Root/
1 | /* |
2 | A FORE Systems 200E-series driver for ATM on Linux. |
3 | Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. |
4 | |
5 | Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). |
6 | |
7 | This driver simultaneously supports PCA-200E and SBA-200E adapters |
8 | on i386, alpha (untested), powerpc, sparc and sparc64 architectures. |
9 | |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by |
12 | the Free Software Foundation; either version 2 of the License, or |
13 | (at your option) any later version. |
14 | |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 | GNU General Public License for more details. |
19 | |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software |
22 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
23 | */ |
24 | |
25 | |
26 | #include <linux/kernel.h> |
27 | #include <linux/slab.h> |
28 | #include <linux/init.h> |
29 | #include <linux/capability.h> |
30 | #include <linux/interrupt.h> |
31 | #include <linux/bitops.h> |
32 | #include <linux/pci.h> |
33 | #include <linux/module.h> |
34 | #include <linux/atmdev.h> |
35 | #include <linux/sonet.h> |
36 | #include <linux/atm_suni.h> |
37 | #include <linux/dma-mapping.h> |
38 | #include <linux/delay.h> |
39 | #include <linux/firmware.h> |
40 | #include <asm/io.h> |
41 | #include <asm/string.h> |
42 | #include <asm/page.h> |
43 | #include <asm/irq.h> |
44 | #include <asm/dma.h> |
45 | #include <asm/byteorder.h> |
46 | #include <asm/uaccess.h> |
47 | #include <linux/atomic.h> |
48 | |
49 | #ifdef CONFIG_SBUS |
50 | #include <linux/of.h> |
51 | #include <linux/of_device.h> |
52 | #include <asm/idprom.h> |
53 | #include <asm/openprom.h> |
54 | #include <asm/oplib.h> |
55 | #include <asm/pgtable.h> |
56 | #endif |
57 | |
58 | #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ |
59 | #define FORE200E_USE_TASKLET |
60 | #endif |
61 | |
62 | #if 0 /* enable the debugging code of the buffer supply queues */ |
63 | #define FORE200E_BSQ_DEBUG |
64 | #endif |
65 | |
66 | #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ |
67 | #define FORE200E_52BYTE_AAL0_SDU |
68 | #endif |
69 | |
70 | #include "fore200e.h" |
71 | #include "suni.h" |
72 | |
73 | #define FORE200E_VERSION "0.3e" |
74 | |
75 | #define FORE200E "fore200e: " |
76 | |
77 | #if 0 /* override .config */ |
78 | #define CONFIG_ATM_FORE200E_DEBUG 1 |
79 | #endif |
80 | #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) |
81 | #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ |
82 | printk(FORE200E format, ##args); } while (0) |
83 | #else |
84 | #define DPRINTK(level, format, args...) do {} while (0) |
85 | #endif |
86 | |
87 | |
88 | #define FORE200E_ALIGN(addr, alignment) \ |
89 | ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) |
90 | |
91 | #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) |
92 | |
93 | #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) |
94 | |
95 | #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo)) |
96 | |
97 | #if 1 |
98 | #define ASSERT(expr) if (!(expr)) { \ |
99 | printk(FORE200E "assertion failed! %s[%d]: %s\n", \ |
100 | __func__, __LINE__, #expr); \ |
101 | panic(FORE200E "%s", __func__); \ |
102 | } |
103 | #else |
104 | #define ASSERT(expr) do {} while (0) |
105 | #endif |
106 | |
107 | |
108 | static const struct atmdev_ops fore200e_ops; |
109 | static const struct fore200e_bus fore200e_bus[]; |
110 | |
111 | static LIST_HEAD(fore200e_boards); |
112 | |
113 | |
114 | MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); |
115 | MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); |
116 | MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E"); |
117 | |
118 | |
119 | static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { |
120 | { BUFFER_S1_NBR, BUFFER_L1_NBR }, |
121 | { BUFFER_S2_NBR, BUFFER_L2_NBR } |
122 | }; |
123 | |
124 | static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { |
125 | { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, |
126 | { BUFFER_S2_SIZE, BUFFER_L2_SIZE } |
127 | }; |
128 | |
129 | |
130 | #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) |
131 | static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; |
132 | #endif |
133 | |
134 | |
135 | #if 0 /* currently unused */ |
136 | static int |
137 | fore200e_fore2atm_aal(enum fore200e_aal aal) |
138 | { |
139 | switch(aal) { |
140 | case FORE200E_AAL0: return ATM_AAL0; |
141 | case FORE200E_AAL34: return ATM_AAL34; |
142 | case FORE200E_AAL5: return ATM_AAL5; |
143 | } |
144 | |
145 | return -EINVAL; |
146 | } |
147 | #endif |
148 | |
149 | |
150 | static enum fore200e_aal |
151 | fore200e_atm2fore_aal(int aal) |
152 | { |
153 | switch(aal) { |
154 | case ATM_AAL0: return FORE200E_AAL0; |
155 | case ATM_AAL34: return FORE200E_AAL34; |
156 | case ATM_AAL1: |
157 | case ATM_AAL2: |
158 | case ATM_AAL5: return FORE200E_AAL5; |
159 | } |
160 | |
161 | return -EINVAL; |
162 | } |
163 | |
164 | |
165 | static char* |
166 | fore200e_irq_itoa(int irq) |
167 | { |
168 | static char str[8]; |
169 | sprintf(str, "%d", irq); |
170 | return str; |
171 | } |
172 | |
173 | |
174 | /* allocate and align a chunk of memory intended to hold the data behing exchanged |
175 | between the driver and the adapter (using streaming DVMA) */ |
176 | |
177 | static int |
178 | fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) |
179 | { |
180 | unsigned long offset = 0; |
181 | |
182 | if (alignment <= sizeof(int)) |
183 | alignment = 0; |
184 | |
185 | chunk->alloc_size = size + alignment; |
186 | chunk->align_size = size; |
187 | chunk->direction = direction; |
188 | |
189 | chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA); |
190 | if (chunk->alloc_addr == NULL) |
191 | return -ENOMEM; |
192 | |
193 | if (alignment > 0) |
194 | offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); |
195 | |
196 | chunk->align_addr = chunk->alloc_addr + offset; |
197 | |
198 | chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction); |
199 | |
200 | return 0; |
201 | } |
202 | |
203 | |
204 | /* free a chunk of memory */ |
205 | |
206 | static void |
207 | fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
208 | { |
209 | fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction); |
210 | |
211 | kfree(chunk->alloc_addr); |
212 | } |
213 | |
214 | |
215 | static void |
216 | fore200e_spin(int msecs) |
217 | { |
218 | unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
219 | while (time_before(jiffies, timeout)); |
220 | } |
221 | |
222 | |
223 | static int |
224 | fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) |
225 | { |
226 | unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
227 | int ok; |
228 | |
229 | mb(); |
230 | do { |
231 | if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) |
232 | break; |
233 | |
234 | } while (time_before(jiffies, timeout)); |
235 | |
236 | #if 1 |
237 | if (!ok) { |
238 | printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", |
239 | *addr, val); |
240 | } |
241 | #endif |
242 | |
243 | return ok; |
244 | } |
245 | |
246 | |
247 | static int |
248 | fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) |
249 | { |
250 | unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
251 | int ok; |
252 | |
253 | do { |
254 | if ((ok = (fore200e->bus->read(addr) == val))) |
255 | break; |
256 | |
257 | } while (time_before(jiffies, timeout)); |
258 | |
259 | #if 1 |
260 | if (!ok) { |
261 | printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", |
262 | fore200e->bus->read(addr), val); |
263 | } |
264 | #endif |
265 | |
266 | return ok; |
267 | } |
268 | |
269 | |
270 | static void |
271 | fore200e_free_rx_buf(struct fore200e* fore200e) |
272 | { |
273 | int scheme, magn, nbr; |
274 | struct buffer* buffer; |
275 | |
276 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
277 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
278 | |
279 | if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { |
280 | |
281 | for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { |
282 | |
283 | struct chunk* data = &buffer[ nbr ].data; |
284 | |
285 | if (data->alloc_addr != NULL) |
286 | fore200e_chunk_free(fore200e, data); |
287 | } |
288 | } |
289 | } |
290 | } |
291 | } |
292 | |
293 | |
294 | static void |
295 | fore200e_uninit_bs_queue(struct fore200e* fore200e) |
296 | { |
297 | int scheme, magn; |
298 | |
299 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
300 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
301 | |
302 | struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; |
303 | struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; |
304 | |
305 | if (status->alloc_addr) |
306 | fore200e->bus->dma_chunk_free(fore200e, status); |
307 | |
308 | if (rbd_block->alloc_addr) |
309 | fore200e->bus->dma_chunk_free(fore200e, rbd_block); |
310 | } |
311 | } |
312 | } |
313 | |
314 | |
315 | static int |
316 | fore200e_reset(struct fore200e* fore200e, int diag) |
317 | { |
318 | int ok; |
319 | |
320 | fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; |
321 | |
322 | fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); |
323 | |
324 | fore200e->bus->reset(fore200e); |
325 | |
326 | if (diag) { |
327 | ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); |
328 | if (ok == 0) { |
329 | |
330 | printk(FORE200E "device %s self-test failed\n", fore200e->name); |
331 | return -ENODEV; |
332 | } |
333 | |
334 | printk(FORE200E "device %s self-test passed\n", fore200e->name); |
335 | |
336 | fore200e->state = FORE200E_STATE_RESET; |
337 | } |
338 | |
339 | return 0; |
340 | } |
341 | |
342 | |
343 | static void |
344 | fore200e_shutdown(struct fore200e* fore200e) |
345 | { |
346 | printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", |
347 | fore200e->name, fore200e->phys_base, |
348 | fore200e_irq_itoa(fore200e->irq)); |
349 | |
350 | if (fore200e->state > FORE200E_STATE_RESET) { |
351 | /* first, reset the board to prevent further interrupts or data transfers */ |
352 | fore200e_reset(fore200e, 0); |
353 | } |
354 | |
355 | /* then, release all allocated resources */ |
356 | switch(fore200e->state) { |
357 | |
358 | case FORE200E_STATE_COMPLETE: |
359 | kfree(fore200e->stats); |
360 | |
361 | case FORE200E_STATE_IRQ: |
362 | free_irq(fore200e->irq, fore200e->atm_dev); |
363 | |
364 | case FORE200E_STATE_ALLOC_BUF: |
365 | fore200e_free_rx_buf(fore200e); |
366 | |
367 | case FORE200E_STATE_INIT_BSQ: |
368 | fore200e_uninit_bs_queue(fore200e); |
369 | |
370 | case FORE200E_STATE_INIT_RXQ: |
371 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status); |
372 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); |
373 | |
374 | case FORE200E_STATE_INIT_TXQ: |
375 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status); |
376 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd); |
377 | |
378 | case FORE200E_STATE_INIT_CMDQ: |
379 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status); |
380 | |
381 | case FORE200E_STATE_INITIALIZE: |
382 | /* nothing to do for that state */ |
383 | |
384 | case FORE200E_STATE_START_FW: |
385 | /* nothing to do for that state */ |
386 | |
387 | case FORE200E_STATE_RESET: |
388 | /* nothing to do for that state */ |
389 | |
390 | case FORE200E_STATE_MAP: |
391 | fore200e->bus->unmap(fore200e); |
392 | |
393 | case FORE200E_STATE_CONFIGURE: |
394 | /* nothing to do for that state */ |
395 | |
396 | case FORE200E_STATE_REGISTER: |
397 | /* XXX shouldn't we *start* by deregistering the device? */ |
398 | atm_dev_deregister(fore200e->atm_dev); |
399 | |
400 | case FORE200E_STATE_BLANK: |
401 | /* nothing to do for that state */ |
402 | break; |
403 | } |
404 | } |
405 | |
406 | |
407 | #ifdef CONFIG_PCI |
408 | |
409 | static u32 fore200e_pca_read(volatile u32 __iomem *addr) |
410 | { |
411 | /* on big-endian hosts, the board is configured to convert |
412 | the endianess of slave RAM accesses */ |
413 | return le32_to_cpu(readl(addr)); |
414 | } |
415 | |
416 | |
417 | static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) |
418 | { |
419 | /* on big-endian hosts, the board is configured to convert |
420 | the endianess of slave RAM accesses */ |
421 | writel(cpu_to_le32(val), addr); |
422 | } |
423 | |
424 | |
425 | static u32 |
426 | fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) |
427 | { |
428 | u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction); |
429 | |
430 | DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n", |
431 | virt_addr, size, direction, dma_addr); |
432 | |
433 | return dma_addr; |
434 | } |
435 | |
436 | |
437 | static void |
438 | fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
439 | { |
440 | DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n", |
441 | dma_addr, size, direction); |
442 | |
