Root/
1 | /* |
2 | * Disk Array driver for HP Smart Array controllers. |
3 | * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P. |
4 | * |
5 | * This program is free software; you can redistribute it and/or modify |
6 | * it under the terms of the GNU General Public License as published by |
7 | * the Free Software Foundation; version 2 of the License. |
8 | * |
9 | * This program is distributed in the hope that it will be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | * General Public License for more details. |
13 | * |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write to the Free Software |
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
17 | * 02111-1307, USA. |
18 | * |
19 | * Questions/Comments/Bugfixes to iss_storagedev@hp.com |
20 | * |
21 | */ |
22 | |
23 | #include <linux/module.h> |
24 | #include <linux/interrupt.h> |
25 | #include <linux/types.h> |
26 | #include <linux/pci.h> |
27 | #include <linux/pci-aspm.h> |
28 | #include <linux/kernel.h> |
29 | #include <linux/slab.h> |
30 | #include <linux/delay.h> |
31 | #include <linux/major.h> |
32 | #include <linux/fs.h> |
33 | #include <linux/bio.h> |
34 | #include <linux/blkpg.h> |
35 | #include <linux/timer.h> |
36 | #include <linux/proc_fs.h> |
37 | #include <linux/seq_file.h> |
38 | #include <linux/init.h> |
39 | #include <linux/jiffies.h> |
40 | #include <linux/hdreg.h> |
41 | #include <linux/spinlock.h> |
42 | #include <linux/compat.h> |
43 | #include <linux/mutex.h> |
44 | #include <asm/uaccess.h> |
45 | #include <asm/io.h> |
46 | |
47 | #include <linux/dma-mapping.h> |
48 | #include <linux/blkdev.h> |
49 | #include <linux/genhd.h> |
50 | #include <linux/completion.h> |
51 | #include <scsi/scsi.h> |
52 | #include <scsi/sg.h> |
53 | #include <scsi/scsi_ioctl.h> |
54 | #include <linux/cdrom.h> |
55 | #include <linux/scatterlist.h> |
56 | #include <linux/kthread.h> |
57 | |
58 | #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) |
59 | #define DRIVER_NAME "HP CISS Driver (v 3.6.26)" |
60 | #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26) |
61 | |
62 | /* Embedded module documentation macros - see modules.h */ |
63 | MODULE_AUTHOR("Hewlett-Packard Company"); |
64 | MODULE_DESCRIPTION("Driver for HP Smart Array Controllers"); |
65 | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); |
66 | MODULE_VERSION("3.6.26"); |
67 | MODULE_LICENSE("GPL"); |
68 | static int cciss_tape_cmds = 6; |
69 | module_param(cciss_tape_cmds, int, 0644); |
70 | MODULE_PARM_DESC(cciss_tape_cmds, |
71 | "number of commands to allocate for tape devices (default: 6)"); |
72 | static int cciss_simple_mode; |
73 | module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR); |
74 | MODULE_PARM_DESC(cciss_simple_mode, |
75 | "Use 'simple mode' rather than 'performant mode'"); |
76 | |
77 | static DEFINE_MUTEX(cciss_mutex); |
78 | static struct proc_dir_entry *proc_cciss; |
79 | |
80 | #include "cciss_cmd.h" |
81 | #include "cciss.h" |
82 | #include <linux/cciss_ioctl.h> |
83 | |
84 | /* define the PCI info for the cards we can control */ |
85 | static const struct pci_device_id cciss_pci_device_id[] = { |
86 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070}, |
87 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080}, |
88 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082}, |
89 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083}, |
90 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091}, |
91 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A}, |
92 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B}, |
93 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C}, |
94 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D}, |
95 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225}, |
96 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, |
97 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, |
98 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235}, |
99 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211}, |
100 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212}, |
101 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213}, |
102 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214}, |
103 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215}, |
104 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237}, |
105 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, |
106 | {0,} |
107 | }; |
108 | |
109 | MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); |
110 | |
111 | /* board_id = Subsystem Device ID & Vendor ID |
112 | * product = Marketing Name for the board |
113 | * access = Address of the struct of function pointers |
114 | */ |
115 | static struct board_type products[] = { |
116 | {0x40700E11, "Smart Array 5300", &SA5_access}, |
117 | {0x40800E11, "Smart Array 5i", &SA5B_access}, |
118 | {0x40820E11, "Smart Array 532", &SA5B_access}, |
119 | {0x40830E11, "Smart Array 5312", &SA5B_access}, |
120 | {0x409A0E11, "Smart Array 641", &SA5_access}, |
121 | {0x409B0E11, "Smart Array 642", &SA5_access}, |
122 | {0x409C0E11, "Smart Array 6400", &SA5_access}, |
123 | {0x409D0E11, "Smart Array 6400 EM", &SA5_access}, |
124 | {0x40910E11, "Smart Array 6i", &SA5_access}, |
125 | {0x3225103C, "Smart Array P600", &SA5_access}, |
126 | {0x3223103C, "Smart Array P800", &SA5_access}, |
127 | {0x3234103C, "Smart Array P400", &SA5_access}, |
128 | {0x3235103C, "Smart Array P400i", &SA5_access}, |
129 | {0x3211103C, "Smart Array E200i", &SA5_access}, |
130 | {0x3212103C, "Smart Array E200", &SA5_access}, |
131 | {0x3213103C, "Smart Array E200i", &SA5_access}, |
132 | {0x3214103C, "Smart Array E200i", &SA5_access}, |
133 | {0x3215103C, "Smart Array E200i", &SA5_access}, |
134 | {0x3237103C, "Smart Array E500", &SA5_access}, |
135 | {0x3223103C, "Smart Array P800", &SA5_access}, |
136 | {0x3234103C, "Smart Array P400", &SA5_access}, |
137 | {0x323D103C, "Smart Array P700m", &SA5_access}, |
138 | }; |
139 | |
140 | /* How long to wait (in milliseconds) for board to go into simple mode */ |
141 | #define MAX_CONFIG_WAIT 30000 |
142 | #define MAX_IOCTL_CONFIG_WAIT 1000 |
143 | |
144 | /*define how many times we will try a command because of bus resets */ |
145 | #define MAX_CMD_RETRIES 3 |
146 | |
147 | #define MAX_CTLR 32 |
148 | |
149 | /* Originally cciss driver only supports 8 major numbers */ |
150 | #define MAX_CTLR_ORIG 8 |
151 | |
152 | static ctlr_info_t *hba[MAX_CTLR]; |
153 | |
154 | static struct task_struct *cciss_scan_thread; |
155 | static DEFINE_MUTEX(scan_mutex); |
156 | static LIST_HEAD(scan_q); |
157 | |
158 | static void do_cciss_request(struct request_queue *q); |
159 | static irqreturn_t do_cciss_intx(int irq, void *dev_id); |
160 | static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id); |
161 | static int cciss_open(struct block_device *bdev, fmode_t mode); |
162 | static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode); |
163 | static int cciss_release(struct gendisk *disk, fmode_t mode); |
164 | static int do_ioctl(struct block_device *bdev, fmode_t mode, |
165 | unsigned int cmd, unsigned long arg); |
166 | static int cciss_ioctl(struct block_device *bdev, fmode_t mode, |
167 | unsigned int cmd, unsigned long arg); |
168 | static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo); |
169 | |
170 | static int cciss_revalidate(struct gendisk *disk); |
171 | static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl); |
172 | static int deregister_disk(ctlr_info_t *h, int drv_index, |
173 | int clear_all, int via_ioctl); |
174 | |
175 | static void cciss_read_capacity(ctlr_info_t *h, int logvol, |
176 | sector_t *total_size, unsigned int *block_size); |
177 | static void cciss_read_capacity_16(ctlr_info_t *h, int logvol, |
178 | sector_t *total_size, unsigned int *block_size); |
179 | static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol, |
180 | sector_t total_size, |
181 | unsigned int block_size, InquiryData_struct *inq_buff, |
182 | drive_info_struct *drv); |
183 | static void __devinit cciss_interrupt_mode(ctlr_info_t *); |
184 | static int __devinit cciss_enter_simple_mode(struct ctlr_info *h); |
185 | static void start_io(ctlr_info_t *h); |
186 | static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size, |
187 | __u8 page_code, unsigned char scsi3addr[], |
188 | int cmd_type); |
189 | static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, |
190 | int attempt_retry); |
191 | static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c); |
192 | |
193 | static int add_to_scan_list(struct ctlr_info *h); |
194 | static int scan_thread(void *data); |
195 | static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c); |
196 | static void cciss_hba_release(struct device *dev); |
197 | static void cciss_device_release(struct device *dev); |
198 | static void cciss_free_gendisk(ctlr_info_t *h, int drv_index); |
199 | static void cciss_free_drive_info(ctlr_info_t *h, int drv_index); |
200 | static inline u32 next_command(ctlr_info_t *h); |
201 | static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev, |
202 | void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
203 | u64 *cfg_offset); |
204 | static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev, |
205 | unsigned long *memory_bar); |
206 | static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag); |
207 | static __devinit int write_driver_ver_to_cfgtable( |
208 | CfgTable_struct __iomem *cfgtable); |
209 | |
210 | /* performant mode helper functions */ |
211 | static void calc_bucket_map(int *bucket, int num_buckets, int nsgs, |
212 | int *bucket_map); |
213 | static void cciss_put_controller_into_performant_mode(ctlr_info_t *h); |
214 | |
215 | #ifdef CONFIG_PROC_FS |
216 | static void cciss_procinit(ctlr_info_t *h); |
217 | #else |
218 | static void cciss_procinit(ctlr_info_t *h) |
219 | { |
220 | } |
221 | #endif /* CONFIG_PROC_FS */ |
222 | |
223 | #ifdef CONFIG_COMPAT |
224 | static int cciss_compat_ioctl(struct block_device *, fmode_t, |
225 | unsigned, unsigned long); |
226 | #endif |
227 | |
228 | static const struct block_device_operations cciss_fops = { |
229 | .owner = THIS_MODULE, |
230 | .open = cciss_unlocked_open, |
231 | .release = cciss_release, |
232 | .ioctl = do_ioctl, |
233 | .getgeo = cciss_getgeo, |
234 | #ifdef CONFIG_COMPAT |
235 | .compat_ioctl = cciss_compat_ioctl, |
236 | #endif |
237 | .revalidate_disk = cciss_revalidate, |
238 | }; |
239 | |
240 | /* set_performant_mode: Modify the tag for cciss performant |
241 | * set bit 0 for pull model, bits 3-1 for block fetch |
242 | * register number |
243 | */ |
244 | static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c) |
245 | { |
246 | if (likely(h->transMethod & CFGTBL_Trans_Performant)) |
247 | c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); |
248 | } |
249 | |
250 | /* |
251 | * Enqueuing and dequeuing functions for cmdlists. |
252 | */ |
253 | static inline void addQ(struct list_head *list, CommandList_struct *c) |
254 | { |
255 | list_add_tail(&c->list, list); |
256 | } |
257 | |
258 | static inline void removeQ(CommandList_struct *c) |
259 | { |
260 | /* |
261 | * After kexec/dump some commands might still |
262 | * be in flight, which the firmware will try |
263 | * to complete. Resetting the firmware doesn't work |
264 | * with old fw revisions, so we have to mark |
265 | * them off as 'stale' to prevent the driver from |
266 | * falling over. |
267 | */ |
268 | if (WARN_ON(list_empty(&c->list))) { |
269 | c->cmd_type = CMD_MSG_STALE; |
270 | return; |
271 | } |
272 | |
273 | list_del_init(&c->list); |
274 | } |
275 | |
276 | static void enqueue_cmd_and_start_io(ctlr_info_t *h, |
277 | CommandList_struct *c) |
278 | { |
279 | unsigned long flags; |
280 | set_performant_mode(h, c); |
281 | spin_lock_irqsave(&h->lock, flags); |
282 | addQ(&h->reqQ, c); |
283 | h->Qdepth++; |
284 | if (h->Qdepth > h->maxQsinceinit) |
285 | h->maxQsinceinit = h->Qdepth; |
286 | start_io(h); |
287 | spin_unlock_irqrestore(&h->lock, flags); |
288 | } |
289 | |
290 | static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list, |
291 | int nr_cmds) |
292 | { |
293 | int i; |
294 | |
295 | if (!cmd_sg_list) |
296 | return; |
297 | for (i = 0; i < nr_cmds; i++) { |
298 | kfree(cmd_sg_list[i]); |
299 | cmd_sg_list[i] = NULL; |
300 | } |
301 | kfree(cmd_sg_list); |
302 | } |
303 | |
304 | static SGDescriptor_struct **cciss_allocate_sg_chain_blocks( |
305 | ctlr_info_t *h, int chainsize, int nr_cmds) |
306 | { |
307 | int j; |
308 | SGDescriptor_struct **cmd_sg_list; |
309 | |
310 | if (chainsize <= 0) |
311 | return NULL; |
312 | |
313 | cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL); |
314 | if (!cmd_sg_list) |
315 | return NULL; |
316 | |
317 | /* Build up chain blocks for each command */ |
318 | for (j = 0; j < nr_cmds; j++) { |
319 | /* Need a block of chainsized s/g elements. */ |
320 | cmd_sg_list[j] = kmalloc((chainsize * |
321 | sizeof(*cmd_sg_list[j])), GFP_KERNEL); |
322 | if (!cmd_sg_list[j]) { |
323 | dev_err(&h->pdev->dev, "Cannot get memory " |
324 | "for s/g chains.\n"); |
325 | goto clean; |
326 | } |
327 | } |
328 | return cmd_sg_list; |
329 | clean: |
330 | cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds); |
331 | return NULL; |
332 | } |
333 | |
334 | static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c) |
335 | { |
336 | SGDescriptor_struct *chain_sg; |
337 | u64bit temp64; |
338 | |
339 | if (c->Header.SGTotal <= h->max_cmd_sgentries) |
340 | return; |
341 | |
342 | chain_sg = &c->SG[h->max_cmd_sgentries - 1]; |
343 | temp64.val32.lower = chain_sg->Addr.lower; |
344 | temp64.val32.upper = chain_sg->Addr.upper; |
345 | pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); |
346 | } |
347 | |
348 | static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c, |
349 | SGDescriptor_struct *chain_block, int len) |
350 | { |
351 | SGDescriptor_struct *chain_sg; |
352 | u64bit temp64; |
353 | |
354 | chain_sg = &c->SG[h->max_cmd_sgentries - 1]; |
355 | chain_sg->Ext = CCISS_SG_CHAIN; |
356 | chain_sg->Len = len; |
357 | temp64.val = pci_map_single(h->pdev, chain_block, len, |
358 | PCI_DMA_TODEVICE); |
359 | chain_sg->Addr.lower = temp64.val32.lower; |
360 | chain_sg->Addr.upper = temp64.val32.upper; |
361 | } |
362 | |
363 | #include "cciss_scsi.c" /* For SCSI tape support */ |
364 | |
365 | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", |
366 | "UNKNOWN" |
367 | }; |
368 | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1) |
369 | |
370 | #ifdef CONFIG_PROC_FS |
371 | |
372 | /* |
373 | * Report information about this controller. |
374 | */ |
375 | #define ENG_GIG 1000000000 |
376 | #define ENG_GIG_FACTOR (ENG_GIG/512) |
377 | #define ENGAGE_SCSI "engage scsi" |
378 | |
379 | static void cciss_seq_show_header(struct seq_file *seq) |
380 | { |
381 | ctlr_info_t *h = seq->private; |
382 | |
383 | seq_printf(seq, "%s: HP %s Controller\n" |
384 | "Board ID: 0x%08lx\n" |
385 | "Firmware Version: %c%c%c%c\n" |
386 | "IRQ: %d\n" |
387 | "Logical drives: %d\n" |
388 | "Current Q depth: %d\n" |
389 | "Current # commands on controller: %d\n" |
390 | "Max Q depth since init: %d\n" |
391 | "Max # commands on controller since init: %d\n" |
392 | "Max SG entries since init: %d\n", |
393 | h->devname, |
394 | h->product_name, |
395 | (unsigned long)h->board_id, |
396 | h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], |
397 | h->firm_ver[3], (unsigned int)h->intr[h->intr_mode], |
398 | h->num_luns, |
399 | h->Qdepth, h->commands_outstanding, |
400 | h->maxQsinceinit, h->max_outstanding, h->maxSG); |
401 | |
402 | #ifdef CONFIG_CISS_SCSI_TAPE |
403 | cciss_seq_tape_report(seq, h); |
404 | #endif /* CONFIG_CISS_SCSI_TAPE */ |
405 | } |
406 | |
407 | static void *cciss_seq_start(struct seq_file *seq, loff_t *pos) |
408 | { |
409 | ctlr_info_t *h = seq->private; |
410 | unsigned long flags; |
411 | |
412 | /* prevent displaying bogus info during configuration |
413 | * or deconfiguration of a logical volume |
414 | */ |
415 | spin_lock_irqsave(&h->lock, flags); |
416 | if (h->busy_configuring) { |
417 | spin_unlock_irqrestore(&h->lock, flags); |
418 | return ERR_PTR(-EBUSY); |
419 | } |
420 | h->busy_configuring = 1; |
421 | spin_unlock_irqrestore(&h->lock, flags); |
422 | |
423 | if (*pos == 0) |
424 | cciss_seq_show_header(seq); |
425 | |
426 | return pos; |
427 | } |
428 | |
429 | static int cciss_seq_show(struct seq_file *seq, void *v) |
430 | { |
431 | sector_t vol_sz, vol_sz_frac; |
432 | ctlr_info_t *h = seq->private; |
433 | unsigned ctlr = h->ctlr; |
434 | loff_t *pos = v; |
435 | drive_info_struct *drv = h->drv[*pos]; |
436 | |
437 | if (*pos > h->highest_lun) |
438 | return 0; |
439 | |
440 | if (drv == NULL) /* it's possible for h->drv[] to have holes. */ |
441 | return 0; |
442 | |
443 | if (drv->heads == 0) |
444 | return 0; |
445 | |
446 | vol_sz = drv->nr_blocks; |
447 | vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); |
448 | vol_sz_frac *= 100; |
449 | sector_div(vol_sz_frac, ENG_GIG_FACTOR); |
450 | |
451 | if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN) |
452 | drv->raid_level = RAID_UNKNOWN; |
453 | seq_printf(seq, "cciss/c%dd%d:" |
454 | "\t%4u.%02uGB\tRAID %s\n", |
455 | ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac, |
456 | raid_label[drv->raid_level]); |
457 | return 0; |
458 | } |
459 | |
460 | static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
461 | { |
462 | ctlr_info_t *h = seq->private; |
463 | |
464 | if (*pos > h->highest_lun) |
465 | return NULL; |
466 | *pos += 1; |
467 | |
468 | return pos; |
469 | } |
470 | |
471 | static void cciss_seq_stop(struct seq_file *seq, void *v) |
472 | { |
473 | ctlr_info_t *h = seq->private; |
474 | |
475 | /* Only reset h->busy_configuring if we succeeded in setting |
476 | * it during cciss_seq_start. */ |
477 | if (v == ERR_PTR(-EBUSY)) |
