Root/
1 | /* |
2 | Madge Ambassador ATM Adapter driver. |
3 | Copyright (C) 1995-1999 Madge Networks Ltd. |
4 | |
5 | This program is free software; you can redistribute it and/or modify |
6 | it under the terms of the GNU General Public License as published by |
7 | the Free Software Foundation; either version 2 of the License, or |
8 | (at your option) any later version. |
9 | |
10 | This program is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | GNU General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU General Public License |
16 | along with this program; if not, write to the Free Software |
17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
18 | |
19 | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian |
20 | system and in the file COPYING in the Linux kernel source. |
21 | */ |
22 | |
23 | /* * dedicated to the memory of Graham Gordon 1971-1998 * */ |
24 | |
25 | #include <linux/module.h> |
26 | #include <linux/types.h> |
27 | #include <linux/pci.h> |
28 | #include <linux/kernel.h> |
29 | #include <linux/init.h> |
30 | #include <linux/ioport.h> |
31 | #include <linux/atmdev.h> |
32 | #include <linux/delay.h> |
33 | #include <linux/interrupt.h> |
34 | #include <linux/poison.h> |
35 | #include <linux/bitrev.h> |
36 | #include <linux/mutex.h> |
37 | #include <linux/firmware.h> |
38 | #include <linux/ihex.h> |
39 | #include <linux/slab.h> |
40 | |
41 | #include <linux/atomic.h> |
42 | #include <asm/io.h> |
43 | #include <asm/byteorder.h> |
44 | |
45 | #include "ambassador.h" |
46 | |
47 | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" |
48 | #define description_string "Madge ATM Ambassador driver" |
49 | #define version_string "1.2.4" |
50 | |
51 | static inline void __init show_version (void) { |
52 | printk ("%s version %s\n", description_string, version_string); |
53 | } |
54 | |
55 | /* |
56 | |
57 | Theory of Operation |
58 | |
59 | I Hardware, detection, initialisation and shutdown. |
60 | |
61 | 1. Supported Hardware |
62 | |
63 | This driver is for the PCI ATMizer-based Ambassador card (except |
64 | very early versions). It is not suitable for the similar EISA "TR7" |
65 | card. Commercially, both cards are known as Collage Server ATM |
66 | adapters. |
67 | |
68 | The loader supports image transfer to the card, image start and few |
69 | other miscellaneous commands. |
70 | |
71 | Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023. |
72 | |
73 | The cards are big-endian. |
74 | |
75 | 2. Detection |
76 | |
77 | Standard PCI stuff, the early cards are detected and rejected. |
78 | |
79 | 3. Initialisation |
80 | |
81 | The cards are reset and the self-test results are checked. The |
82 | microcode image is then transferred and started. This waits for a |
83 | pointer to a descriptor containing details of the host-based queues |
84 | and buffers and various parameters etc. Once they are processed |
85 | normal operations may begin. The BIA is read using a microcode |
86 | command. |
87 | |
88 | 4. Shutdown |
89 | |
90 | This may be accomplished either by a card reset or via the microcode |
91 | shutdown command. Further investigation required. |
92 | |
93 | 5. Persistent state |
94 | |
95 | The card reset does not affect PCI configuration (good) or the |
96 | contents of several other "shared run-time registers" (bad) which |
97 | include doorbell and interrupt control as well as EEPROM and PCI |
98 | control. The driver must be careful when modifying these registers |
99 | not to touch bits it does not use and to undo any changes at exit. |
100 | |
101 | II Driver software |
102 | |
103 | 0. Generalities |
104 | |
105 | The adapter is quite intelligent (fast) and has a simple interface |
106 | (few features). VPI is always zero, 1024 VCIs are supported. There |
107 | is limited cell rate support. UBR channels can be capped and ABR |
108 | (explicit rate, but not EFCI) is supported. There is no CBR or VBR |
109 | support. |
110 | |
111 | 1. Driver <-> Adapter Communication |
112 | |
113 | Apart from the basic loader commands, the driver communicates |
114 | through three entities: the command queue (CQ), the transmit queue |
115 | pair (TXQ) and the receive queue pairs (RXQ). These three entities |
116 | are set up by the host and passed to the microcode just after it has |
117 | been started. |
118 | |
119 | All queues are host-based circular queues. They are contiguous and |
120 | (due to hardware limitations) have some restrictions as to their |
121 | locations in (bus) memory. They are of the "full means the same as |
122 | empty so don't do that" variety since the adapter uses pointers |
123 | internally. |
124 | |
125 | The queue pairs work as follows: one queue is for supply to the |
126 | adapter, items in it are pending and are owned by the adapter; the |
127 | other is the queue for return from the adapter, items in it have |
128 | been dealt with by the adapter. The host adds items to the supply |
129 | (TX descriptors and free RX buffer descriptors) and removes items |
130 | from the return (TX and RX completions). The adapter deals with out |
131 | of order completions. |
132 | |
133 | Interrupts (card to host) and the doorbell (host to card) are used |
134 | for signalling. |
135 | |
136 | 1. CQ |
137 | |
138 | This is to communicate "open VC", "close VC", "get stats" etc. to |
139 | the adapter. At most one command is retired every millisecond by the |
140 | card. There is no out of order completion or notification. The |
141 | driver needs to check the return code of the command, waiting as |
142 | appropriate. |
143 | |
144 | 2. TXQ |
145 | |
146 | TX supply items are of variable length (scatter gather support) and |
147 | so the queue items are (more or less) pointers to the real thing. |
148 | Each TX supply item contains a unique, host-supplied handle (the skb |
149 | bus address seems most sensible as this works for Alphas as well, |
150 | there is no need to do any endian conversions on the handles). |
151 | |
152 | TX return items consist of just the handles above. |
153 | |
154 | 3. RXQ (up to 4 of these with different lengths and buffer sizes) |
155 | |
156 | RX supply items consist of a unique, host-supplied handle (the skb |
157 | bus address again) and a pointer to the buffer data area. |
158 | |
159 | RX return items consist of the handle above, the VC, length and a |
160 | status word. This just screams "oh so easy" doesn't it? |
161 | |
162 | Note on RX pool sizes: |
163 | |
164 | Each pool should have enough buffers to handle a back-to-back stream |
165 | of minimum sized frames on a single VC. For example: |
166 | |
167 | frame spacing = 3us (about right) |
168 | |
169 | delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess) |
170 | |
171 | min number of buffers for one VC = 1 + delay/spacing (buffers) |
172 | |
173 | delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up) |
174 | |
175 | The 20us delay assumes that there is no need to sleep; if we need to |
176 | sleep to get buffers we are going to drop frames anyway. |
177 | |
178 | In fact, each pool should have enough buffers to support the |
179 | simultaneous reassembly of a separate frame on each VC and cope with |
180 | the case in which frames complete in round robin cell fashion on |
181 | each VC. |
182 | |
183 | Only one frame can complete at each cell arrival, so if "n" VCs are |
184 | open, the worst case is to have them all complete frames together |
185 | followed by all starting new frames together. |
186 | |
187 | desired number of buffers = n + delay/spacing |
188 | |
189 | These are the extreme requirements, however, they are "n+k" for some |
190 | "k" so we have only the constant to choose. This is the argument |
191 | rx_lats which current defaults to 7. |
192 | |
193 | Actually, "n ? n+k : 0" is better and this is what is implemented, |
194 | subject to the limit given by the pool size. |
195 | |
196 | 4. Driver locking |
197 | |
198 | Simple spinlocks are used around the TX and RX queue mechanisms. |
199 | Anyone with a faster, working method is welcome to implement it. |
200 | |
201 | The adapter command queue is protected with a spinlock. We always |
202 | wait for commands to complete. |
203 | |
204 | A more complex form of locking is used around parts of the VC open |
205 | and close functions. There are three reasons for a lock: 1. we need |
206 | to do atomic rate reservation and release (not used yet), 2. Opening |
207 | sometimes involves two adapter commands which must not be separated |
208 | by another command on the same VC, 3. the changes to RX pool size |
209 | must be atomic. The lock needs to work over context switches, so we |
210 | use a semaphore. |
211 | |
212 | III Hardware Features and Microcode Bugs |
213 | |
214 | 1. Byte Ordering |
215 | |
216 | *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*! |
217 | |
218 | 2. Memory access |
219 | |
220 | All structures that are not accessed using DMA must be 4-byte |
221 | aligned (not a problem) and must not cross 4MB boundaries. |
222 | |
223 | There is a DMA memory hole at E0000000-E00000FF (groan). |
224 | |
225 | TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB |
226 | but for a hardware bug). |
227 | |
228 | RX buffers (DMA write) must not cross 16MB boundaries and must |
229 | include spare trailing bytes up to the next 4-byte boundary; they |
230 | will be written with rubbish. |
231 | |
232 | The PLX likes to prefetch; if reading up to 4 u32 past the end of |
233 | each TX fragment is not a problem, then TX can be made to go a |
234 | little faster by passing a flag at init that disables a prefetch |
235 | workaround. We do not pass this flag. (new microcode only) |
236 | |
237 | Now we: |
238 | . Note that alloc_skb rounds up size to a 16byte boundary. |
239 | . Ensure all areas do not traverse 4MB boundaries. |
240 | . Ensure all areas do not start at a E00000xx bus address. |
241 | (I cannot be certain, but this may always hold with Linux) |
242 | . Make all failures cause a loud message. |
243 | . Discard non-conforming SKBs (causes TX failure or RX fill delay). |
244 | . Discard non-conforming TX fragment descriptors (the TX fails). |
