->private_data; |
3598 | struct mv_port_priv *pp = ap->private_data; |
3599 | void __iomem *mmio = hpriv->base; |
3600 | int rc, attempts = 0, extra = 0; |
3601 | u32 sstatus; |
3602 | bool online; |
3603 | |
3604 | mv_reset_channel(hpriv, mmio, ap->port_no); |
3605 | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
3606 | pp->pp_flags &= |
3607 | ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); |
3608 | |
3609 | /* Workaround for errata FEr SATA#10 (part 2) */ |
3610 | do { |
3611 | const unsigned long *timing = |
3612 | sata_ehc_deb_timing(&link->eh_context); |
3613 | |
3614 | rc = sata_link_hardreset(link, timing, deadline + extra, |
3615 | &online, NULL); |
3616 | rc = online ? -EAGAIN : rc; |
3617 | if (rc) |
3618 | return rc; |
3619 | sata_scr_read(link, SCR_STATUS, &sstatus); |
3620 | if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { |
3621 | /* Force 1.5gb/s link speed and try again */ |
3622 | mv_setup_ifcfg(mv_ap_base(ap), 0); |
3623 | if (time_after(jiffies + HZ, deadline)) |
3624 | extra = HZ; /* only extend it once, max */ |
3625 | } |
3626 | } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); |
3627 | mv_save_cached_regs(ap); |
3628 | mv_edma_cfg(ap, 0, 0); |
3629 | |
3630 | return rc; |
3631 | } |
3632 | |
3633 | static void mv_eh_freeze(struct ata_port *ap) |
3634 | { |
3635 | mv_stop_edma(ap); |
3636 | mv_enable_port_irqs(ap, 0); |
3637 | } |
3638 | |
3639 | static void mv_eh_thaw(struct ata_port *ap) |
3640 | { |
3641 | struct mv_host_priv *hpriv = ap->host->private_data; |
3642 | unsigned int port = ap->port_no; |
3643 | unsigned int hardport = mv_hardport_from_port(port); |
3644 | void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); |
3645 | void __iomem *port_mmio = mv_ap_base(ap); |
3646 | u32 hc_irq_cause; |
3647 | |
3648 | /* clear EDMA errors on this port */ |
3649 | writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); |
3650 | |
3651 | /* clear pending irq events */ |
3652 | hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); |
3653 | writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); |
3654 | |
3655 | mv_enable_port_irqs(ap, ERR_IRQ); |
3656 | } |
3657 | |
3658 | /** |
3659 | * mv_port_init - Perform some early initialization on a single port. |
3660 | * @port: libata data structure storing shadow register addresses |
3661 | * @port_mmio: base address of the port |
3662 | * |
3663 | * Initialize shadow register mmio addresses, clear outstanding |
3664 | * interrupts on the port, and unmask interrupts for the future |
3665 | * start of the port. |
3666 | * |
3667 | * LOCKING: |
3668 | * Inherited from caller. |
3669 | */ |
3670 | static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) |
3671 | { |
3672 | void __iomem *serr, *shd_base = port_mmio + SHD_BLK; |
3673 | |
3674 | /* PIO related setup |
3675 | */ |
3676 | port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); |
3677 | port->error_addr = |
3678 | port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); |
3679 | port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); |
3680 | port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); |
3681 | port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); |
3682 | port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); |
3683 | port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); |
3684 | port->status_addr = |
3685 | port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); |
3686 | /* special case: control/altstatus doesn't have ATA_REG_ address */ |
3687 | port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; |