478 | return; |
479 | |
480 | h->busy_configuring = 0; |
481 | } |
482 | |
483 | static const struct seq_operations cciss_seq_ops = { |
484 | .start = cciss_seq_start, |
485 | .show = cciss_seq_show, |
486 | .next = cciss_seq_next, |
487 | .stop = cciss_seq_stop, |
488 | }; |
489 | |
490 | static int cciss_seq_open(struct inode *inode, struct file *file) |
491 | { |
492 | int ret = seq_open(file, &cciss_seq_ops); |
493 | struct seq_file *seq = file->private_data; |
494 | |
495 | if (!ret) |
496 | seq->private = PDE(inode)->data; |
497 | |
498 | return ret; |
499 | } |
500 | |
501 | static ssize_t |
502 | cciss_proc_write(struct file *file, const char __user *buf, |
503 | size_t length, loff_t *ppos) |
504 | { |
505 | int err; |
506 | char *buffer; |
507 | |
508 | #ifndef CONFIG_CISS_SCSI_TAPE |
509 | return -EINVAL; |
510 | #endif |
511 | |
512 | if (!buf || length > PAGE_SIZE - 1) |
513 | return -EINVAL; |
514 | |
515 | buffer = (char *)__get_free_page(GFP_KERNEL); |
516 | if (!buffer) |
517 | return -ENOMEM; |
518 | |
519 | err = -EFAULT; |
520 | if (copy_from_user(buffer, buf, length)) |
521 | goto out; |
522 | buffer[length] = '\0'; |
523 | |
524 | #ifdef CONFIG_CISS_SCSI_TAPE |
525 | if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) { |
526 | struct seq_file *seq = file->private_data; |
527 | ctlr_info_t *h = seq->private; |
528 | |
529 | err = cciss_engage_scsi(h); |
530 | if (err == 0) |
531 | err = length; |
532 | } else |
533 | #endif /* CONFIG_CISS_SCSI_TAPE */ |
534 | err = -EINVAL; |
535 | /* might be nice to have "disengage" too, but it's not |
536 | safely possible. (only 1 module use count, lock issues.) */ |
537 | |
538 | out: |
539 | free_page((unsigned long)buffer); |
540 | return err; |
541 | } |
542 | |
543 | static const struct file_operations cciss_proc_fops = { |
544 | .owner = THIS_MODULE, |
545 | .open = cciss_seq_open, |
546 | .read = seq_read, |
547 | .llseek = seq_lseek, |
548 | .release = seq_release, |
549 | .write = cciss_proc_write, |
550 | }; |
551 | |
552 | static void __devinit cciss_procinit(ctlr_info_t *h) |
553 | { |
554 | struct proc_dir_entry *pde; |
555 | |
556 | if (proc_cciss == NULL) |
557 | proc_cciss = proc_mkdir("driver/cciss", NULL); |
558 | if (!proc_cciss) |
559 | return; |
560 | pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP | |
561 | S_IROTH, proc_cciss, |
562 | &cciss_proc_fops, h); |
563 | } |
564 | #endif /* CONFIG_PROC_FS */ |
565 | |
566 | #define MAX_PRODUCT_NAME_LEN 19 |
567 | |
568 | #define to_hba(n) container_of(n, struct ctlr_info, dev) |
569 | #define to_drv(n) container_of(n, drive_info_struct, dev) |
570 | |
571 | /* List of controllers which cannot be hard reset on kexec with reset_devices */ |
572 | static u32 unresettable_controller[] = { |
573 | 0x324a103C, /* Smart Array P712m */ |
574 | 0x324b103C, /* SmartArray P711m */ |
575 | 0x3223103C, /* Smart Array P800 */ |
576 | 0x3234103C, /* Smart Array P400 */ |
577 | 0x3235103C, /* Smart Array P400i */ |
578 | 0x3211103C, /* Smart Array E200i */ |
579 | 0x3212103C, /* Smart Array E200 */ |
580 | 0x3213103C, /* Smart Array E200i */ |
581 | 0x3214103C, /* Smart Array E200i */ |
582 | 0x3215103C, /* Smart Array E200i */ |
583 | 0x3237103C, /* Smart Array E500 */ |
584 | 0x323D103C, /* Smart Array P700m */ |
585 | 0x409C0E11, /* Smart Array 6400 */ |
586 | 0x409D0E11, /* Smart Array 6400 EM */ |
587 | }; |
588 | |
589 | /* List of controllers which cannot even be soft reset */ |
590 | static u32 soft_unresettable_controller[] = { |
591 | 0x409C0E11, /* Smart Array 6400 */ |
592 | 0x409D0E11, /* Smart Array 6400 EM */ |
593 | }; |
594 | |
595 | static int ctlr_is_hard_resettable(u32 board_id) |
596 | { |
597 | int i; |
598 | |
599 | for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) |
600 | if (unresettable_controller[i] == board_id) |
601 | return 0; |
602 | return 1; |
603 | } |
604 | |
605 | static int ctlr_is_soft_resettable(u32 board_id) |
606 | { |
607 | int i; |
608 | |
609 | for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) |
610 | if (soft_unresettable_controller[i] == board_id) |
611 | return 0; |
612 | return 1; |
613 | } |
614 | |
615 | static int ctlr_is_resettable(u32 board_id) |
616 | { |
617 | return ctlr_is_hard_resettable(board_id) || |
618 | ctlr_is_soft_resettable(board_id); |
619 | } |
620 | |
621 | static ssize_t host_show_resettable(struct device *dev, |
622 | struct device_attribute *attr, |
623 | char *buf) |
624 | { |
625 | struct ctlr_info *h = to_hba(dev); |
626 | |
627 | return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); |
628 | } |
629 | static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL); |
630 | |
631 | static ssize_t host_store_rescan(struct device *dev, |
632 | struct device_attribute *attr, |
633 | const char *buf, size_t count) |
634 | { |
635 | struct ctlr_info *h = to_hba(dev); |
636 | |
637 | add_to_scan_list(h); |
638 | wake_up_process(cciss_scan_thread); |
639 | wait_for_completion_interruptible(&h->scan_wait); |
640 | |
641 | return count; |
642 | } |
643 | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); |
644 | |
645 | static ssize_t host_show_transport_mode(struct device *dev, |
646 | struct device_attribute *attr, |
647 | char *buf) |
648 | { |
649 | struct ctlr_info *h = to_hba(dev); |
650 | |
651 | return snprintf(buf, 20, "%s\n", |
652 | h->transMethod & CFGTBL_Trans_Performant ? |
653 | "performant" : "simple"); |
654 | } |
655 | static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL); |
656 | |
657 | static ssize_t dev_show_unique_id(struct device *dev, |
658 | struct device_attribute *attr, |
659 | char *buf) |
660 | { |
661 | drive_info_struct *drv = to_drv(dev); |
662 | struct ctlr_info *h = to_hba(drv->dev.parent); |
663 | __u8 sn[16]; |
664 | unsigned long flags; |
665 | int ret = 0; |
666 | |
667 | spin_lock_irqsave(&h->lock, flags); |
668 | if (h->busy_configuring) |
669 | ret = -EBUSY; |
670 | else |
671 | memcpy(sn, drv->serial_no, sizeof(sn)); |
672 | spin_unlock_irqrestore(&h->lock, flags); |
673 | |
674 | if (ret) |
675 | return ret; |
676 | else |
677 | return snprintf(buf, 16 * 2 + 2, |
678 | "%02X%02X%02X%02X%02X%02X%02X%02X" |
679 | "%02X%02X%02X%02X%02X%02X%02X%02X\n", |
680 | sn[0], sn[1], sn[2], sn[3], |
681 | sn[4], sn[5], sn[6], sn[7], |
682 | sn[8], sn[9], sn[10], sn[11], |
683 | sn[12], sn[13], sn[14], sn[15]); |
684 | } |
685 | static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL); |
686 | |
687 | static ssize_t dev_show_vendor(struct device *dev, |
688 | struct device_attribute *attr, |
689 | char *buf) |
690 | { |
691 | drive_info_struct *drv = to_drv(dev); |
692 | struct ctlr_info *h = to_hba(drv->dev.parent); |
693 | char vendor[VENDOR_LEN + 1]; |
694 | unsigned long flags; |
695 | int ret = 0; |
696 | |
697 | spin_lock_irqsave(&h->lock, flags); |
698 | if (h->busy_configuring) |
699 | ret = -EBUSY; |
700 | else |
701 | memcpy(vendor, drv->vendor, VENDOR_LEN + 1); |
702 | spin_unlock_irqrestore(&h->lock, flags); |
703 | |
704 | if (ret) |
705 | return ret; |
706 | else |
707 | return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor); |
708 | } |
709 | static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL); |
710 | |
711 | static ssize_t dev_show_model(struct device *dev, |
712 | struct device_attribute *attr, |
713 | char *buf) |
714 | { |
715 | drive_info_struct *drv = to_drv(dev); |
716 | struct ctlr_info *h = to_hba(drv->dev.parent); |
717 | char model[MODEL_LEN + 1]; |
718 | unsigned long flags; |
719 | int ret = 0; |
720 | |
721 | spin_lock_irqsave(&h->lock, flags); |
722 | if (h->busy_configuring) |
723 | ret = -EBUSY; |
724 | else |
725 | memcpy(model, drv->model, MODEL_LEN + 1); |
726 | spin_unlock_irqrestore(&h->lock, flags); |
727 | |
728 | if (ret) |
729 | return ret; |
730 | else |
731 | return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model); |
732 | } |
733 | static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL); |
734 | |
735 | static ssize_t dev_show_rev(struct device *dev, |
736 | struct device_attribute *attr, |
737 | char *buf) |
738 | { |
739 | drive_info_struct *drv = to_drv(dev); |
740 | struct ctlr_info *h = to_hba(drv->dev.parent); |
741 | char rev[REV_LEN + 1]; |
742 | unsigned long flags; |
743 | int ret = 0; |
744 | |
745 | spin_lock_irqsave(&h->lock, flags); |
746 | if (h->busy_configuring) |
747 | ret = -EBUSY; |
748 | else |
749 | memcpy(rev, drv->rev, REV_LEN + 1); |
750 | spin_unlock_irqrestore(&h->lock, flags); |
751 | |
752 | if (ret) |
753 | return ret; |
754 | else |
755 | return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev); |
756 | } |
757 | static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL); |
758 | |
759 | static ssize_t cciss_show_lunid(struct device *dev, |
760 | struct device_attribute *attr, char *buf) |
761 | { |
762 | drive_info_struct *drv = to_drv(dev); |
763 | struct ctlr_info *h = to_hba(drv->dev.parent); |
764 | unsigned long flags; |
765 | unsigned char lunid[8]; |
766 | |
767 | spin_lock_irqsave(&h->lock, flags); |
768 | if (h->busy_configuring) { |
769 | spin_unlock_irqrestore(&h->lock, flags); |
770 | return -EBUSY; |
771 | } |
772 | if (!drv->heads) { |
773 | spin_unlock_irqrestore(&h->lock, flags); |
774 | return -ENOTTY; |
775 | } |
776 | memcpy(lunid, drv->LunID, sizeof(lunid)); |
777 | spin_unlock_irqrestore(&h->lock, flags); |
778 | return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
779 | lunid[0], lunid[1], lunid[2], lunid[3], |
780 | lunid[4], lunid[5], lunid[6], lunid[7]); |
781 | } |
782 | static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL); |
783 | |
784 | static ssize_t cciss_show_raid_level(struct device *dev, |
785 | struct device_attribute *attr, char *buf) |
786 | { |
787 | drive_info_struct *drv = to_drv(dev); |
788 | struct ctlr_info *h = to_hba(drv->dev.parent); |
789 | int raid; |
790 | unsigned long flags; |
791 | |
792 | spin_lock_irqsave(&h->lock, flags); |
793 | if (h->busy_configuring) { |
794 | spin_unlock_irqrestore(&h->lock, flags); |
795 | return -EBUSY; |
796 | } |
797 | raid = drv->raid_level; |
798 | spin_unlock_irqrestore(&h->lock, flags); |
799 | if (raid < 0 || raid > RAID_UNKNOWN) |
800 | raid = RAID_UNKNOWN; |
801 | |
802 | return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n", |
803 | raid_label[raid]); |
804 | } |
805 | static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL); |
806 | |
807 | static ssize_t cciss_show_usage_count(struct device *dev, |
808 | struct device_attribute *attr, char *buf) |
809 | { |
810 | drive_info_struct *drv = to_drv(dev); |
811 | struct ctlr_info *h = to_hba(drv->dev.parent); |
812 | unsigned long flags; |
813 | int count; |
814 | |
815 | spin_lock_irqsave(&h->lock, flags); |
816 | if (h->busy_configuring) { |
817 | spin_unlock_irqrestore(&h->lock, flags); |
818 | return -EBUSY; |
819 | } |
820 | count = drv->usage_count; |
821 | spin_unlock_irqrestore(&h->lock, flags); |
822 | return snprintf(buf, 20, "%d\n", count); |
823 | } |
824 | static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL); |
825 | |
826 | static struct attribute *cciss_host_attrs[] = { |
827 | &dev_attr_rescan.attr, |
828 | &dev_attr_resettable.attr, |
829 | &dev_attr_transport_mode.attr, |
830 | NULL |
831 | }; |
832 | |
833 | static struct attribute_group cciss_host_attr_group = { |
834 | .attrs = cciss_host_attrs, |
835 | }; |
836 | |
837 | static const struct attribute_group *cciss_host_attr_groups[] = { |
838 | &cciss_host_attr_group, |
839 | NULL |
840 | }; |
841 | |
842 | static struct device_type cciss_host_type = { |
843 | .name = "cciss_host", |
844 | .groups = cciss_host_attr_groups, |
845 | .release = cciss_hba_release, |
846 | }; |
847 | |
848 | static struct attribute *cciss_dev_attrs[] = { |
849 | &dev_attr_unique_id.attr, |
850 | &dev_attr_model.attr, |
851 | &dev_attr_vendor.attr, |
852 | &dev_attr_rev.attr, |
853 | &dev_attr_lunid.attr, |
854 | &dev_attr_raid_level.attr, |
855 | &dev_attr_usage_count.attr, |
856 | NULL |
857 | }; |
858 | |
859 | static struct attribute_group cciss_dev_attr_group = { |
860 | .attrs = cciss_dev_attrs, |
861 | }; |
862 | |
863 | static const struct attribute_group *cciss_dev_attr_groups[] = { |
864 | &cciss_dev_attr_group, |
865 | NULL |
866 | }; |
867 | |
868 | static struct device_type cciss_dev_type = { |
869 | .name = "cciss_device", |
870 | .groups = cciss_dev_attr_groups, |
871 | .release = cciss_device_release, |
872 | }; |
873 | |
874 | static struct bus_type cciss_bus_type = { |
875 | .name = "cciss", |
876 | }; |
877 | |
878 | /* |
879 | * cciss_hba_release is called when the reference count |
880 | * of h->dev goes to zero. |
881 | */ |
882 | static void cciss_hba_release(struct device *dev) |
883 | { |
884 | /* |
885 | * nothing to do, but need this to avoid a warning |
886 | * about not having a release handler from lib/kref.c. |
887 | */ |
888 | } |
889 | |
890 | /* |
891 | * Initialize sysfs entry for each controller. This sets up and registers |
892 | * the 'cciss#' directory for each individual controller under |
893 | * /sys/bus/pci/devices/<dev>/. |
894 | */ |
895 | static int cciss_create_hba_sysfs_entry(struct ctlr_info *h) |
896 | { |
897 | device_initialize(&h->dev); |
898 | h->dev.type = &cciss_host_type; |
899 | h->dev.bus = &cciss_bus_type; |
900 | dev_set_name(&h->dev, "%s", h->devname); |
901 | h->dev.parent = &h->pdev->dev; |
902 | |
903 | return device_add(&h->dev); |
904 | } |
905 | |
906 | /* |
907 | * Remove sysfs entries for an hba. |
908 | */ |
909 | static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h) |
910 | { |
911 | device_del(&h->dev); |
912 | put_device(&h->dev); /* final put. */ |
913 | } |
914 | |
915 | /* cciss_device_release is called when the reference count |
916 | * of h->drv[x]dev goes to zero. |
917 | */ |
918 | static void cciss_device_release(struct device *dev) |
919 | { |
920 | drive_info_struct *drv = to_drv(dev); |
921 | kfree(drv); |
922 | } |
923 | |
924 | /* |
925 | * Initialize sysfs for each logical drive. This sets up and registers |
926 | * the 'c#d#' directory for each individual logical drive under |
927 | * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from |
928 | * /sys/block/cciss!c#d# to this entry. |
929 | */ |
930 | static long cciss_create_ld_sysfs_entry(struct ctlr_info *h, |
931 | int drv_index) |
932 | { |
933 | struct device *dev; |
934 | |
935 | if (h->drv[drv_index]->device_initialized) |
936 | return 0; |
937 | |
938 | dev = &h->drv[drv_index]->dev; |
939 | device_initialize(dev); |
940 | dev->type = &cciss_dev_type; |
941 | dev->bus = &cciss_bus_type; |
942 | dev_set_name(dev, "c%dd%d", h->ctlr, drv_index); |
943 | dev->parent = &h->dev; |
944 | h->drv[drv_index]->device_initialized = 1; |
945 | return device_add(dev); |
946 | } |
947 | |
948 | /* |
949 | * Remove sysfs entries for a logical drive. |
950 | */ |
951 | static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index, |
952 | int ctlr_exiting) |
953 | { |
954 | struct device *dev = &h->drv[drv_index]->dev; |
955 | |
956 | /* special case for c*d0, we only destroy it on controller exit */ |
957 | if (drv_index == 0 && !ctlr_exiting) |
958 | return; |
959 | |
960 | device_del(dev); |
961 | put_device(dev); /* the "final" put. */ |
962 | h->drv[drv_index] = NULL; |
963 | } |
964 | |
965 | /* |
966 | * For operations that cannot sleep, a command block is allocated at init, |
967 | * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
968 | * which ones are free or in use. |
969 | */ |
970 | static CommandList_struct *cmd_alloc(ctlr_info_t *h) |
971 | { |
972 | CommandList_struct *c; |
973 | int i; |
974 | u64bit temp64; |
975 | dma_addr_t cmd_dma_handle, err_dma_handle; |
976 | |
977 | do { |
978 | i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); |
979 | if (i == h->nr_cmds) |
980 | return NULL; |
981 | } while (test_and_set_bit(i & (BITS_PER_LONG - 1), |
982 | h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); |
983 | c = h->cmd_pool + i; |
984 | memset(c, 0, sizeof(CommandList_struct)); |
985 | cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct); |
986 | c->err_info = h->errinfo_pool + i; |
987 | memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
988 | err_dma_handle = h->errinfo_pool_dhandle |
989 | + i * sizeof(ErrorInfo_struct); |
990 | h->nr_allocs++; |
991 | |
992 | c->cmdindex = i; |
993 | |
994 | INIT_LIST_HEAD(&c->list); |
995 | c->busaddr = (__u32) cmd_dma_handle; |
996 | temp64.val = (__u64) err_dma_handle; |
997 | c->ErrDesc.Addr.lower = temp64.val32.lower; |
998 | c->ErrDesc.Addr.upper = temp64.val32.upper; |
999 | c->ErrDesc.Len = sizeof(ErrorInfo_struct); |
1000 | |
1001 | c->ctlr = h->ctlr; |
1002 | return c; |
1003 | } |
1004 | |
1005 | /* allocate a command using pci_alloc_consistent, used for ioctls, |
1006 | * etc., not for the main i/o path. |
1007 | */ |
1008 | static CommandList_struct *cmd_special_alloc(ctlr_info_t *h) |
1009 | { |
1010 | CommandList_struct *c; |
1011 | u64bit temp64; |
1012 | dma_addr_t cmd_dma_handle, err_dma_handle; |
1013 | |
1014 | c = (CommandList_struct *) pci_alloc_consistent(h->pdev, |
1015 | sizeof(CommandList_struct), &cmd_dma_handle); |
1016 | if (c == NULL) |
1017 | return NULL; |
1018 | memset(c, 0, sizeof(CommandList_struct)); |
1019 | |
1020 | c->cmdindex = -1; |
1021 | |
1022 | c->err_info = (ErrorInfo_struct *) |
1023 | pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct), |
1024 | &err_dma_handle); |
1025 | |
1026 | if (c->err_info == NULL) { |
1027 | pci_free_consistent(h->pdev, |
1028 | sizeof(CommandList_struct), c, cmd_dma_handle); |
1029 | return NULL; |
1030 | } |
1031 | memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
1032 | |
1033 | INIT_LIST_HEAD(&c->list); |
1034 | c->busaddr = (__u32) cmd_dma_handle; |
1035 | temp64.val = (__u64) err_dma_handle; |
1036 | c->ErrDesc.Addr.lower = temp64.val32.lower; |
