Root/drivers/atm/fore200e.c

1/*
2  A FORE Systems 200E-series driver for ATM on Linux.
3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7  This driver simultaneously supports PCA-200E and SBA-200E adapters
8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10  This program is free software; you can redistribute it and/or modify
11  it under the terms of the GNU General Public License as published by
12  the Free Software Foundation; either version 2 of the License, or
13  (at your option) any later version.
14
15  This program is distributed in the hope that it will be useful,
16  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  GNU General Public License for more details.
19
20  You should have received a copy of the GNU General Public License
21  along with this program; if not, write to the Free Software
22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23*/
24
25
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
39#include <linux/firmware.h>
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
47#include <linux/atomic.h>
48
49#ifdef CONFIG_SBUS
50#include <linux/of.h>
51#include <linux/of_device.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                  printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...) do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
94
95#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
96
97#if 1
98#define ASSERT(expr) if (!(expr)) { \
99                 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100                    __func__, __LINE__, #expr); \
101                 panic(FORE200E "%s", __func__); \
102             }
103#else
104#define ASSERT(expr) do {} while (0)
105#endif
106
107
108static const struct atmdev_ops fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139    switch(aal) {
140    case FORE200E_AAL0: return ATM_AAL0;
141    case FORE200E_AAL34: return ATM_AAL34;
142    case FORE200E_AAL5: return ATM_AAL5;
143    }
144
145    return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153    switch(aal) {
154    case ATM_AAL0: return FORE200E_AAL0;
155    case ATM_AAL34: return FORE200E_AAL34;
156    case ATM_AAL1:
157    case ATM_AAL2:
158    case ATM_AAL5: return FORE200E_AAL5;
159    }
160
161    return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
168    static char str[8];
169    sprintf(str, "%d", irq);
170    return str;
171}
172
173
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175   between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180    unsigned long offset = 0;
181
182    if (alignment <= sizeof(int))
183    alignment = 0;
184
185    chunk->alloc_size = size + alignment;
186    chunk->align_size = size;
187    chunk->direction = direction;
188
189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190    if (chunk->alloc_addr == NULL)
191    return -ENOMEM;
192
193    if (alignment > 0)
194    offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195    
196    chunk->align_addr = chunk->alloc_addr + offset;
197
198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199    
200    return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211    kfree(chunk->alloc_addr);
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219    while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227    int ok;
228
229    mb();
230    do {
231    if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232        break;
233
234    } while (time_before(jiffies, timeout));
235
236#if 1
237    if (!ok) {
238    printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239           *addr, val);
240    }
241#endif
242
243    return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251    int ok;
252
253    do {
254    if ((ok = (fore200e->bus->read(addr) == val)))
255        break;
256
257    } while (time_before(jiffies, timeout));
258
259#if 1
260    if (!ok) {
261    printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262           fore200e->bus->read(addr), val);
263    }
264#endif
265
266    return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273    int scheme, magn, nbr;
274    struct buffer* buffer;
275
276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277    for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279        if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281        for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283            struct chunk* data = &buffer[ nbr ].data;
284
285            if (data->alloc_addr != NULL)
286            fore200e_chunk_free(fore200e, data);
287        }
288        }
289    }
290    }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297    int scheme, magn;
298    
299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300    for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302        struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
303        struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304        
305        if (status->alloc_addr)
306        fore200e->bus->dma_chunk_free(fore200e, status);
307        
308        if (rbd_block->alloc_addr)
309        fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310    }
311    }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318    int ok;
319
320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321    
322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324    fore200e->bus->reset(fore200e);
325
326    if (diag) {
327    ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328    if (ok == 0) {
329        
330        printk(FORE200E "device %s self-test failed\n", fore200e->name);
331        return -ENODEV;
332    }
333
334    printk(FORE200E "device %s self-test passed\n", fore200e->name);
335    
336    fore200e->state = FORE200E_STATE_RESET;
337    }
338
339    return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347       fore200e->name, fore200e->phys_base,
348       fore200e_irq_itoa(fore200e->irq));
349    
350    if (fore200e->state > FORE200E_STATE_RESET) {
351    /* first, reset the board to prevent further interrupts or data transfers */
352    fore200e_reset(fore200e, 0);
353    }
354    
355    /* then, release all allocated resources */
356    switch(fore200e->state) {
357
358    case FORE200E_STATE_COMPLETE:
359    kfree(fore200e->stats);
360
361    case FORE200E_STATE_IRQ:
362    free_irq(fore200e->irq, fore200e->atm_dev);
363
364    case FORE200E_STATE_ALLOC_BUF:
365    fore200e_free_rx_buf(fore200e);
366
367    case FORE200E_STATE_INIT_BSQ:
368    fore200e_uninit_bs_queue(fore200e);
369
370    case FORE200E_STATE_INIT_RXQ:
371    fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372    fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374    case FORE200E_STATE_INIT_TXQ:
375    fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376    fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378    case FORE200E_STATE_INIT_CMDQ:
379    fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381    case FORE200E_STATE_INITIALIZE:
382    /* nothing to do for that state */
383
384    case FORE200E_STATE_START_FW:
385    /* nothing to do for that state */
386
387    case FORE200E_STATE_RESET:
388    /* nothing to do for that state */
389
390    case FORE200E_STATE_MAP:
391    fore200e->bus->unmap(fore200e);
392
393    case FORE200E_STATE_CONFIGURE:
394    /* nothing to do for that state */
395
396    case FORE200E_STATE_REGISTER:
397    /* XXX shouldn't we *start* by deregistering the device? */
398    atm_dev_deregister(fore200e->atm_dev);
399
400    case FORE200E_STATE_BLANK:
401    /* nothing to do for that state */
402    break;
403    }
404}
405
406
407#ifdef CONFIG_PCI
408
409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410{
411    /* on big-endian hosts, the board is configured to convert
412       the endianess of slave RAM accesses */
413    return le32_to_cpu(readl(addr));
414}
415
416
417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418{
419    /* on big-endian hosts, the board is configured to convert
420       the endianess of slave RAM accesses */
421    writel(cpu_to_le32(val), addr);
422}
423
424
425static u32
426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427{
428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
429
430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
431        virt_addr, size, direction, dma_addr);
432    
433    return dma_addr;
434}
435
436
437static void
438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439{
440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441        dma_addr, size, direction);
442
443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
444}
445
446
447static void
448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449{
450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
453}
454
455static void
456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
461}
462
463
464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467static int
468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469                 int size, int nbr, int alignment)
470{
471    /* returned chunks are page-aligned */
472    chunk->alloc_size = size * nbr;
473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
474                         chunk->alloc_size,
475                         &chunk->dma_addr);
476    
477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
478    return -ENOMEM;
479
480    chunk->align_addr = chunk->alloc_addr;
481    
482    return 0;
483}
484
485
486/* free a DMA consistent chunk of memory */
487
488static void
489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
490{
491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
492            chunk->alloc_size,
493            chunk->alloc_addr,
494            chunk->dma_addr);
495}
496
497
498static int
499fore200e_pca_irq_check(struct fore200e* fore200e)
500{
501    /* this is a 1 bit register */
502    int irq_posted = readl(fore200e->regs.pca.psr);
503
504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
506    DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
507    }
508#endif
509
510    return irq_posted;
511}
512
513
514static void
515fore200e_pca_irq_ack(struct fore200e* fore200e)
516{
517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
518}
519
520
521static void
522fore200e_pca_reset(struct fore200e* fore200e)
523{
524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
525    fore200e_spin(10);
526    writel(0, fore200e->regs.pca.hcr);
527}
528
529
530static int __devinit
531fore200e_pca_map(struct fore200e* fore200e)
532{
533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536    
537    if (fore200e->virt_base == NULL) {
538    printk(FORE200E "can't map device %s\n", fore200e->name);
539    return -EFAULT;
540    }
541
542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544    /* gain access to the PCA specific registers */
545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549    fore200e->state = FORE200E_STATE_MAP;
550    return 0;
551}
552
553
554static void
555fore200e_pca_unmap(struct fore200e* fore200e)