443 | pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
444 | } |
445 | |
446 | |
447 | static void |
448 | fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
449 | { |
450 | DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
451 | |
452 | pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
453 | } |
454 | |
455 | static void |
456 | fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
457 | { |
458 | DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
459 | |
460 | pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
461 | } |
462 | |
463 | |
464 | /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism |
465 | (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ |
466 | |
467 | static int |
468 | fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, |
469 | int size, int nbr, int alignment) |
470 | { |
471 | /* returned chunks are page-aligned */ |
472 | chunk->alloc_size = size * nbr; |
473 | chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev, |
474 | chunk->alloc_size, |
475 | &chunk->dma_addr); |
476 | |
477 | if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) |
478 | return -ENOMEM; |
479 | |
480 | chunk->align_addr = chunk->alloc_addr; |
481 | |
482 | return 0; |
483 | } |
484 | |
485 | |
486 | /* free a DMA consistent chunk of memory */ |
487 | |
488 | static void |
489 | fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
490 | { |
491 | pci_free_consistent((struct pci_dev*)fore200e->bus_dev, |
492 | chunk->alloc_size, |
493 | chunk->alloc_addr, |
494 | chunk->dma_addr); |
495 | } |
496 | |
497 | |
498 | static int |
499 | fore200e_pca_irq_check(struct fore200e* fore200e) |
500 | { |
501 | /* this is a 1 bit register */ |
502 | int irq_posted = readl(fore200e->regs.pca.psr); |
503 | |
504 | #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) |
505 | if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { |
506 | DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); |
507 | } |
508 | #endif |
509 | |
510 | return irq_posted; |
511 | } |
512 | |
513 | |
514 | static void |
515 | fore200e_pca_irq_ack(struct fore200e* fore200e) |
516 | { |
517 | writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); |
518 | } |
519 | |
520 | |
521 | static void |
522 | fore200e_pca_reset(struct fore200e* fore200e) |
523 | { |
524 | writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); |
525 | fore200e_spin(10); |
526 | writel(0, fore200e->regs.pca.hcr); |
527 | } |
528 | |
529 | |
530 | static int __devinit |
531 | fore200e_pca_map(struct fore200e* fore200e) |
532 | { |
533 | DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); |
534 | |
535 | fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); |
536 | |
537 | if (fore200e->virt_base == NULL) { |
538 | printk(FORE200E "can't map device %s\n", fore200e->name); |
539 | return -EFAULT; |
540 | } |
541 | |
542 | DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); |
543 | |
544 | /* gain access to the PCA specific registers */ |
545 | fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; |
546 | fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; |
547 | fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; |
548 | |
549 | fore200e->state = FORE200E_STATE_MAP; |
550 | return 0; |
551 | } |
552 | |
553 | |
554 | static void |
555 | fore200e_pca_unmap(struct fore200e* fore200e) |
556 | { |
557 | DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); |
558 | |
559 | if (fore200e->virt_base != NULL) |
560 | iounmap(fore200e->virt_base); |
561 | } |
562 | |
563 | |
564 | static int __devinit |
565 | fore200e_pca_configure(struct fore200e* fore200e) |
566 | { |
567 | struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; |
568 | u8 master_ctrl, latency; |
569 | |
570 | DPRINTK(2, "device %s being configured\n", fore200e->name); |
571 | |
572 | if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { |
573 | printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); |
574 | return -EIO; |
575 | } |
576 | |
577 | pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); |
578 | |
579 | master_ctrl = master_ctrl |
580 | #if defined(__BIG_ENDIAN) |
581 | /* request the PCA board to convert the endianess of slave RAM accesses */ |
582 | | PCA200E_CTRL_CONVERT_ENDIAN |
583 | #endif |
584 | #if 0 |
585 | | PCA200E_CTRL_DIS_CACHE_RD |
586 | | PCA200E_CTRL_DIS_WRT_INVAL |
587 | | PCA200E_CTRL_ENA_CONT_REQ_MODE |
588 | | PCA200E_CTRL_2_CACHE_WRT_INVAL |
589 | #endif |
590 | | PCA200E_CTRL_LARGE_PCI_BURSTS; |
591 | |
592 | pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); |
593 | |
594 | /* raise latency from 32 (default) to 192, as this seems to prevent NIC |
595 | lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. |
596 | this may impact the performances of other PCI devices on the same bus, though */ |
597 | latency = 192; |
598 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); |
599 | |
600 | fore200e->state = FORE200E_STATE_CONFIGURE; |
601 | return 0; |
602 | } |
603 | |
604 | |
605 | static int __init |
606 | fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) |
607 | { |
608 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
609 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
610 | struct prom_opcode opcode; |
611 | int ok; |
612 | u32 prom_dma; |
613 | |
614 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
615 | |
616 | opcode.opcode = OPCODE_GET_PROM; |
617 | opcode.pad = 0; |
618 | |
619 | prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE); |
620 | |
621 | fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); |
622 | |
623 | *entry->status = STATUS_PENDING; |
624 | |
625 | fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); |
626 | |
627 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
628 | |
629 | *entry->status = STATUS_FREE; |
630 | |
631 | fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); |
632 | |
633 | if (ok == 0) { |
634 | printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); |
635 | return -EIO; |
636 | } |
637 | |
638 | #if defined(__BIG_ENDIAN) |
639 | |
640 | #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) |
641 | |
642 | /* MAC address is stored as little-endian */ |
643 | swap_here(&prom->mac_addr[0]); |
644 | swap_here(&prom->mac_addr[4]); |
645 | #endif |
646 | |
647 | return 0; |
648 | } |
649 | |
650 | |
651 | static int |
652 | fore200e_pca_proc_read(struct fore200e* fore200e, char *page) |
653 | { |
654 | struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; |
655 | |
656 | return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", |
657 | pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); |
658 | } |
659 | |
660 | #endif /* CONFIG_PCI */ |
661 | |
662 | |
663 | #ifdef CONFIG_SBUS |
664 | |
665 | static u32 fore200e_sba_read(volatile u32 __iomem *addr) |
666 | { |
667 | return sbus_readl(addr); |
668 | } |
669 | |
670 | static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr) |
671 | { |
672 | sbus_writel(val, addr); |
673 | } |
674 | |
675 | static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction) |
676 | { |
677 | struct platform_device *op = fore200e->bus_dev; |
678 | u32 dma_addr; |
679 | |
680 | dma_addr = dma_map_single(&op->dev, virt_addr, size, direction); |
681 | |
682 | DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n", |
683 | virt_addr, size, direction, dma_addr); |
684 | |
685 | return dma_addr; |
686 | } |
687 | |
688 | static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction) |
689 | { |
690 | struct platform_device *op = fore200e->bus_dev; |
691 | |
692 | DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n", |
693 | dma_addr, size, direction); |
694 | |
695 | dma_unmap_single(&op->dev, dma_addr, size, direction); |
696 | } |
697 | |
698 | static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction) |
699 | { |
700 | struct platform_device *op = fore200e->bus_dev; |
701 | |
702 | DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
703 | |
704 | dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction); |
705 | } |
706 | |
707 | static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction) |
708 | { |
709 | struct platform_device *op = fore200e->bus_dev; |
710 | |
711 | DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
712 | |
713 | dma_sync_single_for_device(&op->dev, dma_addr, size, direction); |
714 | } |
715 | |
716 | /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism |
717 | * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter. |
718 | */ |
719 | static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk, |
720 | int size, int nbr, int alignment) |
721 | { |
722 | struct platform_device *op = fore200e->bus_dev; |
723 | |
724 | chunk->alloc_size = chunk->align_size = size * nbr; |
725 | |
726 | /* returned chunks are page-aligned */ |
727 | chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size, |
728 | &chunk->dma_addr, GFP_ATOMIC); |
729 | |
730 | if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) |
731 | return -ENOMEM; |
732 | |
733 | chunk->align_addr = chunk->alloc_addr; |
734 | |
735 | return 0; |
736 | } |
737 | |
738 | /* free a DVMA consistent chunk of memory */ |
739 | static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk) |
740 | { |
741 | struct platform_device *op = fore200e->bus_dev; |
742 | |
743 | dma_free_coherent(&op->dev, chunk->alloc_size, |
744 | chunk->alloc_addr, chunk->dma_addr); |
745 | } |
746 | |
747 | static void fore200e_sba_irq_enable(struct fore200e *fore200e) |
748 | { |
749 | u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; |
750 | fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); |
751 | } |
752 | |
753 | static int fore200e_sba_irq_check(struct fore200e *fore200e) |
754 | { |
755 | return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; |
756 | } |
757 | |
758 | static void fore200e_sba_irq_ack(struct fore200e *fore200e) |
759 | { |
760 | u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; |
761 | fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); |
762 | } |
763 | |
764 | static void fore200e_sba_reset(struct fore200e *fore200e) |
765 | { |
766 | fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); |
767 | fore200e_spin(10); |
768 | fore200e->bus->write(0, fore200e->regs.sba.hcr); |
769 | } |
770 | |
771 | static int __init fore200e_sba_map(struct fore200e *fore200e) |
772 | { |
773 | struct platform_device *op = fore200e->bus_dev; |
774 | unsigned int bursts; |
775 | |
776 | /* gain access to the SBA specific registers */ |
777 | fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); |
778 | fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); |
779 | fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); |
780 | fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); |
781 | |
782 | if (!fore200e->virt_base) { |
783 | printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); |
784 | return -EFAULT; |
785 | } |
786 | |
787 | DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); |
788 | |
789 | fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ |
790 | |
791 | /* get the supported DVMA burst sizes */ |
792 | bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00); |
793 | |
794 | if (sbus_can_dma_64bit()) |
795 | sbus_set_sbus64(&op->dev, bursts); |
796 | |
797 | fore200e->state = FORE200E_STATE_MAP; |
798 | return 0; |
799 | } |
800 | |
801 | static void fore200e_sba_unmap(struct fore200e *fore200e) |
802 | { |
803 | struct platform_device *op = fore200e->bus_dev; |
804 | |
805 | of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); |
806 | of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); |
807 | of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); |
808 | of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH); |
809 | } |
810 | |
811 | static int __init fore200e_sba_configure(struct fore200e *fore200e) |
812 | { |
813 | fore200e->state = FORE200E_STATE_CONFIGURE; |
814 | return 0; |
815 | } |
816 | |
817 | static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom) |
818 | { |
819 | struct platform_device *op = fore200e->bus_dev; |
820 | const u8 *prop; |
821 | int len; |
822 | |
823 | prop = of_get_property(op->dev.of_node, "madaddrlo2", &len); |
824 | if (!prop) |
825 | return -ENODEV; |
826 | memcpy(&prom->mac_addr[4], prop, 4); |
827 | |
828 | prop = of_get_property(op->dev.of_node, "madaddrhi4", &len); |
829 | if (!prop) |
830 | return -ENODEV; |
831 | memcpy(&prom->mac_addr[2], prop, 4); |
832 | |
833 | prom->serial_number = of_getintprop_default(op->dev.of_node, |
834 | "serialnumber", 0); |
835 | prom->hw_revision = of_getintprop_default(op->dev.of_node, |
836 | "promversion", 0); |
837 | |
838 | return 0; |
839 | } |
840 | |