3688 | |
3689 | /* Clear any currently outstanding port interrupt conditions */ |
3690 | serr = port_mmio + mv_scr_offset(SCR_ERROR); |
3691 | writelfl(readl(serr), serr); |
3692 | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); |
3693 | |
3694 | /* unmask all non-transient EDMA error interrupts */ |
3695 | writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); |
3696 | |
3697 | VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", |
3698 | readl(port_mmio + EDMA_CFG), |
3699 | readl(port_mmio + EDMA_ERR_IRQ_CAUSE), |
3700 | readl(port_mmio + EDMA_ERR_IRQ_MASK)); |
3701 | } |
3702 | |
3703 | static unsigned int mv_in_pcix_mode(struct ata_host *host) |
3704 | { |
3705 | struct mv_host_priv *hpriv = host->private_data; |
3706 | void __iomem *mmio = hpriv->base; |
3707 | u32 reg; |
3708 | |
3709 | if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) |
3710 | return 0; /* not PCI-X capable */ |
3711 | reg = readl(mmio + MV_PCI_MODE); |
3712 | if ((reg & MV_PCI_MODE_MASK) == 0) |
3713 | return 0; /* conventional PCI mode */ |
3714 | return 1; /* chip is in PCI-X mode */ |
3715 | } |
3716 | |
3717 | static int mv_pci_cut_through_okay(struct ata_host *host) |
3718 | { |
3719 | struct mv_host_priv *hpriv = host->private_data; |
3720 | void __iomem *mmio = hpriv->base; |
3721 | u32 reg; |
3722 | |
3723 | if (!mv_in_pcix_mode(host)) { |
3724 | reg = readl(mmio + MV_PCI_COMMAND); |
3725 | if (reg & MV_PCI_COMMAND_MRDTRIG) |
3726 | return 0; /* not okay */ |
3727 | } |
3728 | return 1; /* okay */ |
3729 | } |
3730 | |
3731 | static void mv_60x1b2_errata_pci7(struct ata_host *host) |
3732 | { |
3733 | struct mv_host_priv *hpriv = host->private_data; |
3734 | void __iomem *mmio = hpriv->base; |
3735 | |
3736 | /* workaround for 60x1-B2 errata PCI#7 */ |
3737 | if (mv_in_pcix_mode(host)) { |
3738 | u32 reg = readl(mmio + MV_PCI_COMMAND); |
3739 | writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); |
3740 | } |
3741 | } |
3742 | |
3743 | static int mv_chip_id(struct ata_host *host, unsigned int board_idx) |
3744 | { |
3745 | struct pci_dev *pdev = to_pci_dev(host->dev); |
3746 | struct mv_host_priv *hpriv = host->private_data; |
3747 | u32 hp_flags = hpriv->hp_flags; |
3748 | |
3749 | switch (board_idx) { |
3750 | case chip_5080: |
3751 | hpriv->ops = &mv5xxx_ops; |
3752 | hp_flags |= MV_HP_GEN_I; |
3753 | |
3754 | switch (pdev->revision) { |
3755 | case 0x1: |
3756 | hp_flags |= MV_HP_ERRATA_50XXB0; |
3757 | break; |
3758 | case 0x3: |
3759 | hp_flags |= MV_HP_ERRATA_50XXB2; |
3760 | break; |
3761 | default: |
3762 | dev_warn(&pdev->dev, |
3763 | "Applying 50XXB2 workarounds to unknown rev\n"); |
3764 | hp_flags |= MV_HP_ERRATA_50XXB2; |
3765 | break; |
3766 | } |
3767 | break; |
3768 | |
3769 | case chip_504x: |
3770 | case chip_508x: |
3771 | hpriv->ops = &mv5xxx_ops; |
3772 | hp_flags |= MV_HP_GEN_I; |
3773 | |
3774 | switch (pdev->revision) { |
3775 | case 0x0: |
3776 | hp_flags |= MV_HP_ERRATA_50XXB0; |
3777 | break; |
3778 | case 0x3: |
3779 | hp_flags |= MV_HP_ERRATA_50XXB2; |
3780 | break; |
3781 | default: |
3782 | dev_warn(&pdev->dev, |
3783 | "Applying B2 workarounds to unknown rev\n"); |
3784 | hp_flags |= MV_HP_ERRATA_50XXB2; |
3785 | break; |
3786 | } |
3787 | break; |
3788 | |
3789 | case chip_604x: |
3790 | case chip_608x: |
3791 | hpriv->ops = &mv6xxx_ops; |
3792 | hp_flags |= MV_HP_GEN_II; |
3793 | |
3794 | switch (pdev->revision) { |
3795 | case 0x7: |
3796 | mv_60x1b2_errata_pci7(host); |
3797 | hp_flags |= MV_HP_ERRATA_60X1B2; |
3798 | break; |