556{
557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559    if (fore200e->virt_base != NULL)
560    iounmap(fore200e->virt_base);
561}
562
563
564static int __devinit
565fore200e_pca_configure(struct fore200e* fore200e)
566{
567    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
568    u8 master_ctrl, latency;
569
570    DPRINTK(2, "device %s being configured\n", fore200e->name);
571
572    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
573    printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
574    return -EIO;
575    }
576
577    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
578
579    master_ctrl = master_ctrl
580#if defined(__BIG_ENDIAN)
581    /* request the PCA board to convert the endianess of slave RAM accesses */
582    | PCA200E_CTRL_CONVERT_ENDIAN
583#endif
584#if 0
585        | PCA200E_CTRL_DIS_CACHE_RD
586        | PCA200E_CTRL_DIS_WRT_INVAL
587        | PCA200E_CTRL_ENA_CONT_REQ_MODE
588        | PCA200E_CTRL_2_CACHE_WRT_INVAL
589#endif
590    | PCA200E_CTRL_LARGE_PCI_BURSTS;
591    
592    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
593
594    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
595       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
596       this may impact the performances of other PCI devices on the same bus, though */
597    latency = 192;
598    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
599
600    fore200e->state = FORE200E_STATE_CONFIGURE;
601    return 0;
602}
603
604
605static int __init
606fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
607{
608    struct host_cmdq* cmdq = &fore200e->host_cmdq;
609    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
610    struct prom_opcode opcode;
611    int ok;
612    u32 prom_dma;
613
614    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
615
616    opcode.opcode = OPCODE_GET_PROM;
617    opcode.pad = 0;
618
619    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
620
621    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
622    
623    *entry->status = STATUS_PENDING;
624
625    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
626
627    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
628
629    *entry->status = STATUS_FREE;
630
631    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
632
633    if (ok == 0) {
634    printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
635    return -EIO;
636    }
637
638#if defined(__BIG_ENDIAN)
639    
640#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
641
642    /* MAC address is stored as little-endian */
643    swap_here(&prom->mac_addr[0]);
644    swap_here(&prom->mac_addr[4]);
645#endif
646    
647    return 0;
648}
649
650
651static int
652fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
653{
654    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
655
656    return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
657           pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
658}
659
660#endif /* CONFIG_PCI */
661
662
663#ifdef CONFIG_SBUS
664
665static u32 fore200e_sba_read(volatile u32 __iomem *addr)
666{
667    return sbus_readl(addr);
668}
669
670static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
671{
672    sbus_writel(val, addr);
673}
674
675static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
676{
677    struct platform_device *op = fore200e->bus_dev;
678    u32 dma_addr;
679
680    dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
681
682    DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
683        virt_addr, size, direction, dma_addr);
684    
685    return dma_addr;
686}
687
688static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
689{
690    struct platform_device *op = fore200e->bus_dev;
691
692    DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
693        dma_addr, size, direction);
694
695    dma_unmap_single(&op->dev, dma_addr, size, direction);
696}
697
698static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
699{
700    struct platform_device *op = fore200e->bus_dev;
701
702    DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
703    
704    dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
705}
706
707static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
708{
709    struct platform_device *op = fore200e->bus_dev;
710
711    DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
712
713    dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
714}
715
716/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
718 */
719static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
720                    int size, int nbr, int alignment)
721{
722    struct platform_device *op = fore200e->bus_dev;
723
724    chunk->alloc_size = chunk->align_size = size * nbr;
725
726    /* returned chunks are page-aligned */
727    chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
728                           &chunk->dma_addr, GFP_ATOMIC);
729
730    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
731        return -ENOMEM;
732
733    chunk->align_addr = chunk->alloc_addr;
734    
735    return 0;
736}
737
738/* free a DVMA consistent chunk of memory */
739static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
740{
741    struct platform_device *op = fore200e->bus_dev;
742
743    dma_free_coherent(&op->dev, chunk->alloc_size,
744              chunk->alloc_addr, chunk->dma_addr);
745}
746
747static void fore200e_sba_irq_enable(struct fore200e *fore200e)
748{
749    u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
750    fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
751}
752
753static int fore200e_sba_irq_check(struct fore200e *fore200e)
754{
755    return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
756}
757
758static void fore200e_sba_irq_ack(struct fore200e *fore200e)
759{
760    u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
761    fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
762}
763
764static void fore200e_sba_reset(struct fore200e *fore200e)
765{
766    fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
767    fore200e_spin(10);
768    fore200e->bus->write(0, fore200e->regs.sba.hcr);
769}
770
771static int __init fore200e_sba_map(struct fore200e *fore200e)
772{
773    struct platform_device *op = fore200e->bus_dev;
774    unsigned int bursts;
775
776    /* gain access to the SBA specific registers */
777    fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
778    fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
779    fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
780    fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
781
782    if (!fore200e->virt_base) {
783        printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
784        return -EFAULT;
785    }
786
787    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
788    
789    fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
790
791    /* get the supported DVMA burst sizes */
792    bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
793
794    if (sbus_can_dma_64bit())
795        sbus_set_sbus64(&op->dev, bursts);
796
797    fore200e->state = FORE200E_STATE_MAP;
798    return 0;
799}
800
801static void fore200e_sba_unmap(struct fore200e *fore200e)
802{
803    struct platform_device *op = fore200e->bus_dev;
804
805    of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
806    of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
807    of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
808    of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
809}
810
811static int __init fore200e_sba_configure(struct fore200e *fore200e)
812{
813    fore200e->state = FORE200E_STATE_CONFIGURE;
814    return 0;
815}
816
817static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
818{
819    struct platform_device *op = fore200e->bus_dev;
820    const u8 *prop;
821    int len;
822
823    prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
824    if (!prop)
825        return -ENODEV;
826    memcpy(&prom->mac_addr[4], prop, 4);
827
828    prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
829    if (!prop)
830        return -ENODEV;
831    memcpy(&prom->mac_addr[2], prop, 4);
832
833    prom->serial_number = of_getintprop_default(op->dev.of_node,
834                            "serialnumber", 0);
835    prom->hw_revision = of_getintprop_default(op->dev.of_node,
836                          "promversion", 0);
837    
838    return 0;
839}
840
841static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
842{
843    struct platform_device *op = fore200e->bus_dev;
844    const struct linux_prom_registers *regs;
845
846    regs = of_get_property(op->dev.of_node, "reg", NULL);
847
848    return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n",
849               (regs ? regs->which_io : 0), op->dev.of_node->name);
850}
851#endif /* CONFIG_SBUS */
852
853
854static void
855fore200e_tx_irq(struct fore200e* fore200e)
856{
857    struct host_txq* txq = &fore200e->host_txq;
858    struct host_txq_entry* entry;
859    struct atm_vcc* vcc;
860    struct fore200e_vc_map* vc_map;
861
862    if (fore200e->host_txq.txing == 0)
863    return;
864
865    for (;;) {
866    
867    entry = &txq->host_entry[ txq->tail ];
868
869        if ((*entry->status & STATUS_COMPLETE) == 0) {
870        break;
871    }
872
873    DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
874        entry, txq->tail, entry->vc_map, entry->skb);
875
876    /* free copy of misaligned data */
877    kfree(entry->data);
878    
879    /* remove DMA mapping */
880    fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
881                 DMA_TO_DEVICE);
882
883    vc_map = entry->vc_map;
884
885    /* vcc closed since the time the entry was submitted for tx? */
886    if ((vc_map->vcc == NULL) ||
887        (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
888
889        DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
890            fore200e->atm_dev->number);
891
892        dev_kfree_skb_any(entry->skb);
893    }
894    else {
895        ASSERT(vc_map->vcc);
896
897        /* vcc closed then immediately re-opened? */
898        if (vc_map->incarn != entry->incarn) {
899
900        /* when a vcc is closed, some PDUs may be still pending in the tx queue.
901           if the same vcc is immediately re-opened, those pending PDUs must
902           not be popped after the completion of their emission, as they refer
903           to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
904           would be decremented by the size of the (unrelated) skb, possibly
905           leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
906           we thus bind the tx entry to the current incarnation of the vcc
907           when the entry is submitted for tx. When the tx later completes,
908           if the incarnation number of the tx entry does not match the one
909           of the vcc, then this implies that the vcc has been closed then re-opened.
