Root/
1 | /* |
2 | * Ram backed block device driver. |
3 | * |
4 | * Copyright (C) 2007 Nick Piggin |
5 | * Copyright (C) 2007 Novell Inc. |
6 | * |
7 | * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright |
8 | * of their respective owners. |
9 | */ |
10 | |
11 | #include <linux/init.h> |
12 | #include <linux/module.h> |
13 | #include <linux/moduleparam.h> |
14 | #include <linux/major.h> |
15 | #include <linux/blkdev.h> |
16 | #include <linux/bio.h> |
17 | #include <linux/highmem.h> |
18 | #include <linux/mutex.h> |
19 | #include <linux/radix-tree.h> |
20 | #include <linux/fs.h> |
21 | #include <linux/slab.h> |
22 | |
23 | #include <asm/uaccess.h> |
24 | |
25 | #define SECTOR_SHIFT 9 |
26 | #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) |
27 | #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) |
28 | |
29 | /* |
30 | * Each block ramdisk device has a radix_tree brd_pages of pages that stores |
31 | * the pages containing the block device's contents. A brd page's ->index is |
32 | * its offset in PAGE_SIZE units. This is similar to, but in no way connected |
33 | * with, the kernel's pagecache or buffer cache (which sit above our block |
34 | * device). |
35 | */ |
36 | struct brd_device { |
37 | int brd_number; |
38 | |
39 | struct request_queue *brd_queue; |
40 | struct gendisk *brd_disk; |
41 | struct list_head brd_list; |
42 | |
43 | /* |
44 | * Backing store of pages and lock to protect it. This is the contents |
45 | * of the block device. |
46 | */ |
47 | spinlock_t brd_lock; |
48 | struct radix_tree_root brd_pages; |
49 | }; |
50 | |
51 | /* |
52 | * Look up and return a brd's page for a given sector. |
53 | */ |
54 | static DEFINE_MUTEX(brd_mutex); |
55 | static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) |
56 | { |
57 | pgoff_t idx; |
58 | struct page *page; |
59 | |
60 | /* |
61 | * The page lifetime is protected by the fact that we have opened the |
62 | * device node -- brd pages will never be deleted under us, so we |
63 | * don't need any further locking or refcounting. |
64 | * |
65 | * This is strictly true for the radix-tree nodes as well (ie. we |
66 | * don't actually need the rcu_read_lock()), however that is not a |
67 | * documented feature of the radix-tree API so it is better to be |
68 | * safe here (we don't have total exclusion from radix tree updates |
69 | * here, only deletes). |
70 | */ |
71 | rcu_read_lock(); |
72 | idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ |
73 | page = radix_tree_lookup(&brd->brd_pages, idx); |
74 | rcu_read_unlock(); |
75 | |
76 | BUG_ON(page && page->index != idx); |
77 | |
78 | return page; |
79 | } |
80 | |
81 | /* |
82 | * Look up and return a brd's page for a given sector. |
83 | * If one does not exist, allocate an empty page, and insert that. Then |
84 | * return it. |
85 | */ |
86 | static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) |
87 | { |
88 | pgoff_t idx; |
89 | struct page *page; |
90 | gfp_t gfp_flags; |
91 | |
92 | page = brd_lookup_page(brd, sector); |
93 | if (page) |
94 | return page; |
95 | |
96 | /* |
97 | * Must use NOIO because we don't want to recurse back into the |
98 | * block or filesystem layers from page reclaim. |
99 | * |
100 | * Cannot support XIP and highmem, because our ->direct_access |