245 | In the future we could: |
246 | . Allow RX areas that traverse 4MB (but not 16MB) boundaries. |
247 | . Segment TX areas into some/more fragments, when necessary. |
248 | . Relax checks for non-DMA items (ignore hole). |
249 | . Give scatter-gather (iovec) requirements using ???. (?) |
250 | |
251 | 3. VC close is broken (only for new microcode) |
252 | |
253 | The VC close adapter microcode command fails to do anything if any |
254 | frames have been received on the VC but none have been transmitted. |
255 | Frames continue to be reassembled and passed (with IRQ) to the |
256 | driver. |
257 | |
258 | IV To Do List |
259 | |
260 | . Fix bugs! |
261 | |
262 | . Timer code may be broken. |
263 | |
264 | . Deal with buggy VC close (somehow) in microcode 12. |
265 | |
266 | . Handle interrupted and/or non-blocking writes - is this a job for |
267 | the protocol layer? |
268 | |
269 | . Add code to break up TX fragments when they span 4MB boundaries. |
270 | |
271 | . Add SUNI phy layer (need to know where SUNI lives on card). |
272 | |
273 | . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b) |
274 | leave extra headroom space for Ambassador TX descriptors. |
275 | |
276 | . Understand these elements of struct atm_vcc: recvq (proto?), |
277 | sleep, callback, listenq, backlog_quota, reply and user_back. |
278 | |
279 | . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable). |
280 | |
281 | . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow. |
282 | |
283 | . Decide whether RX buffer recycling is or can be made completely safe; |
284 | turn it back on. It looks like Werner is going to axe this. |
285 | |
286 | . Implement QoS changes on open VCs (involves extracting parts of VC open |
287 | and close into separate functions and using them to make changes). |
288 | |
289 | . Hack on command queue so that someone can issue multiple commands and wait |
290 | on the last one (OR only "no-op" or "wait" commands are waited for). |
291 | |
292 | . Eliminate need for while-schedule around do_command. |
293 | |
294 | */ |
295 | |
296 | static void do_housekeeping (unsigned long arg); |
297 | /********** globals **********/ |
298 | |
299 | static unsigned short debug = 0; |
300 | static unsigned int cmds = 8; |
301 | static unsigned int txs = 32; |
302 | static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 }; |
303 | static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 }; |
304 | static unsigned int rx_lats = 7; |
305 | static unsigned char pci_lat = 0; |
306 | |
307 | static const unsigned long onegigmask = -1 << 30; |
308 | |
309 | /********** access to adapter **********/ |
310 | |
311 | static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) { |
312 | PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data); |
313 | #ifdef AMB_MMIO |
314 | dev->membase[addr / sizeof(u32)] = data; |
315 | #else |
316 | outl (data, dev->iobase + addr); |
317 | #endif |
318 | } |
319 | |
320 | static inline u32 rd_plain (const amb_dev * dev, size_t addr) { |
321 | #ifdef AMB_MMIO |
322 | u32 data = dev->membase[addr / sizeof(u32)]; |
323 | #else |
324 | u32 data = inl (dev->iobase + addr); |
325 | #endif |
326 | PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data); |
327 | return data; |
328 | } |
329 | |
330 | static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) { |
331 | __be32 be = cpu_to_be32 (data); |
332 | PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be); |
333 | #ifdef AMB_MMIO |
334 | dev->membase[addr / sizeof(u32)] = be; |
335 | #else |
336 | outl (be, dev->iobase + addr); |
337 | #endif |
338 | } |
339 | |
340 | static inline u32 rd_mem (const amb_dev * dev, size_t addr) { |
341 | #ifdef AMB_MMIO |
342 | __be32 be = dev->membase[addr / sizeof(u32)]; |
343 | #else |
344 | __be32 be = inl (dev->iobase + addr); |
345 | #endif |
346 | u32 data = be32_to_cpu (be); |
347 | PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be); |
348 | return data; |
349 | } |
350 | |
351 | /********** dump routines **********/ |
352 | |
353 | static inline void dump_registers (const amb_dev * dev) { |
354 | #ifdef DEBUG_AMBASSADOR |
355 | if (debug & DBG_REGS) { |
356 | size_t i; |
357 | PRINTD (DBG_REGS, "reading PLX control: "); |
358 | for (i = 0x00; i < 0x30; i += sizeof(u32)) |
359 | rd_mem (dev, i); |
360 | PRINTD (DBG_REGS, "reading mailboxes: "); |
361 | for (i = 0x40; i < 0x60; i += sizeof(u32)) |
362 | rd_mem (dev, i); |
363 | PRINTD (DBG_REGS, "reading doorb irqev irqen reset:"); |
364 | for (i = 0x60; i < 0x70; i += sizeof(u32)) |
365 | rd_mem (dev, i); |
366 | } |
367 | #else |
368 | (void) dev; |
369 | #endif |
370 | return; |
371 | } |
372 | |
373 | static inline void dump_loader_block (volatile loader_block * lb) { |
374 | #ifdef DEBUG_AMBASSADOR |
375 | unsigned int i; |
376 | PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:", |
377 | lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command)); |
378 | for (i = 0; i < MAX_COMMAND_DATA; ++i) |
379 | PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i])); |
380 | PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid)); |
381 | #else |
382 | (void) lb; |
383 | #endif |
384 | return; |
385 | } |
386 | |
387 | static inline void dump_command (command * cmd) { |
388 | #ifdef DEBUG_AMBASSADOR |
389 | unsigned int i; |
390 | PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:", |
391 | cmd, /*be32_to_cpu*/ (cmd->request)); |
392 | for (i = 0; i < 3; ++i) |
393 | PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i])); |
394 | PRINTDE (DBG_CMD, ""); |
395 | #else |
396 | (void) cmd; |
397 | #endif |
398 | return; |
399 | } |
400 | |
401 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { |
402 | #ifdef DEBUG_AMBASSADOR |
403 | unsigned int i; |
404 | unsigned char * data = skb->data; |
405 | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); |
406 | for (i=0; i<skb->len && i < 256;i++) |
407 | PRINTDM (DBG_DATA, "%02x ", data[i]); |
408 | PRINTDE (DBG_DATA,""); |
409 | #else |
410 | (void) prefix; |
411 | (void) vc; |
412 | (void) skb; |
413 | #endif |
414 | return; |
415 | } |
416 | |
417 | /********** check memory areas for use by Ambassador **********/ |
418 | |
419 | /* see limitations under Hardware Features */ |
420 | |
421 | static int check_area (void * start, size_t length) { |
422 | // assumes length > 0 |
423 | const u32 fourmegmask = -1 << 22; |
424 | const u32 twofivesixmask = -1 << 8; |
425 | const u32 starthole = 0xE0000000; |
426 | u32 startaddress = virt_to_bus (start); |
427 | u32 lastaddress = startaddress+length-1; |
428 | if ((startaddress ^ lastaddress) & fourmegmask || |
429 | (startaddress & twofivesixmask) == starthole) { |
430 | PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!", |
431 | startaddress, lastaddress); |
432 | return -1; |
433 | } else { |
434 | return 0; |
435 | } |
436 | } |
437 | |
438 | /********** free an skb (as per ATM device driver documentation) **********/ |
439 | |
440 | static void amb_kfree_skb (struct sk_buff * skb) { |
441 | if (ATM_SKB(skb)->vcc->pop) { |
442 | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); |
443 | } else { |
444 | dev_kfree_skb_any (skb); |
445 | } |
446 | } |
447 | |
448 | /********** TX completion **********/ |
449 | |
450 | static void tx_complete (amb_dev * dev, tx_out * tx) { |
451 | tx_simple * tx_descr = bus_to_virt (tx->handle); |
452 | struct sk_buff * skb = tx_descr->skb; |
453 | |
454 | PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx); |
455 | |
456 | // VC layer stats |
457 | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); |
458 | |
459 | // free the descriptor |
460 | kfree (tx_descr); |
461 | |
462 | // free the skb |
463 | amb_kfree_skb (skb); |
464 | |
465 | dev->stats.tx_ok++; |
466 | return; |
467 | } |
468 | |
469 | /********** RX completion **********/ |
470 | |
471 | static void rx_complete (amb_dev * dev, rx_out * rx) { |
472 | struct sk_buff * skb = bus_to_virt (rx->handle); |
473 | u16 vc = be16_to_cpu (rx->vc); |
474 | // unused: u16 lec_id = be16_to_cpu (rx->lec_id); |
475 | u16 status = be16_to_cpu (rx->status); |
476 | u16 rx_len = be16_to_cpu (rx->length); |
477 | |
478 | PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len); |
479 | |
480 | // XXX move this in and add to VC stats ??? |
481 | if (!status) { |
482 | struct atm_vcc * atm_vcc = dev->rxer[vc]; |
483 | dev->stats.rx.ok++; |
484 | |
485 | if (atm_vcc) { |
486 | |
487 | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { |
488 | |
489 | if (atm_charge (atm_vcc, skb->truesize)) { |
490 | |
491 | // prepare socket buffer |
492 | ATM_SKB(skb)->vcc = atm_vcc; |
493 | skb_put (skb, rx_len); |
494 | |
495 | dump_skb ("<<<", vc, skb); |
496 | |
497 | // VC layer stats |
498 | atomic_inc(&atm_vcc->stats->rx); |
499 | __net_timestamp(skb); |
500 | // end of our responsibility |
501 | atm_vcc->push (atm_vcc, skb); |
502 | return; |
503 | |
504 | } else { |
505 | // someone fix this (message), please! |
506 | PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize); |
507 | // drop stats incremented in atm_charge |
508 | } |
509 | |
510 | } else { |
511 | PRINTK (KERN_INFO, "dropped over-size frame"); |
512 | // should we count this? |
513 | atomic_inc(&atm_vcc->stats->rx_drop); |
514 | } |
515 | |
516 | } else { |
517 | PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc); |
518 | // this is an adapter bug, only in new version of microcode |
519 | } |
520 | |
521 | } else { |
522 | dev->stats.rx.error++; |
523 | if (status & CRC_ERR) |
524 | dev->stats.rx.badcrc++; |
525 | if (status & LEN_ERR) |
526 | dev->stats.rx.toolong++; |
527 | if (status & ABORT_ERR) |
528 | dev->stats.rx.aborted++; |
529 | if (status & UNUSED_ERR) |
530 | dev->stats.rx.unused++; |
531 | } |
532 | |
533 | dev_kfree_skb_any (skb); |
534 | return; |
535 | } |
536 | |
537 | /* |
538 | |
539 | Note on queue handling. |
540 | |
541 | Here "give" and "take" refer to queue entries and a queue (pair) |
542 | rather than frames to or from the host or adapter. Empty frame |
543 | buffers are given to the RX queue pair and returned unused or |
544 | containing RX frames. TX frames (well, pointers to TX fragment |