910           we thus just drop the skb here. */
911
912        DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
913            fore200e->atm_dev->number);
914
915        dev_kfree_skb_any(entry->skb);
916        }
917        else {
918        vcc = vc_map->vcc;
919        ASSERT(vcc);
920
921        /* notify tx completion */
922        if (vcc->pop) {
923            vcc->pop(vcc, entry->skb);
924        }
925        else {
926            dev_kfree_skb_any(entry->skb);
927        }
928#if 1
929        /* race fixed by the above incarnation mechanism, but... */
930        if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
931            atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
932        }
933#endif
934        /* check error condition */
935        if (*entry->status & STATUS_ERROR)
936            atomic_inc(&vcc->stats->tx_err);
937        else
938            atomic_inc(&vcc->stats->tx);
939        }
940    }
941
942    *entry->status = STATUS_FREE;
943
944    fore200e->host_txq.txing--;
945
946    FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
947    }
948}
949
950
951#ifdef FORE200E_BSQ_DEBUG
952int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
953{
954    struct buffer* buffer;
955    int count = 0;
956
957    buffer = bsq->freebuf;
958    while (buffer) {
959
960    if (buffer->supplied) {
961        printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
962           where, scheme, magn, buffer->index);
963    }
964
965    if (buffer->magn != magn) {
966        printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
967           where, scheme, magn, buffer->index, buffer->magn);
968    }
969
970    if (buffer->scheme != scheme) {
971        printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
972           where, scheme, magn, buffer->index, buffer->scheme);
973    }
974
975    if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
976        printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
977           where, scheme, magn, buffer->index);
978    }
979
980    count++;
981    buffer = buffer->next;
982    }
983
984    if (count != bsq->freebuf_count) {
985    printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
986           where, scheme, magn, count, bsq->freebuf_count);
987    }
988    return 0;
989}
990#endif
991
992
993static void
994fore200e_supply(struct fore200e* fore200e)
995{
996    int scheme, magn, i;
997
998    struct host_bsq* bsq;
999    struct host_bsq_entry* entry;
1000    struct buffer* buffer;
1001
1002    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003    for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005        bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007#ifdef FORE200E_BSQ_DEBUG
1008        bsq_audit(1, bsq, scheme, magn);
1009#endif
1010        while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012        DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013            RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015        entry = &bsq->host_entry[ bsq->head ];
1016
1017        for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019            /* take the first buffer in the free buffer list */
1020            buffer = bsq->freebuf;
1021            if (!buffer) {
1022            printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023                   scheme, magn, bsq->freebuf_count);
1024            return;
1025            }
1026            bsq->freebuf = buffer->next;
1027            
1028#ifdef FORE200E_BSQ_DEBUG
1029            if (buffer->supplied)
1030            printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031                   scheme, magn, buffer->index);
1032            buffer->supplied = 1;
1033#endif
1034            entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035            entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1036        }
1037
1038        FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040         /* decrease accordingly the number of free rx buffers */
1041        bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043        *entry->status = STATUS_PENDING;
1044        fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045        }
1046    }
1047    }
1048}
1049
1050
1051static int
1052fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053{
1054    struct sk_buff* skb;
1055    struct buffer* buffer;
1056    struct fore200e_vcc* fore200e_vcc;
1057    int i, pdu_len = 0;
1058#ifdef FORE200E_52BYTE_AAL0_SDU
1059    u32 cell_header = 0;
1060#endif
1061
1062    ASSERT(vcc);
1063    
1064    fore200e_vcc = FORE200E_VCC(vcc);
1065    ASSERT(fore200e_vcc);
1066
1067#ifdef FORE200E_52BYTE_AAL0_SDU
1068    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070    cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071                  (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1074                       rpd->atm_header.clp;
1075    pdu_len = 4;
1076    }
1077#endif
1078    
1079    /* compute total PDU length */
1080    for (i = 0; i < rpd->nseg; i++)
1081    pdu_len += rpd->rsd[ i ].length;
1082    
1083    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084    if (skb == NULL) {
1085    DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087    atomic_inc(&vcc->stats->rx_drop);
1088    return -ENOMEM;
1089    }
1090
1091    __net_timestamp(skb);
1092    
1093#ifdef FORE200E_52BYTE_AAL0_SDU
1094    if (cell_header) {
1095    *((u32*)skb_put(skb, 4)) = cell_header;
1096    }
1097#endif
1098
1099    /* reassemble segments */
1100    for (i = 0; i < rpd->nseg; i++) {
1101    
1102    /* rebuild rx buffer address from rsd handle */
1103    buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104    
1105    /* Make device DMA transfer visible to CPU. */
1106    fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1107    
1108    memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110    /* Now let the device get at it again. */
1111    fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1112    }
1113
1114    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115    
1116    if (pdu_len < fore200e_vcc->rx_min_pdu)
1117    fore200e_vcc->rx_min_pdu = pdu_len;
1118    if (pdu_len > fore200e_vcc->rx_max_pdu)
1119    fore200e_vcc->rx_max_pdu = pdu_len;
1120    fore200e_vcc->rx_pdu++;
1121
1122    /* push PDU */
1123    if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125    DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126        vcc->itf, vcc->vpi, vcc->vci);
1127
1128    dev_kfree_skb_any(skb);
1129
1130    atomic_inc(&vcc->stats->rx_drop);
1131    return -ENOMEM;
1132    }
1133
1134    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141    return 0;
1142}
1143
1144
1145static void
1146fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147{
1148    struct host_bsq* bsq;
1149    struct buffer* buffer;
1150    int i;
1151    
1152    for (i = 0; i < rpd->nseg; i++) {
1153
1154    /* rebuild rx buffer address from rsd handle */
1155    buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157    bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159#ifdef FORE200E_BSQ_DEBUG
1160    bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162    if (buffer->supplied == 0)
1163        printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164           buffer->scheme, buffer->magn, buffer->index);
1165    buffer->supplied = 0;
1166#endif
1167
1168    /* re-insert the buffer into the free buffer list */
1169    buffer->next = bsq->freebuf;
1170    bsq->freebuf = buffer;
1171
1172    /* then increment the number of free rx buffers */
1173    bsq->freebuf_count++;
1174    }
1175}
1176
1177
1178static void
1179fore200e_rx_irq(struct fore200e* fore200e)
1180{
1181    struct host_rxq* rxq = &fore200e->host_rxq;
1182    struct host_rxq_entry* entry;
1183    struct atm_vcc* vcc;
1184    struct fore200e_vc_map* vc_map;
1185
1186    for (;;) {
1187    
1188    entry = &rxq->host_entry[ rxq->head ];
1189
1190    /* no more received PDUs */
1191    if ((*entry->status & STATUS_COMPLETE) == 0)
1192        break;
1193
1194    vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196    if ((vc_map->vcc == NULL) ||
1197        (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199        DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200            fore200e->atm_dev->number,
1201            entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202    }
1203    else {
1204        vcc = vc_map->vcc;
1205        ASSERT(vcc);
1206
1207        if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209        fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210        }
1211        else {
1212        DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213            fore200e->atm_dev->number,
1214            entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215        atomic_inc(&vcc->stats->rx_err);
1216        }
1217    }
1218
1219    FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221    fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223    /* rewrite the rpd address to ack the received PDU */
1224    fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225    *entry->status = STATUS_FREE;
1226
1227    fore200e_supply(fore200e);
1228    }
1229}
1230
1231
1232#ifndef FORE200E_USE_TASKLET
1233static void
1234fore200e_irq(struct fore200e* fore200e)
1235{
1236    unsigned long flags;
1237
1238    spin_lock_irqsave(&fore200e->q_lock, flags);
1239    fore200e_rx_irq(fore200e);
1240    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242    spin_lock_irqsave(&fore200e->q_lock, flags);
1243    fore200e_tx_irq(fore200e);
1244    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245}
1246#endif
1247
1248
1249static irqreturn_t
1250fore200e_interrupt(int irq, void* dev)
1251{
1252    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254    if (fore200e->bus->irq_check(fore200e) == 0) {
1255    
1256    DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257    return IRQ_NONE;
1258    }
1259    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261#ifdef FORE200E_USE_TASKLET
1262    tasklet_schedule(&fore200e->tx_tasklet);
1263    tasklet_schedule(&fore200e->rx_tasklet);
1264#else
1265    fore200e_irq(fore200e);
1266#endif
1267    
1268    fore200e->bus->irq_ack(fore200e);
1269    return IRQ_HANDLED;
1270}
1271
1272
1273#ifdef FORE200E_USE_TASKLET
1274static void
1275fore200e_tx_tasklet(unsigned long data)
1276{
1277    struct fore200e* fore200e = (struct fore200e*) data;
1278    unsigned long flags;
1279
1280    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282    spin_lock_irqsave(&fore200e->q_lock, flags);
1283    fore200e_tx_irq(fore200e);
1284    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285}
1286
1287
1288static void
1289fore200e_rx_tasklet(unsigned long data)
1290{
1291    struct fore200e* fore200e = (struct fore200e*) data;
1292    unsigned long flags;
1293
1294    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296    spin_lock_irqsave(&fore200e->q_lock, flags);
1297    fore200e_rx_irq((struct fore200e*) data);
1298    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299}
1300#endif
1301
1302
1303static int