841 | static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page) |
842 | { |
843 | struct platform_device *op = fore200e->bus_dev; |
844 | const struct linux_prom_registers *regs; |
845 | |
846 | regs = of_get_property(op->dev.of_node, "reg", NULL); |
847 | |
848 | return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", |
849 | (regs ? regs->which_io : 0), op->dev.of_node->name); |
850 | } |
851 | #endif /* CONFIG_SBUS */ |
852 | |
853 | |
854 | static void |
855 | fore200e_tx_irq(struct fore200e* fore200e) |
856 | { |
857 | struct host_txq* txq = &fore200e->host_txq; |
858 | struct host_txq_entry* entry; |
859 | struct atm_vcc* vcc; |
860 | struct fore200e_vc_map* vc_map; |
861 | |
862 | if (fore200e->host_txq.txing == 0) |
863 | return; |
864 | |
865 | for (;;) { |
866 | |
867 | entry = &txq->host_entry[ txq->tail ]; |
868 | |
869 | if ((*entry->status & STATUS_COMPLETE) == 0) { |
870 | break; |
871 | } |
872 | |
873 | DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", |
874 | entry, txq->tail, entry->vc_map, entry->skb); |
875 | |
876 | /* free copy of misaligned data */ |
877 | kfree(entry->data); |
878 | |
879 | /* remove DMA mapping */ |
880 | fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, |
881 | DMA_TO_DEVICE); |
882 | |
883 | vc_map = entry->vc_map; |
884 | |
885 | /* vcc closed since the time the entry was submitted for tx? */ |
886 | if ((vc_map->vcc == NULL) || |
887 | (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { |
888 | |
889 | DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", |
890 | fore200e->atm_dev->number); |
891 | |
892 | dev_kfree_skb_any(entry->skb); |
893 | } |
894 | else { |
895 | ASSERT(vc_map->vcc); |
896 | |
897 | /* vcc closed then immediately re-opened? */ |
898 | if (vc_map->incarn != entry->incarn) { |
899 | |
900 | /* when a vcc is closed, some PDUs may be still pending in the tx queue. |
901 | if the same vcc is immediately re-opened, those pending PDUs must |
902 | not be popped after the completion of their emission, as they refer |
903 | to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc |
904 | would be decremented by the size of the (unrelated) skb, possibly |
905 | leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. |
906 | we thus bind the tx entry to the current incarnation of the vcc |
907 | when the entry is submitted for tx. When the tx later completes, |
908 | if the incarnation number of the tx entry does not match the one |
909 | of the vcc, then this implies that the vcc has been closed then re-opened. |
910 | we thus just drop the skb here. */ |
911 | |
912 | DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", |
913 | fore200e->atm_dev->number); |
914 | |
915 | dev_kfree_skb_any(entry->skb); |
916 | } |
917 | else { |
918 | vcc = vc_map->vcc; |
919 | ASSERT(vcc); |
920 | |
921 | /* notify tx completion */ |
922 | if (vcc->pop) { |
923 | vcc->pop(vcc, entry->skb); |
924 | } |
925 | else { |
926 | dev_kfree_skb_any(entry->skb); |
927 | } |
928 | #if 1 |
929 | /* race fixed by the above incarnation mechanism, but... */ |
930 | if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) { |
931 | atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0); |
932 | } |
933 | #endif |
934 | /* check error condition */ |
935 | if (*entry->status & STATUS_ERROR) |
936 | atomic_inc(&vcc->stats->tx_err); |
937 | else |
938 | atomic_inc(&vcc->stats->tx); |
939 | } |
940 | } |
941 | |
942 | *entry->status = STATUS_FREE; |
943 | |
944 | fore200e->host_txq.txing--; |
945 | |
946 | FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); |
947 | } |
948 | } |
949 | |
950 | |
951 | #ifdef FORE200E_BSQ_DEBUG |
952 | int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) |
953 | { |
954 | struct buffer* buffer; |
955 | int count = 0; |
956 | |
957 | buffer = bsq->freebuf; |
958 | while (buffer) { |
959 | |
960 | if (buffer->supplied) { |
961 | printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", |
962 | where, scheme, magn, buffer->index); |
963 | } |
964 | |
965 | if (buffer->magn != magn) { |
966 | printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", |
967 | where, scheme, magn, buffer->index, buffer->magn); |
968 | } |
969 | |
970 | if (buffer->scheme != scheme) { |
971 | printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", |
972 | where, scheme, magn, buffer->index, buffer->scheme); |
973 | } |
974 | |
975 | if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { |
976 | printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", |
977 | where, scheme, magn, buffer->index); |
978 | } |
979 | |
980 | count++; |
981 | buffer = buffer->next; |
982 | } |
983 | |
984 | if (count != bsq->freebuf_count) { |
985 | printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", |
986 | where, scheme, magn, count, bsq->freebuf_count); |
987 | } |
988 | return 0; |
989 | } |
990 | #endif |
991 | |
992 | |
993 | static void |
994 | fore200e_supply(struct fore200e* fore200e) |
995 | { |
996 | int scheme, magn, i; |
997 | |
998 | struct host_bsq* bsq; |
999 | struct host_bsq_entry* entry; |
1000 | struct buffer* buffer; |
1001 | |
1002 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
1003 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
1004 | |
1005 | bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
1006 | |
1007 | #ifdef FORE200E_BSQ_DEBUG |
1008 | bsq_audit(1, bsq, scheme, magn); |
1009 | #endif |
1010 | while (bsq->freebuf_count >= RBD_BLK_SIZE) { |
1011 | |
1012 | DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", |
1013 | RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); |
1014 | |
1015 | entry = &bsq->host_entry[ bsq->head ]; |
1016 | |
1017 | for (i = 0; i < RBD_BLK_SIZE; i++) { |
1018 | |
1019 | /* take the first buffer in the free buffer list */ |
1020 | buffer = bsq->freebuf; |
1021 | if (!buffer) { |
1022 | printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", |
1023 | scheme, magn, bsq->freebuf_count); |
1024 | return; |
1025 | } |
1026 | bsq->freebuf = buffer->next; |
1027 | |
1028 | #ifdef FORE200E_BSQ_DEBUG |
1029 | if (buffer->supplied) |
1030 | printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", |
1031 | scheme, magn, buffer->index); |
1032 | buffer->supplied = 1; |
1033 | #endif |
1034 | entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; |
1035 | entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); |
1036 | } |
1037 | |
1038 | FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); |
1039 | |
1040 | /* decrease accordingly the number of free rx buffers */ |
1041 | bsq->freebuf_count -= RBD_BLK_SIZE; |
1042 | |
1043 | *entry->status = STATUS_PENDING; |
1044 | fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); |
1045 | } |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | |
1051 | static int |
1052 | fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) |
1053 | { |
1054 | struct sk_buff* skb; |
1055 | struct buffer* buffer; |
1056 | struct fore200e_vcc* fore200e_vcc; |
1057 | int i, pdu_len = 0; |
1058 | #ifdef FORE200E_52BYTE_AAL0_SDU |
1059 | u32 cell_header = 0; |
1060 | #endif |
1061 | |
1062 | ASSERT(vcc); |
1063 | |
1064 | fore200e_vcc = FORE200E_VCC(vcc); |
1065 | ASSERT(fore200e_vcc); |
1066 | |
1067 | #ifdef FORE200E_52BYTE_AAL0_SDU |
1068 | if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { |
1069 | |
1070 | cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | |
1071 | (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | |
1072 | (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | |
1073 | (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | |
1074 | rpd->atm_header.clp; |
1075 | pdu_len = 4; |
1076 | } |
1077 | #endif |
1078 | |
1079 | /* compute total PDU length */ |
1080 | for (i = 0; i < rpd->nseg; i++) |
1081 | pdu_len += rpd->rsd[ i ].length; |
1082 | |
1083 | skb = alloc_skb(pdu_len, GFP_ATOMIC); |
1084 | if (skb == NULL) { |
1085 | DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); |
1086 | |
1087 | atomic_inc(&vcc->stats->rx_drop); |
1088 | return -ENOMEM; |
1089 | } |
1090 | |
1091 | __net_timestamp(skb); |
1092 | |
1093 | #ifdef FORE200E_52BYTE_AAL0_SDU |
1094 | if (cell_header) { |
1095 | *((u32*)skb_put(skb, 4)) = cell_header; |
1096 | } |
1097 | #endif |
1098 | |
1099 | /* reassemble segments */ |
1100 | for (i = 0; i < rpd->nseg; i++) { |
1101 | |
1102 | /* rebuild rx buffer address from rsd handle */ |
1103 | buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); |
1104 | |
1105 | /* Make device DMA transfer visible to CPU. */ |
1106 | fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); |
1107 | |
1108 | memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length); |
1109 | |
1110 | /* Now let the device get at it again. */ |
1111 | fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); |
1112 | } |
1113 | |
1114 | DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); |
1115 | |
1116 | if (pdu_len < fore200e_vcc->rx_min_pdu) |
1117 | fore200e_vcc->rx_min_pdu = pdu_len; |
1118 | if (pdu_len > fore200e_vcc->rx_max_pdu) |
1119 | fore200e_vcc->rx_max_pdu = pdu_len; |
1120 | fore200e_vcc->rx_pdu++; |
1121 | |
1122 | /* push PDU */ |
1123 | if (atm_charge(vcc, skb->truesize) == 0) { |
1124 | |
1125 | DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", |
1126 | vcc->itf, vcc->vpi, vcc->vci); |
1127 | |
1128 | dev_kfree_skb_any(skb); |
1129 | |
1130 | atomic_inc(&vcc->stats->rx_drop); |
1131 | return -ENOMEM; |
1132 | } |
1133 | |
1134 | ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
1135 | |
1136 | vcc->push(vcc, skb); |
1137 | atomic_inc(&vcc->stats->rx); |
1138 | |
1139 | ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
1140 | |
1141 | return 0; |
1142 | } |
1143 | |
1144 | |
1145 | static void |
1146 | fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) |
1147 | { |
1148 | struct host_bsq* bsq; |
1149 | struct buffer* buffer; |
1150 | int i; |
1151 | |
1152 | for (i = 0; i < rpd->nseg; i++) { |
1153 | |
1154 | /* rebuild rx buffer address from rsd handle */ |
1155 | buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); |
1156 | |
1157 | bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; |
1158 | |
1159 | #ifdef FORE200E_BSQ_DEBUG |
1160 | bsq_audit(2, bsq, buffer->scheme, buffer->magn); |
1161 | |
1162 | if (buffer->supplied == 0) |
1163 | printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", |
1164 | buffer->scheme, buffer->magn, buffer->index); |
1165 | buffer->supplied = 0; |
1166 | #endif |
1167 | |
1168 | /* re-insert the buffer into the free buffer list */ |
1169 | buffer->next = bsq->freebuf; |
1170 | bsq->freebuf = buffer; |
1171 | |
1172 | /* then increment the number of free rx buffers */ |
1173 | bsq->freebuf_count++; |
1174 | } |
1175 | } |
1176 | |
1177 | |
1178 | static void |
1179 | fore200e_rx_irq(struct fore200e* fore200e) |
1180 | { |
1181 | struct host_rxq* rxq = &fore200e->host_rxq; |
1182 | struct host_rxq_entry* entry; |
1183 | struct atm_vcc* vcc; |
1184 | struct fore200e_vc_map* vc_map; |
1185 | |
1186 | for (;;) { |
1187 | |
1188 | entry = &rxq->host_entry[ rxq->head ]; |
1189 | |
1190 | /* no more received PDUs */ |
1191 | if ((*entry->status & STATUS_COMPLETE) == 0) |
1192 | break; |
1193 | |
1194 | vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
1195 | |
1196 | if ((vc_map->vcc == NULL) || |
1197 | (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { |
1198 | |
1199 | DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", |
1200 | fore200e->atm_dev->number, |
1201 | entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
1202 | } |
1203 | else { |
1204 | vcc = vc_map->vcc; |
1205 | ASSERT(vcc); |
1206 | |
1207 | if ((*entry->status & STATUS_ERROR) == 0) { |
1208 | |
1209 | fore200e_push_rpd(fore200e, vcc, entry->rpd); |
1210 | } |
1211 | else { |
1212 | DPRINTK(2, "damaged PDU on %d.%d.%d\n", |
1213 | fore200e->atm_dev->number, |
1214 | entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
1215 | atomic_inc(&vcc->stats->rx_err); |
1216 | } |
1217 | } |
1218 | |
1219 | FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); |
1220 | |
1221 | fore200e_collect_rpd(fore200e, entry->rpd); |
1222 | |
1223 | /* rewrite the rpd address to ack the received PDU */ |
1224 | fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); |
1225 | *entry->status = STATUS_FREE; |
1226 | |
1227 | fore200e_supply(fore200e); |
1228 | } |
1229 | } |
1230 | |
1231 | |
1232 | #ifndef FORE200E_USE_TASKLET |
1233 | static void |
1234 | fore200e_irq(struct fore200e* fore200e) |
1235 | { |
1236 | unsigned long flags; |
1237 | |
1238 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1239 | fore200e_rx_irq(fore200e); |
1240 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1241 | |