545 | lists) are given to the TX queue pair, completions are returned. |
546 | |
547 | */ |
548 | |
549 | /********** command queue **********/ |
550 | |
551 | // I really don't like this, but it's the best I can do at the moment |
552 | |
553 | // also, the callers are responsible for byte order as the microcode |
554 | // sometimes does 16-bit accesses (yuk yuk yuk) |
555 | |
556 | static int command_do (amb_dev * dev, command * cmd) { |
557 | amb_cq * cq = &dev->cq; |
558 | volatile amb_cq_ptrs * ptrs = &cq->ptrs; |
559 | command * my_slot; |
560 | |
561 | PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev); |
562 | |
563 | if (test_bit (dead, &dev->flags)) |
564 | return 0; |
565 | |
566 | spin_lock (&cq->lock); |
567 | |
568 | // if not full... |
569 | if (cq->pending < cq->maximum) { |
570 | // remember my slot for later |
571 | my_slot = ptrs->in; |
572 | PRINTD (DBG_CMD, "command in slot %p", my_slot); |
573 | |
574 | dump_command (cmd); |
575 | |
576 | // copy command in |
577 | *ptrs->in = *cmd; |
578 | cq->pending++; |
579 | ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit); |
580 | |
581 | // mail the command |
582 | wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in)); |
583 | |
584 | if (cq->pending > cq->high) |
585 | cq->high = cq->pending; |
586 | spin_unlock (&cq->lock); |
587 | |
588 | // these comments were in a while-loop before, msleep removes the loop |
589 | // go to sleep |
590 | // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout); |
591 | msleep(cq->pending); |
592 | |
593 | // wait for my slot to be reached (all waiters are here or above, until...) |
594 | while (ptrs->out != my_slot) { |
595 | PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out); |
596 | set_current_state(TASK_UNINTERRUPTIBLE); |
597 | schedule(); |
598 | } |
599 | |
600 | // wait on my slot (... one gets to its slot, and... ) |
601 | while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) { |
602 | PRINTD (DBG_CMD, "wait: command slot completion"); |
603 | set_current_state(TASK_UNINTERRUPTIBLE); |
604 | schedule(); |
605 | } |
606 | |
607 | PRINTD (DBG_CMD, "command complete"); |
608 | // update queue (... moves the queue along to the next slot) |
609 | spin_lock (&cq->lock); |
610 | cq->pending--; |
611 | // copy command out |
612 | *cmd = *ptrs->out; |
613 | ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit); |
614 | spin_unlock (&cq->lock); |
615 | |
616 | return 0; |
617 | } else { |
618 | cq->filled++; |
619 | spin_unlock (&cq->lock); |
620 | return -EAGAIN; |
621 | } |
622 | |
623 | } |
624 | |
625 | /********** TX queue pair **********/ |
626 | |
627 | static int tx_give (amb_dev * dev, tx_in * tx) { |
628 | amb_txq * txq = &dev->txq; |
629 | unsigned long flags; |
630 | |
631 | PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev); |
632 | |
633 | if (test_bit (dead, &dev->flags)) |
634 | return 0; |
635 | |
636 | spin_lock_irqsave (&txq->lock, flags); |
637 | |
638 | if (txq->pending < txq->maximum) { |
639 | PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr); |
640 | |
641 | *txq->in.ptr = *tx; |
642 | txq->pending++; |
643 | txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit); |
644 | // hand over the TX and ring the bell |
645 | wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr)); |
646 | wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME); |
647 | |
648 | if (txq->pending > txq->high) |
649 | txq->high = txq->pending; |
650 | spin_unlock_irqrestore (&txq->lock, flags); |
651 | return 0; |
652 | } else { |
653 | txq->filled++; |
654 | spin_unlock_irqrestore (&txq->lock, flags); |
655 | return -EAGAIN; |
656 | } |
657 | } |
658 | |
659 | static int tx_take (amb_dev * dev) { |
660 | amb_txq * txq = &dev->txq; |
661 | unsigned long flags; |
662 | |
663 | PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev); |
664 | |
665 | spin_lock_irqsave (&txq->lock, flags); |
666 | |
667 | if (txq->pending && txq->out.ptr->handle) { |
668 | // deal with TX completion |
669 | tx_complete (dev, txq->out.ptr); |
670 | // mark unused again |
671 | txq->out.ptr->handle = 0; |
672 | // remove item |
673 | txq->pending--; |
674 | txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit); |
675 | |
676 | spin_unlock_irqrestore (&txq->lock, flags); |
677 | return 0; |
678 | } else { |
679 | |
680 | spin_unlock_irqrestore (&txq->lock, flags); |
681 | return -1; |
682 | } |
683 | } |
684 | |
685 | /********** RX queue pairs **********/ |
686 | |
687 | static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) { |
688 | amb_rxq * rxq = &dev->rxq[pool]; |
689 | unsigned long flags; |
690 | |
691 | PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool); |
692 | |
693 | spin_lock_irqsave (&rxq->lock, flags); |
694 | |
695 | if (rxq->pending < rxq->maximum) { |
696 | PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr); |
697 | |
698 | *rxq->in.ptr = *rx; |
699 | rxq->pending++; |
700 | rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit); |
701 | // hand over the RX buffer |
702 | wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr)); |
703 | |
704 | spin_unlock_irqrestore (&rxq->lock, flags); |
705 | return 0; |
706 | } else { |
707 | spin_unlock_irqrestore (&rxq->lock, flags); |
708 | return -1; |
709 | } |
710 | } |
711 | |
712 | static int rx_take (amb_dev * dev, unsigned char pool) { |
713 | amb_rxq * rxq = &dev->rxq[pool]; |
714 | unsigned long flags; |
715 | |
716 | PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool); |
717 | |
718 | spin_lock_irqsave (&rxq->lock, flags); |
719 | |
720 | if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) { |
721 | // deal with RX completion |
722 | rx_complete (dev, rxq->out.ptr); |
723 | // mark unused again |
724 | rxq->out.ptr->status = 0; |
725 | rxq->out.ptr->length = 0; |
726 | // remove item |
727 | rxq->pending--; |
728 | rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit); |
729 | |
730 | if (rxq->pending < rxq->low) |
731 | rxq->low = rxq->pending; |
732 | spin_unlock_irqrestore (&rxq->lock, flags); |
733 | return 0; |
734 | } else { |
735 | if (!rxq->pending && rxq->buffers_wanted) |
736 | rxq->emptied++; |
737 | spin_unlock_irqrestore (&rxq->lock, flags); |
738 | return -1; |
739 | } |
740 | } |
741 | |
742 | /********** RX Pool handling **********/ |
743 | |
744 | /* pre: buffers_wanted = 0, post: pending = 0 */ |
745 | static void drain_rx_pool (amb_dev * dev, unsigned char pool) { |
746 | amb_rxq * rxq = &dev->rxq[pool]; |
747 | |
748 | PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool); |
749 | |
750 | if (test_bit (dead, &dev->flags)) |
751 | return; |
752 | |
753 | /* we are not quite like the fill pool routines as we cannot just |
754 | remove one buffer, we have to remove all of them, but we might as |
755 | well pretend... */ |
756 | if (rxq->pending > rxq->buffers_wanted) { |
757 | command cmd; |
758 | cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q); |
759 | cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT); |
760 | while (command_do (dev, &cmd)) |
761 | schedule(); |
762 | /* the pool may also be emptied via the interrupt handler */ |
763 | while (rxq->pending > rxq->buffers_wanted) |
764 | if (rx_take (dev, pool)) |
765 | schedule(); |
766 | } |
767 | |
768 | return; |
769 | } |
770 | |
771 | static void drain_rx_pools (amb_dev * dev) { |
772 | unsigned char pool; |
773 | |
774 | PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev); |
775 | |
776 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
777 | drain_rx_pool (dev, pool); |
778 | } |
779 | |
780 | static void fill_rx_pool (amb_dev * dev, unsigned char pool, |
781 | gfp_t priority) |
782 | { |
783 | rx_in rx; |
784 | amb_rxq * rxq; |
785 | |
786 | PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority); |
787 | |
788 | if (test_bit (dead, &dev->flags)) |
789 | return; |
790 | |
791 | rxq = &dev->rxq[pool]; |
792 | while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) { |
793 | |
794 | struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority); |
795 | if (!skb) { |
796 | PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool); |
797 | return; |
798 | } |
799 | if (check_area (skb->data, skb->truesize)) { |
800 | dev_kfree_skb_any (skb); |
801 | return; |
802 | } |
803 | // cast needed as there is no %? for pointer differences |
804 | PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li", |
805 | skb, skb->head, (long) skb_end_offset(skb)); |
806 | rx.handle = virt_to_bus (skb); |
807 | rx.host_address = cpu_to_be32 (virt_to_bus (skb->data)); |
808 | if (rx_give (dev, &rx, pool)) |
809 | dev_kfree_skb_any (skb); |
810 | |
811 | } |
812 | |
813 | return; |
814 | } |
815 | |
816 | // top up all RX pools |
817 | static void fill_rx_pools (amb_dev * dev) { |
818 | unsigned char pool; |
819 | |
820 | PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev); |
821 | |
822 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
823 | fill_rx_pool (dev, pool, GFP_ATOMIC); |
824 | |
825 | return; |
826 | } |
827 | |
828 | /********** enable host interrupts **********/ |
829 | |
830 | static void interrupts_on (amb_dev * dev) { |
831 | wr_plain (dev, offsetof(amb_mem, interrupt_control), |
832 | rd_plain (dev, offsetof(amb_mem, interrupt_control)) |
833 | | AMB_INTERRUPT_BITS); |
834 | } |
835 | |
836 | /********** disable host interrupts **********/ |
837 | |
838 | static void interrupts_off (amb_dev * dev) { |
839 | wr_plain (dev, offsetof(amb_mem, interrupt_control), |
840 | rd_plain (dev, offsetof(amb_mem, interrupt_control)) |
841 | &~ AMB_INTERRUPT_BITS); |
842 | } |
843 | |
844 | /********** interrupt handling **********/ |
845 | |
846 | static irqreturn_t interrupt_handler(int irq, void *dev_id) { |
847 | amb_dev * dev = dev_id; |
848 | |
849 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id); |
850 | |
851 | { |
852 | u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt)); |
853 | |
854 | // for us or someone else sharing the same interrupt |
855 | if (!interrupt) { |
856 | PRINTD (DBG_IRQ, "irq not for me: %d", irq); |
857 | return IRQ_NONE; |
858 | } |
859 | |
860 | // definitely for us |