1304fore200e_select_scheme(struct atm_vcc* vcc)
1305{
1306    /* fairly balance the VCs over (identical) buffer schemes */
1307    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310        vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312    return scheme;
1313}
1314
1315
1316static int
1317fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318{
1319    struct host_cmdq* cmdq = &fore200e->host_cmdq;
1320    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1321    struct activate_opcode activ_opcode;
1322    struct deactivate_opcode deactiv_opcode;
1323    struct vpvc vpvc;
1324    int ok;
1325    enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328    
1329    if (activate) {
1330    FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331    
1332    activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333    activ_opcode.aal = aal;
1334    activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335    activ_opcode.pad = 0;
1336    }
1337    else {
1338    deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339    deactiv_opcode.pad = 0;
1340    }
1341
1342    vpvc.vci = vcc->vci;
1343    vpvc.vpi = vcc->vpi;
1344
1345    *entry->status = STATUS_PENDING;
1346
1347    if (activate) {
1348
1349#ifdef FORE200E_52BYTE_AAL0_SDU
1350    mtu = 48;
1351#endif
1352    /* the MTU is not used by the cp, except in the case of AAL0 */
1353    fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1354    fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355    fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356    }
1357    else {
1358    fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359    fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360    }
1361
1362    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364    *entry->status = STATUS_FREE;
1365
1366    if (ok == 0) {
1367    printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368           activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369    return -EIO;
1370    }
1371
1372    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1373        activate ? "open" : "clos");
1374
1375    return 0;
1376}
1377
1378
1379#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1380
1381static void
1382fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383{
1384    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385    
1386    /* compute the data cells to idle cells ratio from the tx PCR */
1387    rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388    rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389    }
1390    else {
1391    /* disable rate control */
1392    rate->data_cells = rate->idle_cells = 0;
1393    }
1394}
1395
1396
1397static int
1398fore200e_open(struct atm_vcc *vcc)
1399{
1400    struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1401    struct fore200e_vcc* fore200e_vcc;
1402    struct fore200e_vc_map* vc_map;
1403    unsigned long flags;
1404    int vci = vcc->vci;
1405    short vpi = vcc->vpi;
1406
1407    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410    spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413    if (vc_map->vcc) {
1414
1415    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417    printk(FORE200E "VC %d.%d.%d already in use\n",
1418           fore200e->atm_dev->number, vpi, vci);
1419
1420    return -EINVAL;
1421    }
1422
1423    vc_map->vcc = vcc;
1424
1425    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428    if (fore200e_vcc == NULL) {
1429    vc_map->vcc = NULL;
1430    return -ENOMEM;
1431    }
1432
1433    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434        "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435        vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436        fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437        vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438        fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439        vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440    
1441    /* pseudo-CBR bandwidth requested? */
1442    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443    
1444    mutex_lock(&fore200e->rate_mtx);
1445    if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446        mutex_unlock(&fore200e->rate_mtx);
1447
1448        kfree(fore200e_vcc);
1449        vc_map->vcc = NULL;
1450        return -EAGAIN;
1451    }
1452
1453    /* reserve bandwidth */
1454    fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455    mutex_unlock(&fore200e->rate_mtx);
1456    }
1457    
1458    vcc->itf = vcc->dev->number;
1459
1460    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461    set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463    vcc->dev_data = fore200e_vcc;
1464    
1465    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467    vc_map->vcc = NULL;
1468
1469    clear_bit(ATM_VF_ADDR, &vcc->flags);
1470    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472    vcc->dev_data = NULL;
1473
1474    fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476    kfree(fore200e_vcc);
1477    return -EINVAL;
1478    }
1479    
1480    /* compute rate control parameters */
1481    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482    
1483    fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484    set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486    DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487        vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488        vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1489        fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490    }
1491    
1492    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494    fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1495
1496    /* new incarnation of the vcc */
1497    vc_map->incarn = ++fore200e->incarn_count;
1498
1499    /* VC unusable before this flag is set */
1500    set_bit(ATM_VF_READY, &vcc->flags);
1501
1502    return 0;
1503}
1504
1505
1506static void
1507fore200e_close(struct atm_vcc* vcc)
1508{
1509    struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1510    struct fore200e_vcc* fore200e_vcc;
1511    struct fore200e_vc_map* vc_map;
1512    unsigned long flags;
1513
1514    ASSERT(vcc);
1515    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520    clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524    spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528    /* the vc is no longer considered as "in use" by fore200e_open() */
1529    vc_map->vcc = NULL;
1530
1531    vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533    fore200e_vcc = FORE200E_VCC(vcc);
1534    vcc->dev_data = NULL;
1535
1536    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538    /* release reserved bandwidth, if any */
1539    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541    mutex_lock(&fore200e->rate_mtx);
1542    fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543    mutex_unlock(&fore200e->rate_mtx);
1544
1545    clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546    }
1547
1548    clear_bit(ATM_VF_ADDR, &vcc->flags);
1549    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551    ASSERT(fore200e_vcc);
1552    kfree(fore200e_vcc);
1553}
1554
1555
1556static int
1557fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558{
1559    struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1560    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1561    struct fore200e_vc_map* vc_map;
1562    struct host_txq* txq = &fore200e->host_txq;
1563    struct host_txq_entry* entry;
1564    struct tpd* tpd;
1565    struct tpd_haddr tpd_haddr;
1566    int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1567    int tx_copy = 0;
1568    int tx_len = skb->len;
1569    u32* cell_header = NULL;
1570    unsigned char* skb_data;
1571    int skb_len;
1572    unsigned char* data;
1573    unsigned long flags;
1574
1575    ASSERT(vcc);
1576    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577    ASSERT(fore200e);
1578    ASSERT(fore200e_vcc);
1579
1580    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581    DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582    dev_kfree_skb_any(skb);
1583    return -EINVAL;
1584    }
1585
1586#ifdef FORE200E_52BYTE_AAL0_SDU
1587    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588    cell_header = (u32*) skb->data;
1589    skb_data = skb->data + 4; /* skip 4-byte cell header */
1590    skb_len = tx_len = skb->len - 4;
1591
1592    DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593    }
1594    else
1595#endif
1596    {
1597    skb_data = skb->data;
1598    skb_len = skb->len;
1599    }
1600    
1601    if (((unsigned long)skb_data) & 0x3) {
1602
1603    DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604    tx_copy = 1;
1605    tx_len = skb_len;
1606    }
1607
1608    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610        /* this simply NUKES the PCA board */
1611    DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612    tx_copy = 1;
1613    tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614    }
1615    
1616    if (tx_copy) {
1617    data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618    if (data == NULL) {
1619        if (vcc->pop) {
1620        vcc->pop(vcc, skb);
1621        }
1622        else {
1623        dev_kfree_skb_any(skb);
1624        }
1625        return -ENOMEM;
1626    }
1627
1628    memcpy(data, skb_data, skb_len);
1629    if (skb_len < tx_len)
1630        memset(data + skb_len, 0x00, tx_len - skb_len);
1631    }
1632    else {
1633    data = skb_data;
1634    }
1635
1636    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637    ASSERT(vc_map->vcc == vcc);
1638
1639  retry_here:
1640
1641    spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643    entry = &txq->host_entry[ txq->head ];
1644
1645    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647    /* try to free completed tx queue entries */
1648    fore200e_tx_irq(fore200e);
1649
1650    if (*entry->status != STATUS_FREE) {
1651
1652        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654        /* retry once again? */
1655        if (--retry > 0) {
1656        udelay(50);
1657        goto retry_here;
1658        }
1659
1660        atomic_inc(&vcc->stats->tx_err);
1661
1662        fore200e->tx_sat++;
1663        DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664            fore200e->name, fore200e->cp_queues->heartbeat);
1665        if (vcc->pop) {
1666        vcc->pop(vcc, skb);
1667        }
1668        else {
1669        dev_kfree_skb_any(skb);
1670        }
1671
1672        if (tx_copy)
1673        kfree(data);
1674
1675        return -ENOBUFS;
1676    }
1677    }
1678
1679    entry->incarn = vc_map->incarn;
1680    entry->vc_map = vc_map;
1681    entry->skb = skb;
1682    entry->data = tx_copy ? data : NULL;
1683
1684    tpd = entry->tpd;
1685    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1686    tpd->tsd[ 0 ].length = tx_len;
1687
1688    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689    txq->txing++;
1690
1691    /* The dma_map call above implies a dma_sync so the device can use it,
1692     * thus no explicit dma_sync call is necessary here.