1242 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1243 | fore200e_tx_irq(fore200e); |
1244 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1245 | } |
1246 | #endif |
1247 | |
1248 | |
1249 | static irqreturn_t |
1250 | fore200e_interrupt(int irq, void* dev) |
1251 | { |
1252 | struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); |
1253 | |
1254 | if (fore200e->bus->irq_check(fore200e) == 0) { |
1255 | |
1256 | DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); |
1257 | return IRQ_NONE; |
1258 | } |
1259 | DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); |
1260 | |
1261 | #ifdef FORE200E_USE_TASKLET |
1262 | tasklet_schedule(&fore200e->tx_tasklet); |
1263 | tasklet_schedule(&fore200e->rx_tasklet); |
1264 | #else |
1265 | fore200e_irq(fore200e); |
1266 | #endif |
1267 | |
1268 | fore200e->bus->irq_ack(fore200e); |
1269 | return IRQ_HANDLED; |
1270 | } |
1271 | |
1272 | |
1273 | #ifdef FORE200E_USE_TASKLET |
1274 | static void |
1275 | fore200e_tx_tasklet(unsigned long data) |
1276 | { |
1277 | struct fore200e* fore200e = (struct fore200e*) data; |
1278 | unsigned long flags; |
1279 | |
1280 | DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); |
1281 | |
1282 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1283 | fore200e_tx_irq(fore200e); |
1284 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1285 | } |
1286 | |
1287 | |
1288 | static void |
1289 | fore200e_rx_tasklet(unsigned long data) |
1290 | { |
1291 | struct fore200e* fore200e = (struct fore200e*) data; |
1292 | unsigned long flags; |
1293 | |
1294 | DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); |
1295 | |
1296 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1297 | fore200e_rx_irq((struct fore200e*) data); |
1298 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1299 | } |
1300 | #endif |
1301 | |
1302 | |
1303 | static int |
1304 | fore200e_select_scheme(struct atm_vcc* vcc) |
1305 | { |
1306 | /* fairly balance the VCs over (identical) buffer schemes */ |
1307 | int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; |
1308 | |
1309 | DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", |
1310 | vcc->itf, vcc->vpi, vcc->vci, scheme); |
1311 | |
1312 | return scheme; |
1313 | } |
1314 | |
1315 | |
1316 | static int |
1317 | fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) |
1318 | { |
1319 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
1320 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
1321 | struct activate_opcode activ_opcode; |
1322 | struct deactivate_opcode deactiv_opcode; |
1323 | struct vpvc vpvc; |
1324 | int ok; |
1325 | enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); |
1326 | |
1327 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
1328 | |
1329 | if (activate) { |
1330 | FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); |
1331 | |
1332 | activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; |
1333 | activ_opcode.aal = aal; |
1334 | activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; |
1335 | activ_opcode.pad = 0; |
1336 | } |
1337 | else { |
1338 | deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; |
1339 | deactiv_opcode.pad = 0; |
1340 | } |
1341 | |
1342 | vpvc.vci = vcc->vci; |
1343 | vpvc.vpi = vcc->vpi; |
1344 | |
1345 | *entry->status = STATUS_PENDING; |
1346 | |
1347 | if (activate) { |
1348 | |
1349 | #ifdef FORE200E_52BYTE_AAL0_SDU |
1350 | mtu = 48; |
1351 | #endif |
1352 | /* the MTU is not used by the cp, except in the case of AAL0 */ |
1353 | fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); |
1354 | fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); |
1355 | fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); |
1356 | } |
1357 | else { |
1358 | fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); |
1359 | fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); |
1360 | } |
1361 | |
1362 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
1363 | |
1364 | *entry->status = STATUS_FREE; |
1365 | |
1366 | if (ok == 0) { |
1367 | printk(FORE200E "unable to %s VC %d.%d.%d\n", |
1368 | activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); |
1369 | return -EIO; |
1370 | } |
1371 | |
1372 | DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, |
1373 | activate ? "open" : "clos"); |
1374 | |
1375 | return 0; |
1376 | } |
1377 | |
1378 | |
1379 | #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ |
1380 | |
1381 | static void |
1382 | fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) |
1383 | { |
1384 | if (qos->txtp.max_pcr < ATM_OC3_PCR) { |
1385 | |
1386 | /* compute the data cells to idle cells ratio from the tx PCR */ |
1387 | rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; |
1388 | rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; |
1389 | } |
1390 | else { |
1391 | /* disable rate control */ |
1392 | rate->data_cells = rate->idle_cells = 0; |
1393 | } |
1394 | } |
1395 | |
1396 | |
1397 | static int |
1398 | fore200e_open(struct atm_vcc *vcc) |
1399 | { |
1400 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
1401 | struct fore200e_vcc* fore200e_vcc; |
1402 | struct fore200e_vc_map* vc_map; |
1403 | unsigned long flags; |
1404 | int vci = vcc->vci; |
1405 | short vpi = vcc->vpi; |
1406 | |
1407 | ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); |
1408 | ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); |
1409 | |
1410 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1411 | |
1412 | vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); |
1413 | if (vc_map->vcc) { |
1414 | |
1415 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1416 | |
1417 | printk(FORE200E "VC %d.%d.%d already in use\n", |
1418 | fore200e->atm_dev->number, vpi, vci); |
1419 | |
1420 | return -EINVAL; |
1421 | } |
1422 | |
1423 | vc_map->vcc = vcc; |
1424 | |
1425 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1426 | |
1427 | fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); |
1428 | if (fore200e_vcc == NULL) { |
1429 | vc_map->vcc = NULL; |
1430 | return -ENOMEM; |
1431 | } |
1432 | |
1433 | DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " |
1434 | "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", |
1435 | vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
1436 | fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], |
1437 | vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, |
1438 | fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], |
1439 | vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); |
1440 | |
1441 | /* pseudo-CBR bandwidth requested? */ |
1442 | if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
1443 | |
1444 | mutex_lock(&fore200e->rate_mtx); |
1445 | if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { |
1446 | mutex_unlock(&fore200e->rate_mtx); |
1447 | |
1448 | kfree(fore200e_vcc); |
1449 | vc_map->vcc = NULL; |
1450 | return -EAGAIN; |
1451 | } |
1452 | |
1453 | /* reserve bandwidth */ |
1454 | fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; |
1455 | mutex_unlock(&fore200e->rate_mtx); |
1456 | } |
1457 | |
1458 | vcc->itf = vcc->dev->number; |
1459 | |
1460 | set_bit(ATM_VF_PARTIAL,&vcc->flags); |
1461 | set_bit(ATM_VF_ADDR, &vcc->flags); |
1462 | |
1463 | vcc->dev_data = fore200e_vcc; |
1464 | |
1465 | if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { |
1466 | |
1467 | vc_map->vcc = NULL; |
1468 | |
1469 | clear_bit(ATM_VF_ADDR, &vcc->flags); |
1470 | clear_bit(ATM_VF_PARTIAL,&vcc->flags); |
1471 | |
1472 | vcc->dev_data = NULL; |
1473 | |
1474 | fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
1475 | |
1476 | kfree(fore200e_vcc); |
1477 | return -EINVAL; |
1478 | } |
1479 | |
1480 | /* compute rate control parameters */ |
1481 | if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
1482 | |
1483 | fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); |
1484 | set_bit(ATM_VF_HASQOS, &vcc->flags); |
1485 | |
1486 | DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", |
1487 | vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
1488 | vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, |
1489 | fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); |
1490 | } |
1491 | |
1492 | fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; |
1493 | fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; |
1494 | fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; |
1495 | |
1496 | /* new incarnation of the vcc */ |
1497 | vc_map->incarn = ++fore200e->incarn_count; |
1498 | |
1499 | /* VC unusable before this flag is set */ |
1500 | set_bit(ATM_VF_READY, &vcc->flags); |
1501 | |
1502 | return 0; |
1503 | } |
1504 | |
1505 | |
1506 | static void |
1507 | fore200e_close(struct atm_vcc* vcc) |
1508 | { |
1509 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
1510 | struct fore200e_vcc* fore200e_vcc; |
1511 | struct fore200e_vc_map* vc_map; |
1512 | unsigned long flags; |
1513 | |
1514 | ASSERT(vcc); |
1515 | ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); |
1516 | ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); |
1517 | |
1518 | DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); |
1519 | |
1520 | clear_bit(ATM_VF_READY, &vcc->flags); |
1521 | |
1522 | fore200e_activate_vcin(fore200e, 0, vcc, 0); |
1523 | |
1524 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1525 | |
1526 | vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); |
1527 | |
1528 | /* the vc is no longer considered as "in use" by fore200e_open() */ |
1529 | vc_map->vcc = NULL; |
1530 | |
1531 | vcc->itf = vcc->vci = vcc->vpi = 0; |
1532 | |
1533 | fore200e_vcc = FORE200E_VCC(vcc); |
1534 | vcc->dev_data = NULL; |
1535 | |
1536 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1537 | |
1538 | /* release reserved bandwidth, if any */ |
1539 | if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
1540 | |
1541 | mutex_lock(&fore200e->rate_mtx); |
1542 | fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
1543 | mutex_unlock(&fore200e->rate_mtx); |
1544 | |
1545 | clear_bit(ATM_VF_HASQOS, &vcc->flags); |
1546 | } |
1547 | |
1548 | clear_bit(ATM_VF_ADDR, &vcc->flags); |
1549 | clear_bit(ATM_VF_PARTIAL,&vcc->flags); |
1550 | |
1551 | ASSERT(fore200e_vcc); |
1552 | kfree(fore200e_vcc); |
1553 | } |
1554 | |
1555 | |
1556 | static int |
1557 | fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) |
1558 | { |
1559 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
1560 | struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); |
1561 | struct fore200e_vc_map* vc_map; |
1562 | struct host_txq* txq = &fore200e->host_txq; |
1563 | struct host_txq_entry* entry; |
1564 | struct tpd* tpd; |
1565 | struct tpd_haddr tpd_haddr; |
1566 | int retry = CONFIG_ATM_FORE200E_TX_RETRY; |
1567 | int tx_copy = 0; |
1568 | int tx_len = skb->len; |
1569 | u32* cell_header = NULL; |
1570 | unsigned char* skb_data; |
1571 | int skb_len; |
1572 | unsigned char* data; |
1573 | unsigned long flags; |
1574 | |
1575 | ASSERT(vcc); |
1576 | ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
1577 | ASSERT(fore200e); |
1578 | ASSERT(fore200e_vcc); |
1579 | |
1580 | if (!test_bit(ATM_VF_READY, &vcc->flags)) { |
1581 | DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); |
1582 | dev_kfree_skb_any(skb); |
1583 | return -EINVAL; |
1584 | } |
1585 | |
1586 | #ifdef FORE200E_52BYTE_AAL0_SDU |
1587 | if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { |
1588 | cell_header = (u32*) skb->data; |
1589 | skb_data = skb->data + 4; /* skip 4-byte cell header */ |
1590 | skb_len = tx_len = skb->len - 4; |
1591 | |
1592 | DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); |
1593 | } |
1594 | else |
1595 | #endif |
1596 | { |
1597 | skb_data = skb->data; |
1598 | skb_len = skb->len; |
1599 | } |
1600 | |
1601 | if (((unsigned long)skb_data) & 0x3) { |
1602 | |
1603 | DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); |
1604 | tx_copy = 1; |
1605 | tx_len = skb_len; |
1606 | } |
1607 | |
1608 | if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { |
1609 | |
1610 | /* this simply NUKES the PCA board */ |
1611 | DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); |
1612 | tx_copy = 1; |
1613 | tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; |
1614 | } |
1615 | |
1616 | if (tx_copy) { |
1617 | data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA); |
1618 | if (data == NULL) { |
1619 | if (vcc->pop) { |
1620 | vcc->pop(vcc, skb); |
1621 | } |
1622 | else { |
1623 | dev_kfree_skb_any(skb); |
1624 | } |
1625 | return -ENOMEM; |
1626 | } |
1627 | |
1628 | memcpy(data, skb_data, skb_len); |
1629 | if (skb_len < tx_len) |
1630 | memset(data + skb_len, 0x00, tx_len - skb_len); |
1631 | } |
1632 | else { |
1633 | data = skb_data; |
1634 | } |
1635 | |