101 | * routine for XIP must return memory that is always addressable. |
102 | * If XIP was reworked to use pfns and kmap throughout, this |
103 | * restriction might be able to be lifted. |
104 | */ |
105 | gfp_flags = GFP_NOIO | __GFP_ZERO; |
106 | #ifndef CONFIG_BLK_DEV_XIP |
107 | gfp_flags |= __GFP_HIGHMEM; |
108 | #endif |
109 | page = alloc_page(gfp_flags); |
110 | if (!page) |
111 | return NULL; |
112 | |
113 | if (radix_tree_preload(GFP_NOIO)) { |
114 | __free_page(page); |
115 | return NULL; |
116 | } |
117 | |
118 | spin_lock(&brd->brd_lock); |
119 | idx = sector >> PAGE_SECTORS_SHIFT; |
120 | if (radix_tree_insert(&brd->brd_pages, idx, page)) { |
121 | __free_page(page); |
122 | page = radix_tree_lookup(&brd->brd_pages, idx); |
123 | BUG_ON(!page); |
124 | BUG_ON(page->index != idx); |
125 | } else |
126 | page->index = idx; |
127 | spin_unlock(&brd->brd_lock); |
128 | |
129 | radix_tree_preload_end(); |
130 | |
131 | return page; |
132 | } |
133 | |
134 | static void brd_free_page(struct brd_device *brd, sector_t sector) |
135 | { |
136 | struct page *page; |
137 | pgoff_t idx; |
138 | |
139 | spin_lock(&brd->brd_lock); |
140 | idx = sector >> PAGE_SECTORS_SHIFT; |
141 | page = radix_tree_delete(&brd->brd_pages, idx); |
142 | spin_unlock(&brd->brd_lock); |
143 | if (page) |
144 | __free_page(page); |
145 | } |
146 | |
147 | static void brd_zero_page(struct brd_device *brd, sector_t sector) |
148 | { |
149 | struct page *page; |
150 | |
151 | page = brd_lookup_page(brd, sector); |
152 | if (page) |
153 | clear_highpage(page); |
154 | } |
155 | |
156 | /* |
157 | * Free all backing store pages and radix tree. This must only be called when |
158 | * there are no other users of the device. |
159 | */ |
160 | #define FREE_BATCH 16 |
161 | static void brd_free_pages(struct brd_device *brd) |
162 | { |
163 | unsigned long pos = 0; |
164 | struct page *pages[FREE_BATCH]; |
165 | int nr_pages; |
166 | |
167 | do { |
168 | int i; |
169 | |
170 | nr_pages = radix_tree_gang_lookup(&brd->brd_pages, |
171 | (void **)pages, pos, FREE_BATCH); |
172 | |
173 | for (i = 0; i < nr_pages; i++) { |
174 | void *ret; |
175 | |
176 | BUG_ON(pages[i]->index < pos); |
177 | pos = pages[i]->index; |
178 | ret = radix_tree_delete(&brd->brd_pages, pos); |
179 | BUG_ON(!ret || ret != pages[i]); |
180 | __free_page(pages[i]); |
181 | } |
182 | |
183 | pos++; |
184 | |
185 | /* |
186 | * This assumes radix_tree_gang_lookup always returns as |
187 | * many pages as possible. If the radix-tree code changes, |
188 | * so will this have to. |
189 | */ |
190 | } while (nr_pages == FREE_BATCH); |
191 | } |
192 | |
193 | /* |
194 | * copy_to_brd_setup must be called before copy_to_brd. It may sleep. |
195 | */ |
196 | static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) |
197 | { |
198 | unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; |
199 | size_t copy; |
200 | |
201 | copy = min_t(size_t, n, PAGE_SIZE - offset); |
202 | if (!brd_insert_page(brd, sector)) |
203 | return -ENOMEM; |
204 | if (copy < n) { |
205 | sector += copy >> SECTOR_SHIFT; |
206 | if (!brd_insert_page(brd, sector)) |
207 | return -ENOMEM; |
208 | } |
209 | return 0; |
210 | } |
211 | |
212 | static void discard_from_brd(struct brd_device *brd, |
213 | sector_t sector, size_t n) |