3799 | case 0x9: |
3800 | hp_flags |= MV_HP_ERRATA_60X1C0; |
3801 | break; |
3802 | default: |
3803 | dev_warn(&pdev->dev, |
3804 | "Applying B2 workarounds to unknown rev\n"); |
3805 | hp_flags |= MV_HP_ERRATA_60X1B2; |
3806 | break; |
3807 | } |
3808 | break; |
3809 | |
3810 | case chip_7042: |
3811 | hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; |
3812 | if (pdev->vendor == PCI_VENDOR_ID_TTI && |
3813 | (pdev->device == 0x2300 || pdev->device == 0x2310)) |
3814 | { |
3815 | /* |
3816 | * Highpoint RocketRAID PCIe 23xx series cards: |
3817 | * |
3818 | * Unconfigured drives are treated as "Legacy" |
3819 | * by the BIOS, and it overwrites sector 8 with |
3820 | * a "Lgcy" metadata block prior to Linux boot. |
3821 | * |
3822 | * Configured drives (RAID or JBOD) leave sector 8 |
3823 | * alone, but instead overwrite a high numbered |
3824 | * sector for the RAID metadata. This sector can |
3825 | * be determined exactly, by truncating the physical |
3826 | * drive capacity to a nice even GB value. |
3827 | * |
3828 | * RAID metadata is at: (dev->n_sectors & ~0xfffff) |
3829 | * |
3830 | * Warn the user, lest they think we're just buggy. |
3831 | */ |
3832 | printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" |
3833 | " BIOS CORRUPTS DATA on all attached drives," |
3834 | " regardless of if/how they are configured." |
3835 | " BEWARE!\n"); |
3836 | printk(KERN_WARNING DRV_NAME ": For data safety, do not" |
3837 | " use sectors 8-9 on \"Legacy\" drives," |
3838 | " and avoid the final two gigabytes on" |
3839 | " all RocketRAID BIOS initialized drives.\n"); |
3840 | } |
3841 | /* drop through */ |
3842 | case chip_6042: |
3843 | hpriv->ops = &mv6xxx_ops; |
3844 | hp_flags |= MV_HP_GEN_IIE; |
3845 | if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) |
3846 | hp_flags |= MV_HP_CUT_THROUGH; |
3847 | |
3848 | switch (pdev->revision) { |
3849 | case 0x2: /* Rev.B0: the first/only public release */ |
3850 | hp_flags |= MV_HP_ERRATA_60X1C0; |
3851 | break; |
3852 | default: |
3853 | dev_warn(&pdev->dev, |
3854 | "Applying 60X1C0 workarounds to unknown rev\n"); |
3855 | hp_flags |= MV_HP_ERRATA_60X1C0; |
3856 | break; |
3857 | } |
3858 | break; |
3859 | case chip_soc: |
3860 | if (soc_is_65n(hpriv)) |
3861 | hpriv->ops = &mv_soc_65n_ops; |
3862 | else |
3863 | hpriv->ops = &mv_soc_ops; |
3864 | hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | |
3865 | MV_HP_ERRATA_60X1C0; |
3866 | break; |
3867 | |
3868 | default: |
3869 | dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); |
3870 | return 1; |
3871 | } |
3872 | |
3873 | hpriv->hp_flags = hp_flags; |
3874 | if (hp_flags & MV_HP_PCIE) { |
3875 | hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; |
3876 | hpriv->irq_mask_offset = PCIE_IRQ_MASK; |
3877 | hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; |
3878 | } else { |
3879 | hpriv->irq_cause_offset = PCI_IRQ_CAUSE; |
3880 | hpriv->irq_mask_offset = PCI_IRQ_MASK; |
3881 | hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; |
3882 | } |
3883 | |
3884 | return 0; |
3885 | } |
3886 | |
3887 | /** |
3888 | * mv_init_host - Perform some early initialization of the host. |
3889 | * @host: ATA host to initialize |
3890 | * |
3891 | * If possible, do an early global reset of the host. Then do |
3892 | * our port init and clear/unmask all/relevant host interrupts. |
3893 | * |
3894 | * LOCKING: |
3895 | * Inherited from caller. |
3896 | */ |
3897 | static int mv_init_host(struct ata_host *host) |
3898 | { |
3899 | int rc = 0, n_hc, port, hc; |