1636 | vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); |
1637 | ASSERT(vc_map->vcc == vcc); |
1638 | |
1639 | retry_here: |
1640 | |
1641 | spin_lock_irqsave(&fore200e->q_lock, flags); |
1642 | |
1643 | entry = &txq->host_entry[ txq->head ]; |
1644 | |
1645 | if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { |
1646 | |
1647 | /* try to free completed tx queue entries */ |
1648 | fore200e_tx_irq(fore200e); |
1649 | |
1650 | if (*entry->status != STATUS_FREE) { |
1651 | |
1652 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1653 | |
1654 | /* retry once again? */ |
1655 | if (--retry > 0) { |
1656 | udelay(50); |
1657 | goto retry_here; |
1658 | } |
1659 | |
1660 | atomic_inc(&vcc->stats->tx_err); |
1661 | |
1662 | fore200e->tx_sat++; |
1663 | DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", |
1664 | fore200e->name, fore200e->cp_queues->heartbeat); |
1665 | if (vcc->pop) { |
1666 | vcc->pop(vcc, skb); |
1667 | } |
1668 | else { |
1669 | dev_kfree_skb_any(skb); |
1670 | } |
1671 | |
1672 | if (tx_copy) |
1673 | kfree(data); |
1674 | |
1675 | return -ENOBUFS; |
1676 | } |
1677 | } |
1678 | |
1679 | entry->incarn = vc_map->incarn; |
1680 | entry->vc_map = vc_map; |
1681 | entry->skb = skb; |
1682 | entry->data = tx_copy ? data : NULL; |
1683 | |
1684 | tpd = entry->tpd; |
1685 | tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE); |
1686 | tpd->tsd[ 0 ].length = tx_len; |
1687 | |
1688 | FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); |
1689 | txq->txing++; |
1690 | |
1691 | /* The dma_map call above implies a dma_sync so the device can use it, |
1692 | * thus no explicit dma_sync call is necessary here. |
1693 | */ |
1694 | |
1695 | DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", |
1696 | vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
1697 | tpd->tsd[0].length, skb_len); |
1698 | |
1699 | if (skb_len < fore200e_vcc->tx_min_pdu) |
1700 | fore200e_vcc->tx_min_pdu = skb_len; |
1701 | if (skb_len > fore200e_vcc->tx_max_pdu) |
1702 | fore200e_vcc->tx_max_pdu = skb_len; |
1703 | fore200e_vcc->tx_pdu++; |
1704 | |
1705 | /* set tx rate control information */ |
1706 | tpd->rate.data_cells = fore200e_vcc->rate.data_cells; |
1707 | tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; |
1708 | |
1709 | if (cell_header) { |
1710 | tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); |
1711 | tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; |
1712 | tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; |
1713 | tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; |
1714 | tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; |
1715 | } |
1716 | else { |
1717 | /* set the ATM header, common to all cells conveying the PDU */ |
1718 | tpd->atm_header.clp = 0; |
1719 | tpd->atm_header.plt = 0; |
1720 | tpd->atm_header.vci = vcc->vci; |
1721 | tpd->atm_header.vpi = vcc->vpi; |
1722 | tpd->atm_header.gfc = 0; |
1723 | } |
1724 | |
1725 | tpd->spec.length = tx_len; |
1726 | tpd->spec.nseg = 1; |
1727 | tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); |
1728 | tpd->spec.intr = 1; |
1729 | |
1730 | tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ |
1731 | tpd_haddr.pad = 0; |
1732 | tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ |
1733 | |
1734 | *entry->status = STATUS_PENDING; |
1735 | fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); |
1736 | |
1737 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
1738 | |
1739 | return 0; |
1740 | } |
1741 | |
1742 | |
1743 | static int |
1744 | fore200e_getstats(struct fore200e* fore200e) |
1745 | { |
1746 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
1747 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
1748 | struct stats_opcode opcode; |
1749 | int ok; |
1750 | u32 stats_dma_addr; |
1751 | |
1752 | if (fore200e->stats == NULL) { |
1753 | fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA); |
1754 | if (fore200e->stats == NULL) |
1755 | return -ENOMEM; |
1756 | } |
1757 | |
1758 | stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats, |
1759 | sizeof(struct stats), DMA_FROM_DEVICE); |
1760 | |
1761 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
1762 | |
1763 | opcode.opcode = OPCODE_GET_STATS; |
1764 | opcode.pad = 0; |
1765 | |
1766 | fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); |
1767 | |
1768 | *entry->status = STATUS_PENDING; |
1769 | |
1770 | fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); |
1771 | |
1772 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
1773 | |
1774 | *entry->status = STATUS_FREE; |
1775 | |
1776 | fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); |
1777 | |
1778 | if (ok == 0) { |
1779 | printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); |
1780 | return -EIO; |
1781 | } |
1782 | |
1783 | return 0; |
1784 | } |
1785 | |
1786 | |
1787 | static int |
1788 | fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) |
1789 | { |
1790 | /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ |
1791 | |
1792 | DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", |
1793 | vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); |
1794 | |
1795 | return -EINVAL; |
1796 | } |
1797 | |
1798 | |
1799 | static int |
1800 | fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen) |
1801 | { |
1802 | /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ |
1803 | |
1804 | DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", |
1805 | vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); |
1806 | |
1807 | return -EINVAL; |
1808 | } |
1809 | |
1810 | |
1811 | #if 0 /* currently unused */ |
1812 | static int |
1813 | fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) |
1814 | { |
1815 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
1816 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
1817 | struct oc3_opcode opcode; |
1818 | int ok; |
1819 | u32 oc3_regs_dma_addr; |
1820 | |
1821 | oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); |
1822 | |
1823 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
1824 | |
1825 | opcode.opcode = OPCODE_GET_OC3; |
1826 | opcode.reg = 0; |
1827 | opcode.value = 0; |
1828 | opcode.mask = 0; |
1829 | |
1830 | fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); |
1831 | |
1832 | *entry->status = STATUS_PENDING; |
1833 | |
1834 | fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); |
1835 | |
1836 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
1837 | |
1838 | *entry->status = STATUS_FREE; |
1839 | |
1840 | fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); |
1841 | |
1842 | if (ok == 0) { |
1843 | printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); |
1844 | return -EIO; |
1845 | } |
1846 | |
1847 | return 0; |
1848 | } |
1849 | #endif |
1850 | |
1851 | |
1852 | static int |
1853 | fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) |
1854 | { |
1855 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
1856 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
1857 | struct oc3_opcode opcode; |
1858 | int ok; |
1859 | |
1860 | DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); |
1861 | |
1862 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
1863 | |
1864 | opcode.opcode = OPCODE_SET_OC3; |
1865 | opcode.reg = reg; |
1866 | opcode.value = value; |
1867 | opcode.mask = mask; |
1868 | |
1869 | fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); |
1870 | |
1871 | *entry->status = STATUS_PENDING; |
1872 | |
1873 | fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); |
1874 | |
1875 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
1876 | |
1877 | *entry->status = STATUS_FREE; |
1878 | |
1879 | if (ok == 0) { |
1880 | printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); |
1881 | return -EIO; |
1882 | } |
1883 | |
1884 | return 0; |
1885 | } |
1886 | |
1887 | |
1888 | static int |
1889 | fore200e_setloop(struct fore200e* fore200e, int loop_mode) |
1890 | { |
1891 | u32 mct_value, mct_mask; |
1892 | int error; |
1893 | |
1894 | if (!capable(CAP_NET_ADMIN)) |
1895 | return -EPERM; |
1896 | |
1897 | switch (loop_mode) { |
1898 | |
1899 | case ATM_LM_NONE: |
1900 | mct_value = 0; |
1901 | mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; |
1902 | break; |
1903 | |
1904 | case ATM_LM_LOC_PHY: |
1905 | mct_value = mct_mask = SUNI_MCT_DLE; |
1906 | break; |
1907 | |
1908 | case ATM_LM_RMT_PHY: |
1909 | mct_value = mct_mask = SUNI_MCT_LLE; |
1910 | break; |
1911 | |
1912 | default: |
1913 | return -EINVAL; |
1914 | } |
1915 | |
1916 | error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); |
1917 | if (error == 0) |
1918 | fore200e->loop_mode = loop_mode; |
1919 | |
1920 | return error; |
1921 | } |
1922 | |
1923 | |
1924 | static int |
1925 | fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) |
1926 | { |
1927 | struct sonet_stats tmp; |
1928 | |
1929 | if (fore200e_getstats(fore200e) < 0) |
1930 | return -EIO; |
1931 | |
1932 | tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors); |
1933 | tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors); |
1934 | tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors); |
1935 | tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors); |
1936 | tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors); |
1937 | tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors); |
1938 | tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors); |
1939 | tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) + |
1940 | be32_to_cpu(fore200e->stats->aal34.cells_transmitted) + |
1941 | be32_to_cpu(fore200e->stats->aal5.cells_transmitted); |
1942 | tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) + |
1943 | be32_to_cpu(fore200e->stats->aal34.cells_received) + |
1944 | be32_to_cpu(fore200e->stats->aal5.cells_received); |
1945 | |
1946 | if (arg) |
1947 | return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; |
1948 | |
1949 | return 0; |
1950 | } |
1951 | |
1952 | |
1953 | static int |
1954 | fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) |
1955 | { |
1956 | struct fore200e* fore200e = FORE200E_DEV(dev); |
1957 | |
1958 | DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); |
1959 | |
1960 | switch (cmd) { |
1961 | |
1962 | case SONET_GETSTAT: |
1963 | return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); |
1964 | |
1965 | case SONET_GETDIAG: |
1966 | return put_user(0, (int __user *)arg) ? -EFAULT : 0; |
1967 | |
1968 | case ATM_SETLOOP: |
1969 | return fore200e_setloop(fore200e, (int)(unsigned long)arg); |
1970 | |
1971 | case ATM_GETLOOP: |
1972 | return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; |
1973 | |
1974 | case ATM_QUERYLOOP: |
1975 | return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; |
1976 | } |
1977 | |
1978 | return -ENOSYS; /* not implemented */ |
1979 | } |
1980 | |
1981 | |
1982 | static int |
1983 | fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) |
1984 | { |
1985 | struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); |
1986 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
1987 | |
1988 | if (!test_bit(ATM_VF_READY, &vcc->flags)) { |
1989 | DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); |
1990 | return -EINVAL; |
1991 | } |
1992 | |
1993 | DPRINTK(2, "change_qos %d.%d.%d, " |
1994 | "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " |
1995 | "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" |
1996 | "available_cell_rate = %u", |
1997 | vcc->itf, vcc->vpi, vcc->vci, |
1998 | fore200e_traffic_class[ qos->txtp.traffic_class ], |
1999 | qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, |
2000 | fore200e_traffic_class[ qos->rxtp.traffic_class ], |
2001 | qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, |
2002 | flags, fore200e->available_cell_rate); |
2003 | |
2004 | if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { |
2005 | |
2006 | mutex_lock(&fore200e->rate_mtx); |
2007 | if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { |
2008 | mutex_unlock(&fore200e->rate_mtx); |
2009 | return -EAGAIN; |
2010 | } |
2011 | |
2012 | fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
2013 | fore200e->available_cell_rate -= qos->txtp.max_pcr; |
2014 | |
2015 | mutex_unlock(&fore200e->rate_mtx); |
2016 | |
2017 | memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); |
2018 | |
2019 | /* update rate control parameters */ |
2020 | fore200e_rate_ctrl(qos, &fore200e_vcc->rate); |
2021 | |
2022 | set_bit(ATM_VF_HASQOS, &vcc->flags); |
2023 | |
2024 | return 0; |
2025 | } |
2026 | |
2027 | return -EINVAL; |
2028 | } |
2029 | |
2030 | |
2031 | static int __devinit |
2032 | fore200e_irq_request(struct fore200e* fore200e) |
2033 | { |
2034 | if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) { |
2035 | |