861 | PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt); |
862 | wr_plain (dev, offsetof(amb_mem, interrupt), -1); |
863 | } |
864 | |
865 | { |
866 | unsigned int irq_work = 0; |
867 | unsigned char pool; |
868 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
869 | while (!rx_take (dev, pool)) |
870 | ++irq_work; |
871 | while (!tx_take (dev)) |
872 | ++irq_work; |
873 | |
874 | if (irq_work) { |
875 | fill_rx_pools (dev); |
876 | |
877 | PRINTD (DBG_IRQ, "work done: %u", irq_work); |
878 | } else { |
879 | PRINTD (DBG_IRQ|DBG_WARN, "no work done"); |
880 | } |
881 | } |
882 | |
883 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); |
884 | return IRQ_HANDLED; |
885 | } |
886 | |
887 | /********** make rate (not quite as much fun as Horizon) **********/ |
888 | |
889 | static int make_rate (unsigned int rate, rounding r, |
890 | u16 * bits, unsigned int * actual) { |
891 | unsigned char exp = -1; // hush gcc |
892 | unsigned int man = -1; // hush gcc |
893 | |
894 | PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate); |
895 | |
896 | // rates in cells per second, ITU format (nasty 16-bit floating-point) |
897 | // given 5-bit e and 9-bit m: |
898 | // rate = EITHER (1+m/2^9)*2^e OR 0 |
899 | // bits = EITHER 1<<14 | e<<9 | m OR 0 |
900 | // (bit 15 is "reserved", bit 14 "non-zero") |
901 | // smallest rate is 0 (special representation) |
902 | // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1) |
903 | // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0) |
904 | // simple algorithm: |
905 | // find position of top bit, this gives e |
906 | // remove top bit and shift (rounding if feeling clever) by 9-e |
907 | |
908 | // ucode bug: please don't set bit 14! so 0 rate not representable |
909 | |
910 | if (rate > 0xffc00000U) { |
911 | // larger than largest representable rate |
912 | |
913 | if (r == round_up) { |
914 | return -EINVAL; |
915 | } else { |
916 | exp = 31; |
917 | man = 511; |
918 | } |
919 | |
920 | } else if (rate) { |
921 | // representable rate |
922 | |
923 | exp = 31; |
924 | man = rate; |
925 | |
926 | // invariant: rate = man*2^(exp-31) |
927 | while (!(man & (1<<31))) { |
928 | exp = exp - 1; |
929 | man = man<<1; |
930 | } |
931 | |
932 | // man has top bit set |
933 | // rate = (2^31+(man-2^31))*2^(exp-31) |
934 | // rate = (1+(man-2^31)/2^31)*2^exp |
935 | man = man<<1; |
936 | man &= 0xffffffffU; // a nop on 32-bit systems |
937 | // rate = (1+man/2^32)*2^exp |
938 | |
939 | // exp is in the range 0 to 31, man is in the range 0 to 2^32-1 |
940 | // time to lose significance... we want m in the range 0 to 2^9-1 |
941 | // rounding presents a minor problem... we first decide which way |
942 | // we are rounding (based on given rounding direction and possibly |
943 | // the bits of the mantissa that are to be discarded). |
944 | |
945 | switch (r) { |
946 | case round_down: { |
947 | // just truncate |
948 | man = man>>(32-9); |
949 | break; |
950 | } |
951 | case round_up: { |
952 | // check all bits that we are discarding |
953 | if (man & (~0U>>9)) { |
954 | man = (man>>(32-9)) + 1; |
955 | if (man == (1<<9)) { |
956 | // no need to check for round up outside of range |
957 | man = 0; |
958 | exp += 1; |
959 | } |
960 | } else { |
961 | man = (man>>(32-9)); |
962 | } |
963 | break; |
964 | } |
965 | case round_nearest: { |
966 | // check msb that we are discarding |
967 | if (man & (1<<(32-9-1))) { |
968 | man = (man>>(32-9)) + 1; |
969 | if (man == (1<<9)) { |
970 | // no need to check for round up outside of range |
971 | man = 0; |
972 | exp += 1; |
973 | } |
974 | } else { |
975 | man = (man>>(32-9)); |
976 | } |
977 | break; |
978 | } |
979 | } |
980 | |
981 | } else { |
982 | // zero rate - not representable |
983 | |
984 | if (r == round_down) { |
985 | return -EINVAL; |
986 | } else { |
987 | exp = 0; |
988 | man = 0; |
989 | } |
990 | |
991 | } |
992 | |
993 | PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp); |
994 | |
995 | if (bits) |
996 | *bits = /* (1<<14) | */ (exp<<9) | man; |
997 | |
998 | if (actual) |
999 | *actual = (exp >= 9) |
1000 | ? (1 << exp) + (man << (exp-9)) |
1001 | : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp)); |
1002 | |
1003 | return 0; |
1004 | } |
1005 | |
1006 | /********** Linux ATM Operations **********/ |
1007 | |
1008 | // some are not yet implemented while others do not make sense for |
1009 | // this device |
1010 | |
1011 | /********** Open a VC **********/ |
1012 | |
1013 | static int amb_open (struct atm_vcc * atm_vcc) |
1014 | { |
1015 | int error; |
1016 | |
1017 | struct atm_qos * qos; |
1018 | struct atm_trafprm * txtp; |
1019 | struct atm_trafprm * rxtp; |
1020 | u16 tx_rate_bits = -1; // hush gcc |
1021 | u16 tx_vc_bits = -1; // hush gcc |
1022 | u16 tx_frame_bits = -1; // hush gcc |
1023 | |
1024 | amb_dev * dev = AMB_DEV(atm_vcc->dev); |
1025 | amb_vcc * vcc; |
1026 | unsigned char pool = -1; // hush gcc |
1027 | short vpi = atm_vcc->vpi; |
1028 | int vci = atm_vcc->vci; |
1029 | |
1030 | PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci); |
1031 | |
1032 | #ifdef ATM_VPI_UNSPEC |
1033 | // UNSPEC is deprecated, remove this code eventually |
1034 | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { |
1035 | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); |
1036 | return -EINVAL; |
1037 | } |
1038 | #endif |
1039 | |
1040 | if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) && |
1041 | 0 <= vci && vci < (1<<NUM_VCI_BITS))) { |
1042 | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); |
1043 | return -EINVAL; |
1044 | } |
1045 | |
1046 | qos = &atm_vcc->qos; |
1047 | |
1048 | if (qos->aal != ATM_AAL5) { |
1049 | PRINTD (DBG_QOS, "AAL not supported"); |
1050 | return -EINVAL; |
1051 | } |
1052 | |
1053 | // traffic parameters |
1054 | |
1055 | PRINTD (DBG_QOS, "TX:"); |
1056 | txtp = &qos->txtp; |
1057 | if (txtp->traffic_class != ATM_NONE) { |
1058 | switch (txtp->traffic_class) { |
1059 | case ATM_UBR: { |
1060 | // we take "the PCR" as a rate-cap |
1061 | int pcr = atm_pcr_goal (txtp); |
1062 | if (!pcr) { |
1063 | // no rate cap |
1064 | tx_rate_bits = 0; |
1065 | tx_vc_bits = TX_UBR; |
1066 | tx_frame_bits = TX_FRAME_NOTCAP; |
1067 | } else { |
1068 | rounding r; |
1069 | if (pcr < 0) { |
1070 | r = round_down; |
1071 | pcr = -pcr; |
1072 | } else { |
1073 | r = round_up; |
1074 | } |
1075 | error = make_rate (pcr, r, &tx_rate_bits, NULL); |
1076 | if (error) |
1077 | return error; |
1078 | tx_vc_bits = TX_UBR_CAPPED; |
1079 | tx_frame_bits = TX_FRAME_CAPPED; |
1080 | } |
1081 | break; |
1082 | } |
1083 | #if 0 |
1084 | case ATM_ABR: { |
1085 | pcr = atm_pcr_goal (txtp); |
1086 | PRINTD (DBG_QOS, "pcr goal = %d", pcr); |
1087 | break; |
1088 | } |
1089 | #endif |
1090 | default: { |
1091 | // PRINTD (DBG_QOS, "request for non-UBR/ABR denied"); |
1092 | PRINTD (DBG_QOS, "request for non-UBR denied"); |
1093 | return -EINVAL; |
1094 | } |
1095 | } |
1096 | PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx", |
1097 | tx_rate_bits, tx_vc_bits); |
1098 | } |
1099 | |
1100 | PRINTD (DBG_QOS, "RX:"); |
1101 | rxtp = &qos->rxtp; |
1102 | if (rxtp->traffic_class == ATM_NONE) { |
1103 | // do nothing |
1104 | } else { |
1105 | // choose an RX pool (arranged in increasing size) |
1106 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
1107 | if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) { |
1108 | PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)", |
1109 | pool, rxtp->max_sdu, dev->rxq[pool].buffer_size); |
1110 | break; |
1111 | } |
1112 | if (pool == NUM_RX_POOLS) { |
1113 | PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL, |
1114 | "no pool suitable for VC (RX max_sdu %d is too large)", |
1115 | rxtp->max_sdu); |
1116 | return -EINVAL; |
1117 | } |
1118 | |
1119 | switch (rxtp->traffic_class) { |
1120 | case ATM_UBR: { |
1121 | break; |
1122 | } |
1123 | #if 0 |
1124 | case ATM_ABR: { |
1125 | pcr = atm_pcr_goal (rxtp); |
1126 | PRINTD (DBG_QOS, "pcr goal = %d", pcr); |
1127 | break; |
1128 | } |
1129 | #endif |
1130 | default: { |
1131 | // PRINTD (DBG_QOS, "request for non-UBR/ABR denied"); |
1132 | PRINTD (DBG_QOS, "request for non-UBR denied"); |
1133 | return -EINVAL; |
1134 | } |
1135 | } |
1136 | } |
1137 | |
1138 | // get space for our vcc stuff |
1139 | vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL); |
1140 | if (!vcc) { |
1141 | PRINTK (KERN_ERR, "out of memory!"); |
1142 | return -ENOMEM; |
1143 | } |
1144 | atm_vcc->dev_data = (void *) vcc; |
1145 | |
1146 | // no failures beyond this point |
1147 | |
1148 | // we are not really "immediately before allocating the connection |
1149 | // identifier in hardware", but it will just have to do! |
1150 | set_bit(ATM_VF_ADDR,&atm_vcc->flags); |
1151 | |
1152 | if (txtp->traffic_class != ATM_NONE) { |
1153 | command cmd; |
1154 | |
1155 | vcc->tx_frame_bits = tx_frame_bits; |
1156 | |
1157 | mutex_lock(&dev->vcc_sf); |
1158 | if (dev->rxer[vci]) { |
1159 | // RXer on the channel already, just modify rate... |
1160 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE); |
1161 | cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0 |
1162 | cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT); |
1163 | while (command_do (dev, &cmd)) |
1164 | schedule(); |
1165 | // ... and TX flags, preserving the RX pool |
1166 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); |
1167 | cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 |
1168 | cmd.args.modify_flags.flags = cpu_to_be32 |
1169 | ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT) |
1170 | | (tx_vc_bits << SRB_FLAGS_SHIFT) ); |
1171 | while (command_do (dev, &cmd)) |
1172 | schedule(); |
1173 | } else { |
1174 | // no RXer on the channel, just open (with pool zero) |
1175 | cmd.request = cpu_to_be32 (SRB_OPEN_VC); |
1176 | cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0 |
1177 | cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT); |
1178 | cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT); |
1179 | while (command_do (dev, &cmd)) |
1180 | schedule(); |
1181 | } |
1182 | dev->txer[vci].tx_present = 1; |
1183 | mutex_unlock(&dev->vcc_sf); |
1184 | } |
1185 | |