3900 | struct mv_host_priv *hpriv = host->private_data; |
3901 | void __iomem *mmio = hpriv->base; |
3902 | |
3903 | rc = mv_chip_id(host, hpriv->board_idx); |
3904 | if (rc) |
3905 | goto done; |
3906 | |
3907 | if (IS_SOC(hpriv)) { |
3908 | hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; |
3909 | hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; |
3910 | } else { |
3911 | hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; |
3912 | hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; |
3913 | } |
3914 | |
3915 | /* initialize shadow irq mask with register's value */ |
3916 | hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); |
3917 | |
3918 | /* global interrupt mask: 0 == mask everything */ |
3919 | mv_set_main_irq_mask(host, ~0, 0); |
3920 | |
3921 | n_hc = mv_get_hc_count(host->ports[0]->flags); |
3922 | |
3923 | for (port = 0; port < host->n_ports; port++) |
3924 | if (hpriv->ops->read_preamp) |
3925 | hpriv->ops->read_preamp(hpriv, port, mmio); |
3926 | |
3927 | rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); |
3928 | if (rc) |
3929 | goto done; |
3930 | |
3931 | hpriv->ops->reset_flash(hpriv, mmio); |
3932 | hpriv->ops->reset_bus(host, mmio); |
3933 | hpriv->ops->enable_leds(hpriv, mmio); |
3934 | |
3935 | for (port = 0; port < host->n_ports; port++) { |
3936 | struct ata_port *ap = host->ports[port]; |
3937 | void __iomem *port_mmio = mv_port_base(mmio, port); |
3938 | |
3939 | mv_port_init(&ap->ioaddr, port_mmio); |
3940 | } |
3941 | |
3942 | for (hc = 0; hc < n_hc; hc++) { |
3943 | void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
3944 | |
3945 | VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " |
3946 | "(before clear)=0x%08x\n", hc, |
3947 | readl(hc_mmio + HC_CFG), |
3948 | readl(hc_mmio + HC_IRQ_CAUSE)); |
3949 | |
3950 | /* Clear any currently outstanding hc interrupt conditions */ |
3951 | writelfl(0, hc_mmio + HC_IRQ_CAUSE); |
3952 | } |
3953 | |
3954 | if (!IS_SOC(hpriv)) { |
3955 | /* Clear any currently outstanding host interrupt conditions */ |
3956 | writelfl(0, mmio + hpriv->irq_cause_offset); |
3957 | |
3958 | /* and unmask interrupt generation for host regs */ |
3959 | writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); |
3960 | } |
3961 | |
3962 | /* |
3963 | * enable only global host interrupts for now. |
3964 | * The per-port interrupts get done later as ports are set up. |
3965 | */ |
3966 | mv_set_main_irq_mask(host, 0, PCI_ERR); |
3967 | mv_set_irq_coalescing(host, irq_coalescing_io_count, |
3968 | irq_coalescing_usecs); |
3969 | done: |
3970 | return rc; |
3971 | } |
3972 | |
3973 | static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) |
3974 | { |
3975 | hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, |
3976 | MV_CRQB_Q_SZ, 0); |
3977 | if (!hpriv->crqb_pool) |
3978 | return -ENOMEM; |
3979 | |
3980 | hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, |
3981 | MV_CRPB_Q_SZ, 0); |
3982 | if (!hpriv->crpb_pool) |
3983 | return -ENOMEM; |
3984 | |
3985 | hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, |
3986 | MV_SG_TBL_SZ, 0); |
3987 | if (!hpriv->sg_tbl_pool) |
3988 | return -ENOMEM; |
3989 | |
3990 | return 0; |
3991 | } |
3992 | |
3993 | static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, |
3994 | const struct mbus_dram_target_info *dram) |
3995 | { |
3996 | int i; |
3997 | |
3998 | for (i = 0; i < 4; i++) { |
3999 | writel(0, hpriv->base + WINDOW_CTRL(i)); |
4000 | writel(0, hpriv->base + WINDOW_BASE(i)); |
4001 | } |
4002 | |
4003 | for (i = 0; i < dram->num_cs; i++) { |