214 | { |
215 | while (n >= PAGE_SIZE) { |
216 | /* |
217 | * Don't want to actually discard pages here because |
218 | * re-allocating the pages can result in writeback |
219 | * deadlocks under heavy load. |
220 | */ |
221 | if (0) |
222 | brd_free_page(brd, sector); |
223 | else |
224 | brd_zero_page(brd, sector); |
225 | sector += PAGE_SIZE >> SECTOR_SHIFT; |
226 | n -= PAGE_SIZE; |
227 | } |
228 | } |
229 | |
230 | /* |
231 | * Copy n bytes from src to the brd starting at sector. Does not sleep. |
232 | */ |
233 | static void copy_to_brd(struct brd_device *brd, const void *src, |
234 | sector_t sector, size_t n) |
235 | { |
236 | struct page *page; |
237 | void *dst; |
238 | unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; |
239 | size_t copy; |
240 | |
241 | copy = min_t(size_t, n, PAGE_SIZE - offset); |
242 | page = brd_lookup_page(brd, sector); |
243 | BUG_ON(!page); |
244 | |
245 | dst = kmap_atomic(page); |
246 | memcpy(dst + offset, src, copy); |
247 | kunmap_atomic(dst); |
248 | |
249 | if (copy < n) { |
250 | src += copy; |
251 | sector += copy >> SECTOR_SHIFT; |
252 | copy = n - copy; |
253 | page = brd_lookup_page(brd, sector); |
254 | BUG_ON(!page); |
255 | |
256 | dst = kmap_atomic(page); |
257 | memcpy(dst, src, copy); |
258 | kunmap_atomic(dst); |
259 | } |
260 | } |
261 | |
262 | /* |
263 | * Copy n bytes to dst from the brd starting at sector. Does not sleep. |
264 | */ |
265 | static void copy_from_brd(void *dst, struct brd_device *brd, |
266 | sector_t sector, size_t n) |
267 | { |
268 | struct page *page; |
269 | void *src; |
270 | unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; |
271 | size_t copy; |
272 | |
273 | copy = min_t(size_t, n, PAGE_SIZE - offset); |
274 | page = brd_lookup_page(brd, sector); |
275 | if (page) { |
276 | src = kmap_atomic(page); |
277 | memcpy(dst, src + offset, copy); |
278 | kunmap_atomic(src); |
279 | } else |
280 | memset(dst, 0, copy); |
281 | |
282 | if (copy < n) { |
283 | dst += copy; |
284 | sector += copy >> SECTOR_SHIFT; |
285 | copy = n - copy; |
286 | page = brd_lookup_page(brd, sector); |
287 | if (page) { |
288 | src = kmap_atomic(page); |
289 | memcpy(dst, src, copy); |
290 | kunmap_atomic(src); |
291 | } else |
292 | memset(dst, 0, copy); |
293 | } |
294 | } |
295 | |
296 | /* |
297 | * Process a single bvec of a bio. |
298 | */ |
299 | static int brd_do_bvec(struct brd_device *brd, struct page *page, |
300 | unsigned int len, unsigned int off, int rw, |
301 | sector_t sector) |
302 | { |
303 | void *mem; |
304 | int err = 0; |
305 | |
306 | if (rw != READ) { |
307 | err = copy_to_brd_setup(brd, sector, len); |
308 | if (err) |
309 | goto out; |
310 | } |
311 | |
312 | mem = kmap_atomic(page); |
313 | if (rw == READ) { |
314 | copy_from_brd(mem + off, brd, sector, len); |
315 | flush_dcache_page(page); |
316 | } else { |
317 | flush_dcache_page(page); |
318 | copy_to_brd(brd, mem + off, sector, len); |
319 | } |
320 | kunmap_atomic(mem); |
321 | |
322 | out: |
323 | return err; |
324 | } |
325 | |
326 | static void brd_make_request(struct request_queue *q, struct bio *bio) |
327 | { |
328 | struct block_device *bdev = bio->bi_bdev; |
329 | struct brd_device *brd = bdev->bd_disk->private_data; |
330 | int rw; |
331 | struct bio_vec *bvec; |