1037 | c->ErrDesc.Addr.upper = temp64.val32.upper; |
1038 | c->ErrDesc.Len = sizeof(ErrorInfo_struct); |
1039 | |
1040 | c->ctlr = h->ctlr; |
1041 | return c; |
1042 | } |
1043 | |
1044 | static void cmd_free(ctlr_info_t *h, CommandList_struct *c) |
1045 | { |
1046 | int i; |
1047 | |
1048 | i = c - h->cmd_pool; |
1049 | clear_bit(i & (BITS_PER_LONG - 1), |
1050 | h->cmd_pool_bits + (i / BITS_PER_LONG)); |
1051 | h->nr_frees++; |
1052 | } |
1053 | |
1054 | static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c) |
1055 | { |
1056 | u64bit temp64; |
1057 | |
1058 | temp64.val32.lower = c->ErrDesc.Addr.lower; |
1059 | temp64.val32.upper = c->ErrDesc.Addr.upper; |
1060 | pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), |
1061 | c->err_info, (dma_addr_t) temp64.val); |
1062 | pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, |
1063 | (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr)); |
1064 | } |
1065 | |
1066 | static inline ctlr_info_t *get_host(struct gendisk *disk) |
1067 | { |
1068 | return disk->queue->queuedata; |
1069 | } |
1070 | |
1071 | static inline drive_info_struct *get_drv(struct gendisk *disk) |
1072 | { |
1073 | return disk->private_data; |
1074 | } |
1075 | |
1076 | /* |
1077 | * Open. Make sure the device is really there. |
1078 | */ |
1079 | static int cciss_open(struct block_device *bdev, fmode_t mode) |
1080 | { |
1081 | ctlr_info_t *h = get_host(bdev->bd_disk); |
1082 | drive_info_struct *drv = get_drv(bdev->bd_disk); |
1083 | |
1084 | dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name); |
1085 | if (drv->busy_configuring) |
1086 | return -EBUSY; |
1087 | /* |
1088 | * Root is allowed to open raw volume zero even if it's not configured |
1089 | * so array config can still work. Root is also allowed to open any |
1090 | * volume that has a LUN ID, so it can issue IOCTL to reread the |
1091 | * disk information. I don't think I really like this |
1092 | * but I'm already using way to many device nodes to claim another one |
1093 | * for "raw controller". |
1094 | */ |
1095 | if (drv->heads == 0) { |
1096 | if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */ |
1097 | /* if not node 0 make sure it is a partition = 0 */ |
1098 | if (MINOR(bdev->bd_dev) & 0x0f) { |
1099 | return -ENXIO; |
1100 | /* if it is, make sure we have a LUN ID */ |
1101 | } else if (memcmp(drv->LunID, CTLR_LUNID, |
1102 | sizeof(drv->LunID))) { |
1103 | return -ENXIO; |
1104 | } |
1105 | } |
1106 | if (!capable(CAP_SYS_ADMIN)) |
1107 | return -EPERM; |
1108 | } |
1109 | drv->usage_count++; |
1110 | h->usage_count++; |
1111 | return 0; |
1112 | } |
1113 | |
1114 | static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode) |
1115 | { |
1116 | int ret; |
1117 | |
1118 | mutex_lock(&cciss_mutex); |
1119 | ret = cciss_open(bdev, mode); |
1120 | mutex_unlock(&cciss_mutex); |
1121 | |
1122 | return ret; |
1123 | } |
1124 | |
1125 | /* |
1126 | * Close. Sync first. |
1127 | */ |
1128 | static int cciss_release(struct gendisk *disk, fmode_t mode) |
1129 | { |
1130 | ctlr_info_t *h; |
1131 | drive_info_struct *drv; |
1132 | |
1133 | mutex_lock(&cciss_mutex); |
1134 | h = get_host(disk); |
1135 | drv = get_drv(disk); |
1136 | dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name); |
1137 | drv->usage_count--; |
1138 | h->usage_count--; |
1139 | mutex_unlock(&cciss_mutex); |
1140 | return 0; |
1141 | } |
1142 | |
1143 | static int do_ioctl(struct block_device *bdev, fmode_t mode, |
1144 | unsigned cmd, unsigned long arg) |
1145 | { |
1146 | int ret; |
1147 | mutex_lock(&cciss_mutex); |
1148 | ret = cciss_ioctl(bdev, mode, cmd, arg); |
1149 | mutex_unlock(&cciss_mutex); |
1150 | return ret; |
1151 | } |
1152 | |
1153 | #ifdef CONFIG_COMPAT |
1154 | |
1155 | static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, |
1156 | unsigned cmd, unsigned long arg); |
1157 | static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, |
1158 | unsigned cmd, unsigned long arg); |
1159 | |
1160 | static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode, |
1161 | unsigned cmd, unsigned long arg) |
1162 | { |
1163 | switch (cmd) { |
1164 | case CCISS_GETPCIINFO: |
1165 | case CCISS_GETINTINFO: |
1166 | case CCISS_SETINTINFO: |
1167 | case CCISS_GETNODENAME: |
1168 | case CCISS_SETNODENAME: |
1169 | case CCISS_GETHEARTBEAT: |
1170 | case CCISS_GETBUSTYPES: |
1171 | case CCISS_GETFIRMVER: |
1172 | case CCISS_GETDRIVVER: |
1173 | case CCISS_REVALIDVOLS: |
1174 | case CCISS_DEREGDISK: |
1175 | case CCISS_REGNEWDISK: |
1176 | case CCISS_REGNEWD: |
1177 | case CCISS_RESCANDISK: |
1178 | case CCISS_GETLUNINFO: |
1179 | return do_ioctl(bdev, mode, cmd, arg); |
1180 | |
1181 | case CCISS_PASSTHRU32: |
1182 | return cciss_ioctl32_passthru(bdev, mode, cmd, arg); |
1183 | case CCISS_BIG_PASSTHRU32: |
1184 | return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg); |
1185 | |
1186 | default: |
1187 | return -ENOIOCTLCMD; |
1188 | } |
1189 | } |
1190 | |
1191 | static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, |
1192 | unsigned cmd, unsigned long arg) |
1193 | { |
1194 | IOCTL32_Command_struct __user *arg32 = |
1195 | (IOCTL32_Command_struct __user *) arg; |
1196 | IOCTL_Command_struct arg64; |
1197 | IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
1198 | int err; |
1199 | u32 cp; |
1200 | |
1201 | err = 0; |
1202 | err |= |
1203 | copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
1204 | sizeof(arg64.LUN_info)); |
1205 | err |= |
1206 | copy_from_user(&arg64.Request, &arg32->Request, |
1207 | sizeof(arg64.Request)); |
1208 | err |= |
1209 | copy_from_user(&arg64.error_info, &arg32->error_info, |
1210 | sizeof(arg64.error_info)); |
1211 | err |= get_user(arg64.buf_size, &arg32->buf_size); |
1212 | err |= get_user(cp, &arg32->buf); |
1213 | arg64.buf = compat_ptr(cp); |
1214 | err |= copy_to_user(p, &arg64, sizeof(arg64)); |
1215 | |
1216 | if (err) |
1217 | return -EFAULT; |
1218 | |
1219 | err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p); |
1220 | if (err) |
1221 | return err; |
1222 | err |= |
1223 | copy_in_user(&arg32->error_info, &p->error_info, |
1224 | sizeof(arg32->error_info)); |
1225 | if (err) |
1226 | return -EFAULT; |
1227 | return err; |
1228 | } |
1229 | |
1230 | static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, |
1231 | unsigned cmd, unsigned long arg) |
1232 | { |
1233 | BIG_IOCTL32_Command_struct __user *arg32 = |
1234 | (BIG_IOCTL32_Command_struct __user *) arg; |
1235 | BIG_IOCTL_Command_struct arg64; |
1236 | BIG_IOCTL_Command_struct __user *p = |
1237 | compat_alloc_user_space(sizeof(arg64)); |
1238 | int err; |
1239 | u32 cp; |
1240 | |
1241 | memset(&arg64, 0, sizeof(arg64)); |
1242 | err = 0; |
1243 | err |= |
1244 | copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
1245 | sizeof(arg64.LUN_info)); |
1246 | err |= |
1247 | copy_from_user(&arg64.Request, &arg32->Request, |
1248 | sizeof(arg64.Request)); |
1249 | err |= |
1250 | copy_from_user(&arg64.error_info, &arg32->error_info, |
1251 | sizeof(arg64.error_info)); |
1252 | err |= get_user(arg64.buf_size, &arg32->buf_size); |
1253 | err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
1254 | err |= get_user(cp, &arg32->buf); |
1255 | arg64.buf = compat_ptr(cp); |
1256 | err |= copy_to_user(p, &arg64, sizeof(arg64)); |
1257 | |
1258 | if (err) |
1259 | return -EFAULT; |
1260 | |
1261 | err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p); |
1262 | if (err) |
1263 | return err; |
1264 | err |= |
1265 | copy_in_user(&arg32->error_info, &p->error_info, |
1266 | sizeof(arg32->error_info)); |
1267 | if (err) |
1268 | return -EFAULT; |
1269 | return err; |
1270 | } |
1271 | #endif |
1272 | |
1273 | static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
1274 | { |
1275 | drive_info_struct *drv = get_drv(bdev->bd_disk); |
1276 | |
1277 | if (!drv->cylinders) |
1278 | return -ENXIO; |
1279 | |
1280 | geo->heads = drv->heads; |
1281 | geo->sectors = drv->sectors; |
1282 | geo->cylinders = drv->cylinders; |
1283 | return 0; |
1284 | } |
1285 | |
1286 | static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c) |
1287 | { |
1288 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
1289 | c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
1290 | (void)check_for_unit_attention(h, c); |
1291 | } |
1292 | |
1293 | static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp) |
1294 | { |
1295 | cciss_pci_info_struct pciinfo; |
1296 | |
1297 | if (!argp) |
1298 | return -EINVAL; |
1299 | pciinfo.domain = pci_domain_nr(h->pdev->bus); |
1300 | pciinfo.bus = h->pdev->bus->number; |
1301 | pciinfo.dev_fn = h->pdev->devfn; |
1302 | pciinfo.board_id = h->board_id; |
1303 | if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct))) |
1304 | return -EFAULT; |
1305 | return 0; |
1306 | } |
1307 | |
1308 | static int cciss_getintinfo(ctlr_info_t *h, void __user *argp) |
1309 | { |
1310 | cciss_coalint_struct intinfo; |
1311 | |
1312 | if (!argp) |
1313 | return -EINVAL; |
1314 | intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay); |
1315 | intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount); |
1316 | if (copy_to_user |
1317 | (argp, &intinfo, sizeof(cciss_coalint_struct))) |
1318 | return -EFAULT; |
1319 | return 0; |
1320 | } |
1321 | |
1322 | static int cciss_setintinfo(ctlr_info_t *h, void __user *argp) |
1323 | { |
1324 | cciss_coalint_struct intinfo; |
1325 | unsigned long flags; |
1326 | int i; |
1327 | |
1328 | if (!argp) |
1329 | return -EINVAL; |
1330 | if (!capable(CAP_SYS_ADMIN)) |
1331 | return -EPERM; |
1332 | if (copy_from_user(&intinfo, argp, sizeof(intinfo))) |
1333 | return -EFAULT; |
1334 | if ((intinfo.delay == 0) && (intinfo.count == 0)) |
1335 | return -EINVAL; |
1336 | spin_lock_irqsave(&h->lock, flags); |
1337 | /* Update the field, and then ring the doorbell */ |
1338 | writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay)); |
1339 | writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount)); |
1340 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
1341 | |
1342 | for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { |
1343 | if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
1344 | break; |
1345 | udelay(1000); /* delay and try again */ |
1346 | } |
1347 | spin_unlock_irqrestore(&h->lock, flags); |
1348 | if (i >= MAX_IOCTL_CONFIG_WAIT) |
1349 | return -EAGAIN; |
1350 | return 0; |
1351 | } |
1352 | |
1353 | static int cciss_getnodename(ctlr_info_t *h, void __user *argp) |
1354 | { |
1355 | NodeName_type NodeName; |
1356 | int i; |
1357 | |
1358 | if (!argp) |
1359 | return -EINVAL; |
1360 | for (i = 0; i < 16; i++) |
1361 | NodeName[i] = readb(&h->cfgtable->ServerName[i]); |
1362 | if (copy_to_user(argp, NodeName, sizeof(NodeName_type))) |
1363 | return -EFAULT; |
1364 | return 0; |
1365 | } |
1366 | |
1367 | static int cciss_setnodename(ctlr_info_t *h, void __user *argp) |
1368 | { |
1369 | NodeName_type NodeName; |
1370 | unsigned long flags; |
1371 | int i; |
1372 | |
1373 | if (!argp) |
1374 | return -EINVAL; |
1375 | if (!capable(CAP_SYS_ADMIN)) |
1376 | return -EPERM; |
1377 | if (copy_from_user(NodeName, argp, sizeof(NodeName_type))) |
1378 | return -EFAULT; |
1379 | spin_lock_irqsave(&h->lock, flags); |
1380 | /* Update the field, and then ring the doorbell */ |
1381 | for (i = 0; i < 16; i++) |
1382 | writeb(NodeName[i], &h->cfgtable->ServerName[i]); |
1383 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
1384 | for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { |
1385 | if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
1386 | break; |
1387 | udelay(1000); /* delay and try again */ |
1388 | } |
1389 | spin_unlock_irqrestore(&h->lock, flags); |
1390 | if (i >= MAX_IOCTL_CONFIG_WAIT) |
1391 | return -EAGAIN; |
1392 | return 0; |
1393 | } |
1394 | |
1395 | static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp) |
1396 | { |
1397 | Heartbeat_type heartbeat; |
1398 | |
1399 | if (!argp) |
1400 | return -EINVAL; |
1401 | heartbeat = readl(&h->cfgtable->HeartBeat); |
1402 | if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type))) |
1403 | return -EFAULT; |
1404 | return 0; |
1405 | } |
1406 | |
1407 | static int cciss_getbustypes(ctlr_info_t *h, void __user *argp) |
1408 | { |
1409 | BusTypes_type BusTypes; |
1410 | |
1411 | if (!argp) |
1412 | return -EINVAL; |
1413 | BusTypes = readl(&h->cfgtable->BusTypes); |
1414 | if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type))) |
1415 | return -EFAULT; |
1416 | return 0; |
1417 | } |
1418 | |
1419 | static int cciss_getfirmver(ctlr_info_t *h, void __user *argp) |
1420 | { |
1421 | FirmwareVer_type firmware; |
1422 | |
1423 | if (!argp) |
1424 | return -EINVAL; |
1425 | memcpy(firmware, h->firm_ver, 4); |
1426 | |
1427 | if (copy_to_user |
1428 | (argp, firmware, sizeof(FirmwareVer_type))) |
1429 | return -EFAULT; |
1430 | return 0; |
1431 | } |
1432 | |
1433 | static int cciss_getdrivver(ctlr_info_t *h, void __user *argp) |
1434 | { |
1435 | DriverVer_type DriverVer = DRIVER_VERSION; |
1436 | |
1437 | if (!argp) |
1438 | return -EINVAL; |
1439 | if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) |
1440 | return -EFAULT; |
1441 | return 0; |
1442 | } |
1443 | |
1444 | static int cciss_getluninfo(ctlr_info_t *h, |
1445 | struct gendisk *disk, void __user *argp) |
1446 | { |
1447 | LogvolInfo_struct luninfo; |
1448 | drive_info_struct *drv = get_drv(disk); |
1449 | |
1450 | if (!argp) |
1451 | return -EINVAL; |
1452 | memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID)); |
1453 | luninfo.num_opens = drv->usage_count; |
1454 | luninfo.num_parts = 0; |
1455 | if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct))) |
1456 | return -EFAULT; |
1457 | return 0; |
1458 | } |
1459 | |
1460 | static int cciss_passthru(ctlr_info_t *h, void __user *argp) |
1461 | { |
1462 | IOCTL_Command_struct iocommand; |
1463 | CommandList_struct *c; |
1464 | char *buff = NULL; |
1465 | u64bit temp64; |
1466 | DECLARE_COMPLETION_ONSTACK(wait); |
1467 | |
1468 | if (!argp) |
1469 | return -EINVAL; |
1470 | |
1471 | if (!capable(CAP_SYS_RAWIO)) |
1472 | return -EPERM; |
1473 | |
1474 | if (copy_from_user |
1475 | (&iocommand, argp, sizeof(IOCTL_Command_struct))) |
1476 | return -EFAULT; |
1477 | if ((iocommand.buf_size < 1) && |
1478 | (iocommand.Request.Type.Direction != XFER_NONE)) { |
1479 | return -EINVAL; |
1480 | } |
1481 | if (iocommand.buf_size > 0) { |
1482 | buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
1483 | if (buff == NULL) |
1484 | return -EFAULT; |
1485 | } |
1486 | if (iocommand.Request.Type.Direction == XFER_WRITE) { |
1487 | /* Copy the data into the buffer we created */ |
1488 | if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { |
1489 | kfree(buff); |
1490 | return -EFAULT; |
1491 | } |
1492 | } else { |
1493 | memset(buff, 0, iocommand.buf_size); |
1494 | } |
1495 | c = cmd_special_alloc(h); |
1496 | if (!c) { |
1497 | kfree(buff); |
1498 | return -ENOMEM; |
1499 | } |
1500 | /* Fill in the command type */ |
1501 | c->cmd_type = CMD_IOCTL_PEND; |
1502 | /* Fill in Command Header */ |
1503 | c->Header.ReplyQueue = 0; /* unused in simple mode */ |
1504 | if (iocommand.buf_size > 0) { /* buffer to fill */ |
1505 | c->Header.SGList = 1; |
1506 | c->Header.SGTotal = 1; |
1507 | } else { /* no buffers to fill */ |
1508 | c->Header.SGList = 0; |
1509 | c->Header.SGTotal = 0; |
1510 | } |
1511 | c->Header.LUN = iocommand.LUN_info; |
1512 | /* use the kernel address the cmd block for tag */ |
1513 | c->Header.Tag.lower = c->busaddr; |
1514 | |
1515 | /* Fill in Request block */ |
1516 | c->Request = iocommand.Request; |
1517 | |
1518 | /* Fill in the scatter gather information */ |
1519 | if (iocommand.buf_size > 0) { |
1520 | temp64.val = pci_map_single(h->pdev, buff, |
1521 | iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); |
1522 | c->SG[0].Addr.lower = temp64.val32.lower; |
1523 | c->SG[0].Addr.upper = temp64.val32.upper; |
1524 | c->SG[0].Len = iocommand.buf_size; |
1525 | c->SG[0].Ext = 0; /* we are not chaining */ |
1526 | } |
1527 | c->waiting = &wait; |
1528 | |
1529 | enqueue_cmd_and_start_io(h, c); |
1530 | wait_for_completion(&wait); |
1531 | |
1532 | /* unlock the buffers from DMA */ |
1533 | temp64.val32.lower = c->SG[0].Addr.lower; |
1534 | temp64.val32.upper = c->SG[0].Addr.upper; |
1535 | pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size, |
1536 | PCI_DMA_BIDIRECTIONAL); |
1537 | check_ioctl_unit_attention(h, c); |
1538 | |
1539 | /* Copy the error information out */ |
1540 | iocommand.error_info = *(c->err_info); |
1541 | if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) { |
1542 | kfree(buff); |
1543 | cmd_special_free(h, c); |
1544 | return -EFAULT; |
1545 | } |
1546 | |
1547 | if (iocommand.Request.Type.Direction == XFER_READ) { |
1548 | /* Copy the data out of the buffer we created */ |
1549 | if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { |
1550 | kfree(buff); |
1551 | cmd_special_free(h, c); |
1552 | return -EFAULT; |
1553 | } |
1554 | } |
1555 | kfree(buff); |
1556 | cmd_special_free(h, c); |
1557 | return 0; |
1558 | } |
1559 | |
1560 | static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp) |
1561 | { |
1562 | BIG_IOCTL_Command_struct *ioc; |
1563 | CommandList_struct *c; |
1564 | unsigned char **buff = NULL; |
1565 | int *buff_size = NULL; |
1566 | u64bit temp64; |
1567 | BYTE sg_used = 0; |
1568 | int status = 0; |
1569 | int i; |
1570 | DECLARE_COMPLETION_ONSTACK(wait); |
1571 | __u32 left; |
1572 | __u32 sz; |
1573 | BYTE __user *data_ptr; |
1574 | |
1575 | if (!argp) |
1576 | return -EINVAL; |
1577 | if (!capable(CAP_SYS_RAWIO)) |
1578 | return -EPERM; |
1579 | ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); |
1580 | if (!ioc) { |
1581 | status = -ENOMEM; |
1582 | goto cleanup1; |
1583 | } |
1584 | if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