4004 | const struct mbus_dram_window *cs = dram->cs + i; |
4005 | |
4006 | writel(((cs->size - 1) & 0xffff0000) | |
4007 | (cs->mbus_attr << 8) | |
4008 | (dram->mbus_dram_target_id << 4) | 1, |
4009 | hpriv->base + WINDOW_CTRL(i)); |
4010 | writel(cs->base, hpriv->base + WINDOW_BASE(i)); |
4011 | } |
4012 | } |
4013 | |
4014 | /** |
4015 | * mv_platform_probe - handle a positive probe of an soc Marvell |
4016 | * host |
4017 | * @pdev: platform device found |
4018 | * |
4019 | * LOCKING: |
4020 | * Inherited from caller. |
4021 | */ |
4022 | static int mv_platform_probe(struct platform_device *pdev) |
4023 | { |
4024 | const struct mv_sata_platform_data *mv_platform_data; |
4025 | const struct mbus_dram_target_info *dram; |
4026 | const struct ata_port_info *ppi[] = |
4027 | { &mv_port_info[chip_soc], NULL }; |
4028 | struct ata_host *host; |
4029 | struct mv_host_priv *hpriv; |
4030 | struct resource *res; |
4031 | int n_ports = 0, irq = 0; |
4032 | int rc; |
4033 | #if defined(CONFIG_HAVE_CLK) |
4034 | int port; |
4035 | #endif |
4036 | |
4037 | ata_print_version_once(&pdev->dev, DRV_VERSION); |
4038 | |
4039 | /* |
4040 | * Simple resource validation .. |
4041 | */ |
4042 | if (unlikely(pdev->num_resources != 2)) { |
4043 | dev_err(&pdev->dev, "invalid number of resources\n"); |
4044 | return -EINVAL; |
4045 | } |
4046 | |
4047 | /* |
4048 | * Get the register base first |
4049 | */ |
4050 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
4051 | if (res == NULL) |
4052 | return -EINVAL; |
4053 | |
4054 | /* allocate host */ |
4055 | if (pdev->dev.of_node) { |
4056 | of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports); |
4057 | irq = irq_of_parse_and_map(pdev->dev.of_node, 0); |
4058 | } else { |
4059 | mv_platform_data = pdev->dev.platform_data; |
4060 | n_ports = mv_platform_data->n_ports; |
4061 | irq = platform_get_irq(pdev, 0); |
4062 | } |
4063 | |
4064 | host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); |
4065 | hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); |
4066 | |
4067 | if (!host || !hpriv) |
4068 | return -ENOMEM; |
4069 | #if defined(CONFIG_HAVE_CLK) |
4070 | hpriv->port_clks = devm_kzalloc(&pdev->dev, |
4071 | sizeof(struct clk *) * n_ports, |
4072 | GFP_KERNEL); |
4073 | if (!hpriv->port_clks) |
4074 | return -ENOMEM; |
4075 | #endif |
4076 | host->private_data = hpriv; |
4077 | hpriv->n_ports = n_ports; |
4078 | hpriv->board_idx = chip_soc; |
4079 | |
4080 | host->iomap = NULL; |
4081 | hpriv->base = devm_ioremap(&pdev->dev, res->start, |
4082 | resource_size(res)); |
4083 | hpriv->base -= SATAHC0_REG_BASE; |
4084 | |
4085 | #if defined(CONFIG_HAVE_CLK) |
4086 | hpriv->clk = clk_get(&pdev->dev, NULL); |
4087 | if (IS_ERR(hpriv->clk)) |
4088 | dev_notice(&pdev->dev, "cannot get optional clkdev\n"); |
4089 | else |
4090 | clk_prepare_enable(hpriv->clk); |
4091 | |
4092 | for (port = 0; port < n_ports; port++) { |
4093 | char port_number[16]; |
4094 | sprintf(port_number, "%d", port); |
4095 | hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); |
4096 | if (!IS_ERR(hpriv->port_clks[port])) |
4097 | clk_prepare_enable(hpriv->port_clks[port]); |
4098 | } |
4099 | #endif |
4100 | |
4101 | /* |
4102 | * (Re-)program MBUS remapping windows if we are asked to. |
4103 | */ |
4104 | dram = mv_mbus_dram_info(); |
4105 | if (dram) |
4106 | mv_conf_mbus_windows(hpriv, dram); |
4107 | |
4108 | rc = mv_create_dma_pools(hpriv, &pdev->dev); |
4109 | if (rc) |
4110 | goto err; |
4111 | |
4112 | /* initialize adapter */ |
4113 | rc = mv_init_host(host); |
4114 | if (rc) |
4115 | goto err; |