1186 | if (rxtp->traffic_class != ATM_NONE) { |
1187 | command cmd; |
1188 | |
1189 | vcc->rx_info.pool = pool; |
1190 | |
1191 | mutex_lock(&dev->vcc_sf); |
1192 | /* grow RX buffer pool */ |
1193 | if (!dev->rxq[pool].buffers_wanted) |
1194 | dev->rxq[pool].buffers_wanted = rx_lats; |
1195 | dev->rxq[pool].buffers_wanted += 1; |
1196 | fill_rx_pool (dev, pool, GFP_KERNEL); |
1197 | |
1198 | if (dev->txer[vci].tx_present) { |
1199 | // TXer on the channel already |
1200 | // switch (from pool zero) to this pool, preserving the TX bits |
1201 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); |
1202 | cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 |
1203 | cmd.args.modify_flags.flags = cpu_to_be32 |
1204 | ( (pool << SRB_POOL_SHIFT) |
1205 | | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) ); |
1206 | } else { |
1207 | // no TXer on the channel, open the VC (with no rate info) |
1208 | cmd.request = cpu_to_be32 (SRB_OPEN_VC); |
1209 | cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0 |
1210 | cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT); |
1211 | cmd.args.open.rate = cpu_to_be32 (0); |
1212 | } |
1213 | while (command_do (dev, &cmd)) |
1214 | schedule(); |
1215 | // this link allows RX frames through |
1216 | dev->rxer[vci] = atm_vcc; |
1217 | mutex_unlock(&dev->vcc_sf); |
1218 | } |
1219 | |
1220 | // indicate readiness |
1221 | set_bit(ATM_VF_READY,&atm_vcc->flags); |
1222 | |
1223 | return 0; |
1224 | } |
1225 | |
1226 | /********** Close a VC **********/ |
1227 | |
1228 | static void amb_close (struct atm_vcc * atm_vcc) { |
1229 | amb_dev * dev = AMB_DEV (atm_vcc->dev); |
1230 | amb_vcc * vcc = AMB_VCC (atm_vcc); |
1231 | u16 vci = atm_vcc->vci; |
1232 | |
1233 | PRINTD (DBG_VCC|DBG_FLOW, "amb_close"); |
1234 | |
1235 | // indicate unreadiness |
1236 | clear_bit(ATM_VF_READY,&atm_vcc->flags); |
1237 | |
1238 | // disable TXing |
1239 | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { |
1240 | command cmd; |
1241 | |
1242 | mutex_lock(&dev->vcc_sf); |
1243 | if (dev->rxer[vci]) { |
1244 | // RXer still on the channel, just modify rate... XXX not really needed |
1245 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE); |
1246 | cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0 |
1247 | cmd.args.modify_rate.rate = cpu_to_be32 (0); |
1248 | // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool |
1249 | } else { |
1250 | // no RXer on the channel, close channel |
1251 | cmd.request = cpu_to_be32 (SRB_CLOSE_VC); |
1252 | cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0 |
1253 | } |
1254 | dev->txer[vci].tx_present = 0; |
1255 | while (command_do (dev, &cmd)) |
1256 | schedule(); |
1257 | mutex_unlock(&dev->vcc_sf); |
1258 | } |
1259 | |
1260 | // disable RXing |
1261 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { |
1262 | command cmd; |
1263 | |
1264 | // this is (the?) one reason why we need the amb_vcc struct |
1265 | unsigned char pool = vcc->rx_info.pool; |
1266 | |
1267 | mutex_lock(&dev->vcc_sf); |
1268 | if (dev->txer[vci].tx_present) { |
1269 | // TXer still on the channel, just go to pool zero XXX not really needed |
1270 | cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); |
1271 | cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 |
1272 | cmd.args.modify_flags.flags = cpu_to_be32 |
1273 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT); |
1274 | } else { |
1275 | // no TXer on the channel, close the VC |
1276 | cmd.request = cpu_to_be32 (SRB_CLOSE_VC); |
1277 | cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0 |
1278 | } |
1279 | // forget the rxer - no more skbs will be pushed |
1280 | if (atm_vcc != dev->rxer[vci]) |
1281 | PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p", |
1282 | "arghhh! we're going to die!", |
1283 | vcc, dev->rxer[vci]); |
1284 | dev->rxer[vci] = NULL; |
1285 | while (command_do (dev, &cmd)) |
1286 | schedule(); |
1287 | |
1288 | /* shrink RX buffer pool */ |
1289 | dev->rxq[pool].buffers_wanted -= 1; |
1290 | if (dev->rxq[pool].buffers_wanted == rx_lats) { |
1291 | dev->rxq[pool].buffers_wanted = 0; |
1292 | drain_rx_pool (dev, pool); |
1293 | } |
1294 | mutex_unlock(&dev->vcc_sf); |
1295 | } |
1296 | |
1297 | // free our structure |
1298 | kfree (vcc); |
1299 | |
1300 | // say the VPI/VCI is free again |
1301 | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); |
1302 | |
1303 | return; |
1304 | } |
1305 | |
1306 | /********** Send **********/ |
1307 | |
1308 | static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { |
1309 | amb_dev * dev = AMB_DEV(atm_vcc->dev); |
1310 | amb_vcc * vcc = AMB_VCC(atm_vcc); |
1311 | u16 vc = atm_vcc->vci; |
1312 | unsigned int tx_len = skb->len; |
1313 | unsigned char * tx_data = skb->data; |
1314 | tx_simple * tx_descr; |
1315 | tx_in tx; |
1316 | |
1317 | if (test_bit (dead, &dev->flags)) |
1318 | return -EIO; |
1319 | |
1320 | PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u", |
1321 | vc, tx_data, tx_len); |
1322 | |
1323 | dump_skb (">>>", vc, skb); |
1324 | |
1325 | if (!dev->txer[vc].tx_present) { |
1326 | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc); |
1327 | return -EBADFD; |
1328 | } |
1329 | |
1330 | // this is a driver private field so we have to set it ourselves, |
1331 | // despite the fact that we are _required_ to use it to check for a |
1332 | // pop function |
1333 | ATM_SKB(skb)->vcc = atm_vcc; |
1334 | |
1335 | if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) { |
1336 | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); |
1337 | return -EIO; |
1338 | } |
1339 | |
1340 | if (check_area (skb->data, skb->len)) { |
1341 | atomic_inc(&atm_vcc->stats->tx_err); |
1342 | return -ENOMEM; // ? |
1343 | } |
1344 | |
1345 | // allocate memory for fragments |
1346 | tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL); |
1347 | if (!tx_descr) { |
1348 | PRINTK (KERN_ERR, "could not allocate TX descriptor"); |
1349 | return -ENOMEM; |
1350 | } |
1351 | if (check_area (tx_descr, sizeof(tx_simple))) { |
1352 | kfree (tx_descr); |
1353 | return -ENOMEM; |
1354 | } |
1355 | PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr); |
1356 | |
1357 | tx_descr->skb = skb; |
1358 | |
1359 | tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len); |
1360 | tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data)); |
1361 | |
1362 | tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr); |
1363 | tx_descr->tx_frag_end.vc = 0; |
1364 | tx_descr->tx_frag_end.next_descriptor_length = 0; |
1365 | tx_descr->tx_frag_end.next_descriptor = 0; |
1366 | #ifdef AMB_NEW_MICROCODE |
1367 | tx_descr->tx_frag_end.cpcs_uu = 0; |
1368 | tx_descr->tx_frag_end.cpi = 0; |
1369 | tx_descr->tx_frag_end.pad = 0; |
1370 | #endif |
1371 | |
1372 | tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc); |
1373 | tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end)); |
1374 | tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag)); |
1375 | |
1376 | while (tx_give (dev, &tx)) |
1377 | schedule(); |
1378 | return 0; |
1379 | } |
1380 | |
1381 | /********** Change QoS on a VC **********/ |
1382 | |
1383 | // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags); |
1384 | |
1385 | /********** Free RX Socket Buffer **********/ |
1386 | |
1387 | #if 0 |
1388 | static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) { |
1389 | amb_dev * dev = AMB_DEV (atm_vcc->dev); |
1390 | amb_vcc * vcc = AMB_VCC (atm_vcc); |
1391 | unsigned char pool = vcc->rx_info.pool; |
1392 | rx_in rx; |
1393 | |
1394 | // This may be unsafe for various reasons that I cannot really guess |
1395 | // at. However, I note that the ATM layer calls kfree_skb rather |
1396 | // than dev_kfree_skb at this point so we are least covered as far |
1397 | // as buffer locking goes. There may be bugs if pcap clones RX skbs. |
1398 | |
1399 | PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)", |
1400 | skb, atm_vcc, vcc); |
1401 | |
1402 | rx.handle = virt_to_bus (skb); |
1403 | rx.host_address = cpu_to_be32 (virt_to_bus (skb->data)); |
1404 | |
1405 | skb->data = skb->head; |
1406 | skb->tail = skb->head; |
1407 | skb->len = 0; |
1408 | |
1409 | if (!rx_give (dev, &rx, pool)) { |
1410 | // success |
1411 | PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool); |
1412 | return; |
1413 | } |
1414 | |
1415 | // just do what the ATM layer would have done |
1416 | dev_kfree_skb_any (skb); |
1417 | |
1418 | return; |
1419 | } |
1420 | #endif |
1421 | |
1422 | /********** Proc File Output **********/ |
1423 | |
1424 | static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { |
1425 | amb_dev * dev = AMB_DEV (atm_dev); |
1426 | int left = *pos; |
1427 | unsigned char pool; |
1428 | |
1429 | PRINTD (DBG_FLOW, "amb_proc_read"); |
1430 | |
1431 | /* more diagnostics here? */ |
1432 | |
1433 | if (!left--) { |
1434 | amb_stats * s = &dev->stats; |
1435 | return sprintf (page, |
1436 | "frames: TX OK %lu, RX OK %lu, RX bad %lu " |
1437 | "(CRC %lu, long %lu, aborted %lu, unused %lu).\n", |
1438 | s->tx_ok, s->rx.ok, s->rx.error, |
1439 | s->rx.badcrc, s->rx.toolong, |
1440 | s->rx.aborted, s->rx.unused); |
1441 | } |
1442 | |
1443 | if (!left--) { |
1444 | amb_cq * c = &dev->cq; |
1445 | return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ", |
1446 | c->pending, c->high, c->maximum); |
1447 | } |
1448 | |
1449 | if (!left--) { |
1450 | amb_txq * t = &dev->txq; |
1451 | return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n", |
1452 | t->pending, t->maximum, t->high, t->filled); |
1453 | } |
1454 | |
1455 | if (!left--) { |
1456 | unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:"); |
1457 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
1458 | amb_rxq * r = &dev->rxq[pool]; |
1459 | count += sprintf (page+count, " %u/%u/%u %u %u", |
1460 | r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied); |
1461 | } |
1462 | count += sprintf (page+count, ".\n"); |
1463 | return count; |
1464 | } |
1465 | |
1466 | if (!left--) { |
1467 | unsigned int count = sprintf (page, "RX buffer sizes:"); |
1468 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
1469 | amb_rxq * r = &dev->rxq[pool]; |