1585 | status = -EFAULT; |
1586 | goto cleanup1; |
1587 | } |
1588 | if ((ioc->buf_size < 1) && |
1589 | (ioc->Request.Type.Direction != XFER_NONE)) { |
1590 | status = -EINVAL; |
1591 | goto cleanup1; |
1592 | } |
1593 | /* Check kmalloc limits using all SGs */ |
1594 | if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
1595 | status = -EINVAL; |
1596 | goto cleanup1; |
1597 | } |
1598 | if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { |
1599 | status = -EINVAL; |
1600 | goto cleanup1; |
1601 | } |
1602 | buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); |
1603 | if (!buff) { |
1604 | status = -ENOMEM; |
1605 | goto cleanup1; |
1606 | } |
1607 | buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); |
1608 | if (!buff_size) { |
1609 | status = -ENOMEM; |
1610 | goto cleanup1; |
1611 | } |
1612 | left = ioc->buf_size; |
1613 | data_ptr = ioc->buf; |
1614 | while (left) { |
1615 | sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; |
1616 | buff_size[sg_used] = sz; |
1617 | buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
1618 | if (buff[sg_used] == NULL) { |
1619 | status = -ENOMEM; |
1620 | goto cleanup1; |
1621 | } |
1622 | if (ioc->Request.Type.Direction == XFER_WRITE) { |
1623 | if (copy_from_user(buff[sg_used], data_ptr, sz)) { |
1624 | status = -EFAULT; |
1625 | goto cleanup1; |
1626 | } |
1627 | } else { |
1628 | memset(buff[sg_used], 0, sz); |
1629 | } |
1630 | left -= sz; |
1631 | data_ptr += sz; |
1632 | sg_used++; |
1633 | } |
1634 | c = cmd_special_alloc(h); |
1635 | if (!c) { |
1636 | status = -ENOMEM; |
1637 | goto cleanup1; |
1638 | } |
1639 | c->cmd_type = CMD_IOCTL_PEND; |
1640 | c->Header.ReplyQueue = 0; |
1641 | c->Header.SGList = sg_used; |
1642 | c->Header.SGTotal = sg_used; |
1643 | c->Header.LUN = ioc->LUN_info; |
1644 | c->Header.Tag.lower = c->busaddr; |
1645 | |
1646 | c->Request = ioc->Request; |
1647 | for (i = 0; i < sg_used; i++) { |
1648 | temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i], |
1649 | PCI_DMA_BIDIRECTIONAL); |
1650 | c->SG[i].Addr.lower = temp64.val32.lower; |
1651 | c->SG[i].Addr.upper = temp64.val32.upper; |
1652 | c->SG[i].Len = buff_size[i]; |
1653 | c->SG[i].Ext = 0; /* we are not chaining */ |
1654 | } |
1655 | c->waiting = &wait; |
1656 | enqueue_cmd_and_start_io(h, c); |
1657 | wait_for_completion(&wait); |
1658 | /* unlock the buffers from DMA */ |
1659 | for (i = 0; i < sg_used; i++) { |
1660 | temp64.val32.lower = c->SG[i].Addr.lower; |
1661 | temp64.val32.upper = c->SG[i].Addr.upper; |
1662 | pci_unmap_single(h->pdev, |
1663 | (dma_addr_t) temp64.val, buff_size[i], |
1664 | PCI_DMA_BIDIRECTIONAL); |
1665 | } |
1666 | check_ioctl_unit_attention(h, c); |
1667 | /* Copy the error information out */ |
1668 | ioc->error_info = *(c->err_info); |
1669 | if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
1670 | cmd_special_free(h, c); |
1671 | status = -EFAULT; |
1672 | goto cleanup1; |
1673 | } |
1674 | if (ioc->Request.Type.Direction == XFER_READ) { |
1675 | /* Copy the data out of the buffer we created */ |
1676 | BYTE __user *ptr = ioc->buf; |
1677 | for (i = 0; i < sg_used; i++) { |
1678 | if (copy_to_user(ptr, buff[i], buff_size[i])) { |
1679 | cmd_special_free(h, c); |
1680 | status = -EFAULT; |
1681 | goto cleanup1; |
1682 | } |
1683 | ptr += buff_size[i]; |
1684 | } |
1685 | } |
1686 | cmd_special_free(h, c); |
1687 | status = 0; |
1688 | cleanup1: |
1689 | if (buff) { |
1690 | for (i = 0; i < sg_used; i++) |
1691 | kfree(buff[i]); |
1692 | kfree(buff); |
1693 | } |
1694 | kfree(buff_size); |
1695 | kfree(ioc); |
1696 | return status; |
1697 | } |
1698 | |
1699 | static int cciss_ioctl(struct block_device *bdev, fmode_t mode, |
1700 | unsigned int cmd, unsigned long arg) |
1701 | { |
1702 | struct gendisk *disk = bdev->bd_disk; |
1703 | ctlr_info_t *h = get_host(disk); |
1704 | void __user *argp = (void __user *)arg; |
1705 | |
1706 | dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n", |
1707 | cmd, arg); |
1708 | switch (cmd) { |
1709 | case CCISS_GETPCIINFO: |
1710 | return cciss_getpciinfo(h, argp); |
1711 | case CCISS_GETINTINFO: |
1712 | return cciss_getintinfo(h, argp); |
1713 | case CCISS_SETINTINFO: |
1714 | return cciss_setintinfo(h, argp); |
1715 | case CCISS_GETNODENAME: |
1716 | return cciss_getnodename(h, argp); |
1717 | case CCISS_SETNODENAME: |
1718 | return cciss_setnodename(h, argp); |
1719 | case CCISS_GETHEARTBEAT: |
1720 | return cciss_getheartbeat(h, argp); |
1721 | case CCISS_GETBUSTYPES: |
1722 | return cciss_getbustypes(h, argp); |
1723 | case CCISS_GETFIRMVER: |
1724 | return cciss_getfirmver(h, argp); |
1725 | case CCISS_GETDRIVVER: |
1726 | return cciss_getdrivver(h, argp); |
1727 | case CCISS_DEREGDISK: |
1728 | case CCISS_REGNEWD: |
1729 | case CCISS_REVALIDVOLS: |
1730 | return rebuild_lun_table(h, 0, 1); |
1731 | case CCISS_GETLUNINFO: |
1732 | return cciss_getluninfo(h, disk, argp); |
1733 | case CCISS_PASSTHRU: |
1734 | return cciss_passthru(h, argp); |
1735 | case CCISS_BIG_PASSTHRU: |
1736 | return cciss_bigpassthru(h, argp); |
1737 | |
1738 | /* scsi_cmd_blk_ioctl handles these, below, though some are not */ |
1739 | /* very meaningful for cciss. SG_IO is the main one people want. */ |
1740 | |
1741 | case SG_GET_VERSION_NUM: |
1742 | case SG_SET_TIMEOUT: |
1743 | case SG_GET_TIMEOUT: |
1744 | case SG_GET_RESERVED_SIZE: |
1745 | case SG_SET_RESERVED_SIZE: |
1746 | case SG_EMULATED_HOST: |
1747 | case SG_IO: |
1748 | case SCSI_IOCTL_SEND_COMMAND: |
1749 | return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp); |
1750 | |
1751 | /* scsi_cmd_blk_ioctl would normally handle these, below, but */ |
1752 | /* they aren't a good fit for cciss, as CD-ROMs are */ |
1753 | /* not supported, and we don't have any bus/target/lun */ |
1754 | /* which we present to the kernel. */ |
1755 | |
1756 | case CDROM_SEND_PACKET: |
1757 | case CDROMCLOSETRAY: |
1758 | case CDROMEJECT: |
1759 | case SCSI_IOCTL_GET_IDLUN: |
1760 | case SCSI_IOCTL_GET_BUS_NUMBER: |
1761 | default: |
1762 | return -ENOTTY; |
1763 | } |
1764 | } |
1765 | |
1766 | static void cciss_check_queues(ctlr_info_t *h) |
1767 | { |
1768 | int start_queue = h->next_to_run; |
1769 | int i; |
1770 | |
1771 | /* check to see if we have maxed out the number of commands that can |
1772 | * be placed on the queue. If so then exit. We do this check here |
1773 | * in case the interrupt we serviced was from an ioctl and did not |
1774 | * free any new commands. |
1775 | */ |
1776 | if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) |
1777 | return; |
1778 | |
1779 | /* We have room on the queue for more commands. Now we need to queue |
1780 | * them up. We will also keep track of the next queue to run so |
1781 | * that every queue gets a chance to be started first. |
1782 | */ |
1783 | for (i = 0; i < h->highest_lun + 1; i++) { |
1784 | int curr_queue = (start_queue + i) % (h->highest_lun + 1); |
1785 | /* make sure the disk has been added and the drive is real |
1786 | * because this can be called from the middle of init_one. |
1787 | */ |
1788 | if (!h->drv[curr_queue]) |
1789 | continue; |
1790 | if (!(h->drv[curr_queue]->queue) || |
1791 | !(h->drv[curr_queue]->heads)) |
1792 | continue; |
1793 | blk_start_queue(h->gendisk[curr_queue]->queue); |
1794 | |
1795 | /* check to see if we have maxed out the number of commands |
1796 | * that can be placed on the queue. |
1797 | */ |
1798 | if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) { |
1799 | if (curr_queue == start_queue) { |
1800 | h->next_to_run = |
1801 | (start_queue + 1) % (h->highest_lun + 1); |
1802 | break; |
1803 | } else { |
1804 | h->next_to_run = curr_queue; |
1805 | break; |
1806 | } |
1807 | } |
1808 | } |
1809 | } |
1810 | |
1811 | static void cciss_softirq_done(struct request *rq) |
1812 | { |
1813 | CommandList_struct *c = rq->completion_data; |
1814 | ctlr_info_t *h = hba[c->ctlr]; |
1815 | SGDescriptor_struct *curr_sg = c->SG; |
1816 | u64bit temp64; |
1817 | unsigned long flags; |
1818 | int i, ddir; |
1819 | int sg_index = 0; |
1820 | |
1821 | if (c->Request.Type.Direction == XFER_READ) |
1822 | ddir = PCI_DMA_FROMDEVICE; |
1823 | else |
1824 | ddir = PCI_DMA_TODEVICE; |
1825 | |
1826 | /* command did not need to be retried */ |
1827 | /* unmap the DMA mapping for all the scatter gather elements */ |
1828 | for (i = 0; i < c->Header.SGList; i++) { |
1829 | if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) { |
1830 | cciss_unmap_sg_chain_block(h, c); |
1831 | /* Point to the next block */ |
1832 | curr_sg = h->cmd_sg_list[c->cmdindex]; |
1833 | sg_index = 0; |
1834 | } |
1835 | temp64.val32.lower = curr_sg[sg_index].Addr.lower; |
1836 | temp64.val32.upper = curr_sg[sg_index].Addr.upper; |
1837 | pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len, |
1838 | ddir); |
1839 | ++sg_index; |
1840 | } |
1841 | |
1842 | dev_dbg(&h->pdev->dev, "Done with %p\n", rq); |
1843 | |
1844 | /* set the residual count for pc requests */ |
1845 | if (rq->cmd_type == REQ_TYPE_BLOCK_PC) |
1846 | rq->resid_len = c->err_info->ResidualCnt; |
1847 | |
1848 | blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO); |
1849 | |
1850 | spin_lock_irqsave(&h->lock, flags); |
1851 | cmd_free(h, c); |
1852 | cciss_check_queues(h); |
1853 | spin_unlock_irqrestore(&h->lock, flags); |
1854 | } |
1855 | |
1856 | static inline void log_unit_to_scsi3addr(ctlr_info_t *h, |
1857 | unsigned char scsi3addr[], uint32_t log_unit) |
1858 | { |
1859 | memcpy(scsi3addr, h->drv[log_unit]->LunID, |
1860 | sizeof(h->drv[log_unit]->LunID)); |
1861 | } |
1862 | |
1863 | /* This function gets the SCSI vendor, model, and revision of a logical drive |
1864 | * via the inquiry page 0. Model, vendor, and rev are set to empty strings if |
1865 | * they cannot be read. |
1866 | */ |
1867 | static void cciss_get_device_descr(ctlr_info_t *h, int logvol, |
1868 | char *vendor, char *model, char *rev) |
1869 | { |
1870 | int rc; |
1871 | InquiryData_struct *inq_buf; |
1872 | unsigned char scsi3addr[8]; |
1873 | |
1874 | *vendor = '\0'; |
1875 | *model = '\0'; |
1876 | *rev = '\0'; |
1877 | |
1878 | inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
1879 | if (!inq_buf) |
1880 | return; |
1881 | |
1882 | log_unit_to_scsi3addr(h, scsi3addr, logvol); |
1883 | rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0, |
1884 | scsi3addr, TYPE_CMD); |
1885 | if (rc == IO_OK) { |
1886 | memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN); |
1887 | vendor[VENDOR_LEN] = '\0'; |
1888 | memcpy(model, &inq_buf->data_byte[16], MODEL_LEN); |
1889 | model[MODEL_LEN] = '\0'; |
1890 | memcpy(rev, &inq_buf->data_byte[32], REV_LEN); |
1891 | rev[REV_LEN] = '\0'; |
1892 | } |
1893 | |
1894 | kfree(inq_buf); |
1895 | return; |
1896 | } |
1897 | |
1898 | /* This function gets the serial number of a logical drive via |
1899 | * inquiry page 0x83. Serial no. is 16 bytes. If the serial |
1900 | * number cannot be had, for whatever reason, 16 bytes of 0xff |
1901 | * are returned instead. |
1902 | */ |
1903 | static void cciss_get_serial_no(ctlr_info_t *h, int logvol, |
1904 | unsigned char *serial_no, int buflen) |
1905 | { |
1906 | #define PAGE_83_INQ_BYTES 64 |
1907 | int rc; |
1908 | unsigned char *buf; |
1909 | unsigned char scsi3addr[8]; |
1910 | |
1911 | if (buflen > 16) |
1912 | buflen = 16; |
1913 | memset(serial_no, 0xff, buflen); |
1914 | buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL); |
1915 | if (!buf) |
1916 | return; |
1917 | memset(serial_no, 0, buflen); |
1918 | log_unit_to_scsi3addr(h, scsi3addr, logvol); |
1919 | rc = sendcmd_withirq(h, CISS_INQUIRY, buf, |
1920 | PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD); |
1921 | if (rc == IO_OK) |
1922 | memcpy(serial_no, &buf[8], buflen); |
1923 | kfree(buf); |
1924 | return; |
1925 | } |
1926 | |
1927 | /* |
1928 | * cciss_add_disk sets up the block device queue for a logical drive |
1929 | */ |
1930 | static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk, |
1931 | int drv_index) |
1932 | { |
1933 | disk->queue = blk_init_queue(do_cciss_request, &h->lock); |
1934 | if (!disk->queue) |
1935 | goto init_queue_failure; |
1936 | sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index); |
1937 | disk->major = h->major; |
1938 | disk->first_minor = drv_index << NWD_SHIFT; |
1939 | disk->fops = &cciss_fops; |
1940 | if (cciss_create_ld_sysfs_entry(h, drv_index)) |
1941 | goto cleanup_queue; |
1942 | disk->private_data = h->drv[drv_index]; |
1943 | disk->driverfs_dev = &h->drv[drv_index]->dev; |
1944 | |
1945 | /* Set up queue information */ |
1946 | blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask); |
1947 | |
1948 | /* This is a hardware imposed limit. */ |
1949 | blk_queue_max_segments(disk->queue, h->maxsgentries); |
1950 | |
1951 | blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors); |
1952 | |
1953 | blk_queue_softirq_done(disk->queue, cciss_softirq_done); |
1954 | |
1955 | disk->queue->queuedata = h; |
1956 | |
1957 | blk_queue_logical_block_size(disk->queue, |
1958 | h->drv[drv_index]->block_size); |
1959 | |
1960 | /* Make sure all queue data is written out before */ |
1961 | /* setting h->drv[drv_index]->queue, as setting this */ |
1962 | /* allows the interrupt handler to start the queue */ |
1963 | wmb(); |
1964 | h->drv[drv_index]->queue = disk->queue; |
1965 | add_disk(disk); |
1966 | return 0; |
1967 | |
1968 | cleanup_queue: |
1969 | blk_cleanup_queue(disk->queue); |
1970 | disk->queue = NULL; |
1971 | init_queue_failure: |
1972 | return -1; |
1973 | } |
1974 | |
1975 | /* This function will check the usage_count of the drive to be updated/added. |
1976 | * If the usage_count is zero and it is a heretofore unknown drive, or, |
1977 | * the drive's capacity, geometry, or serial number has changed, |
1978 | * then the drive information will be updated and the disk will be |
1979 | * re-registered with the kernel. If these conditions don't hold, |
1980 | * then it will be left alone for the next reboot. The exception to this |
1981 | * is disk 0 which will always be left registered with the kernel since it |
1982 | * is also the controller node. Any changes to disk 0 will show up on |
1983 | * the next reboot. |
1984 | */ |
1985 | static void cciss_update_drive_info(ctlr_info_t *h, int drv_index, |
1986 | int first_time, int via_ioctl) |
1987 | { |
1988 | struct gendisk *disk; |
1989 | InquiryData_struct *inq_buff = NULL; |
1990 | unsigned int block_size; |
1991 | sector_t total_size; |
1992 | unsigned long flags = 0; |
1993 | int ret = 0; |
1994 | drive_info_struct *drvinfo; |
1995 | |
1996 | /* Get information about the disk and modify the driver structure */ |
1997 | inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
1998 | drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL); |
1999 | if (inq_buff == NULL || drvinfo == NULL) |
2000 | goto mem_msg; |
2001 | |
2002 | /* testing to see if 16-byte CDBs are already being used */ |
2003 | if (h->cciss_read == CCISS_READ_16) { |
2004 | cciss_read_capacity_16(h, drv_index, |
2005 | &total_size, &block_size); |
2006 | |
2007 | } else { |
2008 | cciss_read_capacity(h, drv_index, &total_size, &block_size); |
2009 | /* if read_capacity returns all F's this volume is >2TB */ |
2010 | /* in size so we switch to 16-byte CDB's for all */ |
2011 | /* read/write ops */ |
2012 | if (total_size == 0xFFFFFFFFULL) { |
2013 | cciss_read_capacity_16(h, drv_index, |
2014 | &total_size, &block_size); |
2015 | h->cciss_read = CCISS_READ_16; |
2016 | h->cciss_write = CCISS_WRITE_16; |
2017 | } else { |
2018 | h->cciss_read = CCISS_READ_10; |
2019 | h->cciss_write = CCISS_WRITE_10; |
2020 | } |
2021 | } |
2022 | |
2023 | cciss_geometry_inquiry(h, drv_index, total_size, block_size, |
2024 | inq_buff, drvinfo); |
2025 | drvinfo->block_size = block_size; |
2026 | drvinfo->nr_blocks = total_size + 1; |
2027 | |
2028 | cciss_get_device_descr(h, drv_index, drvinfo->vendor, |
2029 | drvinfo->model, drvinfo->rev); |
2030 | cciss_get_serial_no(h, drv_index, drvinfo->serial_no, |
2031 | sizeof(drvinfo->serial_no)); |
2032 | /* Save the lunid in case we deregister the disk, below. */ |
2033 | memcpy(drvinfo->LunID, h->drv[drv_index]->LunID, |
2034 | sizeof(drvinfo->LunID)); |
2035 | |
2036 | /* Is it the same disk we already know, and nothing's changed? */ |
2037 | if (h->drv[drv_index]->raid_level != -1 && |
2038 | ((memcmp(drvinfo->serial_no, |
2039 | h->drv[drv_index]->serial_no, 16) == 0) && |
2040 | drvinfo->block_size == h->drv[drv_index]->block_size && |
2041 | drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks && |
2042 | drvinfo->heads == h->drv[drv_index]->heads && |
2043 | drvinfo->sectors == h->drv[drv_index]->sectors && |
2044 | drvinfo->cylinders == h->drv[drv_index]->cylinders)) |
2045 | /* The disk is unchanged, nothing to update */ |
2046 | goto freeret; |
2047 | |
2048 | /* If we get here it's not the same disk, or something's changed, |
2049 | * so we need to * deregister it, and re-register it, if it's not |
2050 | * in use. |
2051 | * If the disk already exists then deregister it before proceeding |
2052 | * (unless it's the first disk (for the controller node). |
2053 | */ |
2054 | if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) { |
2055 | dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index); |
2056 | spin_lock_irqsave(&h->lock, flags); |
2057 | h->drv[drv_index]->busy_configuring = 1; |
2058 | spin_unlock_irqrestore(&h->lock, flags); |
2059 | |
2060 | /* deregister_disk sets h->drv[drv_index]->queue = NULL |
2061 | * which keeps the interrupt handler from starting |
2062 | * the queue. |
2063 | */ |
2064 | ret = deregister_disk(h, drv_index, 0, via_ioctl); |
2065 | } |
2066 | |
2067 | /* If the disk is in use return */ |
2068 | if (ret) |
2069 | goto freeret; |
2070 | |
2071 | /* Save the new information from cciss_geometry_inquiry |