1693     */
1694    
1695    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1696        vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697        tpd->tsd[0].length, skb_len);
1698
1699    if (skb_len < fore200e_vcc->tx_min_pdu)
1700    fore200e_vcc->tx_min_pdu = skb_len;
1701    if (skb_len > fore200e_vcc->tx_max_pdu)
1702    fore200e_vcc->tx_max_pdu = skb_len;
1703    fore200e_vcc->tx_pdu++;
1704
1705    /* set tx rate control information */
1706    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709    if (cell_header) {
1710    tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711    tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712    tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713    tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714    tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715    }
1716    else {
1717    /* set the ATM header, common to all cells conveying the PDU */
1718    tpd->atm_header.clp = 0;
1719    tpd->atm_header.plt = 0;
1720    tpd->atm_header.vci = vcc->vci;
1721    tpd->atm_header.vpi = vcc->vpi;
1722    tpd->atm_header.gfc = 0;
1723    }
1724
1725    tpd->spec.length = tx_len;
1726    tpd->spec.nseg = 1;
1727    tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1728    tpd->spec.intr = 1;
1729
1730    tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1731    tpd_haddr.pad = 0;
1732    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1733
1734    *entry->status = STATUS_PENDING;
1735    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739    return 0;
1740}
1741
1742
1743static int
1744fore200e_getstats(struct fore200e* fore200e)
1745{
1746    struct host_cmdq* cmdq = &fore200e->host_cmdq;
1747    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748    struct stats_opcode opcode;
1749    int ok;
1750    u32 stats_dma_addr;
1751
1752    if (fore200e->stats == NULL) {
1753    fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754    if (fore200e->stats == NULL)
1755        return -ENOMEM;
1756    }
1757    
1758    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759                        sizeof(struct stats), DMA_FROM_DEVICE);
1760    
1761    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763    opcode.opcode = OPCODE_GET_STATS;
1764    opcode.pad = 0;
1765
1766    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777    
1778    if (ok == 0) {
1779    printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780    return -EIO;
1781    }
1782
1783    return 0;
1784}
1785
1786
1787static int
1788fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789{
1790    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793        vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795    return -EINVAL;
1796}
1797
1798
1799static int
1800fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801{
1802    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803    
1804    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805        vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806    
1807    return -EINVAL;
1808}
1809
1810
1811#if 0 /* currently unused */
1812static int
1813fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814{
1815    struct host_cmdq* cmdq = &fore200e->host_cmdq;
1816    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817    struct oc3_opcode opcode;
1818    int ok;
1819    u32 oc3_regs_dma_addr;
1820
1821    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825    opcode.opcode = OPCODE_GET_OC3;
1826    opcode.reg = 0;
1827    opcode.value = 0;
1828    opcode.mask = 0;
1829
1830    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831    
1832    *entry->status = STATUS_PENDING;
1833
1834    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838    *entry->status = STATUS_FREE;
1839
1840    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841    
1842    if (ok == 0) {
1843    printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844    return -EIO;
1845    }
1846
1847    return 0;
1848}
1849#endif
1850
1851
1852static int
1853fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854{
1855    struct host_cmdq* cmdq = &fore200e->host_cmdq;
1856    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857    struct oc3_opcode opcode;
1858    int ok;
1859
1860    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864    opcode.opcode = OPCODE_SET_OC3;
1865    opcode.reg = reg;
1866    opcode.value = value;
1867    opcode.mask = mask;
1868
1869    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870    
1871    *entry->status = STATUS_PENDING;
1872
1873    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877    *entry->status = STATUS_FREE;
1878
1879    if (ok == 0) {
1880    printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881    return -EIO;
1882    }
1883
1884    return 0;
1885}
1886
1887
1888static int
1889fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890{
1891    u32 mct_value, mct_mask;
1892    int error;
1893
1894    if (!capable(CAP_NET_ADMIN))
1895    return -EPERM;
1896    
1897    switch (loop_mode) {
1898
1899    case ATM_LM_NONE:
1900    mct_value = 0;
1901    mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902    break;
1903    
1904    case ATM_LM_LOC_PHY:
1905    mct_value = mct_mask = SUNI_MCT_DLE;
1906    break;
1907
1908    case ATM_LM_RMT_PHY:
1909    mct_value = mct_mask = SUNI_MCT_LLE;
1910    break;
1911
1912    default:
1913    return -EINVAL;
1914    }
1915
1916    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917    if (error == 0)
1918    fore200e->loop_mode = loop_mode;
1919
1920    return error;
1921}
1922
1923
1924static int
1925fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926{
1927    struct sonet_stats tmp;
1928
1929    if (fore200e_getstats(fore200e) < 0)
1930    return -EIO;
1931
1932    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933    tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934    tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935    tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936    tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937    tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938    tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939    tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1940                  be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941                  be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942    tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1943                  be32_to_cpu(fore200e->stats->aal34.cells_received) +
1944                  be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946    if (arg)
1947    return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1948    
1949    return 0;
1950}
1951
1952
1953static int
1954fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955{
1956    struct fore200e* fore200e = FORE200E_DEV(dev);
1957    
1958    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960    switch (cmd) {
1961
1962    case SONET_GETSTAT:
1963    return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965    case SONET_GETDIAG:
1966    return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968    case ATM_SETLOOP:
1969    return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971    case ATM_GETLOOP:
1972    return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974    case ATM_QUERYLOOP:
1975    return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976    }
1977
1978    return -ENOSYS; /* not implemented */
1979}
1980
1981
1982static int
1983fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984{
1985    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986    struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1987
1988    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989    DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990    return -EINVAL;
1991    }
1992
1993    DPRINTK(2, "change_qos %d.%d.%d, "
1994        "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995        "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996        "available_cell_rate = %u",
1997        vcc->itf, vcc->vpi, vcc->vci,
1998        fore200e_traffic_class[ qos->txtp.traffic_class ],
1999        qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000        fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001        qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002        flags, fore200e->available_cell_rate);
2003
2004    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006    mutex_lock(&fore200e->rate_mtx);
2007    if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008        mutex_unlock(&fore200e->rate_mtx);
2009        return -EAGAIN;
2010    }
2011
2012    fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013    fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015    mutex_unlock(&fore200e->rate_mtx);
2016    
2017    memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018    
2019    /* update rate control parameters */
2020    fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022    set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024    return 0;
2025    }
2026    
2027    return -EINVAL;
2028}
2029    
2030
2031static int __devinit
2032fore200e_irq_request(struct fore200e* fore200e)
2033{
2034    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036    printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037           fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038    return -EBUSY;
2039    }
2040
2041    printk(FORE200E "IRQ %s reserved for device %s\n",
2042       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044#ifdef FORE200E_USE_TASKLET
2045    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047#endif
2048
2049    fore200e->state = FORE200E_STATE_IRQ;
2050    return 0;
2051}
2052
2053
2054static int __devinit
2055fore200e_get_esi(struct fore200e* fore200e)
2056{
2057    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058    int ok, i;
2059
2060    if (!prom)
2061    return -ENOMEM;
2062
2063    ok = fore200e->bus->prom_read(fore200e, prom);
2064    if (ok < 0) {
2065    kfree(prom);
2066    return -EBUSY;
2067    }
2068    
2069    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070       fore200e->name,
2071       (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
2072       prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073    
2074    for (i = 0; i < ESI_LEN; i++) {
2075    fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076    }
2077    
2078    kfree(prom);
2079
2080    return 0;
2081}
2082
2083
2084static int __devinit
2085fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086{
2087    int scheme, magn, nbr, size, i;
2088
2089    struct host_bsq* bsq;
2090    struct buffer* buffer;
2091
2092    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093    for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095        bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097        nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098        size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100        DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102        /* allocate the array of receive buffers */
2103        buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2104
2105        if (buffer == NULL)
2106        return -ENOMEM;
2107
2108        bsq->freebuf = NULL;
2109
2110        for (i = 0; i < nbr; i++) {
2111
2112        buffer[ i ].scheme = scheme;
2113        buffer[ i ].magn = magn;
2114#ifdef FORE200E_BSQ_DEBUG
2115        buffer[ i ].index = i;
2116        buffer[ i ].supplied = 0;
2117#endif
2118
2119        /* allocate the receive buffer body */