2036 | printk(FORE200E "unable to reserve IRQ %s for device %s\n", |
2037 | fore200e_irq_itoa(fore200e->irq), fore200e->name); |
2038 | return -EBUSY; |
2039 | } |
2040 | |
2041 | printk(FORE200E "IRQ %s reserved for device %s\n", |
2042 | fore200e_irq_itoa(fore200e->irq), fore200e->name); |
2043 | |
2044 | #ifdef FORE200E_USE_TASKLET |
2045 | tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); |
2046 | tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); |
2047 | #endif |
2048 | |
2049 | fore200e->state = FORE200E_STATE_IRQ; |
2050 | return 0; |
2051 | } |
2052 | |
2053 | |
2054 | static int __devinit |
2055 | fore200e_get_esi(struct fore200e* fore200e) |
2056 | { |
2057 | struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA); |
2058 | int ok, i; |
2059 | |
2060 | if (!prom) |
2061 | return -ENOMEM; |
2062 | |
2063 | ok = fore200e->bus->prom_read(fore200e, prom); |
2064 | if (ok < 0) { |
2065 | kfree(prom); |
2066 | return -EBUSY; |
2067 | } |
2068 | |
2069 | printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n", |
2070 | fore200e->name, |
2071 | (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ |
2072 | prom->serial_number & 0xFFFF, &prom->mac_addr[2]); |
2073 | |
2074 | for (i = 0; i < ESI_LEN; i++) { |
2075 | fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; |
2076 | } |
2077 | |
2078 | kfree(prom); |
2079 | |
2080 | return 0; |
2081 | } |
2082 | |
2083 | |
2084 | static int __devinit |
2085 | fore200e_alloc_rx_buf(struct fore200e* fore200e) |
2086 | { |
2087 | int scheme, magn, nbr, size, i; |
2088 | |
2089 | struct host_bsq* bsq; |
2090 | struct buffer* buffer; |
2091 | |
2092 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
2093 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
2094 | |
2095 | bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
2096 | |
2097 | nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; |
2098 | size = fore200e_rx_buf_size[ scheme ][ magn ]; |
2099 | |
2100 | DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); |
2101 | |
2102 | /* allocate the array of receive buffers */ |
2103 | buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL); |
2104 | |
2105 | if (buffer == NULL) |
2106 | return -ENOMEM; |
2107 | |
2108 | bsq->freebuf = NULL; |
2109 | |
2110 | for (i = 0; i < nbr; i++) { |
2111 | |
2112 | buffer[ i ].scheme = scheme; |
2113 | buffer[ i ].magn = magn; |
2114 | #ifdef FORE200E_BSQ_DEBUG |
2115 | buffer[ i ].index = i; |
2116 | buffer[ i ].supplied = 0; |
2117 | #endif |
2118 | |
2119 | /* allocate the receive buffer body */ |
2120 | if (fore200e_chunk_alloc(fore200e, |
2121 | &buffer[ i ].data, size, fore200e->bus->buffer_alignment, |
2122 | DMA_FROM_DEVICE) < 0) { |
2123 | |
2124 | while (i > 0) |
2125 | fore200e_chunk_free(fore200e, &buffer[ --i ].data); |
2126 | kfree(buffer); |
2127 | |
2128 | return -ENOMEM; |
2129 | } |
2130 | |
2131 | /* insert the buffer into the free buffer list */ |
2132 | buffer[ i ].next = bsq->freebuf; |
2133 | bsq->freebuf = &buffer[ i ]; |
2134 | } |
2135 | /* all the buffers are free, initially */ |
2136 | bsq->freebuf_count = nbr; |
2137 | |
2138 | #ifdef FORE200E_BSQ_DEBUG |
2139 | bsq_audit(3, bsq, scheme, magn); |
2140 | #endif |
2141 | } |
2142 | } |
2143 | |
2144 | fore200e->state = FORE200E_STATE_ALLOC_BUF; |
2145 | return 0; |
2146 | } |
2147 | |
2148 | |
2149 | static int __devinit |
2150 | fore200e_init_bs_queue(struct fore200e* fore200e) |
2151 | { |
2152 | int scheme, magn, i; |
2153 | |
2154 | struct host_bsq* bsq; |
2155 | struct cp_bsq_entry __iomem * cp_entry; |
2156 | |
2157 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
2158 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
2159 | |
2160 | DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); |
2161 | |
2162 | bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
2163 | |
2164 | /* allocate and align the array of status words */ |
2165 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2166 | &bsq->status, |
2167 | sizeof(enum status), |
2168 | QUEUE_SIZE_BS, |
2169 | fore200e->bus->status_alignment) < 0) { |
2170 | return -ENOMEM; |
2171 | } |
2172 | |
2173 | /* allocate and align the array of receive buffer descriptors */ |
2174 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2175 | &bsq->rbd_block, |
2176 | sizeof(struct rbd_block), |
2177 | QUEUE_SIZE_BS, |
2178 | fore200e->bus->descr_alignment) < 0) { |
2179 | |
2180 | fore200e->bus->dma_chunk_free(fore200e, &bsq->status); |
2181 | return -ENOMEM; |
2182 | } |
2183 | |
2184 | /* get the base address of the cp resident buffer supply queue entries */ |
2185 | cp_entry = fore200e->virt_base + |
2186 | fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); |
2187 | |
2188 | /* fill the host resident and cp resident buffer supply queue entries */ |
2189 | for (i = 0; i < QUEUE_SIZE_BS; i++) { |
2190 | |
2191 | bsq->host_entry[ i ].status = |
2192 | FORE200E_INDEX(bsq->status.align_addr, enum status, i); |
2193 | bsq->host_entry[ i ].rbd_block = |
2194 | FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); |
2195 | bsq->host_entry[ i ].rbd_block_dma = |
2196 | FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); |
2197 | bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
2198 | |
2199 | *bsq->host_entry[ i ].status = STATUS_FREE; |
2200 | |
2201 | fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), |
2202 | &cp_entry[ i ].status_haddr); |
2203 | } |
2204 | } |
2205 | } |
2206 | |
2207 | fore200e->state = FORE200E_STATE_INIT_BSQ; |
2208 | return 0; |
2209 | } |
2210 | |
2211 | |
2212 | static int __devinit |
2213 | fore200e_init_rx_queue(struct fore200e* fore200e) |
2214 | { |
2215 | struct host_rxq* rxq = &fore200e->host_rxq; |
2216 | struct cp_rxq_entry __iomem * cp_entry; |
2217 | int i; |
2218 | |
2219 | DPRINTK(2, "receive queue is being initialized\n"); |
2220 | |
2221 | /* allocate and align the array of status words */ |
2222 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2223 | &rxq->status, |
2224 | sizeof(enum status), |
2225 | QUEUE_SIZE_RX, |
2226 | fore200e->bus->status_alignment) < 0) { |
2227 | return -ENOMEM; |
2228 | } |
2229 | |
2230 | /* allocate and align the array of receive PDU descriptors */ |
2231 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2232 | &rxq->rpd, |
2233 | sizeof(struct rpd), |
2234 | QUEUE_SIZE_RX, |
2235 | fore200e->bus->descr_alignment) < 0) { |
2236 | |
2237 | fore200e->bus->dma_chunk_free(fore200e, &rxq->status); |
2238 | return -ENOMEM; |
2239 | } |
2240 | |
2241 | /* get the base address of the cp resident rx queue entries */ |
2242 | cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); |
2243 | |
2244 | /* fill the host resident and cp resident rx entries */ |
2245 | for (i=0; i < QUEUE_SIZE_RX; i++) { |
2246 | |
2247 | rxq->host_entry[ i ].status = |
2248 | FORE200E_INDEX(rxq->status.align_addr, enum status, i); |
2249 | rxq->host_entry[ i ].rpd = |
2250 | FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); |
2251 | rxq->host_entry[ i ].rpd_dma = |
2252 | FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); |
2253 | rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
2254 | |
2255 | *rxq->host_entry[ i ].status = STATUS_FREE; |
2256 | |
2257 | fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), |
2258 | &cp_entry[ i ].status_haddr); |
2259 | |
2260 | fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), |
2261 | &cp_entry[ i ].rpd_haddr); |
2262 | } |
2263 | |
2264 | /* set the head entry of the queue */ |
2265 | rxq->head = 0; |
2266 | |
2267 | fore200e->state = FORE200E_STATE_INIT_RXQ; |
2268 | return 0; |
2269 | } |
2270 | |
2271 | |
2272 | static int __devinit |
2273 | fore200e_init_tx_queue(struct fore200e* fore200e) |
2274 | { |
2275 | struct host_txq* txq = &fore200e->host_txq; |
2276 | struct cp_txq_entry __iomem * cp_entry; |
2277 | int i; |
2278 | |
2279 | DPRINTK(2, "transmit queue is being initialized\n"); |
2280 | |
2281 | /* allocate and align the array of status words */ |
2282 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2283 | &txq->status, |
2284 | sizeof(enum status), |
2285 | QUEUE_SIZE_TX, |
2286 | fore200e->bus->status_alignment) < 0) { |
2287 | return -ENOMEM; |
2288 | } |
2289 | |
2290 | /* allocate and align the array of transmit PDU descriptors */ |
2291 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2292 | &txq->tpd, |
2293 | sizeof(struct tpd), |
2294 | QUEUE_SIZE_TX, |
2295 | fore200e->bus->descr_alignment) < 0) { |
2296 | |
2297 | fore200e->bus->dma_chunk_free(fore200e, &txq->status); |
2298 | return -ENOMEM; |
2299 | } |
2300 | |
2301 | /* get the base address of the cp resident tx queue entries */ |
2302 | cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); |
2303 | |
2304 | /* fill the host resident and cp resident tx entries */ |
2305 | for (i=0; i < QUEUE_SIZE_TX; i++) { |
2306 | |
2307 | txq->host_entry[ i ].status = |
2308 | FORE200E_INDEX(txq->status.align_addr, enum status, i); |
2309 | txq->host_entry[ i ].tpd = |
2310 | FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); |
2311 | txq->host_entry[ i ].tpd_dma = |
2312 | FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); |
2313 | txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
2314 | |
2315 | *txq->host_entry[ i ].status = STATUS_FREE; |
2316 | |
2317 | fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), |
2318 | &cp_entry[ i ].status_haddr); |
2319 | |
2320 | /* although there is a one-to-one mapping of tx queue entries and tpds, |
2321 | we do not write here the DMA (physical) base address of each tpd into |
2322 | the related cp resident entry, because the cp relies on this write |
2323 | operation to detect that a new pdu has been submitted for tx */ |
2324 | } |
2325 | |
2326 | /* set the head and tail entries of the queue */ |
2327 | txq->head = 0; |
2328 | txq->tail = 0; |
2329 | |
2330 | fore200e->state = FORE200E_STATE_INIT_TXQ; |
2331 | return 0; |
2332 | } |
2333 | |
2334 | |
2335 | static int __devinit |
2336 | fore200e_init_cmd_queue(struct fore200e* fore200e) |
2337 | { |
2338 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
2339 | struct cp_cmdq_entry __iomem * cp_entry; |
2340 | int i; |
2341 | |
2342 | DPRINTK(2, "command queue is being initialized\n"); |
2343 | |
2344 | /* allocate and align the array of status words */ |
2345 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
2346 | &cmdq->status, |
2347 | sizeof(enum status), |
2348 | QUEUE_SIZE_CMD, |
2349 | fore200e->bus->status_alignment) < 0) { |
2350 | return -ENOMEM; |
2351 | } |
2352 | |
2353 | /* get the base address of the cp resident cmd queue entries */ |
2354 | cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); |
2355 | |
2356 | /* fill the host resident and cp resident cmd entries */ |
2357 | for (i=0; i < QUEUE_SIZE_CMD; i++) { |
2358 | |
2359 | cmdq->host_entry[ i ].status = |
2360 | FORE200E_INDEX(cmdq->status.align_addr, enum status, i); |
2361 | cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
2362 | |
2363 | *cmdq->host_entry[ i ].status = STATUS_FREE; |
2364 | |
2365 | fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), |
2366 | &cp_entry[ i ].status_haddr); |
2367 | } |
2368 | |
2369 | /* set the head entry of the queue */ |
2370 | cmdq->head = 0; |
2371 | |
2372 | fore200e->state = FORE200E_STATE_INIT_CMDQ; |
2373 | return 0; |
2374 | } |
2375 | |
2376 | |
2377 | static void __devinit |
2378 | fore200e_param_bs_queue(struct fore200e* fore200e, |
2379 | enum buffer_scheme scheme, enum buffer_magn magn, |
2380 | int queue_length, int pool_size, int supply_blksize) |
2381 | { |
2382 | struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; |
2383 | |
2384 | fore200e->bus->write(queue_length, &bs_spec->queue_length); |
2385 | fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); |
2386 | fore200e->bus->write(pool_size, &bs_spec->pool_size); |
2387 | fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); |
2388 | } |
2389 | |
2390 | |
2391 | static int __devinit |
2392 | fore200e_initialize(struct fore200e* fore200e) |
2393 | { |
2394 | struct cp_queues __iomem * cpq; |
2395 | int ok, scheme, magn; |
2396 | |
2397 | DPRINTK(2, "device %s being initialized\n", fore200e->name); |
2398 | |
2399 | mutex_init(&fore200e->rate_mtx); |
2400 | spin_lock_init(&fore200e->q_lock); |
2401 | |
2402 | cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; |
2403 | |
2404 | /* enable cp to host interrupts */ |
2405 | fore200e->bus->write(1, &cpq->imask); |
2406 | |
2407 | if (fore200e->bus->irq_enable) |
2408 | fore200e->bus->irq_enable(fore200e); |
2409 | |
2410 | fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); |
2411 | |
2412 | fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); |