1470 | count += sprintf (page+count, " %u", r->buffer_size); |
1471 | } |
1472 | count += sprintf (page+count, ".\n"); |
1473 | return count; |
1474 | } |
1475 | |
1476 | #if 0 |
1477 | if (!left--) { |
1478 | // suni block etc? |
1479 | } |
1480 | #endif |
1481 | |
1482 | return 0; |
1483 | } |
1484 | |
1485 | /********** Operation Structure **********/ |
1486 | |
1487 | static const struct atmdev_ops amb_ops = { |
1488 | .open = amb_open, |
1489 | .close = amb_close, |
1490 | .send = amb_send, |
1491 | .proc_read = amb_proc_read, |
1492 | .owner = THIS_MODULE, |
1493 | }; |
1494 | |
1495 | /********** housekeeping **********/ |
1496 | static void do_housekeeping (unsigned long arg) { |
1497 | amb_dev * dev = (amb_dev *) arg; |
1498 | |
1499 | // could collect device-specific (not driver/atm-linux) stats here |
1500 | |
1501 | // last resort refill once every ten seconds |
1502 | fill_rx_pools (dev); |
1503 | mod_timer(&dev->housekeeping, jiffies + 10*HZ); |
1504 | |
1505 | return; |
1506 | } |
1507 | |
1508 | /********** creation of communication queues **********/ |
1509 | |
1510 | static int __devinit create_queues (amb_dev * dev, unsigned int cmds, |
1511 | unsigned int txs, unsigned int * rxs, |
1512 | unsigned int * rx_buffer_sizes) { |
1513 | unsigned char pool; |
1514 | size_t total = 0; |
1515 | void * memory; |
1516 | void * limit; |
1517 | |
1518 | PRINTD (DBG_FLOW, "create_queues %p", dev); |
1519 | |
1520 | total += cmds * sizeof(command); |
1521 | |
1522 | total += txs * (sizeof(tx_in) + sizeof(tx_out)); |
1523 | |
1524 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
1525 | total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out)); |
1526 | |
1527 | memory = kmalloc (total, GFP_KERNEL); |
1528 | if (!memory) { |
1529 | PRINTK (KERN_ERR, "could not allocate queues"); |
1530 | return -ENOMEM; |
1531 | } |
1532 | if (check_area (memory, total)) { |
1533 | PRINTK (KERN_ERR, "queues allocated in nasty area"); |
1534 | kfree (memory); |
1535 | return -ENOMEM; |
1536 | } |
1537 | |
1538 | limit = memory + total; |
1539 | PRINTD (DBG_INIT, "queues from %p to %p", memory, limit); |
1540 | |
1541 | PRINTD (DBG_CMD, "command queue at %p", memory); |
1542 | |
1543 | { |
1544 | command * cmd = memory; |
1545 | amb_cq * cq = &dev->cq; |
1546 | |
1547 | cq->pending = 0; |
1548 | cq->high = 0; |
1549 | cq->maximum = cmds - 1; |
1550 | |
1551 | cq->ptrs.start = cmd; |
1552 | cq->ptrs.in = cmd; |
1553 | cq->ptrs.out = cmd; |
1554 | cq->ptrs.limit = cmd + cmds; |
1555 | |
1556 | memory = cq->ptrs.limit; |
1557 | } |
1558 | |
1559 | PRINTD (DBG_TX, "TX queue pair at %p", memory); |
1560 | |
1561 | { |
1562 | tx_in * in = memory; |
1563 | tx_out * out; |
1564 | amb_txq * txq = &dev->txq; |
1565 | |
1566 | txq->pending = 0; |
1567 | txq->high = 0; |
1568 | txq->filled = 0; |
1569 | txq->maximum = txs - 1; |
1570 | |
1571 | txq->in.start = in; |
1572 | txq->in.ptr = in; |
1573 | txq->in.limit = in + txs; |
1574 | |
1575 | memory = txq->in.limit; |
1576 | out = memory; |
1577 | |
1578 | txq->out.start = out; |
1579 | txq->out.ptr = out; |
1580 | txq->out.limit = out + txs; |
1581 | |
1582 | memory = txq->out.limit; |
1583 | } |
1584 | |
1585 | PRINTD (DBG_RX, "RX queue pairs at %p", memory); |
1586 | |
1587 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
1588 | rx_in * in = memory; |
1589 | rx_out * out; |
1590 | amb_rxq * rxq = &dev->rxq[pool]; |
1591 | |
1592 | rxq->buffer_size = rx_buffer_sizes[pool]; |
1593 | rxq->buffers_wanted = 0; |
1594 | |
1595 | rxq->pending = 0; |
1596 | rxq->low = rxs[pool] - 1; |
1597 | rxq->emptied = 0; |
1598 | rxq->maximum = rxs[pool] - 1; |
1599 | |
1600 | rxq->in.start = in; |
1601 | rxq->in.ptr = in; |
1602 | rxq->in.limit = in + rxs[pool]; |
1603 | |
1604 | memory = rxq->in.limit; |
1605 | out = memory; |
1606 | |
1607 | rxq->out.start = out; |
1608 | rxq->out.ptr = out; |
1609 | rxq->out.limit = out + rxs[pool]; |
1610 | |
1611 | memory = rxq->out.limit; |
1612 | } |
1613 | |
1614 | if (memory == limit) { |
1615 | return 0; |
1616 | } else { |
1617 | PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit); |
1618 | kfree (limit - total); |
1619 | return -ENOMEM; |
1620 | } |
1621 | |
1622 | } |
1623 | |
1624 | /********** destruction of communication queues **********/ |
1625 | |
1626 | static void destroy_queues (amb_dev * dev) { |
1627 | // all queues assumed empty |
1628 | void * memory = dev->cq.ptrs.start; |
1629 | // includes txq.in, txq.out, rxq[].in and rxq[].out |
1630 | |
1631 | PRINTD (DBG_FLOW, "destroy_queues %p", dev); |
1632 | |
1633 | PRINTD (DBG_INIT, "freeing queues at %p", memory); |
1634 | kfree (memory); |
1635 | |
1636 | return; |
1637 | } |
1638 | |
1639 | /********** basic loader commands and error handling **********/ |
1640 | // centisecond timeouts - guessing away here |
1641 | static unsigned int command_timeouts [] = { |
1642 | [host_memory_test] = 15, |
1643 | [read_adapter_memory] = 2, |
1644 | [write_adapter_memory] = 2, |
1645 | [adapter_start] = 50, |
1646 | [get_version_number] = 10, |
1647 | [interrupt_host] = 1, |
1648 | [flash_erase_sector] = 1, |
1649 | [adap_download_block] = 1, |
1650 | [adap_erase_flash] = 1, |
1651 | [adap_run_in_iram] = 1, |
1652 | [adap_end_download] = 1 |
1653 | }; |
1654 | |
1655 | |
1656 | static unsigned int command_successes [] = { |
1657 | [host_memory_test] = COMMAND_PASSED_TEST, |
1658 | [read_adapter_memory] = COMMAND_READ_DATA_OK, |
1659 | [write_adapter_memory] = COMMAND_WRITE_DATA_OK, |
1660 | [adapter_start] = COMMAND_COMPLETE, |
1661 | [get_version_number] = COMMAND_COMPLETE, |
1662 | [interrupt_host] = COMMAND_COMPLETE, |
1663 | [flash_erase_sector] = COMMAND_COMPLETE, |
1664 | [adap_download_block] = COMMAND_COMPLETE, |
1665 | [adap_erase_flash] = COMMAND_COMPLETE, |
1666 | [adap_run_in_iram] = COMMAND_COMPLETE, |
1667 | [adap_end_download] = COMMAND_COMPLETE |
1668 | }; |
1669 | |
1670 | static int decode_loader_result (loader_command cmd, u32 result) |
1671 | { |
1672 | int res; |
1673 | const char *msg; |
1674 | |
1675 | if (result == command_successes[cmd]) |
1676 | return 0; |
1677 | |
1678 | switch (result) { |
1679 | case BAD_COMMAND: |
1680 | res = -EINVAL; |
1681 | msg = "bad command"; |
1682 | break; |
1683 | case COMMAND_IN_PROGRESS: |
1684 | res = -ETIMEDOUT; |
1685 | msg = "command in progress"; |
1686 | break; |
1687 | case COMMAND_PASSED_TEST: |
1688 | res = 0; |
1689 | msg = "command passed test"; |
1690 | break; |
1691 | case COMMAND_FAILED_TEST: |
1692 | res = -EIO; |
1693 | msg = "command failed test"; |
1694 | break; |
1695 | case COMMAND_READ_DATA_OK: |
1696 | res = 0; |
1697 | msg = "command read data ok"; |
1698 | break; |
1699 | case COMMAND_READ_BAD_ADDRESS: |
1700 | res = -EINVAL; |
1701 | msg = "command read bad address"; |
1702 | break; |
1703 | case COMMAND_WRITE_DATA_OK: |
1704 | res = 0; |
1705 | msg = "command write data ok"; |
1706 | break; |
1707 | case COMMAND_WRITE_BAD_ADDRESS: |
1708 | res = -EINVAL; |
1709 | msg = "command write bad address"; |
1710 | break; |
1711 | case COMMAND_WRITE_FLASH_FAILURE: |
1712 | res = -EIO; |
1713 | msg = "command write flash failure"; |
1714 | break; |
1715 | case COMMAND_COMPLETE: |
1716 | res = 0; |
1717 | msg = "command complete"; |
1718 | break; |
1719 | case COMMAND_FLASH_ERASE_FAILURE: |
1720 | res = -EIO; |
1721 | msg = "command flash erase failure"; |
1722 | break; |
1723 | case COMMAND_WRITE_BAD_DATA: |
1724 | res = -EINVAL; |
1725 | msg = "command write bad data"; |
1726 | break; |
1727 | default: |
1728 | res = -EINVAL; |
1729 | msg = "unknown error"; |
1730 | PRINTD (DBG_LOAD|DBG_ERR, |
1731 | "decode_loader_result got %d=%x !", |
1732 | result, result); |
1733 | break; |
1734 | } |
1735 | |
1736 | PRINTK (KERN_ERR, "%s", msg); |
1737 | return res; |
1738 | } |
1739 | |
1740 | static int __devinit do_loader_command (volatile loader_block * lb, |
1741 | const amb_dev * dev, loader_command cmd) { |
1742 | |
1743 | unsigned long timeout; |
1744 | |
1745 | PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command"); |
1746 | |
1747 | /* do a command |
1748 | |
1749 | Set the return value to zero, set the command type and set the |
1750 | valid entry to the right magic value. The payload is already |
1751 | correctly byte-ordered so we leave it alone. Hit the doorbell |
1752 | with the bus address of this structure. |
1753 | |
1754 | */ |
1755 | |
1756 | lb->result = 0; |
1757 | lb->command = cpu_to_be32 (cmd); |
1758 | lb->valid = cpu_to_be32 (DMA_VALID); |
1759 | // dump_registers (dev); |
1760 | // dump_loader_block (lb); |
1761 | wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask); |
1762 | |
1763 | timeout = command_timeouts[cmd] * 10; |
1764 | |
1765 | while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS)) |
1766 | if (timeout) { |
1767 | timeout = msleep_interruptible(timeout); |
1768 | } else { |
1769 | PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd); |
1770 | dump_registers (dev); |
1771 | dump_loader_block (lb); |
1772 | return -ETIMEDOUT; |
1773 | } |
1774 | |
1775 | if (cmd == adapter_start) { |
1776 | // wait for start command to acknowledge... |
1777 | timeout = 100; |
1778 | while (rd_plain (dev, offsetof(amb_mem, doorbell))) |
1779 | if (timeout) { |
1780 | timeout = msleep_interruptible(timeout); |
1781 | } else { |
1782 | PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x", |
1783 | be32_to_cpu (lb->result)); |
1784 | dump_registers (dev); |
1785 | return -ETIMEDOUT; |
1786 | } |
1787 | return 0; |
1788 | } else { |
1789 | return decode_loader_result (cmd, be32_to_cpu (lb->result)); |
1790 | } |
1791 | |
1792 | } |
1793 | |
1794 | /* loader: determine loader version */ |
1795 | |
1796 | static int __devinit get_loader_version (loader_block * lb, |
1797 | const amb_dev * dev, u32 * version) { |
1798 | int res; |
1799 | |
1800 | PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version"); |
1801 | |
1802 | res = do_loader_command (lb, dev, get_version_number); |
1803 | if (res) |
1804 | return res; |
1805 | if (version) |
1806 | *version = be32_to_cpu (lb->payload.version); |
1807 | return 0; |
1808 | } |
1809 | |
1810 | /* loader: write memory data blocks */ |