2120        if (fore200e_chunk_alloc(fore200e,
2121                     &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122                     DMA_FROM_DEVICE) < 0) {
2123            
2124            while (i > 0)
2125            fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126            kfree(buffer);
2127            
2128            return -ENOMEM;
2129        }
2130
2131        /* insert the buffer into the free buffer list */
2132        buffer[ i ].next = bsq->freebuf;
2133        bsq->freebuf = &buffer[ i ];
2134        }
2135        /* all the buffers are free, initially */
2136        bsq->freebuf_count = nbr;
2137
2138#ifdef FORE200E_BSQ_DEBUG
2139        bsq_audit(3, bsq, scheme, magn);
2140#endif
2141    }
2142    }
2143
2144    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145    return 0;
2146}
2147
2148
2149static int __devinit
2150fore200e_init_bs_queue(struct fore200e* fore200e)
2151{
2152    int scheme, magn, i;
2153
2154    struct host_bsq* bsq;
2155    struct cp_bsq_entry __iomem * cp_entry;
2156
2157    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158    for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160        DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162        bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164        /* allocate and align the array of status words */
2165        if (fore200e->bus->dma_chunk_alloc(fore200e,
2166                           &bsq->status,
2167                           sizeof(enum status),
2168                           QUEUE_SIZE_BS,
2169                           fore200e->bus->status_alignment) < 0) {
2170        return -ENOMEM;
2171        }
2172
2173        /* allocate and align the array of receive buffer descriptors */
2174        if (fore200e->bus->dma_chunk_alloc(fore200e,
2175                           &bsq->rbd_block,
2176                           sizeof(struct rbd_block),
2177                           QUEUE_SIZE_BS,
2178                           fore200e->bus->descr_alignment) < 0) {
2179        
2180        fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181        return -ENOMEM;
2182        }
2183        
2184        /* get the base address of the cp resident buffer supply queue entries */
2185        cp_entry = fore200e->virt_base +
2186               fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187        
2188        /* fill the host resident and cp resident buffer supply queue entries */
2189        for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190        
2191        bsq->host_entry[ i ].status =
2192                             FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193            bsq->host_entry[ i ].rbd_block =
2194                             FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195        bsq->host_entry[ i ].rbd_block_dma =
2196                             FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197        bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198        
2199        *bsq->host_entry[ i ].status = STATUS_FREE;
2200        
2201        fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2202                     &cp_entry[ i ].status_haddr);
2203        }
2204    }
2205    }
2206
2207    fore200e->state = FORE200E_STATE_INIT_BSQ;
2208    return 0;
2209}
2210
2211
2212static int __devinit
2213fore200e_init_rx_queue(struct fore200e* fore200e)
2214{
2215    struct host_rxq* rxq = &fore200e->host_rxq;
2216    struct cp_rxq_entry __iomem * cp_entry;
2217    int i;
2218
2219    DPRINTK(2, "receive queue is being initialized\n");
2220
2221    /* allocate and align the array of status words */
2222    if (fore200e->bus->dma_chunk_alloc(fore200e,
2223                       &rxq->status,
2224                       sizeof(enum status),
2225                       QUEUE_SIZE_RX,
2226                       fore200e->bus->status_alignment) < 0) {
2227    return -ENOMEM;
2228    }
2229
2230    /* allocate and align the array of receive PDU descriptors */
2231    if (fore200e->bus->dma_chunk_alloc(fore200e,
2232                       &rxq->rpd,
2233                       sizeof(struct rpd),
2234                       QUEUE_SIZE_RX,
2235                       fore200e->bus->descr_alignment) < 0) {
2236    
2237    fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238    return -ENOMEM;
2239    }
2240
2241    /* get the base address of the cp resident rx queue entries */
2242    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244    /* fill the host resident and cp resident rx entries */
2245    for (i=0; i < QUEUE_SIZE_RX; i++) {
2246    
2247    rxq->host_entry[ i ].status =
2248                         FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249    rxq->host_entry[ i ].rpd =
2250                         FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251    rxq->host_entry[ i ].rpd_dma =
2252                         FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253    rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255    *rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257    fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2258                 &cp_entry[ i ].status_haddr);
2259
2260    fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261                 &cp_entry[ i ].rpd_haddr);
2262    }
2263
2264    /* set the head entry of the queue */
2265    rxq->head = 0;
2266
2267    fore200e->state = FORE200E_STATE_INIT_RXQ;
2268    return 0;
2269}
2270
2271
2272static int __devinit
2273fore200e_init_tx_queue(struct fore200e* fore200e)
2274{
2275    struct host_txq* txq = &fore200e->host_txq;
2276    struct cp_txq_entry __iomem * cp_entry;
2277    int i;
2278
2279    DPRINTK(2, "transmit queue is being initialized\n");
2280
2281    /* allocate and align the array of status words */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283                       &txq->status,
2284                       sizeof(enum status),
2285                       QUEUE_SIZE_TX,
2286                       fore200e->bus->status_alignment) < 0) {
2287    return -ENOMEM;
2288    }
2289
2290    /* allocate and align the array of transmit PDU descriptors */
2291    if (fore200e->bus->dma_chunk_alloc(fore200e,
2292                       &txq->tpd,
2293                       sizeof(struct tpd),
2294                       QUEUE_SIZE_TX,
2295                       fore200e->bus->descr_alignment) < 0) {
2296    
2297    fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298    return -ENOMEM;
2299    }
2300
2301    /* get the base address of the cp resident tx queue entries */
2302    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304    /* fill the host resident and cp resident tx entries */
2305    for (i=0; i < QUEUE_SIZE_TX; i++) {
2306    
2307    txq->host_entry[ i ].status =
2308                         FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309    txq->host_entry[ i ].tpd =
2310                         FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311    txq->host_entry[ i ].tpd_dma =
2312                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313    txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315    *txq->host_entry[ i ].status = STATUS_FREE;
2316    
2317    fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2318                 &cp_entry[ i ].status_haddr);
2319    
2320        /* although there is a one-to-one mapping of tx queue entries and tpds,
2321       we do not write here the DMA (physical) base address of each tpd into
2322       the related cp resident entry, because the cp relies on this write
2323       operation to detect that a new pdu has been submitted for tx */
2324    }
2325
2326    /* set the head and tail entries of the queue */
2327    txq->head = 0;
2328    txq->tail = 0;
2329
2330    fore200e->state = FORE200E_STATE_INIT_TXQ;
2331    return 0;
2332}
2333
2334
2335static int __devinit
2336fore200e_init_cmd_queue(struct fore200e* fore200e)
2337{
2338    struct host_cmdq* cmdq = &fore200e->host_cmdq;
2339    struct cp_cmdq_entry __iomem * cp_entry;
2340    int i;
2341
2342    DPRINTK(2, "command queue is being initialized\n");
2343
2344    /* allocate and align the array of status words */
2345    if (fore200e->bus->dma_chunk_alloc(fore200e,
2346                       &cmdq->status,
2347                       sizeof(enum status),
2348                       QUEUE_SIZE_CMD,
2349                       fore200e->bus->status_alignment) < 0) {
2350    return -ENOMEM;
2351    }
2352    
2353    /* get the base address of the cp resident cmd queue entries */
2354    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356    /* fill the host resident and cp resident cmd entries */
2357    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358    
2359    cmdq->host_entry[ i ].status =
2360                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361    cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363    *cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365    fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2366                             &cp_entry[ i ].status_haddr);
2367    }
2368
2369    /* set the head entry of the queue */
2370    cmdq->head = 0;
2371
2372    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373    return 0;
2374}
2375
2376
2377static void __devinit
2378fore200e_param_bs_queue(struct fore200e* fore200e,
2379            enum buffer_scheme scheme, enum buffer_magn magn,
2380            int queue_length, int pool_size, int supply_blksize)
2381{
2382    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384    fore200e->bus->write(queue_length, &bs_spec->queue_length);
2385    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386    fore200e->bus->write(pool_size, &bs_spec->pool_size);
2387    fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2388}
2389
2390
2391static int __devinit
2392fore200e_initialize(struct fore200e* fore200e)
2393{
2394    struct cp_queues __iomem * cpq;
2395    int ok, scheme, magn;
2396
2397    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399    mutex_init(&fore200e->rate_mtx);
2400    spin_lock_init(&fore200e->q_lock);
2401
2402    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404    /* enable cp to host interrupts */
2405    fore200e->bus->write(1, &cpq->imask);
2406
2407    if (fore200e->bus->irq_enable)
2408    fore200e->bus->irq_enable(fore200e);
2409    
2410    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413    fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2414    fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2415
2416    fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2417    fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2418
2419    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420    for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421        fore200e_param_bs_queue(fore200e, scheme, magn,
2422                    QUEUE_SIZE_BS,
2423                    fore200e_rx_buf_nbr[ scheme ][ magn ],
2424                    RBD_BLK_SIZE);
2425
2426    /* issue the initialize command */
2427    fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2428    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431    if (ok == 0) {
2432    printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433    return -ENODEV;
2434    }
2435
2436    printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438    fore200e->state = FORE200E_STATE_INITIALIZE;
2439    return 0;
2440}
2441
2442
2443static void __devinit
2444fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448#if 0
2449    printk("%c", c);
2450#endif
2451    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452}
2453
2454
2455static int __devinit