332 | sector_t sector; |
333 | int i; |
334 | int err = -EIO; |
335 | |
336 | sector = bio->bi_sector; |
337 | if (sector + (bio->bi_size >> SECTOR_SHIFT) > |
338 | get_capacity(bdev->bd_disk)) |
339 | goto out; |
340 | |
341 | if (unlikely(bio->bi_rw & REQ_DISCARD)) { |
342 | err = 0; |
343 | discard_from_brd(brd, sector, bio->bi_size); |
344 | goto out; |
345 | } |
346 | |
347 | rw = bio_rw(bio); |
348 | if (rw == READA) |
349 | rw = READ; |
350 | |
351 | bio_for_each_segment(bvec, bio, i) { |
352 | unsigned int len = bvec->bv_len; |
353 | err = brd_do_bvec(brd, bvec->bv_page, len, |
354 | bvec->bv_offset, rw, sector); |
355 | if (err) |
356 | break; |
357 | sector += len >> SECTOR_SHIFT; |
358 | } |
359 | |
360 | out: |
361 | bio_endio(bio, err); |
362 | } |
363 | |
364 | #ifdef CONFIG_BLK_DEV_XIP |
365 | static int brd_direct_access(struct block_device *bdev, sector_t sector, |
366 | void **kaddr, unsigned long *pfn) |
367 | { |
368 | struct brd_device *brd = bdev->bd_disk->private_data; |
369 | struct page *page; |
370 | |
371 | if (!brd) |
372 | return -ENODEV; |
373 | if (sector & (PAGE_SECTORS-1)) |
374 | return -EINVAL; |
375 | if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk)) |
376 | return -ERANGE; |
377 | page = brd_insert_page(brd, sector); |
378 | if (!page) |
379 | return -ENOMEM; |
380 | *kaddr = page_address(page); |
381 | *pfn = page_to_pfn(page); |
382 | |
383 | return 0; |
384 | } |
385 | #endif |
386 | |
387 | static int brd_ioctl(struct block_device *bdev, fmode_t mode, |
388 | unsigned int cmd, unsigned long arg) |
389 | { |
390 | int error; |
391 | struct brd_device *brd = bdev->bd_disk->private_data; |
392 | |
393 | if (cmd != BLKFLSBUF) |
394 | return -ENOTTY; |
395 | |
396 | /* |
397 | * ram device BLKFLSBUF has special semantics, we want to actually |
398 | * release and destroy the ramdisk data. |
399 | */ |
400 | mutex_lock(&brd_mutex); |
401 | mutex_lock(&bdev->bd_mutex); |
402 | error = -EBUSY; |
403 | if (bdev->bd_openers <= 1) { |
404 | /* |
405 | * Kill the cache first, so it isn't written back to the |
406 | * device. |
407 | * |
408 | * Another thread might instantiate more buffercache here, |
409 | * but there is not much we can do to close that race. |
410 | */ |
411 | kill_bdev(bdev); |
412 | brd_free_pages(brd); |
413 | error = 0; |
414 | } |
415 | mutex_unlock(&bdev->bd_mutex); |
416 | mutex_unlock(&brd_mutex); |
417 | |
418 | return error; |
419 | } |
420 | |
421 | static const struct block_device_operations brd_fops = { |
422 | .owner = THIS_MODULE, |
423 | .ioctl = brd_ioctl, |
424 | #ifdef CONFIG_BLK_DEV_XIP |
425 | .direct_access = brd_direct_access, |
426 | #endif |
427 | }; |
428 | |
429 | /* |
430 | * And now the modules code and kernel interface. |
431 | */ |
432 | static int rd_nr; |
433 | int rd_size = CONFIG_BLK_DEV_RAM_SIZE; |
434 | static int max_part; |
435 | static int part_shift; |
436 | module_param(rd_nr, int, S_IRUGO); |
437 | MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); |
438 | module_param(rd_size, int, S_IRUGO); |
439 | MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); |
440 | module_param(max_part, int, S_IRUGO); |
441 | MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk"); |
442 | MODULE_LICENSE("GPL"); |