1811 | |
1812 | static int __devinit loader_write (loader_block* lb, |
1813 | const amb_dev *dev, |
1814 | const struct ihex_binrec *rec) { |
1815 | transfer_block * tb = &lb->payload.transfer; |
1816 | |
1817 | PRINTD (DBG_FLOW|DBG_LOAD, "loader_write"); |
1818 | |
1819 | tb->address = rec->addr; |
1820 | tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4); |
1821 | memcpy(tb->data, rec->data, be16_to_cpu(rec->len)); |
1822 | return do_loader_command (lb, dev, write_adapter_memory); |
1823 | } |
1824 | |
1825 | /* loader: verify memory data blocks */ |
1826 | |
1827 | static int __devinit loader_verify (loader_block * lb, |
1828 | const amb_dev *dev, |
1829 | const struct ihex_binrec *rec) { |
1830 | transfer_block * tb = &lb->payload.transfer; |
1831 | int res; |
1832 | |
1833 | PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify"); |
1834 | |
1835 | tb->address = rec->addr; |
1836 | tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4); |
1837 | res = do_loader_command (lb, dev, read_adapter_memory); |
1838 | if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len))) |
1839 | res = -EINVAL; |
1840 | return res; |
1841 | } |
1842 | |
1843 | /* loader: start microcode */ |
1844 | |
1845 | static int __devinit loader_start (loader_block * lb, |
1846 | const amb_dev * dev, u32 address) { |
1847 | PRINTD (DBG_FLOW|DBG_LOAD, "loader_start"); |
1848 | |
1849 | lb->payload.start = cpu_to_be32 (address); |
1850 | return do_loader_command (lb, dev, adapter_start); |
1851 | } |
1852 | |
1853 | /********** reset card **********/ |
1854 | |
1855 | static inline void sf (const char * msg) |
1856 | { |
1857 | PRINTK (KERN_ERR, "self-test failed: %s", msg); |
1858 | } |
1859 | |
1860 | static int amb_reset (amb_dev * dev, int diags) { |
1861 | u32 word; |
1862 | |
1863 | PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset"); |
1864 | |
1865 | word = rd_plain (dev, offsetof(amb_mem, reset_control)); |
1866 | // put card into reset state |
1867 | wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS); |
1868 | // wait a short while |
1869 | udelay (10); |
1870 | #if 1 |
1871 | // put card into known good state |
1872 | wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS); |
1873 | // clear all interrupts just in case |
1874 | wr_plain (dev, offsetof(amb_mem, interrupt), -1); |
1875 | #endif |
1876 | // clear self-test done flag |
1877 | wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0); |
1878 | // take card out of reset state |
1879 | wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS); |
1880 | |
1881 | if (diags) { |
1882 | unsigned long timeout; |
1883 | // 4.2 second wait |
1884 | msleep(4200); |
1885 | // half second time-out |
1886 | timeout = 500; |
1887 | while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready))) |
1888 | if (timeout) { |
1889 | timeout = msleep_interruptible(timeout); |
1890 | } else { |
1891 | PRINTD (DBG_LOAD|DBG_ERR, "reset timed out"); |
1892 | return -ETIMEDOUT; |
1893 | } |
1894 | |
1895 | // get results of self-test |
1896 | // XXX double check byte-order |
1897 | word = rd_mem (dev, offsetof(amb_mem, mb.loader.result)); |
1898 | if (word & SELF_TEST_FAILURE) { |
1899 | if (word & GPINT_TST_FAILURE) |
1900 | sf ("interrupt"); |
1901 | if (word & SUNI_DATA_PATTERN_FAILURE) |
1902 | sf ("SUNI data pattern"); |
1903 | if (word & SUNI_DATA_BITS_FAILURE) |
1904 | sf ("SUNI data bits"); |
1905 | if (word & SUNI_UTOPIA_FAILURE) |
1906 | sf ("SUNI UTOPIA interface"); |
1907 | if (word & SUNI_FIFO_FAILURE) |
1908 | sf ("SUNI cell buffer FIFO"); |
1909 | if (word & SRAM_FAILURE) |
1910 | sf ("bad SRAM"); |
1911 | // better return value? |
1912 | return -EIO; |
1913 | } |
1914 | |
1915 | } |
1916 | return 0; |
1917 | } |
1918 | |
1919 | /********** transfer and start the microcode **********/ |
1920 | |
1921 | static int __devinit ucode_init (loader_block * lb, amb_dev * dev) { |
1922 | const struct firmware *fw; |
1923 | unsigned long start_address; |
1924 | const struct ihex_binrec *rec; |
1925 | const char *errmsg = 0; |
1926 | int res; |
1927 | |
1928 | res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev); |
1929 | if (res) { |
1930 | PRINTK (KERN_ERR, "Cannot load microcode data"); |
1931 | return res; |
1932 | } |
1933 | |
1934 | /* First record contains just the start address */ |
1935 | rec = (const struct ihex_binrec *)fw->data; |
1936 | if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) { |
1937 | errmsg = "no start record"; |
1938 | goto fail; |
1939 | } |
1940 | start_address = be32_to_cpup((__be32 *)rec->data); |
1941 | |
1942 | rec = ihex_next_binrec(rec); |
1943 | |
1944 | PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init"); |
1945 | |
1946 | while (rec) { |
1947 | PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr), |
1948 | be16_to_cpu(rec->len)); |
1949 | if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) { |
1950 | errmsg = "record too long"; |
1951 | goto fail; |
1952 | } |
1953 | if (be16_to_cpu(rec->len) & 3) { |
1954 | errmsg = "odd number of bytes"; |
1955 | goto fail; |
1956 | } |
1957 | res = loader_write(lb, dev, rec); |
1958 | if (res) |
1959 | break; |
1960 | |
1961 | res = loader_verify(lb, dev, rec); |
1962 | if (res) |
1963 | break; |
1964 | } |
1965 | release_firmware(fw); |
1966 | if (!res) |
1967 | res = loader_start(lb, dev, start_address); |
1968 | |
1969 | return res; |
1970 | fail: |
1971 | release_firmware(fw); |
1972 | PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg); |
1973 | return -EINVAL; |
1974 | } |
1975 | |
1976 | /********** give adapter parameters **********/ |
1977 | |
1978 | static inline __be32 bus_addr(void * addr) { |
1979 | return cpu_to_be32 (virt_to_bus (addr)); |
1980 | } |
1981 | |
1982 | static int __devinit amb_talk (amb_dev * dev) { |
1983 | adap_talk_block a; |
1984 | unsigned char pool; |
1985 | unsigned long timeout; |
1986 | |
1987 | PRINTD (DBG_FLOW, "amb_talk %p", dev); |
1988 | |
1989 | a.command_start = bus_addr (dev->cq.ptrs.start); |
1990 | a.command_end = bus_addr (dev->cq.ptrs.limit); |
1991 | a.tx_start = bus_addr (dev->txq.in.start); |
1992 | a.tx_end = bus_addr (dev->txq.in.limit); |
1993 | a.txcom_start = bus_addr (dev->txq.out.start); |
1994 | a.txcom_end = bus_addr (dev->txq.out.limit); |
1995 | |
1996 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) { |
1997 | // the other "a" items are set up by the adapter |
1998 | a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start); |
1999 | a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit); |
2000 | a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start); |
2001 | a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit); |
2002 | a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size); |
2003 | } |
2004 | |
2005 | #ifdef AMB_NEW_MICROCODE |
2006 | // disable fast PLX prefetching |
2007 | a.init_flags = 0; |
2008 | #endif |
2009 | |
2010 | // pass the structure |
2011 | wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a)); |
2012 | |
2013 | // 2.2 second wait (must not touch doorbell during 2 second DMA test) |
2014 | msleep(2200); |
2015 | // give the adapter another half second? |
2016 | timeout = 500; |
2017 | while (rd_plain (dev, offsetof(amb_mem, doorbell))) |
2018 | if (timeout) { |
2019 | timeout = msleep_interruptible(timeout); |
2020 | } else { |
2021 | PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out"); |
2022 | return -ETIMEDOUT; |
2023 | } |
2024 | |
2025 | return 0; |
2026 | } |
2027 | |
2028 | // get microcode version |
2029 | static void __devinit amb_ucode_version (amb_dev * dev) { |
2030 | u32 major; |
2031 | u32 minor; |
2032 | command cmd; |
2033 | cmd.request = cpu_to_be32 (SRB_GET_VERSION); |
2034 | while (command_do (dev, &cmd)) { |
2035 | set_current_state(TASK_UNINTERRUPTIBLE); |
2036 | schedule(); |
2037 | } |
2038 | major = be32_to_cpu (cmd.args.version.major); |
2039 | minor = be32_to_cpu (cmd.args.version.minor); |
2040 | PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor); |
2041 | } |
2042 | |
2043 | // get end station address |
2044 | static void __devinit amb_esi (amb_dev * dev, u8 * esi) { |
2045 | u32 lower4; |
2046 | u16 upper2; |
2047 | command cmd; |
2048 | |
2049 | cmd.request = cpu_to_be32 (SRB_GET_BIA); |
2050 | while (command_do (dev, &cmd)) { |
2051 | set_current_state(TASK_UNINTERRUPTIBLE); |
2052 | schedule(); |
2053 | } |
2054 | lower4 = be32_to_cpu (cmd.args.bia.lower4); |
2055 | upper2 = be32_to_cpu (cmd.args.bia.upper2); |
2056 | PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2); |
2057 | |
2058 | if (esi) { |
2059 | unsigned int i; |
2060 | |
2061 | PRINTDB (DBG_INIT, "ESI:"); |
2062 | for (i = 0; i < ESI_LEN; ++i) { |
2063 | if (i < 4) |
2064 | esi[i] = bitrev8(lower4>>(8*i)); |
2065 | else |
2066 | esi[i] = bitrev8(upper2>>(8*(i-4))); |
2067 | PRINTDM (DBG_INIT, " %02x", esi[i]); |
2068 | } |
2069 | |
2070 | PRINTDE (DBG_INIT, ""); |
2071 | } |
2072 | |
2073 | return; |
2074 | } |
2075 | |
2076 | static void fixup_plx_window (amb_dev *dev, loader_block *lb) |
2077 | { |
2078 | // fix up the PLX-mapped window base address to match the block |
2079 | unsigned long blb; |
2080 | u32 mapreg; |
2081 | blb = virt_to_bus(lb); |
2082 | // the kernel stack had better not ever cross a 1Gb boundary! |
2083 | mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10])); |
2084 | mapreg &= ~onegigmask; |
2085 | mapreg |= blb & onegigmask; |
2086 | wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg); |
2087 | return; |
2088 | } |
2089 | |
2090 | static int __devinit amb_init (amb_dev * dev) |
2091 | { |
2092 | loader_block lb; |
2093 | |
2094 | u32 version; |
2095 | |
2096 | if (amb_reset (dev, 1)) { |
2097 | PRINTK (KERN_ERR, "card reset failed!"); |
2098 | } else { |
2099 | fixup_plx_window (dev, &lb); |
2100 | |
2101 | if (get_loader_version (&lb, dev, &version)) { |
2102 | PRINTK (KERN_INFO, "failed to get loader version"); |
2103 | } else { |
2104 | PRINTK (KERN_INFO, "loader version is %08x", version); |
2105 | |
2106 | if (ucode_init (&lb, dev)) { |
2107 | PRINTK (KERN_ERR, "microcode failure"); |
2108 | } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) { |