2456fore200e_monitor_getc(struct fore200e* fore200e)
2457{
2458    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459    unsigned long timeout = jiffies + msecs_to_jiffies(50);
2460    int c;
2461
2462    while (time_before(jiffies, timeout)) {
2463
2464    c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466    if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468        fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469#if 0
2470        printk("%c", c & 0xFF);
2471#endif
2472        return c & 0xFF;
2473    }
2474    }
2475
2476    return -1;
2477}
2478
2479
2480static void __devinit
2481fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482{
2483    while (*str) {
2484
2485    /* the i960 monitor doesn't accept any new character if it has something to say */
2486    while (fore200e_monitor_getc(fore200e) >= 0);
2487    
2488    fore200e_monitor_putc(fore200e, *str++);
2489    }
2490
2491    while (fore200e_monitor_getc(fore200e) >= 0);
2492}
2493
2494#ifdef __LITTLE_ENDIAN
2495#define FW_EXT ".bin"
2496#else
2497#define FW_EXT "_ecd.bin2"
2498#endif
2499
2500static int __devinit
2501fore200e_load_and_start_fw(struct fore200e* fore200e)
2502{
2503    const struct firmware *firmware;
2504    struct device *device;
2505    struct fw_header *fw_header;
2506    const __le32 *fw_data;
2507    u32 fw_size;
2508    u32 __iomem *load_addr;
2509    char buf[48];
2510    int err = -ENODEV;
2511
2512    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513    device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514#ifdef CONFIG_SBUS
2515    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516    device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517#endif
2518    else
2519    return err;
2520
2521    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523    printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524    return err;
2525    }
2526
2527    fw_data = (__le32 *) firmware->data;
2528    fw_size = firmware->size / sizeof(u32);
2529    fw_header = (struct fw_header *) firmware->data;
2530    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533        fore200e->name, load_addr, fw_size);
2534
2535    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536    printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537    goto release;
2538    }
2539
2540    for (; fw_size--; fw_data++, load_addr++)
2541    fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545#if defined(__sparc_v9__)
2546    /* reported to be required by SBA cards on some sparc64 hosts */
2547    fore200e_spin(100);
2548#endif
2549
2550    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551    fore200e_monitor_puts(fore200e, buf);
2552
2553    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554    printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555    goto release;
2556    }
2557
2558    printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560    fore200e->state = FORE200E_STATE_START_FW;
2561    err = 0;
2562
2563release:
2564    release_firmware(firmware);
2565    return err;
2566}
2567
2568
2569static int __devinit
2570fore200e_register(struct fore200e* fore200e, struct device *parent)
2571{
2572    struct atm_dev* atm_dev;
2573
2574    DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                               -1, NULL);
2578    if (atm_dev == NULL) {
2579    printk(FORE200E "unable to register device %s\n", fore200e->name);
2580    return -ENODEV;
2581    }
2582
2583    atm_dev->dev_data = fore200e;
2584    fore200e->atm_dev = atm_dev;
2585
2586    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589    fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591    fore200e->state = FORE200E_STATE_REGISTER;
2592    return 0;
2593}
2594
2595
2596static int __devinit
2597fore200e_init(struct fore200e* fore200e, struct device *parent)
2598{
2599    if (fore200e_register(fore200e, parent) < 0)
2600    return -ENODEV;
2601    
2602    if (fore200e->bus->configure(fore200e) < 0)
2603    return -ENODEV;
2604
2605    if (fore200e->bus->map(fore200e) < 0)
2606    return -ENODEV;
2607
2608    if (fore200e_reset(fore200e, 1) < 0)
2609    return -ENODEV;
2610
2611    if (fore200e_load_and_start_fw(fore200e) < 0)
2612    return -ENODEV;
2613
2614    if (fore200e_initialize(fore200e) < 0)
2615    return -ENODEV;
2616
2617    if (fore200e_init_cmd_queue(fore200e) < 0)
2618    return -ENOMEM;
2619
2620    if (fore200e_init_tx_queue(fore200e) < 0)
2621    return -ENOMEM;
2622
2623    if (fore200e_init_rx_queue(fore200e) < 0)
2624    return -ENOMEM;
2625
2626    if (fore200e_init_bs_queue(fore200e) < 0)
2627    return -ENOMEM;
2628
2629    if (fore200e_alloc_rx_buf(fore200e) < 0)
2630    return -ENOMEM;
2631
2632    if (fore200e_get_esi(fore200e) < 0)
2633    return -EIO;
2634
2635    if (fore200e_irq_request(fore200e) < 0)
2636    return -EBUSY;
2637
2638    fore200e_supply(fore200e);
2639
2640    /* all done, board initialization is now complete */
2641    fore200e->state = FORE200E_STATE_COMPLETE;
2642    return 0;
2643}
2644
2645#ifdef CONFIG_SBUS
2646static const struct of_device_id fore200e_sba_match[];
2647static int __devinit fore200e_sba_probe(struct platform_device *op)
2648{
2649    const struct of_device_id *match;
2650    const struct fore200e_bus *bus;
2651    struct fore200e *fore200e;
2652    static int index = 0;
2653    int err;
2654
2655    match = of_match_device(fore200e_sba_match, &op->dev);
2656    if (!match)
2657        return -EINVAL;
2658    bus = match->data;
2659
2660    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661    if (!fore200e)
2662        return -ENOMEM;
2663
2664    fore200e->bus = bus;
2665    fore200e->bus_dev = op;
2666    fore200e->irq = op->archdata.irqs[0];
2667    fore200e->phys_base = op->resource[0].start;
2668
2669    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671    err = fore200e_init(fore200e, &op->dev);
2672    if (err < 0) {
2673        fore200e_shutdown(fore200e);
2674        kfree(fore200e);
2675        return err;
2676    }
2677
2678    index++;
2679    dev_set_drvdata(&op->dev, fore200e);
2680
2681    return 0;
2682}
2683
2684static int __devexit fore200e_sba_remove(struct platform_device *op)
2685{
2686    struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688    fore200e_shutdown(fore200e);
2689    kfree(fore200e);
2690
2691    return 0;
2692}
2693
2694static const struct of_device_id fore200e_sba_match[] = {
2695    {
2696        .name = SBA200E_PROM_NAME,
2697        .data = (void *) &fore200e_bus[1],
2698    },
2699    {},
2700};
2701MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703static struct platform_driver fore200e_sba_driver = {
2704    .driver = {
2705        .name = "fore_200e",
2706        .owner = THIS_MODULE,
2707        .of_match_table = fore200e_sba_match,
2708    },
2709    .probe = fore200e_sba_probe,
2710    .remove = __devexit_p(fore200e_sba_remove),
2711};
2712#endif
2713
2714#ifdef CONFIG_PCI
2715static int __devinit
2716fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717{
2718    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719    struct fore200e* fore200e;
2720    int err = 0;
2721    static int index = 0;
2722
2723    if (pci_enable_device(pci_dev)) {
2724    err = -EINVAL;
2725    goto out;
2726    }
2727    
2728    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729    if (fore200e == NULL) {
2730    err = -ENOMEM;
2731    goto out_disable;
2732    }
2733
2734    fore200e->bus = bus;
2735    fore200e->bus_dev = pci_dev;
2736    fore200e->irq = pci_dev->irq;
2737    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741    pci_set_master(pci_dev);
2742
2743    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744       fore200e->bus->model_name,
2745       fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749    err = fore200e_init(fore200e, &pci_dev->dev);
2750    if (err < 0) {
2751    fore200e_shutdown(fore200e);
2752    goto out_free;
2753    }
2754
2755    ++index;
2756    pci_set_drvdata(pci_dev, fore200e);
2757
2758out:
2759    return err;
2760
2761out_free:
2762    kfree(fore200e);
2763out_disable:
2764    pci_disable_device(pci_dev);
2765    goto out;
2766}
2767
2768
2769static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770{
2771    struct fore200e *fore200e;
2772
2773    fore200e = pci_get_drvdata(pci_dev);
2774
2775    fore200e_shutdown(fore200e);
2776    kfree(fore200e);
2777    pci_disable_device(pci_dev);
2778}
2779
2780
2781static struct pci_device_id fore200e_pca_tbl[] = {
2782    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783      0, 0, (unsigned long) &fore200e_bus[0] },
2784    { 0, }
2785};
2786
2787MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789static struct pci_driver fore200e_pca_driver = {
2790    .name = "fore_200e",
2791    .probe = fore200e_pca_detect,
2792    .remove = __devexit_p(fore200e_pca_remove_one),
2793    .id_table = fore200e_pca_tbl,
2794};
2795#endif
2796
2797static int __init fore200e_module_init(void)
2798{
2799    int err;
2800
2801    printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803#ifdef CONFIG_SBUS
2804    err = platform_driver_register(&fore200e_sba_driver);
2805    if (err)
2806        return err;
2807#endif
2808
2809#ifdef CONFIG_PCI
2810    err = pci_register_driver(&fore200e_pca_driver);
2811#endif
2812
2813#ifdef CONFIG_SBUS
2814    if (err)
2815        platform_driver_unregister(&fore200e_sba_driver);
2816#endif
2817
2818    return err;
2819}
2820
2821static void __exit fore200e_module_cleanup(void)
2822{
2823#ifdef CONFIG_PCI
2824    pci_unregister_driver(&fore200e_pca_driver);
2825#endif
2826#ifdef CONFIG_SBUS
2827    platform_driver_unregister(&fore200e_sba_driver);
2828#endif
2829}
2830
2831static int
2832fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833{
2834    struct fore200e* fore200e = FORE200E_DEV(dev);
2835    struct fore200e_vcc* fore200e_vcc;
2836    struct atm_vcc* vcc;
2837    int i, len, left = *pos;
2838    unsigned long flags;
2839
2840    if (!left--) {
2841
2842    if (fore200e_getstats(fore200e) < 0)
2843        return -EIO;
2844
2845    len = sprintf(page,"\n"
2846               " device:\n"
2847               " internal name:\t\t%s\n", fore200e->name);
2848
2849    /* print bus-specific information */
2850    if (fore200e->bus->proc_read)
2851        len += fore200e->bus->proc_read(fore200e, page + len);
2852    
2853    len += sprintf(page + len,
2854        " interrupt line:\t\t%s\n"
2855        " physical base address:\t0x%p\n"
2856        " virtual base address:\t0x%p\n"
2857        " factory address (ESI):\t%pM\n"
2858        " board serial number:\t\t%d\n\n",
2859        fore200e_irq_itoa(fore200e->irq),
2860        (void*)fore200e->phys_base,
2861        fore200e->virt_base,
2862        fore200e->esi,
2863        fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865    return len;
2866    }
2867
2868    if (!left--)
2869    return sprintf(page,
2870               " free small bufs, scheme 1:\t%d\n"
2871               " free large bufs, scheme 1:\t%d\n"
2872               " free small bufs, scheme 2:\t%d\n"
2873               " free large bufs, scheme 2:\t%d\n",
2874               fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875               fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876               fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877               fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879    if (!left--) {
2880    u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882    len = sprintf(page,"\n\n"
2883              " cell processor:\n"
2884              " heartbeat state:\t\t");
2885    
2886    if (hb >> 16 != 0xDEAD)
2887        len += sprintf(page + len, "0x%08x\n", hb);