443 | MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); |
444 | MODULE_ALIAS("rd"); |
445 | |
446 | #ifndef MODULE |
447 | /* Legacy boot options - nonmodular */ |
448 | static int __init ramdisk_size(char *str) |
449 | { |
450 | rd_size = simple_strtol(str, NULL, 0); |
451 | return 1; |
452 | } |
453 | __setup("ramdisk_size=", ramdisk_size); |
454 | #endif |
455 | |
456 | /* |
457 | * The device scheme is derived from loop.c. Keep them in synch where possible |
458 | * (should share code eventually). |
459 | */ |
460 | static LIST_HEAD(brd_devices); |
461 | static DEFINE_MUTEX(brd_devices_mutex); |
462 | |
463 | static struct brd_device *brd_alloc(int i) |
464 | { |
465 | struct brd_device *brd; |
466 | struct gendisk *disk; |
467 | |
468 | brd = kzalloc(sizeof(*brd), GFP_KERNEL); |
469 | if (!brd) |
470 | goto out; |
471 | brd->brd_number = i; |
472 | spin_lock_init(&brd->brd_lock); |
473 | INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); |
474 | |
475 | brd->brd_queue = blk_alloc_queue(GFP_KERNEL); |
476 | if (!brd->brd_queue) |
477 | goto out_free_dev; |
478 | blk_queue_make_request(brd->brd_queue, brd_make_request); |
479 | blk_queue_max_hw_sectors(brd->brd_queue, 1024); |
480 | blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); |
481 | |
482 | brd->brd_queue->limits.discard_granularity = PAGE_SIZE; |
483 | brd->brd_queue->limits.max_discard_sectors = UINT_MAX; |
484 | brd->brd_queue->limits.discard_zeroes_data = 1; |
485 | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); |
486 | |
487 | disk = brd->brd_disk = alloc_disk(1 << part_shift); |
488 | if (!disk) |
489 | goto out_free_queue; |
490 | disk->major = RAMDISK_MAJOR; |
491 | disk->first_minor = i << part_shift; |
492 | disk->fops = &brd_fops; |
493 | disk->private_data = brd; |
494 | disk->queue = brd->brd_queue; |
495 | disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; |
496 | sprintf(disk->disk_name, "ram%d", i); |
497 | set_capacity(disk, rd_size * 2); |
498 | |
499 | return brd; |
500 | |
501 | out_free_queue: |
502 | blk_cleanup_queue(brd->brd_queue); |
503 | out_free_dev: |
504 | kfree(brd); |
505 | out: |
506 | return NULL; |
507 | } |
508 | |
509 | static void brd_free(struct brd_device *brd) |
510 | { |
511 | put_disk(brd->brd_disk); |
512 | blk_cleanup_queue(brd->brd_queue); |
513 | brd_free_pages(brd); |
514 | kfree(brd); |
515 | } |
516 | |
517 | static struct brd_device *brd_init_one(int i) |
518 | { |
519 | struct brd_device *brd; |
520 | |
521 | list_for_each_entry(brd, &brd_devices, brd_list) { |
522 | if (brd->brd_number == i) |
523 | goto out; |
524 | } |
525 | |
526 | brd = brd_alloc(i); |
527 | if (brd) { |
528 | add_disk(brd->brd_disk); |
529 | list_add_tail(&brd->brd_list, &brd_devices); |
530 | } |
531 | out: |
532 | return brd; |
533 | } |
534 | |
535 | static void brd_del_one(struct brd_device *brd) |
536 | { |
537 | list_del(&brd->brd_list); |
538 | del_gendisk(brd->brd_disk); |
539 | brd_free(brd); |
540 | } |
541 | |
542 | static struct kobject *brd_probe(dev_t dev, int *part, void *data) |
543 | { |
544 | struct brd_device *brd; |
545 | struct kobject *kobj; |
546 | |
547 | mutex_lock(&brd_devices_mutex); |
548 | brd = brd_init_one(MINOR(dev) >> part_shift); |
549 | kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM); |