4116 | |
4117 | dev_info(&pdev->dev, "slots %u ports %d\n", |
4118 | (unsigned)MV_MAX_Q_DEPTH, host->n_ports); |
4119 | |
4120 | rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); |
4121 | if (!rc) |
4122 | return 0; |
4123 | |
4124 | err: |
4125 | #if defined(CONFIG_HAVE_CLK) |
4126 | if (!IS_ERR(hpriv->clk)) { |
4127 | clk_disable_unprepare(hpriv->clk); |
4128 | clk_put(hpriv->clk); |
4129 | } |
4130 | for (port = 0; port < n_ports; port++) { |
4131 | if (!IS_ERR(hpriv->port_clks[port])) { |
4132 | clk_disable_unprepare(hpriv->port_clks[port]); |
4133 | clk_put(hpriv->port_clks[port]); |
4134 | } |
4135 | } |
4136 | #endif |
4137 | |
4138 | return rc; |
4139 | } |
4140 | |
4141 | /* |
4142 | * |
4143 | * mv_platform_remove - unplug a platform interface |
4144 | * @pdev: platform device |
4145 | * |
4146 | * A platform bus SATA device has been unplugged. Perform the needed |
4147 | * cleanup. Also called on module unload for any active devices. |
4148 | */ |
4149 | static int __devexit mv_platform_remove(struct platform_device *pdev) |
4150 | { |
4151 | struct ata_host *host = platform_get_drvdata(pdev); |
4152 | #if defined(CONFIG_HAVE_CLK) |
4153 | struct mv_host_priv *hpriv = host->private_data; |
4154 | int port; |
4155 | #endif |
4156 | ata_host_detach(host); |
4157 | |
4158 | #if defined(CONFIG_HAVE_CLK) |
4159 | if (!IS_ERR(hpriv->clk)) { |
4160 | clk_disable_unprepare(hpriv->clk); |
4161 | clk_put(hpriv->clk); |
4162 | } |
4163 | for (port = 0; port < host->n_ports; port++) { |
4164 | if (!IS_ERR(hpriv->port_clks[port])) { |
4165 | clk_disable_unprepare(hpriv->port_clks[port]); |
4166 | clk_put(hpriv->port_clks[port]); |
4167 | } |
4168 | } |
4169 | #endif |
4170 | return 0; |
4171 | } |
4172 | |
4173 | #ifdef CONFIG_PM |
4174 | static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) |
4175 | { |
4176 | struct ata_host *host = platform_get_drvdata(pdev); |
4177 | if (host) |
4178 | return ata_host_suspend(host, state); |
4179 | else |
4180 | return 0; |
4181 | } |
4182 | |
4183 | static int mv_platform_resume(struct platform_device *pdev) |
4184 | { |
4185 | struct ata_host *host = platform_get_drvdata(pdev); |
4186 | const struct mbus_dram_target_info *dram; |
4187 | int ret; |
4188 | |
4189 | if (host) { |
4190 | struct mv_host_priv *hpriv = host->private_data; |
4191 | |
4192 | /* |
4193 | * (Re-)program MBUS remapping windows if we are asked to. |
4194 | */ |
4195 | dram = mv_mbus_dram_info(); |
4196 | if (dram) |
4197 | mv_conf_mbus_windows(hpriv, dram); |
4198 | |
4199 | /* initialize adapter */ |
4200 | ret = mv_init_host(host); |
4201 | if (ret) { |
4202 | printk(KERN_ERR DRV_NAME ": Error during HW init\n"); |
4203 | return ret; |
4204 | } |
4205 | ata_host_resume(host); |
4206 | } |
4207 | |
4208 | return 0; |
4209 | } |
4210 | #else |
4211 | #define mv_platform_suspend NULL |
4212 | #define mv_platform_resume NULL |
4213 | #endif |
4214 | |
4215 | #ifdef CONFIG_OF |
4216 | static struct of_device_id mv_sata_dt_ids[] __devinitdata = { |
4217 | { .compatible = "marvell,orion-sata", }, |
4218 | {}, |
4219 | }; |
4220 | MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); |
4221 | #endif |
4222 | |
4223 | static struct platform_driver mv_platform_driver = { |
4224 | .probe = mv_platform_probe, |
4225 | .remove = __devexit_p(mv_platform_remove), |
4226 | .suspend = mv_platform_suspend, |
4227 | .resume = mv_platform_resume, |
4228 | .driver = { |
4229 | .name = DRV_NAME, |
4230 | .owner = THIS_MODULE, |
4231 | .of_match_table = of_match_ptr(mv_sata_dt_ids), |
4232 | }, |