2888    else
2889        len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891    return len;
2892    }
2893
2894    if (!left--) {
2895    static const char* media_name[] = {
2896        "unshielded twisted pair",
2897        "multimode optical fiber ST",
2898        "multimode optical fiber SC",
2899        "single-mode optical fiber ST",
2900        "single-mode optical fiber SC",
2901        "unknown"
2902    };
2903
2904    static const char* oc3_mode[] = {
2905        "normal operation",
2906        "diagnostic loopback",
2907        "line loopback",
2908        "unknown"
2909    };
2910
2911    u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912    u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913    u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914    u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915    u32 oc3_index;
2916
2917    if (media_index > 4)
2918        media_index = 5;
2919    
2920    switch (fore200e->loop_mode) {
2921        case ATM_LM_NONE: oc3_index = 0;
2922                         break;
2923        case ATM_LM_LOC_PHY: oc3_index = 1;
2924                         break;
2925        case ATM_LM_RMT_PHY: oc3_index = 2;
2926                         break;
2927        default: oc3_index = 3;
2928    }
2929
2930    return sprintf(page,
2931               " firmware release:\t\t%d.%d.%d\n"
2932               " monitor release:\t\t%d.%d\n"
2933               " media type:\t\t\t%s\n"
2934               " OC-3 revision:\t\t0x%x\n"
2935                       " OC-3 mode:\t\t\t%s",
2936               fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2937               mon960_release >> 16, mon960_release << 16 >> 16,
2938               media_name[ media_index ],
2939               oc3_revision,
2940               oc3_mode[ oc3_index ]);
2941    }
2942
2943    if (!left--) {
2944    struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946    return sprintf(page,
2947               "\n\n"
2948               " monitor:\n"
2949               " version number:\t\t%d\n"
2950               " boot status word:\t\t0x%08x\n",
2951               fore200e->bus->read(&cp_monitor->mon_version),
2952               fore200e->bus->read(&cp_monitor->bstat));
2953    }
2954
2955    if (!left--)
2956    return sprintf(page,
2957               "\n"
2958               " device statistics:\n"
2959               " 4b5b:\n"
2960               " crc_header_errors:\t\t%10u\n"
2961               " framing_errors:\t\t%10u\n",
2962               be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963               be32_to_cpu(fore200e->stats->phy.framing_errors));
2964    
2965    if (!left--)
2966    return sprintf(page, "\n"
2967               " OC-3:\n"
2968               " section_bip8_errors:\t%10u\n"
2969               " path_bip8_errors:\t\t%10u\n"
2970               " line_bip24_errors:\t\t%10u\n"
2971               " line_febe_errors:\t\t%10u\n"
2972               " path_febe_errors:\t\t%10u\n"
2973               " corr_hcs_errors:\t\t%10u\n"
2974               " ucorr_hcs_errors:\t\t%10u\n",
2975               be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976               be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977               be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978               be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979               be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980               be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981               be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983    if (!left--)
2984    return sprintf(page,"\n"
2985               " ATM:\t\t\t\t cells\n"
2986               " TX:\t\t\t%10u\n"
2987               " RX:\t\t\t%10u\n"
2988               " vpi out of range:\t\t%10u\n"
2989               " vpi no conn:\t\t%10u\n"
2990               " vci out of range:\t\t%10u\n"
2991               " vci no conn:\t\t%10u\n",
2992               be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993               be32_to_cpu(fore200e->stats->atm.cells_received),
2994               be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995               be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996               be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997               be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998    
2999    if (!left--)
3000    return sprintf(page,"\n"
3001               " AAL0:\t\t\t cells\n"
3002               " TX:\t\t\t%10u\n"
3003               " RX:\t\t\t%10u\n"
3004               " dropped:\t\t\t%10u\n",
3005               be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006               be32_to_cpu(fore200e->stats->aal0.cells_received),
3007               be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008    
3009    if (!left--)
3010    return sprintf(page,"\n"
3011               " AAL3/4:\n"
3012               " SAR sublayer:\t\t cells\n"
3013               " TX:\t\t\t%10u\n"
3014               " RX:\t\t\t%10u\n"
3015               " dropped:\t\t\t%10u\n"
3016               " CRC errors:\t\t%10u\n"
3017               " protocol errors:\t\t%10u\n\n"
3018               " CS sublayer:\t\t PDUs\n"
3019               " TX:\t\t\t%10u\n"
3020               " RX:\t\t\t%10u\n"
3021               " dropped:\t\t\t%10u\n"
3022               " protocol errors:\t\t%10u\n",
3023               be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024               be32_to_cpu(fore200e->stats->aal34.cells_received),
3025               be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026               be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027               be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028               be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029               be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030               be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031               be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032    
3033    if (!left--)
3034    return sprintf(page,"\n"
3035               " AAL5:\n"
3036               " SAR sublayer:\t\t cells\n"
3037               " TX:\t\t\t%10u\n"
3038               " RX:\t\t\t%10u\n"
3039               " dropped:\t\t\t%10u\n"
3040               " congestions:\t\t%10u\n\n"
3041               " CS sublayer:\t\t PDUs\n"
3042               " TX:\t\t\t%10u\n"
3043               " RX:\t\t\t%10u\n"
3044               " dropped:\t\t\t%10u\n"
3045               " CRC errors:\t\t%10u\n"
3046               " protocol errors:\t\t%10u\n",
3047               be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048               be32_to_cpu(fore200e->stats->aal5.cells_received),
3049               be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050               be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051               be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052               be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053               be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054               be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055               be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056    
3057    if (!left--)
3058    return sprintf(page,"\n"
3059               " AUX:\t\t allocation failures\n"
3060               " small b1:\t\t\t%10u\n"
3061               " large b1:\t\t\t%10u\n"
3062               " small b2:\t\t\t%10u\n"
3063               " large b2:\t\t\t%10u\n"
3064               " RX PDUs:\t\t\t%10u\n"
3065               " TX PDUs:\t\t\t%10lu\n",
3066               be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067               be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068               be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069               be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070               be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071               fore200e->tx_sat);
3072    
3073    if (!left--)
3074    return sprintf(page,"\n"
3075               " receive carrier:\t\t\t%s\n",
3076               fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077    
3078    if (!left--) {
3079        return sprintf(page,"\n"
3080               " VCCs:\n address VPI VCI AAL "
3081               "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3082    }
3083
3084    for (i = 0; i < NBR_CONNECT; i++) {
3085
3086    vcc = fore200e->vc_map[i].vcc;
3087
3088    if (vcc == NULL)
3089        continue;
3090
3091    spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093    if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095        fore200e_vcc = FORE200E_VCC(vcc);
3096        ASSERT(fore200e_vcc);
3097
3098        len = sprintf(page,
3099              " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3100              (u32)(unsigned long)vcc,
3101              vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102              fore200e_vcc->tx_pdu,
3103              fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104              fore200e_vcc->tx_max_pdu,
3105              fore200e_vcc->rx_pdu,
3106              fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107              fore200e_vcc->rx_max_pdu);
3108
3109        spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110        return len;
3111    }
3112
3113    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114    }
3115    
3116    return 0;
3117}
3118
3119module_init(fore200e_module_init);
3120module_exit(fore200e_module_cleanup);
3121
3122
3123static const struct atmdev_ops fore200e_ops =
3124{
3125    .open = fore200e_open,
3126    .close = fore200e_close,
3127    .ioctl = fore200e_ioctl,
3128    .getsockopt = fore200e_getsockopt,
3129    .setsockopt = fore200e_setsockopt,
3130    .send = fore200e_send,
3131    .change_qos = fore200e_change_qos,
3132    .proc_read = fore200e_proc_read,
3133    .owner = THIS_MODULE
3134};
3135
3136
3137static const struct fore200e_bus fore200e_bus[] = {
3138#ifdef CONFIG_PCI
3139    { "PCA-200E", "pca200e", 32, 4, 32,
3140      fore200e_pca_read,
3141      fore200e_pca_write,
3142      fore200e_pca_dma_map,
3143      fore200e_pca_dma_unmap,
3144      fore200e_pca_dma_sync_for_cpu,
3145      fore200e_pca_dma_sync_for_device,
3146      fore200e_pca_dma_chunk_alloc,
3147      fore200e_pca_dma_chunk_free,
3148      fore200e_pca_configure,
3149      fore200e_pca_map,
3150      fore200e_pca_reset,
3151      fore200e_pca_prom_read,
3152      fore200e_pca_unmap,
3153      NULL,
3154      fore200e_pca_irq_check,
3155      fore200e_pca_irq_ack,
3156      fore200e_pca_proc_read,
3157    },
3158#endif
3159#ifdef CONFIG_SBUS
3160    { "SBA-200E", "sba200e", 32, 64, 32,
3161      fore200e_sba_read,
3162      fore200e_sba_write,
3163      fore200e_sba_dma_map,
3164      fore200e_sba_dma_unmap,
3165      fore200e_sba_dma_sync_for_cpu,
3166      fore200e_sba_dma_sync_for_device,
3167      fore200e_sba_dma_chunk_alloc,
3168      fore200e_sba_dma_chunk_free,
3169      fore200e_sba_configure,
3170      fore200e_sba_map,
3171      fore200e_sba_reset,
3172      fore200e_sba_prom_read,
3173      fore200e_sba_unmap,
3174      fore200e_sba_irq_enable,
3175      fore200e_sba_irq_check,
3176      fore200e_sba_irq_ack,
3177      fore200e_sba_proc_read,
3178    },
3179#endif
3180    {}
3181};
3182
3183MODULE_LICENSE("GPL");
3184#ifdef CONFIG_PCI
3185#ifdef __LITTLE_ENDIAN__
3186MODULE_FIRMWARE("pca200e.bin");
3187#else
3188MODULE_FIRMWARE("pca200e_ecd.bin2");
3189#endif
3190#endif /* CONFIG_PCI */
3191#ifdef CONFIG_SBUS
3192MODULE_FIRMWARE("sba200e_ecd.bin2");
3193#endif
3194

Archive Download this file



interactive