2072 | * and serial number inquiry. If the disk was deregistered |
2073 | * above, then h->drv[drv_index] will be NULL. |
2074 | */ |
2075 | if (h->drv[drv_index] == NULL) { |
2076 | drvinfo->device_initialized = 0; |
2077 | h->drv[drv_index] = drvinfo; |
2078 | drvinfo = NULL; /* so it won't be freed below. */ |
2079 | } else { |
2080 | /* special case for cxd0 */ |
2081 | h->drv[drv_index]->block_size = drvinfo->block_size; |
2082 | h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks; |
2083 | h->drv[drv_index]->heads = drvinfo->heads; |
2084 | h->drv[drv_index]->sectors = drvinfo->sectors; |
2085 | h->drv[drv_index]->cylinders = drvinfo->cylinders; |
2086 | h->drv[drv_index]->raid_level = drvinfo->raid_level; |
2087 | memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16); |
2088 | memcpy(h->drv[drv_index]->vendor, drvinfo->vendor, |
2089 | VENDOR_LEN + 1); |
2090 | memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1); |
2091 | memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1); |
2092 | } |
2093 | |
2094 | ++h->num_luns; |
2095 | disk = h->gendisk[drv_index]; |
2096 | set_capacity(disk, h->drv[drv_index]->nr_blocks); |
2097 | |
2098 | /* If it's not disk 0 (drv_index != 0) |
2099 | * or if it was disk 0, but there was previously |
2100 | * no actual corresponding configured logical drive |
2101 | * (raid_leve == -1) then we want to update the |
2102 | * logical drive's information. |
2103 | */ |
2104 | if (drv_index || first_time) { |
2105 | if (cciss_add_disk(h, disk, drv_index) != 0) { |
2106 | cciss_free_gendisk(h, drv_index); |
2107 | cciss_free_drive_info(h, drv_index); |
2108 | dev_warn(&h->pdev->dev, "could not update disk %d\n", |
2109 | drv_index); |
2110 | --h->num_luns; |
2111 | } |
2112 | } |
2113 | |
2114 | freeret: |
2115 | kfree(inq_buff); |
2116 | kfree(drvinfo); |
2117 | return; |
2118 | mem_msg: |
2119 | dev_err(&h->pdev->dev, "out of memory\n"); |
2120 | goto freeret; |
2121 | } |
2122 | |
2123 | /* This function will find the first index of the controllers drive array |
2124 | * that has a null drv pointer and allocate the drive info struct and |
2125 | * will return that index This is where new drives will be added. |
2126 | * If the index to be returned is greater than the highest_lun index for |
2127 | * the controller then highest_lun is set * to this new index. |
2128 | * If there are no available indexes or if tha allocation fails, then -1 |
2129 | * is returned. * "controller_node" is used to know if this is a real |
2130 | * logical drive, or just the controller node, which determines if this |
2131 | * counts towards highest_lun. |
2132 | */ |
2133 | static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node) |
2134 | { |
2135 | int i; |
2136 | drive_info_struct *drv; |
2137 | |
2138 | /* Search for an empty slot for our drive info */ |
2139 | for (i = 0; i < CISS_MAX_LUN; i++) { |
2140 | |
2141 | /* if not cxd0 case, and it's occupied, skip it. */ |
2142 | if (h->drv[i] && i != 0) |
2143 | continue; |
2144 | /* |
2145 | * If it's cxd0 case, and drv is alloc'ed already, and a |
2146 | * disk is configured there, skip it. |
2147 | */ |
2148 | if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1) |
2149 | continue; |
2150 | |
2151 | /* |
2152 | * We've found an empty slot. Update highest_lun |
2153 | * provided this isn't just the fake cxd0 controller node. |
2154 | */ |
2155 | if (i > h->highest_lun && !controller_node) |
2156 | h->highest_lun = i; |
2157 | |
2158 | /* If adding a real disk at cxd0, and it's already alloc'ed */ |
2159 | if (i == 0 && h->drv[i] != NULL) |
2160 | return i; |
2161 | |
2162 | /* |
2163 | * Found an empty slot, not already alloc'ed. Allocate it. |
2164 | * Mark it with raid_level == -1, so we know it's new later on. |
2165 | */ |
2166 | drv = kzalloc(sizeof(*drv), GFP_KERNEL); |
2167 | if (!drv) |
2168 | return -1; |
2169 | drv->raid_level = -1; /* so we know it's new */ |
2170 | h->drv[i] = drv; |
2171 | return i; |
2172 | } |
2173 | return -1; |
2174 | } |
2175 | |
2176 | static void cciss_free_drive_info(ctlr_info_t *h, int drv_index) |
2177 | { |
2178 | kfree(h->drv[drv_index]); |
2179 | h->drv[drv_index] = NULL; |
2180 | } |
2181 | |
2182 | static void cciss_free_gendisk(ctlr_info_t *h, int drv_index) |
2183 | { |
2184 | put_disk(h->gendisk[drv_index]); |
2185 | h->gendisk[drv_index] = NULL; |
2186 | } |
2187 | |
2188 | /* cciss_add_gendisk finds a free hba[]->drv structure |
2189 | * and allocates a gendisk if needed, and sets the lunid |
2190 | * in the drvinfo structure. It returns the index into |
2191 | * the ->drv[] array, or -1 if none are free. |
2192 | * is_controller_node indicates whether highest_lun should |
2193 | * count this disk, or if it's only being added to provide |
2194 | * a means to talk to the controller in case no logical |
2195 | * drives have yet been configured. |
2196 | */ |
2197 | static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[], |
2198 | int controller_node) |
2199 | { |
2200 | int drv_index; |
2201 | |
2202 | drv_index = cciss_alloc_drive_info(h, controller_node); |
2203 | if (drv_index == -1) |
2204 | return -1; |
2205 | |
2206 | /*Check if the gendisk needs to be allocated */ |
2207 | if (!h->gendisk[drv_index]) { |
2208 | h->gendisk[drv_index] = |
2209 | alloc_disk(1 << NWD_SHIFT); |
2210 | if (!h->gendisk[drv_index]) { |
2211 | dev_err(&h->pdev->dev, |
2212 | "could not allocate a new disk %d\n", |
2213 | drv_index); |
2214 | goto err_free_drive_info; |
2215 | } |
2216 | } |
2217 | memcpy(h->drv[drv_index]->LunID, lunid, |
2218 | sizeof(h->drv[drv_index]->LunID)); |
2219 | if (cciss_create_ld_sysfs_entry(h, drv_index)) |
2220 | goto err_free_disk; |
2221 | /* Don't need to mark this busy because nobody */ |
2222 | /* else knows about this disk yet to contend */ |
2223 | /* for access to it. */ |
2224 | h->drv[drv_index]->busy_configuring = 0; |
2225 | wmb(); |
2226 | return drv_index; |
2227 | |
2228 | err_free_disk: |
2229 | cciss_free_gendisk(h, drv_index); |
2230 | err_free_drive_info: |
2231 | cciss_free_drive_info(h, drv_index); |
2232 | return -1; |
2233 | } |
2234 | |
2235 | /* This is for the special case of a controller which |
2236 | * has no logical drives. In this case, we still need |
2237 | * to register a disk so the controller can be accessed |
2238 | * by the Array Config Utility. |
2239 | */ |
2240 | static void cciss_add_controller_node(ctlr_info_t *h) |
2241 | { |
2242 | struct gendisk *disk; |
2243 | int drv_index; |
2244 | |
2245 | if (h->gendisk[0] != NULL) /* already did this? Then bail. */ |
2246 | return; |
2247 | |
2248 | drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1); |
2249 | if (drv_index == -1) |
2250 | goto error; |
2251 | h->drv[drv_index]->block_size = 512; |
2252 | h->drv[drv_index]->nr_blocks = 0; |
2253 | h->drv[drv_index]->heads = 0; |
2254 | h->drv[drv_index]->sectors = 0; |
2255 | h->drv[drv_index]->cylinders = 0; |
2256 | h->drv[drv_index]->raid_level = -1; |
2257 | memset(h->drv[drv_index]->serial_no, 0, 16); |
2258 | disk = h->gendisk[drv_index]; |
2259 | if (cciss_add_disk(h, disk, drv_index) == 0) |
2260 | return; |
2261 | cciss_free_gendisk(h, drv_index); |
2262 | cciss_free_drive_info(h, drv_index); |
2263 | error: |
2264 | dev_warn(&h->pdev->dev, "could not add disk 0.\n"); |
2265 | return; |
2266 | } |
2267 | |
2268 | /* This function will add and remove logical drives from the Logical |
2269 | * drive array of the controller and maintain persistency of ordering |
2270 | * so that mount points are preserved until the next reboot. This allows |
2271 | * for the removal of logical drives in the middle of the drive array |
2272 | * without a re-ordering of those drives. |
2273 | * INPUT |
2274 | * h = The controller to perform the operations on |
2275 | */ |
2276 | static int rebuild_lun_table(ctlr_info_t *h, int first_time, |
2277 | int via_ioctl) |
2278 | { |
2279 | int num_luns; |
2280 | ReportLunData_struct *ld_buff = NULL; |
2281 | int return_code; |
2282 | int listlength = 0; |
2283 | int i; |
2284 | int drv_found; |
2285 | int drv_index = 0; |
2286 | unsigned char lunid[8] = CTLR_LUNID; |
2287 | unsigned long flags; |
2288 | |
2289 | if (!capable(CAP_SYS_RAWIO)) |
2290 | return -EPERM; |
2291 | |
2292 | /* Set busy_configuring flag for this operation */ |
2293 | spin_lock_irqsave(&h->lock, flags); |
2294 | if (h->busy_configuring) { |
2295 | spin_unlock_irqrestore(&h->lock, flags); |
2296 | return -EBUSY; |
2297 | } |
2298 | h->busy_configuring = 1; |
2299 | spin_unlock_irqrestore(&h->lock, flags); |
2300 | |
2301 | ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL); |
2302 | if (ld_buff == NULL) |
2303 | goto mem_msg; |
2304 | |
2305 | return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff, |
2306 | sizeof(ReportLunData_struct), |
2307 | 0, CTLR_LUNID, TYPE_CMD); |
2308 | |
2309 | if (return_code == IO_OK) |
2310 | listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength); |
2311 | else { /* reading number of logical volumes failed */ |
2312 | dev_warn(&h->pdev->dev, |
2313 | "report logical volume command failed\n"); |
2314 | listlength = 0; |
2315 | goto freeret; |
2316 | } |
2317 | |
2318 | num_luns = listlength / 8; /* 8 bytes per entry */ |
2319 | if (num_luns > CISS_MAX_LUN) { |
2320 | num_luns = CISS_MAX_LUN; |
2321 | dev_warn(&h->pdev->dev, "more luns configured" |
2322 | " on controller than can be handled by" |
2323 | " this driver.\n"); |
2324 | } |
2325 | |
2326 | if (num_luns == 0) |
2327 | cciss_add_controller_node(h); |
2328 | |
2329 | /* Compare controller drive array to driver's drive array |
2330 | * to see if any drives are missing on the controller due |
2331 | * to action of Array Config Utility (user deletes drive) |
2332 | * and deregister logical drives which have disappeared. |
2333 | */ |
2334 | for (i = 0; i <= h->highest_lun; i++) { |
2335 | int j; |
2336 | drv_found = 0; |
2337 | |
2338 | /* skip holes in the array from already deleted drives */ |
2339 | if (h->drv[i] == NULL) |
2340 | continue; |
2341 | |
2342 | for (j = 0; j < num_luns; j++) { |
2343 | memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid)); |
2344 | if (memcmp(h->drv[i]->LunID, lunid, |
2345 | sizeof(lunid)) == 0) { |
2346 | drv_found = 1; |
2347 | break; |
2348 | } |
2349 | } |
2350 | if (!drv_found) { |
2351 | /* Deregister it from the OS, it's gone. */ |
2352 | spin_lock_irqsave(&h->lock, flags); |
2353 | h->drv[i]->busy_configuring = 1; |
2354 | spin_unlock_irqrestore(&h->lock, flags); |
2355 | return_code = deregister_disk(h, i, 1, via_ioctl); |
2356 | if (h->drv[i] != NULL) |
2357 | h->drv[i]->busy_configuring = 0; |
2358 | } |
2359 | } |
2360 | |
2361 | /* Compare controller drive array to driver's drive array. |
2362 | * Check for updates in the drive information and any new drives |
2363 | * on the controller due to ACU adding logical drives, or changing |
2364 | * a logical drive's size, etc. Reregister any new/changed drives |
2365 | */ |
2366 | for (i = 0; i < num_luns; i++) { |
2367 | int j; |
2368 | |
2369 | drv_found = 0; |
2370 | |
2371 | memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid)); |
2372 | /* Find if the LUN is already in the drive array |
2373 | * of the driver. If so then update its info |
2374 | * if not in use. If it does not exist then find |
2375 | * the first free index and add it. |
2376 | */ |
2377 | for (j = 0; j <= h->highest_lun; j++) { |
2378 | if (h->drv[j] != NULL && |
2379 | memcmp(h->drv[j]->LunID, lunid, |
2380 | sizeof(h->drv[j]->LunID)) == 0) { |
2381 | drv_index = j; |
2382 | drv_found = 1; |
2383 | break; |
2384 | } |
2385 | } |
2386 | |
2387 | /* check if the drive was found already in the array */ |
2388 | if (!drv_found) { |
2389 | drv_index = cciss_add_gendisk(h, lunid, 0); |
2390 | if (drv_index == -1) |
2391 | goto freeret; |
2392 | } |
2393 | cciss_update_drive_info(h, drv_index, first_time, via_ioctl); |
2394 | } /* end for */ |
2395 | |
2396 | freeret: |
2397 | kfree(ld_buff); |
2398 | h->busy_configuring = 0; |
2399 | /* We return -1 here to tell the ACU that we have registered/updated |
2400 | * all of the drives that we can and to keep it from calling us |
2401 | * additional times. |
2402 | */ |
2403 | return -1; |
2404 | mem_msg: |
2405 | dev_err(&h->pdev->dev, "out of memory\n"); |
2406 | h->busy_configuring = 0; |
2407 | goto freeret; |
2408 | } |
2409 | |
2410 | static void cciss_clear_drive_info(drive_info_struct *drive_info) |
2411 | { |
2412 | /* zero out the disk size info */ |
2413 | drive_info->nr_blocks = 0; |
2414 | drive_info->block_size = 0; |
2415 | drive_info->heads = 0; |
2416 | drive_info->sectors = 0; |
2417 | drive_info->cylinders = 0; |
2418 | drive_info->raid_level = -1; |
2419 | memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no)); |
2420 | memset(drive_info->model, 0, sizeof(drive_info->model)); |
2421 | memset(drive_info->rev, 0, sizeof(drive_info->rev)); |
2422 | memset(drive_info->vendor, 0, sizeof(drive_info->vendor)); |
2423 | /* |
2424 | * don't clear the LUNID though, we need to remember which |
2425 | * one this one is. |
2426 | */ |
2427 | } |
2428 | |
2429 | /* This function will deregister the disk and it's queue from the |
2430 | * kernel. It must be called with the controller lock held and the |
2431 | * drv structures busy_configuring flag set. It's parameters are: |
2432 | * |
2433 | * disk = This is the disk to be deregistered |
2434 | * drv = This is the drive_info_struct associated with the disk to be |
2435 | * deregistered. It contains information about the disk used |
2436 | * by the driver. |
2437 | * clear_all = This flag determines whether or not the disk information |
2438 | * is going to be completely cleared out and the highest_lun |
2439 | * reset. Sometimes we want to clear out information about |
2440 | * the disk in preparation for re-adding it. In this case |
2441 | * the highest_lun should be left unchanged and the LunID |
2442 | * should not be cleared. |
2443 | * via_ioctl |
2444 | * This indicates whether we've reached this path via ioctl. |
2445 | * This affects the maximum usage count allowed for c0d0 to be messed with. |
2446 | * If this path is reached via ioctl(), then the max_usage_count will |
2447 | * be 1, as the process calling ioctl() has got to have the device open. |
2448 | * If we get here via sysfs, then the max usage count will be zero. |
2449 | */ |
2450 | static int deregister_disk(ctlr_info_t *h, int drv_index, |
2451 | int clear_all, int via_ioctl) |
2452 | { |
2453 | int i; |
2454 | struct gendisk *disk; |
2455 | drive_info_struct *drv; |
2456 | int recalculate_highest_lun; |
2457 | |
2458 | if (!capable(CAP_SYS_RAWIO)) |
2459 | return -EPERM; |
2460 | |
2461 | drv = h->drv[drv_index]; |
2462 | disk = h->gendisk[drv_index]; |
2463 | |
2464 | /* make sure logical volume is NOT is use */ |
2465 | if (clear_all || (h->gendisk[0] == disk)) { |
2466 | if (drv->usage_count > via_ioctl) |
2467 | return -EBUSY; |
2468 | } else if (drv->usage_count > 0) |
2469 | return -EBUSY; |
2470 | |
2471 | recalculate_highest_lun = (drv == h->drv[h->highest_lun]); |
2472 | |
2473 | /* invalidate the devices and deregister the disk. If it is disk |
2474 | * zero do not deregister it but just zero out it's values. This |
2475 | * allows us to delete disk zero but keep the controller registered. |
2476 | */ |
2477 | if (h->gendisk[0] != disk) { |
2478 | struct request_queue *q = disk->queue; |
2479 | if (disk->flags & GENHD_FL_UP) { |
2480 | cciss_destroy_ld_sysfs_entry(h, drv_index, 0); |
2481 | del_gendisk(disk); |
2482 | } |
2483 | if (q) |
2484 | blk_cleanup_queue(q); |
2485 | /* If clear_all is set then we are deleting the logical |
2486 | * drive, not just refreshing its info. For drives |
2487 | * other than disk 0 we will call put_disk. We do not |
2488 | * do this for disk 0 as we need it to be able to |
2489 | * configure the controller. |
2490 | */ |
2491 | if (clear_all){ |
2492 | /* This isn't pretty, but we need to find the |
2493 | * disk in our array and NULL our the pointer. |
2494 | * This is so that we will call alloc_disk if |
2495 | * this index is used again later. |
2496 | */ |
2497 | for (i=0; i < CISS_MAX_LUN; i++){ |
2498 | if (h->gendisk[i] == disk) { |
2499 | h->gendisk[i] = NULL; |
2500 | break; |
2501 | } |
2502 | } |
2503 | put_disk(disk); |
2504 | } |
2505 | } else { |
2506 | set_capacity(disk, 0); |
2507 | cciss_clear_drive_info(drv); |
2508 | } |
2509 | |
2510 | --h->num_luns; |
2511 | |
2512 | /* if it was the last disk, find the new hightest lun */ |
2513 | if (clear_all && recalculate_highest_lun) { |
2514 | int newhighest = -1; |
2515 | for (i = 0; i <= h->highest_lun; i++) { |
2516 | /* if the disk has size > 0, it is available */ |
2517 | if (h->drv[i] && h->drv[i]->heads) |
2518 | newhighest = i; |
2519 | } |
2520 | h->highest_lun = newhighest; |
2521 | } |
2522 | return 0; |
2523 | } |
2524 | |
2525 | static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff, |
2526 | size_t size, __u8 page_code, unsigned char *scsi3addr, |
2527 | int cmd_type) |
2528 | { |
2529 | u64bit buff_dma_handle; |
2530 | int status = IO_OK; |
2531 | |
2532 | c->cmd_type = CMD_IOCTL_PEND; |
2533 | c->Header.ReplyQueue = 0; |
2534 | if (buff != NULL) { |
2535 | c->Header.SGList = 1; |
2536 | c->Header.SGTotal = 1; |
2537 | } else { |
2538 | c->Header.SGList = 0; |
2539 | c->Header.SGTotal = 0; |
2540 | } |
2541 | c->Header.Tag.lower = c->busaddr; |
2542 | memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); |
2543 | |
2544 | c->Request.Type.Type = cmd_type; |
2545 | if (cmd_type == TYPE_CMD) { |
2546 | switch (cmd) { |
2547 | case CISS_INQUIRY: |
2548 | /* are we trying to read a vital product page */ |
2549 | if (page_code != 0) { |
2550 | c->Request.CDB[1] = 0x01; |
2551 | c->Request.CDB[2] = page_code; |
2552 | } |
2553 | c->Request.CDBLen = 6; |