2109 | PRINTK (KERN_ERR, "failed to get memory for queues"); |
2110 | } else { |
2111 | |
2112 | if (amb_talk (dev)) { |
2113 | PRINTK (KERN_ERR, "adapter did not accept queues"); |
2114 | } else { |
2115 | |
2116 | amb_ucode_version (dev); |
2117 | return 0; |
2118 | |
2119 | } /* amb_talk */ |
2120 | |
2121 | destroy_queues (dev); |
2122 | } /* create_queues, ucode_init */ |
2123 | |
2124 | amb_reset (dev, 0); |
2125 | } /* get_loader_version */ |
2126 | |
2127 | } /* amb_reset */ |
2128 | |
2129 | return -EINVAL; |
2130 | } |
2131 | |
2132 | static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev) |
2133 | { |
2134 | unsigned char pool; |
2135 | |
2136 | // set up known dev items straight away |
2137 | dev->pci_dev = pci_dev; |
2138 | pci_set_drvdata(pci_dev, dev); |
2139 | |
2140 | dev->iobase = pci_resource_start (pci_dev, 1); |
2141 | dev->irq = pci_dev->irq; |
2142 | dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0)); |
2143 | |
2144 | // flags (currently only dead) |
2145 | dev->flags = 0; |
2146 | |
2147 | // Allocate cell rates (fibre) |
2148 | // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 |
2149 | // to be really pedantic, this should be ATM_OC3c_PCR |
2150 | dev->tx_avail = ATM_OC3_PCR; |
2151 | dev->rx_avail = ATM_OC3_PCR; |
2152 | |
2153 | // semaphore for txer/rxer modifications - we cannot use a |
2154 | // spinlock as the critical region needs to switch processes |
2155 | mutex_init(&dev->vcc_sf); |
2156 | // queue manipulation spinlocks; we want atomic reads and |
2157 | // writes to the queue descriptors (handles IRQ and SMP) |
2158 | // consider replacing "int pending" -> "atomic_t available" |
2159 | // => problem related to who gets to move queue pointers |
2160 | spin_lock_init (&dev->cq.lock); |
2161 | spin_lock_init (&dev->txq.lock); |
2162 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
2163 | spin_lock_init (&dev->rxq[pool].lock); |
2164 | } |
2165 | |
2166 | static void setup_pci_dev(struct pci_dev *pci_dev) |
2167 | { |
2168 | unsigned char lat; |
2169 | |
2170 | // enable bus master accesses |
2171 | pci_set_master(pci_dev); |
2172 | |
2173 | // frobnicate latency (upwards, usually) |
2174 | pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat); |
2175 | |
2176 | if (!pci_lat) |
2177 | pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat; |
2178 | |
2179 | if (lat != pci_lat) { |
2180 | PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu", |
2181 | lat, pci_lat); |
2182 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); |
2183 | } |
2184 | } |
2185 | |
2186 | static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
2187 | { |
2188 | amb_dev * dev; |
2189 | int err; |
2190 | unsigned int irq; |
2191 | |
2192 | err = pci_enable_device(pci_dev); |
2193 | if (err < 0) { |
2194 | PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card"); |
2195 | goto out; |
2196 | } |
2197 | |
2198 | // read resources from PCI configuration space |
2199 | irq = pci_dev->irq; |
2200 | |
2201 | if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) { |
2202 | PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card"); |
2203 | err = -EINVAL; |
2204 | goto out_disable; |
2205 | } |
2206 | |
2207 | PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at" |
2208 | " IO %llx, IRQ %u, MEM %p", |
2209 | (unsigned long long)pci_resource_start(pci_dev, 1), |
2210 | irq, bus_to_virt(pci_resource_start(pci_dev, 0))); |
2211 | |
2212 | // check IO region |
2213 | err = pci_request_region(pci_dev, 1, DEV_LABEL); |
2214 | if (err < 0) { |
2215 | PRINTK (KERN_ERR, "IO range already in use!"); |
2216 | goto out_disable; |
2217 | } |
2218 | |
2219 | dev = kzalloc(sizeof(amb_dev), GFP_KERNEL); |
2220 | if (!dev) { |
2221 | PRINTK (KERN_ERR, "out of memory!"); |
2222 | err = -ENOMEM; |
2223 | goto out_release; |
2224 | } |
2225 | |
2226 | setup_dev(dev, pci_dev); |
2227 | |
2228 | err = amb_init(dev); |
2229 | if (err < 0) { |
2230 | PRINTK (KERN_ERR, "adapter initialisation failure"); |
2231 | goto out_free; |
2232 | } |
2233 | |
2234 | setup_pci_dev(pci_dev); |
2235 | |
2236 | // grab (but share) IRQ and install handler |
2237 | err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev); |
2238 | if (err < 0) { |
2239 | PRINTK (KERN_ERR, "request IRQ failed!"); |
2240 | goto out_reset; |
2241 | } |
2242 | |
2243 | dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1, |
2244 | NULL); |
2245 | if (!dev->atm_dev) { |
2246 | PRINTD (DBG_ERR, "failed to register Madge ATM adapter"); |
2247 | err = -EINVAL; |
2248 | goto out_free_irq; |
2249 | } |
2250 | |
2251 | PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", |
2252 | dev->atm_dev->number, dev, dev->atm_dev); |
2253 | dev->atm_dev->dev_data = (void *) dev; |
2254 | |
2255 | // register our address |
2256 | amb_esi (dev, dev->atm_dev->esi); |
2257 | |
2258 | // 0 bits for vpi, 10 bits for vci |
2259 | dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS; |
2260 | dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS; |
2261 | |
2262 | init_timer(&dev->housekeeping); |
2263 | dev->housekeeping.function = do_housekeeping; |
2264 | dev->housekeeping.data = (unsigned long) dev; |
2265 | mod_timer(&dev->housekeeping, jiffies); |
2266 | |
2267 | // enable host interrupts |
2268 | interrupts_on (dev); |
2269 | |
2270 | out: |
2271 | return err; |
2272 | |
2273 | out_free_irq: |
2274 | free_irq(irq, dev); |
2275 | out_reset: |
2276 | amb_reset(dev, 0); |
2277 | out_free: |
2278 | kfree(dev); |
2279 | out_release: |
2280 | pci_release_region(pci_dev, 1); |
2281 | out_disable: |
2282 | pci_disable_device(pci_dev); |
2283 | goto out; |
2284 | } |
2285 | |
2286 | |
2287 | static void __devexit amb_remove_one(struct pci_dev *pci_dev) |
2288 | { |
2289 | struct amb_dev *dev; |
2290 | |
2291 | dev = pci_get_drvdata(pci_dev); |
2292 | |
2293 | PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev); |
2294 | del_timer_sync(&dev->housekeeping); |
2295 | // the drain should not be necessary |
2296 | drain_rx_pools(dev); |
2297 | interrupts_off(dev); |
2298 | amb_reset(dev, 0); |
2299 | free_irq(dev->irq, dev); |
2300 | pci_disable_device(pci_dev); |
2301 | destroy_queues(dev); |
2302 | atm_dev_deregister(dev->atm_dev); |
2303 | kfree(dev); |
2304 | pci_release_region(pci_dev, 1); |
2305 | } |
2306 | |
2307 | static void __init amb_check_args (void) { |
2308 | unsigned char pool; |
2309 | unsigned int max_rx_size; |
2310 | |
2311 | #ifdef DEBUG_AMBASSADOR |
2312 | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); |
2313 | #else |
2314 | if (debug) |
2315 | PRINTK (KERN_NOTICE, "no debugging support"); |
2316 | #endif |
2317 | |
2318 | if (cmds < MIN_QUEUE_SIZE) |
2319 | PRINTK (KERN_NOTICE, "cmds has been raised to %u", |
2320 | cmds = MIN_QUEUE_SIZE); |
2321 | |
2322 | if (txs < MIN_QUEUE_SIZE) |
2323 | PRINTK (KERN_NOTICE, "txs has been raised to %u", |
2324 | txs = MIN_QUEUE_SIZE); |
2325 | |
2326 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
2327 | if (rxs[pool] < MIN_QUEUE_SIZE) |
2328 | PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u", |
2329 | pool, rxs[pool] = MIN_QUEUE_SIZE); |
2330 | |
2331 | // buffers sizes should be greater than zero and strictly increasing |
2332 | max_rx_size = 0; |
2333 | for (pool = 0; pool < NUM_RX_POOLS; ++pool) |
2334 | if (rxs_bs[pool] <= max_rx_size) |
2335 | PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)", |
2336 | pool, rxs_bs[pool]); |
2337 | else |
2338 | max_rx_size = rxs_bs[pool]; |
2339 | |
2340 | if (rx_lats < MIN_RX_BUFFERS) |
2341 | PRINTK (KERN_NOTICE, "rx_lats has been raised to %u", |
2342 | rx_lats = MIN_RX_BUFFERS); |
2343 | |
2344 | return; |
2345 | } |
2346 | |
2347 | /********** module stuff **********/ |
2348 | |
2349 | MODULE_AUTHOR(maintainer_string); |
2350 | MODULE_DESCRIPTION(description_string); |
2351 | MODULE_LICENSE("GPL"); |
2352 | MODULE_FIRMWARE("atmsar11.fw"); |
2353 | module_param(debug, ushort, 0644); |
2354 | module_param(cmds, uint, 0); |
2355 | module_param(txs, uint, 0); |
2356 | module_param_array(rxs, uint, NULL, 0); |
2357 | module_param_array(rxs_bs, uint, NULL, 0); |
2358 | module_param(rx_lats, uint, 0); |
2359 | module_param(pci_lat, byte, 0); |
2360 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); |
2361 | MODULE_PARM_DESC(cmds, "number of command queue entries"); |
2362 | MODULE_PARM_DESC(txs, "number of TX queue entries"); |
2363 | MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]"); |
2364 | MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]"); |
2365 | MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies"); |
2366 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); |
2367 | |
2368 | /********** module entry **********/ |
2369 | |
2370 | static struct pci_device_id amb_pci_tbl[] = { |
2371 | { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 }, |
2372 | { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 }, |
2373 | { 0, } |
2374 | }; |
2375 | |
2376 | MODULE_DEVICE_TABLE(pci, amb_pci_tbl); |
2377 | |
2378 | static struct pci_driver amb_driver = { |
2379 | .name = "amb", |
2380 | .probe = amb_probe, |
2381 | .remove = __devexit_p(amb_remove_one), |
2382 | .id_table = amb_pci_tbl, |
2383 | }; |
2384 | |
2385 | static int __init amb_module_init (void) |
2386 | { |
2387 | PRINTD (DBG_FLOW|DBG_INIT, "init_module"); |
2388 | |
2389 | // sanity check - cast needed as printk does not support %Zu |
2390 | if (sizeof(amb_mem) != 4*16 + 4*12) { |
2391 | PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).", |
2392 | (unsigned long) sizeof(amb_mem)); |
2393 | return -ENOMEM; |
2394 | } |
2395 | |
2396 | show_version(); |
2397 | |
2398 | amb_check_args(); |
2399 | |
2400 | // get the juice |
2401 | return pci_register_driver(&amb_driver); |
2402 | } |
2403 | |
2404 | /********** module exit **********/ |
2405 | |
2406 | static void __exit amb_module_exit (void) |
2407 | { |
2408 | PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module"); |
2409 | |
2410 | pci_unregister_driver(&amb_driver); |
2411 | } |
2412 | |
2413 | module_init(amb_module_init); |
2414 | module_exit(amb_module_exit); |
2415 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9