4233 | }; |
4234 | |
4235 | |
4236 | #ifdef CONFIG_PCI |
4237 | static int mv_pci_init_one(struct pci_dev *pdev, |
4238 | const struct pci_device_id *ent); |
4239 | #ifdef CONFIG_PM |
4240 | static int mv_pci_device_resume(struct pci_dev *pdev); |
4241 | #endif |
4242 | |
4243 | |
4244 | static struct pci_driver mv_pci_driver = { |
4245 | .name = DRV_NAME, |
4246 | .id_table = mv_pci_tbl, |
4247 | .probe = mv_pci_init_one, |
4248 | .remove = ata_pci_remove_one, |
4249 | #ifdef CONFIG_PM |
4250 | .suspend = ata_pci_device_suspend, |
4251 | .resume = mv_pci_device_resume, |
4252 | #endif |
4253 | |
4254 | }; |
4255 | |
4256 | /* move to PCI layer or libata core? */ |
4257 | static int pci_go_64(struct pci_dev *pdev) |
4258 | { |
4259 | int rc; |
4260 | |
4261 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { |
4262 | rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
4263 | if (rc) { |
4264 | rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
4265 | if (rc) { |
4266 | dev_err(&pdev->dev, |
4267 | "64-bit DMA enable failed\n"); |
4268 | return rc; |
4269 | } |
4270 | } |
4271 | } else { |
4272 | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
4273 | if (rc) { |
4274 | dev_err(&pdev->dev, "32-bit DMA enable failed\n"); |
4275 | return rc; |
4276 | } |
4277 | rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
4278 | if (rc) { |
4279 | dev_err(&pdev->dev, |
4280 | "32-bit consistent DMA enable failed\n"); |
4281 | return rc; |
4282 | } |
4283 | } |
4284 | |
4285 | return rc; |
4286 | } |
4287 | |
4288 | /** |
4289 | * mv_print_info - Dump key info to kernel log for perusal. |
4290 | * @host: ATA host to print info about |
4291 | * |
4292 | * FIXME: complete this. |
4293 | * |
4294 | * LOCKING: |
4295 | * Inherited from caller. |
4296 | */ |
4297 | static void mv_print_info(struct ata_host *host) |
4298 | { |
4299 | struct pci_dev *pdev = to_pci_dev(host->dev); |
4300 | struct mv_host_priv *hpriv = host->private_data; |
4301 | u8 scc; |
4302 | const char *scc_s, *gen; |
4303 | |
4304 | /* Use this to determine the HW stepping of the chip so we know |
4305 | * what errata to workaround |
4306 | */ |
4307 | pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); |
4308 | if (scc == 0) |
4309 | scc_s = "SCSI"; |
4310 | else if (scc == 0x01) |
4311 | scc_s = "RAID"; |
4312 | else |
4313 | scc_s = "?"; |
4314 | |
4315 | if (IS_GEN_I(hpriv)) |
4316 | gen = "I"; |
4317 | else if (IS_GEN_II(hpriv)) |
4318 | gen = "II"; |
4319 | else if (IS_GEN_IIE(hpriv)) |
4320 | gen = "IIE"; |
4321 | else |
4322 | gen = "?"; |
4323 | |
4324 | dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", |
4325 | gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, |
4326 | scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); |
4327 | } |
4328 | |
4329 | /** |
4330 | * mv_pci_init_one - handle a positive probe of a PCI Marvell host |
4331 | * @pdev: PCI device found |
4332 | * @ent: PCI device ID entry for the matched host |
4333 | * |
4334 | * LOCKING: |
4335 | * Inherited from caller. |
4336 | */ |
4337 | static int mv_pci_init_one(struct pci_dev *pdev, |
4338 | const struct pci_device_id *ent) |
4339 | { |
4340 | unsigned int board_idx = (unsigned int)ent->driver_data; |
4341 | const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; |
4342 | struct ata_host *host; |
4343 | struct mv_host_priv *hpriv; |
4344 | int n_ports, port, rc; |
4345 | |
4346 | ata_print_version_once(&pdev->dev, DRV_VERSION); |
4347 | |
4348 | /* allocate host */ |
4349 | n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; |