2554 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2555 | c->Request.Type.Direction = XFER_READ; |
2556 | c->Request.Timeout = 0; |
2557 | c->Request.CDB[0] = CISS_INQUIRY; |
2558 | c->Request.CDB[4] = size & 0xFF; |
2559 | break; |
2560 | case CISS_REPORT_LOG: |
2561 | case CISS_REPORT_PHYS: |
2562 | /* Talking to controller so It's a physical command |
2563 | mode = 00 target = 0. Nothing to write. |
2564 | */ |
2565 | c->Request.CDBLen = 12; |
2566 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2567 | c->Request.Type.Direction = XFER_READ; |
2568 | c->Request.Timeout = 0; |
2569 | c->Request.CDB[0] = cmd; |
2570 | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
2571 | c->Request.CDB[7] = (size >> 16) & 0xFF; |
2572 | c->Request.CDB[8] = (size >> 8) & 0xFF; |
2573 | c->Request.CDB[9] = size & 0xFF; |
2574 | break; |
2575 | |
2576 | case CCISS_READ_CAPACITY: |
2577 | c->Request.CDBLen = 10; |
2578 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2579 | c->Request.Type.Direction = XFER_READ; |
2580 | c->Request.Timeout = 0; |
2581 | c->Request.CDB[0] = cmd; |
2582 | break; |
2583 | case CCISS_READ_CAPACITY_16: |
2584 | c->Request.CDBLen = 16; |
2585 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2586 | c->Request.Type.Direction = XFER_READ; |
2587 | c->Request.Timeout = 0; |
2588 | c->Request.CDB[0] = cmd; |
2589 | c->Request.CDB[1] = 0x10; |
2590 | c->Request.CDB[10] = (size >> 24) & 0xFF; |
2591 | c->Request.CDB[11] = (size >> 16) & 0xFF; |
2592 | c->Request.CDB[12] = (size >> 8) & 0xFF; |
2593 | c->Request.CDB[13] = size & 0xFF; |
2594 | c->Request.Timeout = 0; |
2595 | c->Request.CDB[0] = cmd; |
2596 | break; |
2597 | case CCISS_CACHE_FLUSH: |
2598 | c->Request.CDBLen = 12; |
2599 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2600 | c->Request.Type.Direction = XFER_WRITE; |
2601 | c->Request.Timeout = 0; |
2602 | c->Request.CDB[0] = BMIC_WRITE; |
2603 | c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
2604 | c->Request.CDB[7] = (size >> 8) & 0xFF; |
2605 | c->Request.CDB[8] = size & 0xFF; |
2606 | break; |
2607 | case TEST_UNIT_READY: |
2608 | c->Request.CDBLen = 6; |
2609 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2610 | c->Request.Type.Direction = XFER_NONE; |
2611 | c->Request.Timeout = 0; |
2612 | break; |
2613 | default: |
2614 | dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd); |
2615 | return IO_ERROR; |
2616 | } |
2617 | } else if (cmd_type == TYPE_MSG) { |
2618 | switch (cmd) { |
2619 | case CCISS_ABORT_MSG: |
2620 | c->Request.CDBLen = 12; |
2621 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2622 | c->Request.Type.Direction = XFER_WRITE; |
2623 | c->Request.Timeout = 0; |
2624 | c->Request.CDB[0] = cmd; /* abort */ |
2625 | c->Request.CDB[1] = 0; /* abort a command */ |
2626 | /* buff contains the tag of the command to abort */ |
2627 | memcpy(&c->Request.CDB[4], buff, 8); |
2628 | break; |
2629 | case CCISS_RESET_MSG: |
2630 | c->Request.CDBLen = 16; |
2631 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2632 | c->Request.Type.Direction = XFER_NONE; |
2633 | c->Request.Timeout = 0; |
2634 | memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
2635 | c->Request.CDB[0] = cmd; /* reset */ |
2636 | c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET; |
2637 | break; |
2638 | case CCISS_NOOP_MSG: |
2639 | c->Request.CDBLen = 1; |
2640 | c->Request.Type.Attribute = ATTR_SIMPLE; |
2641 | c->Request.Type.Direction = XFER_WRITE; |
2642 | c->Request.Timeout = 0; |
2643 | c->Request.CDB[0] = cmd; |
2644 | break; |
2645 | default: |
2646 | dev_warn(&h->pdev->dev, |
2647 | "unknown message type %d\n", cmd); |
2648 | return IO_ERROR; |
2649 | } |
2650 | } else { |
2651 | dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); |
2652 | return IO_ERROR; |
2653 | } |
2654 | /* Fill in the scatter gather information */ |
2655 | if (size > 0) { |
2656 | buff_dma_handle.val = (__u64) pci_map_single(h->pdev, |
2657 | buff, size, |
2658 | PCI_DMA_BIDIRECTIONAL); |
2659 | c->SG[0].Addr.lower = buff_dma_handle.val32.lower; |
2660 | c->SG[0].Addr.upper = buff_dma_handle.val32.upper; |
2661 | c->SG[0].Len = size; |
2662 | c->SG[0].Ext = 0; /* we are not chaining */ |
2663 | } |
2664 | return status; |
2665 | } |
2666 | |
2667 | static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr, |
2668 | u8 reset_type) |
2669 | { |
2670 | CommandList_struct *c; |
2671 | int return_status; |
2672 | |
2673 | c = cmd_alloc(h); |
2674 | if (!c) |
2675 | return -ENOMEM; |
2676 | return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0, |
2677 | CTLR_LUNID, TYPE_MSG); |
2678 | c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ |
2679 | if (return_status != IO_OK) { |
2680 | cmd_special_free(h, c); |
2681 | return return_status; |
2682 | } |
2683 | c->waiting = NULL; |
2684 | enqueue_cmd_and_start_io(h, c); |
2685 | /* Don't wait for completion, the reset won't complete. Don't free |
2686 | * the command either. This is the last command we will send before |
2687 | * re-initializing everything, so it doesn't matter and won't leak. |
2688 | */ |
2689 | return 0; |
2690 | } |
2691 | |
2692 | static int check_target_status(ctlr_info_t *h, CommandList_struct *c) |
2693 | { |
2694 | switch (c->err_info->ScsiStatus) { |
2695 | case SAM_STAT_GOOD: |
2696 | return IO_OK; |
2697 | case SAM_STAT_CHECK_CONDITION: |
2698 | switch (0xf & c->err_info->SenseInfo[2]) { |
2699 | case 0: return IO_OK; /* no sense */ |
2700 | case 1: return IO_OK; /* recovered error */ |
2701 | default: |
2702 | if (check_for_unit_attention(h, c)) |
2703 | return IO_NEEDS_RETRY; |
2704 | dev_warn(&h->pdev->dev, "cmd 0x%02x " |
2705 | "check condition, sense key = 0x%02x\n", |
2706 | c->Request.CDB[0], c->err_info->SenseInfo[2]); |
2707 | } |
2708 | break; |
2709 | default: |
2710 | dev_warn(&h->pdev->dev, "cmd 0x%02x" |
2711 | "scsi status = 0x%02x\n", |
2712 | c->Request.CDB[0], c->err_info->ScsiStatus); |
2713 | break; |
2714 | } |
2715 | return IO_ERROR; |
2716 | } |
2717 | |
2718 | static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c) |
2719 | { |
2720 | int return_status = IO_OK; |
2721 | |
2722 | if (c->err_info->CommandStatus == CMD_SUCCESS) |
2723 | return IO_OK; |
2724 | |
2725 | switch (c->err_info->CommandStatus) { |
2726 | case CMD_TARGET_STATUS: |
2727 | return_status = check_target_status(h, c); |
2728 | break; |
2729 | case CMD_DATA_UNDERRUN: |
2730 | case CMD_DATA_OVERRUN: |
2731 | /* expected for inquiry and report lun commands */ |
2732 | break; |
2733 | case CMD_INVALID: |
2734 | dev_warn(&h->pdev->dev, "cmd 0x%02x is " |
2735 | "reported invalid\n", c->Request.CDB[0]); |
2736 | return_status = IO_ERROR; |
2737 | break; |
2738 | case CMD_PROTOCOL_ERR: |
2739 | dev_warn(&h->pdev->dev, "cmd 0x%02x has " |
2740 | "protocol error\n", c->Request.CDB[0]); |
2741 | return_status = IO_ERROR; |
2742 | break; |
2743 | case CMD_HARDWARE_ERR: |
2744 | dev_warn(&h->pdev->dev, "cmd 0x%02x had " |
2745 | " hardware error\n", c->Request.CDB[0]); |
2746 | return_status = IO_ERROR; |
2747 | break; |
2748 | case CMD_CONNECTION_LOST: |
2749 | dev_warn(&h->pdev->dev, "cmd 0x%02x had " |
2750 | "connection lost\n", c->Request.CDB[0]); |
2751 | return_status = IO_ERROR; |
2752 | break; |
2753 | case CMD_ABORTED: |
2754 | dev_warn(&h->pdev->dev, "cmd 0x%02x was " |
2755 | "aborted\n", c->Request.CDB[0]); |
2756 | return_status = IO_ERROR; |
2757 | break; |
2758 | case CMD_ABORT_FAILED: |
2759 | dev_warn(&h->pdev->dev, "cmd 0x%02x reports " |
2760 | "abort failed\n", c->Request.CDB[0]); |
2761 | return_status = IO_ERROR; |
2762 | break; |
2763 | case CMD_UNSOLICITED_ABORT: |
2764 | dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n", |
2765 | c->Request.CDB[0]); |
2766 | return_status = IO_NEEDS_RETRY; |
2767 | break; |
2768 | case CMD_UNABORTABLE: |
2769 | dev_warn(&h->pdev->dev, "cmd unabortable\n"); |
2770 | return_status = IO_ERROR; |
2771 | break; |
2772 | default: |
2773 | dev_warn(&h->pdev->dev, "cmd 0x%02x returned " |
2774 | "unknown status %x\n", c->Request.CDB[0], |
2775 | c->err_info->CommandStatus); |
2776 | return_status = IO_ERROR; |
2777 | } |
2778 | return return_status; |
2779 | } |
2780 | |
2781 | static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, |
2782 | int attempt_retry) |
2783 | { |
2784 | DECLARE_COMPLETION_ONSTACK(wait); |
2785 | u64bit buff_dma_handle; |
2786 | int return_status = IO_OK; |
2787 | |
2788 | resend_cmd2: |
2789 | c->waiting = &wait; |
2790 | enqueue_cmd_and_start_io(h, c); |
2791 | |
2792 | wait_for_completion(&wait); |
2793 | |
2794 | if (c->err_info->CommandStatus == 0 || !attempt_retry) |
2795 | goto command_done; |
2796 | |
2797 | return_status = process_sendcmd_error(h, c); |
2798 | |
2799 | if (return_status == IO_NEEDS_RETRY && |
2800 | c->retry_count < MAX_CMD_RETRIES) { |
2801 | dev_warn(&h->pdev->dev, "retrying 0x%02x\n", |
2802 | c->Request.CDB[0]); |
2803 | c->retry_count++; |
2804 | /* erase the old error information */ |
2805 | memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
2806 | return_status = IO_OK; |
2807 | INIT_COMPLETION(wait); |
2808 | goto resend_cmd2; |
2809 | } |
2810 | |
2811 | command_done: |
2812 | /* unlock the buffers from DMA */ |
2813 | buff_dma_handle.val32.lower = c->SG[0].Addr.lower; |
2814 | buff_dma_handle.val32.upper = c->SG[0].Addr.upper; |
2815 | pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, |
2816 | c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); |
2817 | return return_status; |
2818 | } |
2819 | |
2820 | static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size, |
2821 | __u8 page_code, unsigned char scsi3addr[], |
2822 | int cmd_type) |
2823 | { |
2824 | CommandList_struct *c; |
2825 | int return_status; |
2826 | |
2827 | c = cmd_special_alloc(h); |
2828 | if (!c) |
2829 | return -ENOMEM; |
2830 | return_status = fill_cmd(h, c, cmd, buff, size, page_code, |
2831 | scsi3addr, cmd_type); |
2832 | if (return_status == IO_OK) |
2833 | return_status = sendcmd_withirq_core(h, c, 1); |
2834 | |
2835 | cmd_special_free(h, c); |
2836 | return return_status; |
2837 | } |
2838 | |
2839 | static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol, |
2840 | sector_t total_size, |
2841 | unsigned int block_size, |
2842 | InquiryData_struct *inq_buff, |
2843 | drive_info_struct *drv) |
2844 | { |
2845 | int return_code; |
2846 | unsigned long t; |
2847 | unsigned char scsi3addr[8]; |
2848 | |
2849 | memset(inq_buff, 0, sizeof(InquiryData_struct)); |
2850 | log_unit_to_scsi3addr(h, scsi3addr, logvol); |
2851 | return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff, |
2852 | sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD); |
2853 | if (return_code == IO_OK) { |
2854 | if (inq_buff->data_byte[8] == 0xFF) { |
2855 | dev_warn(&h->pdev->dev, |
2856 | "reading geometry failed, volume " |
2857 | "does not support reading geometry\n"); |
2858 | drv->heads = 255; |
2859 | drv->sectors = 32; /* Sectors per track */ |
2860 | drv->cylinders = total_size + 1; |
2861 | drv->raid_level = RAID_UNKNOWN; |
2862 | } else { |
2863 | drv->heads = inq_buff->data_byte[6]; |
2864 | drv->sectors = inq_buff->data_byte[7]; |
2865 | drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; |
2866 | drv->cylinders += inq_buff->data_byte[5]; |
2867 | drv->raid_level = inq_buff->data_byte[8]; |
2868 | } |
2869 | drv->block_size = block_size; |
2870 | drv->nr_blocks = total_size + 1; |
2871 | t = drv->heads * drv->sectors; |
2872 | if (t > 1) { |
2873 | sector_t real_size = total_size + 1; |
2874 | unsigned long rem = sector_div(real_size, t); |
2875 | if (rem) |
2876 | real_size++; |
2877 | drv->cylinders = real_size; |
2878 | } |
2879 | } else { /* Get geometry failed */ |
2880 | dev_warn(&h->pdev->dev, "reading geometry failed\n"); |
2881 | } |
2882 | } |
2883 | |
2884 | static void |
2885 | cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size, |
2886 | unsigned int *block_size) |
2887 | { |
2888 | ReadCapdata_struct *buf; |
2889 | int return_code; |
2890 | unsigned char scsi3addr[8]; |
2891 | |
2892 | buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL); |
2893 | if (!buf) { |
2894 | dev_warn(&h->pdev->dev, "out of memory\n"); |
2895 | return; |
2896 | } |
2897 | |
2898 | log_unit_to_scsi3addr(h, scsi3addr, logvol); |
2899 | return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf, |
2900 | sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD); |
2901 | if (return_code == IO_OK) { |
2902 | *total_size = be32_to_cpu(*(__be32 *) buf->total_size); |
2903 | *block_size = be32_to_cpu(*(__be32 *) buf->block_size); |
2904 | } else { /* read capacity command failed */ |
2905 | dev_warn(&h->pdev->dev, "read capacity failed\n"); |
2906 | *total_size = 0; |
2907 | *block_size = BLOCK_SIZE; |
2908 | } |
2909 | kfree(buf); |
2910 | } |
2911 | |
2912 | static void cciss_read_capacity_16(ctlr_info_t *h, int logvol, |
2913 | sector_t *total_size, unsigned int *block_size) |
2914 | { |
2915 | ReadCapdata_struct_16 *buf; |
2916 | int return_code; |
2917 | unsigned char scsi3addr[8]; |
2918 | |
2919 | buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL); |
2920 | if (!buf) { |
2921 | dev_warn(&h->pdev->dev, "out of memory\n"); |
2922 | return; |
2923 | } |
2924 | |
2925 | log_unit_to_scsi3addr(h, scsi3addr, logvol); |
2926 | return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16, |
2927 | buf, sizeof(ReadCapdata_struct_16), |
2928 | 0, scsi3addr, TYPE_CMD); |
2929 | if (return_code == IO_OK) { |
2930 | *total_size = be64_to_cpu(*(__be64 *) buf->total_size); |
2931 | *block_size = be32_to_cpu(*(__be32 *) buf->block_size); |
2932 | } else { /* read capacity command failed */ |
2933 | dev_warn(&h->pdev->dev, "read capacity failed\n"); |
2934 | *total_size = 0; |
2935 | *block_size = BLOCK_SIZE; |
2936 | } |
2937 | dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n", |
2938 | (unsigned long long)*total_size+1, *block_size); |
2939 | kfree(buf); |
2940 | } |
2941 | |
2942 | static int cciss_revalidate(struct gendisk *disk) |
2943 | { |
2944 | ctlr_info_t *h = get_host(disk); |
2945 | drive_info_struct *drv = get_drv(disk); |
2946 | int logvol; |
2947 | int FOUND = 0; |
2948 | unsigned int block_size; |
2949 | sector_t total_size; |
2950 | InquiryData_struct *inq_buff = NULL; |
2951 | |
2952 | for (logvol = 0; logvol <= h->highest_lun; logvol++) { |
2953 | if (!h->drv[logvol]) |
2954 | continue; |
2955 | if (memcmp(h->drv[logvol]->LunID, drv->LunID, |
2956 | sizeof(drv->LunID)) == 0) { |
2957 | FOUND = 1; |
2958 | break; |
2959 | } |
2960 | } |
2961 | |
2962 | if (!FOUND) |
2963 | return 1; |
2964 | |
2965 | inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
2966 | if (inq_buff == NULL) { |
2967 | dev_warn(&h->pdev->dev, "out of memory\n"); |
2968 | return 1; |
2969 | } |
2970 | if (h->cciss_read == CCISS_READ_10) { |
2971 | cciss_read_capacity(h, logvol, |
2972 | &total_size, &block_size); |
2973 | } else { |
2974 | cciss_read_capacity_16(h, logvol, |
2975 | &total_size, &block_size); |
2976 | } |
2977 | cciss_geometry_inquiry(h, logvol, total_size, block_size, |
2978 | inq_buff, drv); |
2979 | |
2980 | blk_queue_logical_block_size(drv->queue, drv->block_size); |
2981 | set_capacity(disk, drv->nr_blocks); |
2982 | |
2983 | kfree(inq_buff); |
2984 | return 0; |
2985 | } |
2986 | |
2987 | /* |
2988 | * Map (physical) PCI mem into (virtual) kernel space |
2989 | */ |
2990 | static void __iomem *remap_pci_mem(ulong base, ulong size) |
2991 | { |
2992 | ulong page_base = ((ulong) base) & PAGE_MASK; |
2993 | ulong page_offs = ((ulong) base) - page_base; |
2994 | void __iomem *page_remapped = ioremap(page_base, page_offs + size); |
2995 | |
2996 | return page_remapped ? (page_remapped + page_offs) : NULL; |
2997 | } |
2998 | |
2999 | /* |
3000 | * Takes jobs of the Q and sends them to the hardware, then puts it on |
3001 | * the Q to wait for completion. |
3002 | */ |
3003 | static void start_io(ctlr_info_t *h) |
3004 | { |
3005 | CommandList_struct *c; |
3006 | |
3007 | while (!list_empty(&h->reqQ)) { |
3008 | c = list_entry(h->reqQ.next, CommandList_struct, list); |
3009 | /* can't do anything if fifo is full */ |
3010 | if ((h->access.fifo_full(h))) { |
3011 | dev_warn(&h->pdev->dev, "fifo full\n"); |
3012 | break; |
3013 | } |
3014 | |
3015 | /* Get the first entry from the Request Q */ |
3016 | removeQ(c); |
3017 | h->Qdepth--; |
3018 | |
3019 | /* Tell the controller execute command */ |
3020 | h->access.submit_command(h, c); |
3021 | |
3022 | /* Put job onto the completed Q */ |
3023 | addQ(&h->cmpQ, c); |
3024 | } |
3025 | } |
3026 | |
3027 | /* Assumes that h->lock is held. */ |
3028 | /* Zeros out the error record and then resends the command back */ |
3029 | /* to the controller */ |
3030 | static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c) |
3031 | { |
3032 | /* erase the old error information */ |
3033 | memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
3034 | |
3035 | /* add it to software queue and then send it to the controller */ |
3036 | addQ(&h->reqQ, c); |
3037 | h->Qdepth++; |
3038 | if (h->Qdepth > h->maxQsinceinit) |
3039 | h->maxQsinceinit = h->Qdepth; |
3040 | |
3041 | start_io(h); |
3042 | } |
3043 | |
3044 | static inline unsigned int make_status_bytes(unsigned int scsi_status_byte, |
3045 | unsigned int msg_byte, unsigned int host_byte, |
3046 | unsigned int driver_byte) |
3047 | { |
3048 | /* inverse of macros in scsi.h */ |
3049 | return (scsi_status_byte & 0xff) | |
3050 | ((msg_byte & 0xff) << 8) | |
3051 | ((host_byte & 0xff) << 16) | |
3052 | ((driver_byte & 0xff) << 24); |
3053 | } |
3054 | |
3055 | static inline int evaluate_target_status(ctlr_info_t *h, |
3056 | CommandList_struct *cmd, int *retry_cmd) |
3057 | { |
3058 | unsigned char sense_key; |
3059 | unsigned char status_byte, msg_byte, host_byte, driver_byte; |
3060 | int error_value; |