2413 | fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); |
2414 | fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); |
2415 | |
2416 | fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); |
2417 | fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); |
2418 | |
2419 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) |
2420 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) |
2421 | fore200e_param_bs_queue(fore200e, scheme, magn, |
2422 | QUEUE_SIZE_BS, |
2423 | fore200e_rx_buf_nbr[ scheme ][ magn ], |
2424 | RBD_BLK_SIZE); |
2425 | |
2426 | /* issue the initialize command */ |
2427 | fore200e->bus->write(STATUS_PENDING, &cpq->init.status); |
2428 | fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); |
2429 | |
2430 | ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); |
2431 | if (ok == 0) { |
2432 | printk(FORE200E "device %s initialization failed\n", fore200e->name); |
2433 | return -ENODEV; |
2434 | } |
2435 | |
2436 | printk(FORE200E "device %s initialized\n", fore200e->name); |
2437 | |
2438 | fore200e->state = FORE200E_STATE_INITIALIZE; |
2439 | return 0; |
2440 | } |
2441 | |
2442 | |
2443 | static void __devinit |
2444 | fore200e_monitor_putc(struct fore200e* fore200e, char c) |
2445 | { |
2446 | struct cp_monitor __iomem * monitor = fore200e->cp_monitor; |
2447 | |
2448 | #if 0 |
2449 | printk("%c", c); |
2450 | #endif |
2451 | fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); |
2452 | } |
2453 | |
2454 | |
2455 | static int __devinit |
2456 | fore200e_monitor_getc(struct fore200e* fore200e) |
2457 | { |
2458 | struct cp_monitor __iomem * monitor = fore200e->cp_monitor; |
2459 | unsigned long timeout = jiffies + msecs_to_jiffies(50); |
2460 | int c; |
2461 | |
2462 | while (time_before(jiffies, timeout)) { |
2463 | |
2464 | c = (int) fore200e->bus->read(&monitor->soft_uart.recv); |
2465 | |
2466 | if (c & FORE200E_CP_MONITOR_UART_AVAIL) { |
2467 | |
2468 | fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); |
2469 | #if 0 |
2470 | printk("%c", c & 0xFF); |
2471 | #endif |
2472 | return c & 0xFF; |
2473 | } |
2474 | } |
2475 | |
2476 | return -1; |
2477 | } |
2478 | |
2479 | |
2480 | static void __devinit |
2481 | fore200e_monitor_puts(struct fore200e* fore200e, char* str) |
2482 | { |
2483 | while (*str) { |
2484 | |
2485 | /* the i960 monitor doesn't accept any new character if it has something to say */ |
2486 | while (fore200e_monitor_getc(fore200e) >= 0); |
2487 | |
2488 | fore200e_monitor_putc(fore200e, *str++); |
2489 | } |
2490 | |
2491 | while (fore200e_monitor_getc(fore200e) >= 0); |
2492 | } |
2493 | |
2494 | #ifdef __LITTLE_ENDIAN |
2495 | #define FW_EXT ".bin" |
2496 | #else |
2497 | #define FW_EXT "_ecd.bin2" |
2498 | #endif |
2499 | |
2500 | static int __devinit |
2501 | fore200e_load_and_start_fw(struct fore200e* fore200e) |
2502 | { |
2503 | const struct firmware *firmware; |
2504 | struct device *device; |
2505 | struct fw_header *fw_header; |
2506 | const __le32 *fw_data; |
2507 | u32 fw_size; |
2508 | u32 __iomem *load_addr; |
2509 | char buf[48]; |
2510 | int err = -ENODEV; |
2511 | |
2512 | if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0) |
2513 | device = &((struct pci_dev *) fore200e->bus_dev)->dev; |
2514 | #ifdef CONFIG_SBUS |
2515 | else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0) |
2516 | device = &((struct platform_device *) fore200e->bus_dev)->dev; |
2517 | #endif |
2518 | else |
2519 | return err; |
2520 | |
2521 | sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT); |
2522 | if ((err = request_firmware(&firmware, buf, device)) < 0) { |
2523 | printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name); |
2524 | return err; |
2525 | } |
2526 | |
2527 | fw_data = (__le32 *) firmware->data; |
2528 | fw_size = firmware->size / sizeof(u32); |
2529 | fw_header = (struct fw_header *) firmware->data; |
2530 | load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); |
2531 | |
2532 | DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", |
2533 | fore200e->name, load_addr, fw_size); |
2534 | |
2535 | if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { |
2536 | printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); |
2537 | goto release; |
2538 | } |
2539 | |
2540 | for (; fw_size--; fw_data++, load_addr++) |
2541 | fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); |
2542 | |
2543 | DPRINTK(2, "device %s firmware being started\n", fore200e->name); |
2544 | |
2545 | #if defined(__sparc_v9__) |
2546 | /* reported to be required by SBA cards on some sparc64 hosts */ |
2547 | fore200e_spin(100); |
2548 | #endif |
2549 | |
2550 | sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); |
2551 | fore200e_monitor_puts(fore200e, buf); |
2552 | |
2553 | if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) { |
2554 | printk(FORE200E "device %s firmware didn't start\n", fore200e->name); |
2555 | goto release; |
2556 | } |
2557 | |
2558 | printk(FORE200E "device %s firmware started\n", fore200e->name); |
2559 | |
2560 | fore200e->state = FORE200E_STATE_START_FW; |
2561 | err = 0; |
2562 | |
2563 | release: |
2564 | release_firmware(firmware); |
2565 | return err; |
2566 | } |
2567 | |
2568 | |
2569 | static int __devinit |
2570 | fore200e_register(struct fore200e* fore200e, struct device *parent) |
2571 | { |
2572 | struct atm_dev* atm_dev; |
2573 | |
2574 | DPRINTK(2, "device %s being registered\n", fore200e->name); |
2575 | |
2576 | atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops, |
2577 | -1, NULL); |
2578 | if (atm_dev == NULL) { |
2579 | printk(FORE200E "unable to register device %s\n", fore200e->name); |
2580 | return -ENODEV; |
2581 | } |
2582 | |
2583 | atm_dev->dev_data = fore200e; |
2584 | fore200e->atm_dev = atm_dev; |
2585 | |
2586 | atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; |
2587 | atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; |
2588 | |
2589 | fore200e->available_cell_rate = ATM_OC3_PCR; |
2590 | |
2591 | fore200e->state = FORE200E_STATE_REGISTER; |
2592 | return 0; |
2593 | } |
2594 | |
2595 | |
2596 | static int __devinit |
2597 | fore200e_init(struct fore200e* fore200e, struct device *parent) |
2598 | { |
2599 | if (fore200e_register(fore200e, parent) < 0) |
2600 | return -ENODEV; |
2601 | |
2602 | if (fore200e->bus->configure(fore200e) < 0) |
2603 | return -ENODEV; |
2604 | |
2605 | if (fore200e->bus->map(fore200e) < 0) |
2606 | return -ENODEV; |
2607 | |
2608 | if (fore200e_reset(fore200e, 1) < 0) |
2609 | return -ENODEV; |
2610 | |
2611 | if (fore200e_load_and_start_fw(fore200e) < 0) |
2612 | return -ENODEV; |
2613 | |
2614 | if (fore200e_initialize(fore200e) < 0) |
2615 | return -ENODEV; |
2616 | |
2617 | if (fore200e_init_cmd_queue(fore200e) < 0) |
2618 | return -ENOMEM; |
2619 | |
2620 | if (fore200e_init_tx_queue(fore200e) < 0) |
2621 | return -ENOMEM; |
2622 | |
2623 | if (fore200e_init_rx_queue(fore200e) < 0) |
2624 | return -ENOMEM; |
2625 | |
2626 | if (fore200e_init_bs_queue(fore200e) < 0) |
2627 | return -ENOMEM; |
2628 | |
2629 | if (fore200e_alloc_rx_buf(fore200e) < 0) |
2630 | return -ENOMEM; |
2631 | |
2632 | if (fore200e_get_esi(fore200e) < 0) |
2633 | return -EIO; |
2634 | |
2635 | if (fore200e_irq_request(fore200e) < 0) |
2636 | return -EBUSY; |
2637 | |
2638 | fore200e_supply(fore200e); |
2639 | |
2640 | /* all done, board initialization is now complete */ |
2641 | fore200e->state = FORE200E_STATE_COMPLETE; |
2642 | return 0; |
2643 | } |
2644 | |
2645 | #ifdef CONFIG_SBUS |
2646 | static const struct of_device_id fore200e_sba_match[]; |
2647 | static int __devinit fore200e_sba_probe(struct platform_device *op) |
2648 | { |
2649 | const struct of_device_id *match; |
2650 | const struct fore200e_bus *bus; |
2651 | struct fore200e *fore200e; |
2652 | static int index = 0; |
2653 | int err; |
2654 | |
2655 | match = of_match_device(fore200e_sba_match, &op->dev); |
2656 | if (!match) |
2657 | return -EINVAL; |
2658 | bus = match->data; |
2659 | |
2660 | fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); |
2661 | if (!fore200e) |
2662 | return -ENOMEM; |
2663 | |
2664 | fore200e->bus = bus; |
2665 | fore200e->bus_dev = op; |
2666 | fore200e->irq = op->archdata.irqs[0]; |
2667 | fore200e->phys_base = op->resource[0].start; |
2668 | |
2669 | sprintf(fore200e->name, "%s-%d", bus->model_name, index); |
2670 | |
2671 | err = fore200e_init(fore200e, &op->dev); |
2672 | if (err < 0) { |
2673 | fore200e_shutdown(fore200e); |
2674 | kfree(fore200e); |
2675 | return err; |
2676 | } |
2677 | |
2678 | index++; |
2679 | dev_set_drvdata(&op->dev, fore200e); |
2680 | |
2681 | return 0; |
2682 | } |
2683 | |
2684 | static int __devexit fore200e_sba_remove(struct platform_device *op) |
2685 | { |
2686 | struct fore200e *fore200e = dev_get_drvdata(&op->dev); |
2687 | |
2688 | fore200e_shutdown(fore200e); |
2689 | kfree(fore200e); |
2690 | |
2691 | return 0; |
2692 | } |
2693 | |
2694 | static const struct of_device_id fore200e_sba_match[] = { |
2695 | { |
2696 | .name = SBA200E_PROM_NAME, |
2697 | .data = (void *) &fore200e_bus[1], |
2698 | }, |
2699 | {}, |
2700 | }; |
2701 | MODULE_DEVICE_TABLE(of, fore200e_sba_match); |
2702 | |
2703 | static struct platform_driver fore200e_sba_driver = { |
2704 | .driver = { |
2705 | .name = "fore_200e", |
2706 | .owner = THIS_MODULE, |
2707 | .of_match_table = fore200e_sba_match, |
2708 | }, |
2709 | .probe = fore200e_sba_probe, |
2710 | .remove = __devexit_p(fore200e_sba_remove), |
2711 | }; |
2712 | #endif |
2713 | |
2714 | #ifdef CONFIG_PCI |
2715 | static int __devinit |
2716 | fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
2717 | { |
2718 | const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data; |
2719 | struct fore200e* fore200e; |
2720 | int err = 0; |
2721 | static int index = 0; |
2722 | |
2723 | if (pci_enable_device(pci_dev)) { |
2724 | err = -EINVAL; |
2725 | goto out; |
2726 | } |
2727 | |
2728 | fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); |
2729 | if (fore200e == NULL) { |
2730 | err = -ENOMEM; |
2731 | goto out_disable; |
2732 | } |
2733 | |
2734 | fore200e->bus = bus; |
2735 | fore200e->bus_dev = pci_dev; |
2736 | fore200e->irq = pci_dev->irq; |
2737 | fore200e->phys_base = pci_resource_start(pci_dev, 0); |
2738 | |
2739 | sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); |
2740 | |
2741 | pci_set_master(pci_dev); |
2742 | |
2743 | printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", |
2744 | fore200e->bus->model_name, |
2745 | fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); |
2746 | |
2747 | sprintf(fore200e->name, "%s-%d", bus->model_name, index); |
2748 | |
2749 | err = fore200e_init(fore200e, &pci_dev->dev); |
2750 | if (err < 0) { |
2751 | fore200e_shutdown(fore200e); |
2752 | goto out_free; |
2753 | } |
2754 | |
2755 | ++index; |
2756 | pci_set_drvdata(pci_dev, fore200e); |
2757 | |
2758 | out: |
2759 | return err; |
2760 | |
2761 | out_free: |
2762 | kfree(fore200e); |
2763 | out_disable: |
2764 | pci_disable_device(pci_dev); |
2765 | goto out; |
2766 | } |
2767 | |
2768 | |
2769 | static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev) |
2770 | { |
2771 | struct fore200e *fore200e; |
2772 | |
2773 | fore200e = pci_get_drvdata(pci_dev); |
2774 | |
2775 | fore200e_shutdown(fore200e); |
2776 | kfree(fore200e); |
2777 | pci_disable_device(pci_dev); |
2778 | } |
2779 | |
2780 | |
2781 | static struct pci_device_id fore200e_pca_tbl[] = { |
2782 | { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID, |
2783 | 0, 0, (unsigned long) &fore200e_bus[0] }, |
2784 | { 0, } |
2785 | }; |
2786 | |
2787 | MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); |
2788 | |
2789 | static struct pci_driver fore200e_pca_driver = { |
2790 | .name = "fore_200e", |
2791 | .probe = fore200e_pca_detect, |
2792 | .remove = __devexit_p(fore200e_pca_remove_one), |
2793 | .id_table = fore200e_pca_tbl, |
2794 | }; |
2795 | #endif |
2796 | |
2797 | static int __init fore200e_module_init(void) |
2798 | { |
2799 | int err; |
2800 | |
2801 | printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); |
2802 | |
2803 | #ifdef CONFIG_SBUS |
2804 | err = platform_driver_register(&fore200e_sba_driver); |
2805 | if (err) |
2806 | return err; |
2807 | #endif |
2808 | |
2809 | #ifdef CONFIG_PCI |
2810 | err = pci_register_driver(&fore200e_pca_driver); |
2811 | #endif |
2812 | |
2813 | #ifdef CONFIG_SBUS |
2814 | if (err) |
2815 | platform_driver_unregister(&fore200e_sba_driver); |
2816 | #endif |
2817 | |
2818 | return err; |
2819 | } |
2820 | |
2821 | static void __exit fore200e_module_cleanup(void) |
2822 | { |
2823 | #ifdef CONFIG_PCI |
2824 | pci_unregister_driver(&fore200e_pca_driver); |
2825 | #endif |
2826 | #ifdef CONFIG_SBUS |