4350 | |
4351 | host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); |
4352 | hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); |
4353 | if (!host || !hpriv) |
4354 | return -ENOMEM; |
4355 | host->private_data = hpriv; |
4356 | hpriv->n_ports = n_ports; |
4357 | hpriv->board_idx = board_idx; |
4358 | |
4359 | /* acquire resources */ |
4360 | rc = pcim_enable_device(pdev); |
4361 | if (rc) |
4362 | return rc; |
4363 | |
4364 | rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); |
4365 | if (rc == -EBUSY) |
4366 | pcim_pin_device(pdev); |
4367 | if (rc) |
4368 | return rc; |
4369 | host->iomap = pcim_iomap_table(pdev); |
4370 | hpriv->base = host->iomap[MV_PRIMARY_BAR]; |
4371 | |
4372 | rc = pci_go_64(pdev); |
4373 | if (rc) |
4374 | return rc; |
4375 | |
4376 | rc = mv_create_dma_pools(hpriv, &pdev->dev); |
4377 | if (rc) |
4378 | return rc; |
4379 | |
4380 | for (port = 0; port < host->n_ports; port++) { |
4381 | struct ata_port *ap = host->ports[port]; |
4382 | void __iomem *port_mmio = mv_port_base(hpriv->base, port); |
4383 | unsigned int offset = port_mmio - hpriv->base; |
4384 | |
4385 | ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); |
4386 | ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); |
4387 | } |
4388 | |
4389 | /* initialize adapter */ |
4390 | rc = mv_init_host(host); |
4391 | if (rc) |
4392 | return rc; |
4393 | |
4394 | /* Enable message-switched interrupts, if requested */ |
4395 | if (msi && pci_enable_msi(pdev) == 0) |
4396 | hpriv->hp_flags |= MV_HP_FLAG_MSI; |
4397 | |
4398 | mv_dump_pci_cfg(pdev, 0x68); |
4399 | mv_print_info(host); |
4400 | |
4401 | pci_set_master(pdev); |
4402 | pci_try_set_mwi(pdev); |
4403 | return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, |
4404 | IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); |
4405 | } |
4406 | |
4407 | #ifdef CONFIG_PM |
4408 | static int mv_pci_device_resume(struct pci_dev *pdev) |
4409 | { |
4410 | struct ata_host *host = pci_get_drvdata(pdev); |
4411 | int rc; |
4412 | |
4413 | rc = ata_pci_device_do_resume(pdev); |
4414 | if (rc) |
4415 | return rc; |
4416 | |
4417 | /* initialize adapter */ |
4418 | rc = mv_init_host(host); |
4419 | if (rc) |
4420 | return rc; |
4421 | |
4422 | ata_host_resume(host); |
4423 | |
4424 | return 0; |
4425 | } |
4426 | #endif |
4427 | #endif |
4428 | |
4429 | static int mv_platform_probe(struct platform_device *pdev); |
4430 | static int __devexit mv_platform_remove(struct platform_device *pdev); |
4431 | |
4432 | static int __init mv_init(void) |
4433 | { |
4434 | int rc = -ENODEV; |
4435 | #ifdef CONFIG_PCI |
4436 | rc = pci_register_driver(&mv_pci_driver); |
4437 | if (rc < 0) |
4438 | return rc; |
4439 | #endif |
4440 | rc = platform_driver_register(&mv_platform_driver); |
4441 | |
4442 | #ifdef CONFIG_PCI |
4443 | if (rc < 0) |
4444 | pci_unregister_driver(&mv_pci_driver); |
4445 | #endif |
4446 | return rc; |
4447 | } |
4448 | |
4449 | static void __exit mv_exit(void) |
4450 | { |
4451 | #ifdef CONFIG_PCI |
4452 | pci_unregister_driver(&mv_pci_driver); |
4453 | #endif |
4454 | platform_driver_unregister(&mv_platform_driver); |
4455 | } |
4456 | |
4457 | MODULE_AUTHOR("Brett Russ"); |
4458 | MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); |
4459 | MODULE_LICENSE("GPL"); |
4460 | MODULE_DEVICE_TABLE(pci, mv_pci_tbl); |
4461 | MODULE_VERSION(DRV_VERSION); |
4462 | MODULE_ALIAS("platform:" DRV_NAME); |
4463 | |
4464 | module_init(mv_init); |
4465 | module_exit(mv_exit); |
4466 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9