550 | mutex_unlock(&brd_devices_mutex); |
551 | |
552 | *part = 0; |
553 | return kobj; |
554 | } |
555 | |
556 | static int __init brd_init(void) |
557 | { |
558 | int i, nr; |
559 | unsigned long range; |
560 | struct brd_device *brd, *next; |
561 | |
562 | /* |
563 | * brd module now has a feature to instantiate underlying device |
564 | * structure on-demand, provided that there is an access dev node. |
565 | * However, this will not work well with user space tool that doesn't |
566 | * know about such "feature". In order to not break any existing |
567 | * tool, we do the following: |
568 | * |
569 | * (1) if rd_nr is specified, create that many upfront, and this |
570 | * also becomes a hard limit. |
571 | * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT |
572 | * (default 16) rd device on module load, user can further |
573 | * extend brd device by create dev node themselves and have |
574 | * kernel automatically instantiate actual device on-demand. |
575 | */ |
576 | |
577 | part_shift = 0; |
578 | if (max_part > 0) { |
579 | part_shift = fls(max_part); |
580 | |
581 | /* |
582 | * Adjust max_part according to part_shift as it is exported |
583 | * to user space so that user can decide correct minor number |
584 | * if [s]he want to create more devices. |
585 | * |
586 | * Note that -1 is required because partition 0 is reserved |
587 | * for the whole disk. |
588 | */ |
589 | max_part = (1UL << part_shift) - 1; |
590 | } |
591 | |
592 | if ((1UL << part_shift) > DISK_MAX_PARTS) |
593 | return -EINVAL; |
594 | |
595 | if (rd_nr > 1UL << (MINORBITS - part_shift)) |
596 | return -EINVAL; |
597 | |
598 | if (rd_nr) { |
599 | nr = rd_nr; |
600 | range = rd_nr << part_shift; |
601 | } else { |
602 | nr = CONFIG_BLK_DEV_RAM_COUNT; |
603 | range = 1UL << MINORBITS; |
604 | } |
605 | |
606 | if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) |
607 | return -EIO; |
608 | |
609 | for (i = 0; i < nr; i++) { |
610 | brd = brd_alloc(i); |
611 | if (!brd) |
612 | goto out_free; |
613 | list_add_tail(&brd->brd_list, &brd_devices); |
614 | } |
615 | |
616 | /* point of no return */ |
617 | |
618 | list_for_each_entry(brd, &brd_devices, brd_list) |
619 | add_disk(brd->brd_disk); |
620 | |
621 | blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range, |
622 | THIS_MODULE, brd_probe, NULL, NULL); |
623 | |
624 | printk(KERN_INFO "brd: module loaded\n"); |
625 | return 0; |
626 | |
627 | out_free: |
628 | list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { |
629 | list_del(&brd->brd_list); |
630 | brd_free(brd); |
631 | } |
632 | unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); |
633 | |
634 | return -ENOMEM; |
635 | } |
636 | |
637 | static void __exit brd_exit(void) |
638 | { |
639 | unsigned long range; |
640 | struct brd_device *brd, *next; |
641 | |
642 | range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS; |
643 | |
644 | list_for_each_entry_safe(brd, next, &brd_devices, brd_list) |
645 | brd_del_one(brd); |
646 | |
647 | blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range); |
648 | unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); |
649 | } |
650 | |
651 | module_init(brd_init); |
652 | module_exit(brd_exit); |
653 | |
654 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9