2827 | platform_driver_unregister(&fore200e_sba_driver); |
2828 | #endif |
2829 | } |
2830 | |
2831 | static int |
2832 | fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) |
2833 | { |
2834 | struct fore200e* fore200e = FORE200E_DEV(dev); |
2835 | struct fore200e_vcc* fore200e_vcc; |
2836 | struct atm_vcc* vcc; |
2837 | int i, len, left = *pos; |
2838 | unsigned long flags; |
2839 | |
2840 | if (!left--) { |
2841 | |
2842 | if (fore200e_getstats(fore200e) < 0) |
2843 | return -EIO; |
2844 | |
2845 | len = sprintf(page,"\n" |
2846 | " device:\n" |
2847 | " internal name:\t\t%s\n", fore200e->name); |
2848 | |
2849 | /* print bus-specific information */ |
2850 | if (fore200e->bus->proc_read) |
2851 | len += fore200e->bus->proc_read(fore200e, page + len); |
2852 | |
2853 | len += sprintf(page + len, |
2854 | " interrupt line:\t\t%s\n" |
2855 | " physical base address:\t0x%p\n" |
2856 | " virtual base address:\t0x%p\n" |
2857 | " factory address (ESI):\t%pM\n" |
2858 | " board serial number:\t\t%d\n\n", |
2859 | fore200e_irq_itoa(fore200e->irq), |
2860 | (void*)fore200e->phys_base, |
2861 | fore200e->virt_base, |
2862 | fore200e->esi, |
2863 | fore200e->esi[4] * 256 + fore200e->esi[5]); |
2864 | |
2865 | return len; |
2866 | } |
2867 | |
2868 | if (!left--) |
2869 | return sprintf(page, |
2870 | " free small bufs, scheme 1:\t%d\n" |
2871 | " free large bufs, scheme 1:\t%d\n" |
2872 | " free small bufs, scheme 2:\t%d\n" |
2873 | " free large bufs, scheme 2:\t%d\n", |
2874 | fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, |
2875 | fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, |
2876 | fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, |
2877 | fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); |
2878 | |
2879 | if (!left--) { |
2880 | u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); |
2881 | |
2882 | len = sprintf(page,"\n\n" |
2883 | " cell processor:\n" |
2884 | " heartbeat state:\t\t"); |
2885 | |
2886 | if (hb >> 16 != 0xDEAD) |
2887 | len += sprintf(page + len, "0x%08x\n", hb); |
2888 | else |
2889 | len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); |
2890 | |
2891 | return len; |
2892 | } |
2893 | |
2894 | if (!left--) { |
2895 | static const char* media_name[] = { |
2896 | "unshielded twisted pair", |
2897 | "multimode optical fiber ST", |
2898 | "multimode optical fiber SC", |
2899 | "single-mode optical fiber ST", |
2900 | "single-mode optical fiber SC", |
2901 | "unknown" |
2902 | }; |
2903 | |
2904 | static const char* oc3_mode[] = { |
2905 | "normal operation", |
2906 | "diagnostic loopback", |
2907 | "line loopback", |
2908 | "unknown" |
2909 | }; |
2910 | |
2911 | u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); |
2912 | u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); |
2913 | u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); |
2914 | u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); |
2915 | u32 oc3_index; |
2916 | |
2917 | if (media_index > 4) |
2918 | media_index = 5; |
2919 | |
2920 | switch (fore200e->loop_mode) { |
2921 | case ATM_LM_NONE: oc3_index = 0; |
2922 | break; |
2923 | case ATM_LM_LOC_PHY: oc3_index = 1; |
2924 | break; |
2925 | case ATM_LM_RMT_PHY: oc3_index = 2; |
2926 | break; |
2927 | default: oc3_index = 3; |
2928 | } |
2929 | |
2930 | return sprintf(page, |
2931 | " firmware release:\t\t%d.%d.%d\n" |
2932 | " monitor release:\t\t%d.%d\n" |
2933 | " media type:\t\t\t%s\n" |
2934 | " OC-3 revision:\t\t0x%x\n" |
2935 | " OC-3 mode:\t\t\t%s", |
2936 | fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, |
2937 | mon960_release >> 16, mon960_release << 16 >> 16, |
2938 | media_name[ media_index ], |
2939 | oc3_revision, |
2940 | oc3_mode[ oc3_index ]); |
2941 | } |
2942 | |
2943 | if (!left--) { |
2944 | struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; |
2945 | |
2946 | return sprintf(page, |
2947 | "\n\n" |
2948 | " monitor:\n" |
2949 | " version number:\t\t%d\n" |
2950 | " boot status word:\t\t0x%08x\n", |
2951 | fore200e->bus->read(&cp_monitor->mon_version), |
2952 | fore200e->bus->read(&cp_monitor->bstat)); |
2953 | } |
2954 | |
2955 | if (!left--) |
2956 | return sprintf(page, |
2957 | "\n" |
2958 | " device statistics:\n" |
2959 | " 4b5b:\n" |
2960 | " crc_header_errors:\t\t%10u\n" |
2961 | " framing_errors:\t\t%10u\n", |
2962 | be32_to_cpu(fore200e->stats->phy.crc_header_errors), |
2963 | be32_to_cpu(fore200e->stats->phy.framing_errors)); |
2964 | |
2965 | if (!left--) |
2966 | return sprintf(page, "\n" |
2967 | " OC-3:\n" |
2968 | " section_bip8_errors:\t%10u\n" |
2969 | " path_bip8_errors:\t\t%10u\n" |
2970 | " line_bip24_errors:\t\t%10u\n" |
2971 | " line_febe_errors:\t\t%10u\n" |
2972 | " path_febe_errors:\t\t%10u\n" |
2973 | " corr_hcs_errors:\t\t%10u\n" |
2974 | " ucorr_hcs_errors:\t\t%10u\n", |
2975 | be32_to_cpu(fore200e->stats->oc3.section_bip8_errors), |
2976 | be32_to_cpu(fore200e->stats->oc3.path_bip8_errors), |
2977 | be32_to_cpu(fore200e->stats->oc3.line_bip24_errors), |
2978 | be32_to_cpu(fore200e->stats->oc3.line_febe_errors), |
2979 | be32_to_cpu(fore200e->stats->oc3.path_febe_errors), |
2980 | be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors), |
2981 | be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors)); |
2982 | |
2983 | if (!left--) |
2984 | return sprintf(page,"\n" |
2985 | " ATM:\t\t\t\t cells\n" |
2986 | " TX:\t\t\t%10u\n" |
2987 | " RX:\t\t\t%10u\n" |
2988 | " vpi out of range:\t\t%10u\n" |
2989 | " vpi no conn:\t\t%10u\n" |
2990 | " vci out of range:\t\t%10u\n" |
2991 | " vci no conn:\t\t%10u\n", |
2992 | be32_to_cpu(fore200e->stats->atm.cells_transmitted), |
2993 | be32_to_cpu(fore200e->stats->atm.cells_received), |
2994 | be32_to_cpu(fore200e->stats->atm.vpi_bad_range), |
2995 | be32_to_cpu(fore200e->stats->atm.vpi_no_conn), |
2996 | be32_to_cpu(fore200e->stats->atm.vci_bad_range), |
2997 | be32_to_cpu(fore200e->stats->atm.vci_no_conn)); |
2998 | |
2999 | if (!left--) |
3000 | return sprintf(page,"\n" |
3001 | " AAL0:\t\t\t cells\n" |
3002 | " TX:\t\t\t%10u\n" |
3003 | " RX:\t\t\t%10u\n" |
3004 | " dropped:\t\t\t%10u\n", |
3005 | be32_to_cpu(fore200e->stats->aal0.cells_transmitted), |
3006 | be32_to_cpu(fore200e->stats->aal0.cells_received), |
3007 | be32_to_cpu(fore200e->stats->aal0.cells_dropped)); |
3008 | |
3009 | if (!left--) |
3010 | return sprintf(page,"\n" |
3011 | " AAL3/4:\n" |
3012 | " SAR sublayer:\t\t cells\n" |
3013 | " TX:\t\t\t%10u\n" |
3014 | " RX:\t\t\t%10u\n" |
3015 | " dropped:\t\t\t%10u\n" |
3016 | " CRC errors:\t\t%10u\n" |
3017 | " protocol errors:\t\t%10u\n\n" |
3018 | " CS sublayer:\t\t PDUs\n" |
3019 | " TX:\t\t\t%10u\n" |
3020 | " RX:\t\t\t%10u\n" |
3021 | " dropped:\t\t\t%10u\n" |
3022 | " protocol errors:\t\t%10u\n", |
3023 | be32_to_cpu(fore200e->stats->aal34.cells_transmitted), |
3024 | be32_to_cpu(fore200e->stats->aal34.cells_received), |
3025 | be32_to_cpu(fore200e->stats->aal34.cells_dropped), |
3026 | be32_to_cpu(fore200e->stats->aal34.cells_crc_errors), |
3027 | be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors), |
3028 | be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted), |
3029 | be32_to_cpu(fore200e->stats->aal34.cspdus_received), |
3030 | be32_to_cpu(fore200e->stats->aal34.cspdus_dropped), |
3031 | be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors)); |
3032 | |
3033 | if (!left--) |
3034 | return sprintf(page,"\n" |
3035 | " AAL5:\n" |
3036 | " SAR sublayer:\t\t cells\n" |
3037 | " TX:\t\t\t%10u\n" |
3038 | " RX:\t\t\t%10u\n" |
3039 | " dropped:\t\t\t%10u\n" |
3040 | " congestions:\t\t%10u\n\n" |
3041 | " CS sublayer:\t\t PDUs\n" |
3042 | " TX:\t\t\t%10u\n" |
3043 | " RX:\t\t\t%10u\n" |
3044 | " dropped:\t\t\t%10u\n" |
3045 | " CRC errors:\t\t%10u\n" |
3046 | " protocol errors:\t\t%10u\n", |
3047 | be32_to_cpu(fore200e->stats->aal5.cells_transmitted), |
3048 | be32_to_cpu(fore200e->stats->aal5.cells_received), |
3049 | be32_to_cpu(fore200e->stats->aal5.cells_dropped), |
3050 | be32_to_cpu(fore200e->stats->aal5.congestion_experienced), |
3051 | be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted), |
3052 | be32_to_cpu(fore200e->stats->aal5.cspdus_received), |
3053 | be32_to_cpu(fore200e->stats->aal5.cspdus_dropped), |
3054 | be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors), |
3055 | be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors)); |
3056 | |
3057 | if (!left--) |
3058 | return sprintf(page,"\n" |
3059 | " AUX:\t\t allocation failures\n" |
3060 | " small b1:\t\t\t%10u\n" |
3061 | " large b1:\t\t\t%10u\n" |
3062 | " small b2:\t\t\t%10u\n" |
3063 | " large b2:\t\t\t%10u\n" |
3064 | " RX PDUs:\t\t\t%10u\n" |
3065 | " TX PDUs:\t\t\t%10lu\n", |
3066 | be32_to_cpu(fore200e->stats->aux.small_b1_failed), |
3067 | be32_to_cpu(fore200e->stats->aux.large_b1_failed), |
3068 | be32_to_cpu(fore200e->stats->aux.small_b2_failed), |
3069 | be32_to_cpu(fore200e->stats->aux.large_b2_failed), |
3070 | be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed), |
3071 | fore200e->tx_sat); |
3072 | |
3073 | if (!left--) |
3074 | return sprintf(page,"\n" |
3075 | " receive carrier:\t\t\t%s\n", |
3076 | fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); |
3077 | |
3078 | if (!left--) { |
3079 | return sprintf(page,"\n" |
3080 | " VCCs:\n address VPI VCI AAL " |
3081 | "TX PDUs TX min/max size RX PDUs RX min/max size\n"); |
3082 | } |
3083 | |
3084 | for (i = 0; i < NBR_CONNECT; i++) { |
3085 | |
3086 | vcc = fore200e->vc_map[i].vcc; |
3087 | |
3088 | if (vcc == NULL) |
3089 | continue; |
3090 | |
3091 | spin_lock_irqsave(&fore200e->q_lock, flags); |
3092 | |
3093 | if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { |
3094 | |
3095 | fore200e_vcc = FORE200E_VCC(vcc); |
3096 | ASSERT(fore200e_vcc); |
3097 | |
3098 | len = sprintf(page, |
3099 | " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", |
3100 | (u32)(unsigned long)vcc, |
3101 | vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
3102 | fore200e_vcc->tx_pdu, |
3103 | fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, |
3104 | fore200e_vcc->tx_max_pdu, |
3105 | fore200e_vcc->rx_pdu, |
3106 | fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, |
3107 | fore200e_vcc->rx_max_pdu); |
3108 | |
3109 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
3110 | return len; |
3111 | } |
3112 | |
3113 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
3114 | } |
3115 | |
3116 | return 0; |
3117 | } |
3118 | |
3119 | module_init(fore200e_module_init); |
3120 | module_exit(fore200e_module_cleanup); |
3121 | |
3122 | |
3123 | static const struct atmdev_ops fore200e_ops = |
3124 | { |
3125 | .open = fore200e_open, |
3126 | .close = fore200e_close, |
3127 | .ioctl = fore200e_ioctl, |
3128 | .getsockopt = fore200e_getsockopt, |
3129 | .setsockopt = fore200e_setsockopt, |
3130 | .send = fore200e_send, |
3131 | .change_qos = fore200e_change_qos, |
3132 | .proc_read = fore200e_proc_read, |
3133 | .owner = THIS_MODULE |
3134 | }; |
3135 | |
3136 | |
3137 | static const struct fore200e_bus fore200e_bus[] = { |
3138 | #ifdef CONFIG_PCI |
3139 | { "PCA-200E", "pca200e", 32, 4, 32, |
3140 | fore200e_pca_read, |
3141 | fore200e_pca_write, |
3142 | fore200e_pca_dma_map, |
3143 | fore200e_pca_dma_unmap, |
3144 | fore200e_pca_dma_sync_for_cpu, |
3145 | fore200e_pca_dma_sync_for_device, |
3146 | fore200e_pca_dma_chunk_alloc, |
3147 | fore200e_pca_dma_chunk_free, |
3148 | fore200e_pca_configure, |
3149 | fore200e_pca_map, |
3150 | fore200e_pca_reset, |
3151 | fore200e_pca_prom_read, |
3152 | fore200e_pca_unmap, |
3153 | NULL, |
3154 | fore200e_pca_irq_check, |
3155 | fore200e_pca_irq_ack, |
3156 | fore200e_pca_proc_read, |
3157 | }, |
3158 | #endif |
3159 | #ifdef CONFIG_SBUS |
3160 | { "SBA-200E", "sba200e", 32, 64, 32, |
3161 | fore200e_sba_read, |
3162 | fore200e_sba_write, |
3163 | fore200e_sba_dma_map, |
3164 | fore200e_sba_dma_unmap, |
3165 | fore200e_sba_dma_sync_for_cpu, |
3166 | fore200e_sba_dma_sync_for_device, |
3167 | fore200e_sba_dma_chunk_alloc, |
3168 | fore200e_sba_dma_chunk_free, |
3169 | fore200e_sba_configure, |
3170 | fore200e_sba_map, |
3171 | fore200e_sba_reset, |
3172 | fore200e_sba_prom_read, |
3173 | fore200e_sba_unmap, |
3174 | fore200e_sba_irq_enable, |
3175 | fore200e_sba_irq_check, |
3176 | fore200e_sba_irq_ack, |
3177 | fore200e_sba_proc_read, |
3178 | }, |
3179 | #endif |
3180 | {} |
3181 | }; |
3182 | |
3183 | MODULE_LICENSE("GPL"); |
3184 | #ifdef CONFIG_PCI |
3185 | #ifdef __LITTLE_ENDIAN__ |
3186 | MODULE_FIRMWARE("pca200e.bin"); |
3187 | #else |
3188 | MODULE_FIRMWARE("pca200e_ecd.bin2"); |
3189 | #endif |
3190 | #endif /* CONFIG_PCI */ |
3191 | #ifdef CONFIG_SBUS |
3192 | MODULE_FIRMWARE("sba200e_ecd.bin2"); |
3193 | #endif |
3194 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9