3061 | |
3062 | *retry_cmd = 0; |
3063 | /* If we get in here, it means we got "target status", that is, scsi status */ |
3064 | status_byte = cmd->err_info->ScsiStatus; |
3065 | driver_byte = DRIVER_OK; |
3066 | msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */ |
3067 | |
3068 | if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) |
3069 | host_byte = DID_PASSTHROUGH; |
3070 | else |
3071 | host_byte = DID_OK; |
3072 | |
3073 | error_value = make_status_bytes(status_byte, msg_byte, |
3074 | host_byte, driver_byte); |
3075 | |
3076 | if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) { |
3077 | if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) |
3078 | dev_warn(&h->pdev->dev, "cmd %p " |
3079 | "has SCSI Status 0x%x\n", |
3080 | cmd, cmd->err_info->ScsiStatus); |
3081 | return error_value; |
3082 | } |
3083 | |
3084 | /* check the sense key */ |
3085 | sense_key = 0xf & cmd->err_info->SenseInfo[2]; |
3086 | /* no status or recovered error */ |
3087 | if (((sense_key == 0x0) || (sense_key == 0x1)) && |
3088 | (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)) |
3089 | error_value = 0; |
3090 | |
3091 | if (check_for_unit_attention(h, cmd)) { |
3092 | *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC); |
3093 | return 0; |
3094 | } |
3095 | |
3096 | /* Not SG_IO or similar? */ |
3097 | if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) { |
3098 | if (error_value != 0) |
3099 | dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION" |
3100 | " sense key = 0x%x\n", cmd, sense_key); |
3101 | return error_value; |
3102 | } |
3103 | |
3104 | /* SG_IO or similar, copy sense data back */ |
3105 | if (cmd->rq->sense) { |
3106 | if (cmd->rq->sense_len > cmd->err_info->SenseLen) |
3107 | cmd->rq->sense_len = cmd->err_info->SenseLen; |
3108 | memcpy(cmd->rq->sense, cmd->err_info->SenseInfo, |
3109 | cmd->rq->sense_len); |
3110 | } else |
3111 | cmd->rq->sense_len = 0; |
3112 | |
3113 | return error_value; |
3114 | } |
3115 | |
3116 | /* checks the status of the job and calls complete buffers to mark all |
3117 | * buffers for the completed job. Note that this function does not need |
3118 | * to hold the hba/queue lock. |
3119 | */ |
3120 | static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd, |
3121 | int timeout) |
3122 | { |
3123 | int retry_cmd = 0; |
3124 | struct request *rq = cmd->rq; |
3125 | |
3126 | rq->errors = 0; |
3127 | |
3128 | if (timeout) |
3129 | rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT); |
3130 | |
3131 | if (cmd->err_info->CommandStatus == 0) /* no error has occurred */ |
3132 | goto after_error_processing; |
3133 | |
3134 | switch (cmd->err_info->CommandStatus) { |
3135 | case CMD_TARGET_STATUS: |
3136 | rq->errors = evaluate_target_status(h, cmd, &retry_cmd); |
3137 | break; |
3138 | case CMD_DATA_UNDERRUN: |
3139 | if (cmd->rq->cmd_type == REQ_TYPE_FS) { |
3140 | dev_warn(&h->pdev->dev, "cmd %p has" |
3141 | " completed with data underrun " |
3142 | "reported\n", cmd); |
3143 | cmd->rq->resid_len = cmd->err_info->ResidualCnt; |
3144 | } |
3145 | break; |
3146 | case CMD_DATA_OVERRUN: |
3147 | if (cmd->rq->cmd_type == REQ_TYPE_FS) |
3148 | dev_warn(&h->pdev->dev, "cciss: cmd %p has" |
3149 | " completed with data overrun " |
3150 | "reported\n", cmd); |
3151 | break; |
3152 | case CMD_INVALID: |
3153 | dev_warn(&h->pdev->dev, "cciss: cmd %p is " |
3154 | "reported invalid\n", cmd); |
3155 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3156 | cmd->err_info->CommandStatus, DRIVER_OK, |
3157 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3158 | DID_PASSTHROUGH : DID_ERROR); |
3159 | break; |
3160 | case CMD_PROTOCOL_ERR: |
3161 | dev_warn(&h->pdev->dev, "cciss: cmd %p has " |
3162 | "protocol error\n", cmd); |
3163 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3164 | cmd->err_info->CommandStatus, DRIVER_OK, |
3165 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3166 | DID_PASSTHROUGH : DID_ERROR); |
3167 | break; |
3168 | case CMD_HARDWARE_ERR: |
3169 | dev_warn(&h->pdev->dev, "cciss: cmd %p had " |
3170 | " hardware error\n", cmd); |
3171 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3172 | cmd->err_info->CommandStatus, DRIVER_OK, |
3173 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3174 | DID_PASSTHROUGH : DID_ERROR); |
3175 | break; |
3176 | case CMD_CONNECTION_LOST: |
3177 | dev_warn(&h->pdev->dev, "cciss: cmd %p had " |
3178 | "connection lost\n", cmd); |
3179 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3180 | cmd->err_info->CommandStatus, DRIVER_OK, |
3181 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3182 | DID_PASSTHROUGH : DID_ERROR); |
3183 | break; |
3184 | case CMD_ABORTED: |
3185 | dev_warn(&h->pdev->dev, "cciss: cmd %p was " |
3186 | "aborted\n", cmd); |
3187 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3188 | cmd->err_info->CommandStatus, DRIVER_OK, |
3189 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3190 | DID_PASSTHROUGH : DID_ABORT); |
3191 | break; |
3192 | case CMD_ABORT_FAILED: |
3193 | dev_warn(&h->pdev->dev, "cciss: cmd %p reports " |
3194 | "abort failed\n", cmd); |
3195 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3196 | cmd->err_info->CommandStatus, DRIVER_OK, |
3197 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3198 | DID_PASSTHROUGH : DID_ERROR); |
3199 | break; |
3200 | case CMD_UNSOLICITED_ABORT: |
3201 | dev_warn(&h->pdev->dev, "cciss%d: unsolicited " |
3202 | "abort %p\n", h->ctlr, cmd); |
3203 | if (cmd->retry_count < MAX_CMD_RETRIES) { |
3204 | retry_cmd = 1; |
3205 | dev_warn(&h->pdev->dev, "retrying %p\n", cmd); |
3206 | cmd->retry_count++; |
3207 | } else |
3208 | dev_warn(&h->pdev->dev, |
3209 | "%p retried too many times\n", cmd); |
3210 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3211 | cmd->err_info->CommandStatus, DRIVER_OK, |
3212 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3213 | DID_PASSTHROUGH : DID_ABORT); |
3214 | break; |
3215 | case CMD_TIMEOUT: |
3216 | dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd); |
3217 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3218 | cmd->err_info->CommandStatus, DRIVER_OK, |
3219 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3220 | DID_PASSTHROUGH : DID_ERROR); |
3221 | break; |
3222 | case CMD_UNABORTABLE: |
3223 | dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd); |
3224 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3225 | cmd->err_info->CommandStatus, DRIVER_OK, |
3226 | cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ? |
3227 | DID_PASSTHROUGH : DID_ERROR); |
3228 | break; |
3229 | default: |
3230 | dev_warn(&h->pdev->dev, "cmd %p returned " |
3231 | "unknown status %x\n", cmd, |
3232 | cmd->err_info->CommandStatus); |
3233 | rq->errors = make_status_bytes(SAM_STAT_GOOD, |
3234 | cmd->err_info->CommandStatus, DRIVER_OK, |
3235 | (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? |
3236 | DID_PASSTHROUGH : DID_ERROR); |
3237 | } |
3238 | |
3239 | after_error_processing: |
3240 | |
3241 | /* We need to return this command */ |
3242 | if (retry_cmd) { |
3243 | resend_cciss_cmd(h, cmd); |
3244 | return; |
3245 | } |
3246 | cmd->rq->completion_data = cmd; |
3247 | blk_complete_request(cmd->rq); |
3248 | } |
3249 | |
3250 | static inline u32 cciss_tag_contains_index(u32 tag) |
3251 | { |
3252 | #define DIRECT_LOOKUP_BIT 0x10 |
3253 | return tag & DIRECT_LOOKUP_BIT; |
3254 | } |
3255 | |
3256 | static inline u32 cciss_tag_to_index(u32 tag) |
3257 | { |
3258 | #define DIRECT_LOOKUP_SHIFT 5 |
3259 | return tag >> DIRECT_LOOKUP_SHIFT; |
3260 | } |
3261 | |
3262 | static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag) |
3263 | { |
3264 | #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) |
3265 | #define CCISS_SIMPLE_ERROR_BITS 0x03 |
3266 | if (likely(h->transMethod & CFGTBL_Trans_Performant)) |
3267 | return tag & ~CCISS_PERF_ERROR_BITS; |
3268 | return tag & ~CCISS_SIMPLE_ERROR_BITS; |
3269 | } |
3270 | |
3271 | static inline void cciss_mark_tag_indexed(u32 *tag) |
3272 | { |
3273 | *tag |= DIRECT_LOOKUP_BIT; |
3274 | } |
3275 | |
3276 | static inline void cciss_set_tag_index(u32 *tag, u32 index) |
3277 | { |
3278 | *tag |= (index << DIRECT_LOOKUP_SHIFT); |
3279 | } |
3280 | |
3281 | /* |
3282 | * Get a request and submit it to the controller. |
3283 | */ |
3284 | static void do_cciss_request(struct request_queue *q) |
3285 | { |
3286 | ctlr_info_t *h = q->queuedata; |
3287 | CommandList_struct *c; |
3288 | sector_t start_blk; |
3289 | int seg; |
3290 | struct request *creq; |
3291 | u64bit temp64; |
3292 | struct scatterlist *tmp_sg; |
3293 | SGDescriptor_struct *curr_sg; |
3294 | drive_info_struct *drv; |
3295 | int i, dir; |
3296 | int sg_index = 0; |
3297 | int chained = 0; |
3298 | |
3299 | queue: |
3300 | creq = blk_peek_request(q); |
3301 | if (!creq) |
3302 | goto startio; |
3303 | |
3304 | BUG_ON(creq->nr_phys_segments > h->maxsgentries); |
3305 | |
3306 | c = cmd_alloc(h); |
3307 | if (!c) |
3308 | goto full; |
3309 | |
3310 | blk_start_request(creq); |
3311 | |
3312 | tmp_sg = h->scatter_list[c->cmdindex]; |
3313 | spin_unlock_irq(q->queue_lock); |
3314 | |
3315 | c->cmd_type = CMD_RWREQ; |
3316 | c->rq = creq; |
3317 | |
3318 | /* fill in the request */ |
3319 | drv = creq->rq_disk->private_data; |
3320 | c->Header.ReplyQueue = 0; /* unused in simple mode */ |
3321 | /* got command from pool, so use the command block index instead */ |
3322 | /* for direct lookups. */ |
3323 | /* The first 2 bits are reserved for controller error reporting. */ |
3324 | cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex); |
3325 | cciss_mark_tag_indexed(&c->Header.Tag.lower); |
3326 | memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID)); |
3327 | c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */ |
3328 | c->Request.Type.Type = TYPE_CMD; /* It is a command. */ |
3329 | c->Request.Type.Attribute = ATTR_SIMPLE; |
3330 | c->Request.Type.Direction = |
3331 | (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE; |
3332 | c->Request.Timeout = 0; /* Don't time out */ |
3333 | c->Request.CDB[0] = |
3334 | (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write; |
3335 | start_blk = blk_rq_pos(creq); |
3336 | dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n", |
3337 | (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq)); |
3338 | sg_init_table(tmp_sg, h->maxsgentries); |
3339 | seg = blk_rq_map_sg(q, creq, tmp_sg); |
3340 | |
3341 | /* get the DMA records for the setup */ |
3342 | if (c->Request.Type.Direction == XFER_READ) |
3343 | dir = PCI_DMA_FROMDEVICE; |
3344 | else |
3345 | dir = PCI_DMA_TODEVICE; |
3346 | |
3347 | curr_sg = c->SG; |
3348 | sg_index = 0; |
3349 | chained = 0; |
3350 | |
3351 | for (i = 0; i < seg; i++) { |
3352 | if (((sg_index+1) == (h->max_cmd_sgentries)) && |
3353 | !chained && ((seg - i) > 1)) { |
3354 | /* Point to next chain block. */ |
3355 | curr_sg = h->cmd_sg_list[c->cmdindex]; |
3356 | sg_index = 0; |
3357 | chained = 1; |
3358 | } |
3359 | curr_sg[sg_index].Len = tmp_sg[i].length; |
3360 | temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]), |
3361 | tmp_sg[i].offset, |
3362 | tmp_sg[i].length, dir); |
3363 | curr_sg[sg_index].Addr.lower = temp64.val32.lower; |
3364 | curr_sg[sg_index].Addr.upper = temp64.val32.upper; |
3365 | curr_sg[sg_index].Ext = 0; /* we are not chaining */ |
3366 | ++sg_index; |
3367 | } |
3368 | if (chained) |
3369 | cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex], |
3370 | (seg - (h->max_cmd_sgentries - 1)) * |
3371 | sizeof(SGDescriptor_struct)); |
3372 | |
3373 | /* track how many SG entries we are using */ |
3374 | if (seg > h->maxSG) |
3375 | h->maxSG = seg; |
3376 | |
3377 | dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments " |
3378 | "chained[%d]\n", |
3379 | blk_rq_sectors(creq), seg, chained); |
3380 | |
3381 | c->Header.SGTotal = seg + chained; |
3382 | if (seg <= h->max_cmd_sgentries) |
3383 | c->Header.SGList = c->Header.SGTotal; |
3384 | else |
3385 | c->Header.SGList = h->max_cmd_sgentries; |
3386 | set_performant_mode(h, c); |
3387 | |
3388 | if (likely(creq->cmd_type == REQ_TYPE_FS)) { |
3389 | if(h->cciss_read == CCISS_READ_10) { |
3390 | c->Request.CDB[1] = 0; |
3391 | c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */ |
3392 | c->Request.CDB[3] = (start_blk >> 16) & 0xff; |
3393 | c->Request.CDB[4] = (start_blk >> 8) & 0xff; |
3394 | c->Request.CDB[5] = start_blk & 0xff; |
3395 | c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */ |
3396 | c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff; |
3397 | c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff; |
3398 | c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; |
3399 | } else { |
3400 | u32 upper32 = upper_32_bits(start_blk); |
3401 | |
3402 | c->Request.CDBLen = 16; |
3403 | c->Request.CDB[1]= 0; |
3404 | c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */ |
3405 | c->Request.CDB[3]= (upper32 >> 16) & 0xff; |
3406 | c->Request.CDB[4]= (upper32 >> 8) & 0xff; |
3407 | c->Request.CDB[5]= upper32 & 0xff; |
3408 | c->Request.CDB[6]= (start_blk >> 24) & 0xff; |
3409 | c->Request.CDB[7]= (start_blk >> 16) & 0xff; |
3410 | c->Request.CDB[8]= (start_blk >> 8) & 0xff; |
3411 | c->Request.CDB[9]= start_blk & 0xff; |
3412 | c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff; |
3413 | c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff; |
3414 | c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff; |
3415 | c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff; |
3416 | c->Request.CDB[14] = c->Request.CDB[15] = 0; |
3417 | } |
3418 | } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) { |
3419 | c->Request.CDBLen = creq->cmd_len; |
3420 | memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB); |
3421 | } else { |
3422 | dev_warn(&h->pdev->dev, "bad request type %d\n", |
3423 | creq->cmd_type); |
3424 | BUG(); |
3425 | } |
3426 | |
3427 | spin_lock_irq(q->queue_lock); |
3428 | |
3429 | addQ(&h->reqQ, c); |
3430 | h->Qdepth++; |
3431 | if (h->Qdepth > h->maxQsinceinit) |
3432 | h->maxQsinceinit = h->Qdepth; |
3433 | |
3434 | goto queue; |
3435 | full: |
3436 | blk_stop_queue(q); |
3437 | startio: |
3438 | /* We will already have the driver lock here so not need |
3439 | * to lock it. |
3440 | */ |
3441 | start_io(h); |
3442 | } |
3443 | |
3444 | static inline unsigned long get_next_completion(ctlr_info_t *h) |
3445 | { |
3446 | return h->access.command_completed(h); |
3447 | } |
3448 | |
3449 | static inline int interrupt_pending(ctlr_info_t *h) |
3450 | { |
3451 | return h->access.intr_pending(h); |
3452 | } |
3453 | |
3454 | static inline long interrupt_not_for_us(ctlr_info_t *h) |
3455 | { |
3456 | return ((h->access.intr_pending(h) == 0) || |
3457 | (h->interrupts_enabled == 0)); |
3458 | } |
3459 | |
3460 | static inline int bad_tag(ctlr_info_t *h, u32 tag_index, |
3461 | u32 raw_tag) |
3462 | { |
3463 | if (unlikely(tag_index >= h->nr_cmds)) { |
3464 | dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); |
3465 | return 1; |
3466 | } |
3467 | return 0; |
3468 | } |
3469 | |
3470 | static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c, |
3471 | u32 raw_tag) |
3472 | { |
3473 | removeQ(c); |
3474 | if (likely(c->cmd_type == CMD_RWREQ)) |
3475 | complete_command(h, c, 0); |
3476 | else if (c->cmd_type == CMD_IOCTL_PEND) |
3477 | complete(c->waiting); |
3478 | #ifdef CONFIG_CISS_SCSI_TAPE |
3479 | else if (c->cmd_type == CMD_SCSI) |
3480 | complete_scsi_command(c, 0, raw_tag); |
3481 | #endif |
3482 | } |
3483 | |
3484 | static inline u32 next_command(ctlr_info_t *h) |
3485 | { |
3486 | u32 a; |
3487 | |
3488 | if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
3489 | return h->access.command_completed(h); |
3490 | |
3491 | if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { |
3492 | a = *(h->reply_pool_head); /* Next cmd in ring buffer */ |
3493 | (h->reply_pool_head)++; |
3494 | h->commands_outstanding--; |
3495 | } else { |
3496 | a = FIFO_EMPTY; |
3497 | } |
3498 | /* Check for wraparound */ |
3499 | if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { |
3500 | h->reply_pool_head = h->reply_pool; |
3501 | h->reply_pool_wraparound ^= 1; |
3502 | } |
3503 | return a; |
3504 | } |
3505 | |
3506 | /* process completion of an indexed ("direct lookup") command */ |
3507 | static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag) |
3508 | { |
3509 | u32 tag_index; |
3510 | CommandList_struct *c; |
3511 | |
3512 | tag_index = cciss_tag_to_index(raw_tag); |
3513 | if (bad_tag(h, tag_index, raw_tag)) |
3514 | return next_command(h); |
3515 | c = h->cmd_pool + tag_index; |
3516 | finish_cmd(h, c, raw_tag); |
3517 | return next_command(h); |
3518 | } |
3519 | |
3520 | /* process completion of a non-indexed command */ |
3521 | static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag) |
3522 | { |
3523 | CommandList_struct *c = NULL; |
3524 | __u32 busaddr_masked, tag_masked; |
3525 | |
3526 | tag_masked = cciss_tag_discard_error_bits(h, raw_tag); |
3527 | list_for_each_entry(c, &h->cmpQ, list) { |
3528 | busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr); |
3529 | if (busaddr_masked == tag_masked) { |
3530 | finish_cmd(h, c, raw_tag); |
3531 | return next_command(h); |
3532 | } |
3533 | } |
3534 | bad_tag(h, h->nr_cmds + 1, raw_tag); |
3535 | return next_command(h); |
3536 | } |
3537 | |
3538 | /* Some controllers, like p400, will give us one interrupt |
3539 | * after a soft reset, even if we turned interrupts off. |
3540 | * Only need to check for this in the cciss_xxx_discard_completions |
3541 | * functions. |
3542 | */ |
3543 | static int ignore_bogus_interrupt(ctlr_info_t *h) |
3544 | { |
3545 | if (likely(!reset_devices)) |
3546 | return 0; |
3547 | |
3548 | if (likely(h->interrupts_enabled)) |
3549 | return 0; |
3550 | |
3551 | dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " |
3552 | "(known firmware bug.) Ignoring.\n"); |
3553 | |
3554 | return 1; |
3555 | } |
3556 | |
3557 | static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id) |
3558 | { |
3559 | ctlr_info_t *h = dev_id; |
3560 | unsigned long flags; |
3561 | u32 raw_tag; |
3562 | |
3563 | if (ignore_bogus_interrupt(h)) |
3564 | return IRQ_NONE; |
3565 | |
3566 | if (interrupt_not_for_us(h)) |
3567 | return IRQ_NONE; |
3568 | spin_lock_irqsave(&h->lock, flags); |
3569 | while (interrupt_pending(h)) { |
3570 | raw_tag = get_next_completion(h); |
3571 | while (raw_tag != FIFO_EMPTY) |
3572 | raw_tag = next_command(h); |
3573 | } |
3574 | spin_unlock_irqrestore(&h->lock, flags); |
3575 | return IRQ_HANDLED; |
3576 | } |
3577 | |
3578 | static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id) |
3579 | { |
3580 | ctlr_info_t *h = dev_id; |
3581 | unsigned long flags; |
3582 | u32 raw_tag; |
3583 | |
3584 | if (ignore_bogus_interrupt(h)) |
3585 | return IRQ_NONE; |
3586 | |
3587 | spin_lock_irqsave(&h->lock, flags); |
3588 | raw_tag = get_next_completion(h); |
3589 | while (raw_tag != FIFO_EMPTY) |
3590 | raw_tag = next_command(h); |
3591 | spin_unlock_irqrestore(&h->lock, flags); |
3592 | return IRQ_HANDLED; |
3593 | } |
3594 | |
3595 | static irqreturn_t do_cciss_intx(int irq, void *dev_id) |
3596 | { |
3597 | ctlr_info_t *h = dev_id; |
3598 | unsigned long flags; |
3599 | u32 raw_tag; |
3600 | |
3601 | if (interrupt_not_for_us(h)) |
3602 | return IRQ_NONE; |
3603 | spin_lock_irqsave(&h->lock, flags); |
3604 | while (interrupt_pending(h)) { |
3605 | raw_tag = get_next_completion(h); |
3606 | while (raw_tag != FIFO_EMPTY) { |
3607 | if (cciss_tag_contains_index(raw_tag)) |
3608 | raw_tag = process_indexed_cmd(h, raw_tag); |
3609 | else |
3610 | raw_tag = process_nonindexed_cmd(h, raw_tag); |
3611 | } |
3612 | } |
3613 | spin_unlock_irqrestore(&h->lock, flags); |
3614 | return IRQ_HANDLED; |
3615 | } |
3616 | |
3617 | /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never |
3618 | * check the interrupt pending register because it is not set. |
3619 | */ |
3620 | static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id) |
3621 | { |
3622 | ctlr_info_t *h = dev_id; |
3623 | unsigned long flags; |
3624 | u32 raw_tag; |
3625 | |
3626 | spin_lock_irqsave(&h->lock, flags); |
3627 | raw_tag = get_next_completion(h); |
3628 | while (raw_tag != FIFO_EMPTY) { |
3629 | if (cciss_tag_contains_index(raw_tag)) |
3630 | raw_tag = process_indexed_cmd(h, raw_tag); |
3631 | else |
3632 | raw_tag = process_nonindexed_cmd(h, raw_tag); |
3633 | } |
3634 | spin_unlock_irqrestore(&h->lock, flags); |
3635 | return IRQ_HANDLED; |
3636 | } |
3637 | |
3638 | /** |
3639 | * add_to_scan_list() - add controller to rescan queue |
3640 | * @h: Pointer to the controller. |
3641 | * |
3642 | * Adds the controller to the rescan queue if not already on the queue. |
3643 | * |
3644 | * returns 1 if added to the queue, 0 if skipped (could be on the |
3645 | * queue already, or the controller could be initializing or shutting |
3646 | * down). |
3647 | **/ |
3648 | static int add_to_scan_list(struct ctlr_info *h) |
3649 | { |
3650 | struct ctlr_info *test_h; |
3651 | int found = 0; |
3652 | int ret = 0; |
3653 | |
3654 | if (h->busy_initializing) |
3655 | return 0; |
3656 | |
3657 | if (!mutex_trylock(&h->busy_shutting_down)) |
3658 | return 0; |
3659 | |
3660 | mutex_lock(&scan_mutex); |
3661 | list_for_each_entry(test_h, &scan_q, scan_list) { |
3662 | if (test_h == h) { |
3663 | found = 1; |
3664 | break; |
3665 | } |
3666 | } |
3667 | if (!found && !h->busy_scanning) { |
3668 | INIT_COMPLETION(h->scan_wait); |
3669 | list_add_tail(&h->scan_list, &scan_q); |
3670 | ret = 1; |
3671 | } |
3672 | mutex_unlock(&scan_mutex); |
3673 | mutex_unlock(&h->busy_shutting_down); |
3674 | |
3675 | return ret; |
3676 | } |
3677 | |
3678 | /** |
3679 | * remove_from_scan_list() - remove controller from rescan queue |
3680 | * @h: Pointer to the controller. |
3681 | * |
3682 | * Removes the controller from the rescan queue if present. Blocks if |
3683 | * the controller is currently conducting a rescan. The controller |
3684 | * can be in one of three states: |
3685 | * 1. Doesn't need a scan |
3686 | * 2. On the scan list, but not scanning yet (we remove it) |
3687 | * 3. Busy scanning (and not on the list). In this case we want to wait for |
3688 | * the scan to complete to make sure the scanning thread for this |
3689 | * controller is completely idle. |
3690 | **/ |
3691 | static void remove_from_scan_list(struct ctlr_info *h) |
3692 | { |
3693 | struct ctlr_info *test_h, *tmp_h; |
3694 | |
3695 | mutex_lock(&scan_mutex); |
3696 | list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) { |
3697 | if (test_h == h) { /* state 2. */ |
3698 | list_del(&h->scan_list); |
3699 | complete_all(&h->scan_wait); |
3700 | mutex_unlock(&scan_mutex); |
3701 | return; |
3702 | } |
3703 | } |
3704 | if (h->busy_scanning) { /* state 3. */ |
3705 | mutex_unlock(&scan_mutex); |
3706 | wait_for_completion(&h->scan_wait); |
3707 | } else { /* state 1, nothing to do. */ |
3708 | mutex_unlock(&scan_mutex); |
3709 | } |
3710 | } |
3711 | |
3712 | /** |
3713 | * scan_thread() - kernel thread used to rescan controllers |
3714 | * @data: Ignored. |
3715 | * |
3716 | * A kernel thread used scan for drive topology changes on |
3717 | * controllers. The thread processes only one controller at a time |
3718 | * using a queue. Controllers are added to the queue using |
3719 | * add_to_scan_list() and removed from the queue either after done |
3720 | * processing or using remove_from_scan_list(). |
3721 | * |
3722 | * returns 0. |
3723 | **/ |
3724 | static int scan_thread(void *data) |
3725 | { |
3726 | struct ctlr_info *h; |
3727 | |
3728 | while (1) { |
3729 | set_current_state(TASK_INTERRUPTIBLE); |
3730 | schedule(); |
3731 | if (kthread_should_stop()) |
3732 | break; |
3733 | |
3734 | while (1) { |
3735 | mutex_lock(&scan_mutex); |
3736 | if (list_empty(&scan_q)) { |
3737 | mutex_unlock(&scan_mutex); |
3738 | break; |
3739 | } |
3740 | |
3741 | h = list_entry(scan_q.next, |
3742 | struct ctlr_info, |
3743 | scan_list); |
3744 | list_del(&h->scan_list); |
3745 | h->busy_scanning = 1; |
3746 | mutex_unlock(&scan_mutex); |
3747 | |
3748 | rebuild_lun_table(h, 0, 0); |
3749 | complete_all(&h->scan_wait); |
3750 | mutex_lock(&scan_mutex); |
3751 | h->busy_scanning = 0; |
3752 | mutex_unlock(&scan_mutex); |
3753 | } |
3754 | } |
3755 | |
3756 | return 0; |
3757 | } |
3758 | |
3759 | static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c) |
3760 | { |
3761 | if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) |
3762 | return 0; |
3763 | |
3764 | switch (c->err_info->SenseInfo[12]) { |
3765 | case STATE_CHANGED: |
3766 | dev_warn(&h->pdev->dev, "a state change " |
3767 | "detected, command retried\n"); |
3768 | return 1; |
3769 | break; |
3770 | case LUN_FAILED: |
3771 | dev_warn(&h->pdev->dev, "LUN failure " |
3772 | "detected, action required\n"); |
3773 | return 1; |
3774 | break; |
3775 | case REPORT_LUNS_CHANGED: |
3776 | dev_warn(&h->pdev->dev, "report LUN data changed\n"); |
3777 | /* |
3778 | * Here, we could call add_to_scan_list and wake up the scan thread, |
3779 | * except that it's quite likely that we will get more than one |
3780 | * REPORT_LUNS_CHANGED condition in quick succession, which means |
3781 | * that those which occur after the first one will likely happen |
3782 | * *during* the scan_thread's rescan. And the rescan code is not |
3783 | * robust enough to restart in the middle, undoing what it has already |
3784 | * done, and it's not clear that it's even possible to do this, since |
3785 | * part of what it does is notify the block layer, which starts |
3786 | * doing it's own i/o to read partition tables and so on, and the |
3787 | * driver doesn't have visibility to know what might need undoing. |
3788 | * In any event, if possible, it is horribly complicated to get right |
3789 | * so we just don't do it for now. |
3790 | * |
3791 | * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. |
3792 | */ |
3793 | return 1; |
3794 | break; |
3795 | case POWER_OR_RESET: |
3796 | dev_warn(&h->pdev->dev, |
3797 | "a power on or device reset detected\n"); |
3798 | return 1; |
3799 | break; |
3800 | case UNIT_ATTENTION_CLEARED: |
3801 | dev_warn(&h->pdev->dev, |
3802 | "unit attention cleared by another initiator\n"); |
3803 | return 1; |
3804 | break; |
3805 | default: |
3806 | dev_warn(&h->pdev->dev, "unknown unit attention detected\n"); |
3807 | return 1; |
3808 | } |
3809 | } |
3810 | |
3811 | /* |
3812 | * We cannot read the structure directly, for portability we must use |
3813 | * the io functions. |
3814 | * This is for debug only. |
3815 | */ |
3816 | static void print_cfg_table(ctlr_info_t *h) |
3817 | { |
3818 | int i; |
3819 | char temp_name[17]; |
3820 | CfgTable_struct *tb = h->cfgtable; |
3821 | |
3822 | dev_dbg(&h->pdev->dev, "Controller Configuration information\n"); |
3823 | dev_dbg(&h->pdev->dev, "------------------------------------\n"); |
3824 | for (i = 0; i < 4; i++) |
3825 | temp_name[i] = readb(&(tb->Signature[i])); |
3826 | temp_name[4] = '\0'; |
3827 | dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name); |
3828 | dev_dbg(&h->pdev->dev, " Spec Number = %d\n", |
3829 | readl(&(tb->SpecValence))); |
3830 | dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n", |
3831 | readl(&(tb->TransportSupport))); |
3832 | dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n", |
3833 | readl(&(tb->TransportActive))); |
3834 | dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n", |
3835 | readl(&(tb->HostWrite.TransportRequest))); |
3836 | dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n", |
3837 | readl(&(tb->HostWrite.CoalIntDelay))); |
3838 | dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n", |
3839 | readl(&(tb->HostWrite.CoalIntCount))); |
3840 | dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n", |
3841 | readl(&(tb->CmdsOutMax))); |
3842 | dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n", |
3843 | readl(&(tb->BusTypes))); |
3844 | for (i = 0; i < 16; i++) |
3845 | temp_name[i] = readb(&(tb->ServerName[i])); |
3846 | temp_name[16] = '\0'; |
3847 | dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name); |
3848 | dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n", |
3849 | readl(&(tb->HeartBeat))); |
3850 | } |
3851 | |
3852 | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
3853 | { |
3854 | int i, offset, mem_type, bar_type; |
3855 | if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
3856 | return 0; |
3857 | offset = 0; |
3858 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
3859 | bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
3860 | if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
3861 | offset += 4; |
3862 | else { |
3863 | mem_type = pci_resource_flags(pdev, i) & |
3864 | PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
3865 | switch (mem_type) { |
3866 | case PCI_BASE_ADDRESS_MEM_TYPE_32: |
3867 | case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
3868 | offset += 4; /* 32 bit */ |
3869 | break; |
3870 | case PCI_BASE_ADDRESS_MEM_TYPE_64: |
3871 | offset += 8; |
3872 | break; |
3873 | default: /* reserved in PCI 2.2 */ |
3874 | dev_warn(&pdev->dev, |
3875 | "Base address is invalid\n"); |
3876 | return -1; |
3877 | break; |
3878 | } |
3879 | } |
3880 | if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
3881 | return i + 1; |
3882 | } |
3883 | return -1; |
3884 | } |
3885 | |
3886 | /* Fill in bucket_map[], given nsgs (the max number of |
3887 | * scatter gather elements supported) and bucket[], |
3888 | * which is an array of 8 integers. The bucket[] array |
3889 | * contains 8 different DMA transfer sizes (in 16 |
3890 | * byte increments) which the controller uses to fetch |
3891 | * commands. This function fills in bucket_map[], which |
3892 | * maps a given number of scatter gather elements to one of |
3893 | * the 8 DMA transfer sizes. The point of it is to allow the |
3894 | * controller to only do as much DMA as needed to fetch the |
3895 | * command, with the DMA transfer size encoded in the lower |
3896 | * bits of the command address. |
3897 | */ |
3898 | static void calc_bucket_map(int bucket[], int num_buckets, |
3899 | int nsgs, int *bucket_map) |
3900 | { |
3901 | int i, j, b, size; |
3902 | |
3903 | /* even a command with 0 SGs requires 4 blocks */ |
3904 | #define MINIMUM_TRANSFER_BLOCKS 4 |
3905 | #define NUM_BUCKETS 8 |
3906 | /* Note, bucket_map must have nsgs+1 entries. */ |
3907 | for (i = 0; i <= nsgs; i++) { |
3908 | /* Compute size of a command with i SG entries */ |
3909 | size = i + MINIMUM_TRANSFER_BLOCKS; |
3910 | b = num_buckets; /* Assume the biggest bucket */ |
3911 | /* Find the bucket that is just big enough */ |
3912 | for (j = 0; j < 8; j++) { |
3913 | if (bucket[j] >= size) { |
3914 | b = j; |
3915 | break; |
3916 | } |
3917 | } |
3918 | /* for a command with i SG entries, use bucket b. */ |
3919 | bucket_map[i] = b; |
3920 | } |
3921 | } |
3922 | |
3923 | static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h) |
3924 | { |
3925 | int i; |
3926 | |
3927 | /* under certain very rare conditions, this can take awhile. |
3928 | * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
3929 | * as we enter this code.) */ |
3930 | for (i = 0; i < MAX_CONFIG_WAIT; i++) { |
3931 | if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
3932 | break; |
3933 | usleep_range(10000, 20000); |
3934 | } |
3935 | } |
3936 | |
3937 | static __devinit void cciss_enter_performant_mode(ctlr_info_t *h, |
3938 | u32 use_short_tags) |
3939 | { |
3940 | /* This is a bit complicated. There are 8 registers on |
3941 | * the controller which we write to to tell it 8 different |
3942 | * sizes of commands which there may be. It's a way of |
3943 | * reducing the DMA done to fetch each command. Encoded into |
3944 | * each command's tag are 3 bits which communicate to the controller |
3945 | * which of the eight sizes that command fits within. The size of |
3946 | * each command depends on how many scatter gather entries there are. |
3947 | * Each SG entry requires 16 bytes. The eight registers are programmed |
3948 | * with the number of 16-byte blocks a command of that size requires. |
3949 | * The smallest command possible requires 5 such 16 byte blocks. |
3950 | * the largest command possible requires MAXSGENTRIES + 4 16-byte |
3951 | * blocks. Note, this only extends to the SG entries contained |
3952 | * within the command block, and does not extend to chained blocks |
3953 | * of SG elements. bft[] contains the eight values we write to |
3954 | * the registers. They are not evenly distributed, but have more |
3955 | * sizes for small commands, and fewer sizes for larger commands. |
3956 | */ |
3957 | __u32 trans_offset; |
3958 | int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; |
3959 | /* |
3960 | * 5 = 1 s/g entry or 4k |
3961 | * 6 = 2 s/g entry or 8k |
3962 | * 8 = 4 s/g entry or 16k |
3963 | * 10 = 6 s/g entry or 24k |
3964 | */ |
3965 | unsigned long register_value; |
3966 | BUILD_BUG_ON(28 > MAXSGENTRIES + 4); |
3967 | |
3968 | h->reply_pool_wraparound = 1; /* spec: init to 1 */ |
3969 | |
3970 | /* Controller spec: zero out this buffer. */ |
3971 | memset(h->reply_pool, 0, h->max_commands * sizeof(__u64)); |
3972 | h->reply_pool_head = h->reply_pool; |
3973 | |
3974 | trans_offset = readl(&(h->cfgtable->TransMethodOffset)); |
3975 | calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries, |
3976 | h->blockFetchTable); |
3977 | writel(bft[0], &h->transtable->BlockFetch0); |
3978 | writel(bft[1], &h->transtable->BlockFetch1); |
3979 | writel(bft[2], &h->transtable->BlockFetch2); |
3980 | writel(bft[3], &h->transtable->BlockFetch3); |
3981 | writel(bft[4], &h->transtable->BlockFetch4); |
3982 | writel(bft[5], &h->transtable->BlockFetch5); |
3983 | writel(bft[6], &h->transtable->BlockFetch6); |
3984 | writel(bft[7], &h->transtable->BlockFetch7); |
3985 | |
3986 | /* size of controller ring buffer */ |
3987 | writel(h->max_commands, &h->transtable->RepQSize); |
3988 | writel(1, &h->transtable->RepQCount); |
3989 | writel(0, &h->transtable->RepQCtrAddrLow32); |
3990 | writel(0, &h->transtable->RepQCtrAddrHigh32); |
3991 | writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); |
3992 | writel(0, &h->transtable->RepQAddr0High32); |
3993 | writel(CFGTBL_Trans_Performant | use_short_tags, |
3994 | &(h->cfgtable->HostWrite.TransportRequest)); |
3995 | |
3996 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
3997 | cciss_wait_for_mode_change_ack(h); |
3998 | register_value = readl(&(h->cfgtable->TransportActive)); |
3999 | if (!(register_value & CFGTBL_Trans_Performant)) |
4000 | dev_warn(&h->pdev->dev, "cciss: unable to get board into" |
4001 | " performant mode\n"); |
4002 | } |
4003 | |
4004 | static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h) |
4005 | { |
4006 | __u32 trans_support; |
4007 | |
4008 | if (cciss_simple_mode) |
4009 | return; |
4010 | |
4011 | dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n"); |
4012 | /* Attempt to put controller into performant mode if supported */ |
4013 | /* Does board support performant mode? */ |
4014 | trans_support = readl(&(h->cfgtable->TransportSupport)); |
4015 | if (!(trans_support & PERFORMANT_MODE)) |
4016 | return; |
4017 | |
4018 | dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n"); |
4019 | /* Performant mode demands commands on a 32 byte boundary |
4020 | * pci_alloc_consistent aligns on page boundarys already. |
4021 | * Just need to check if divisible by 32 |
4022 | */ |
4023 | if ((sizeof(CommandList_struct) % 32) != 0) { |
4024 | dev_warn(&h->pdev->dev, "%s %d %s\n", |
4025 | "cciss info: command size[", |
4026 | (int)sizeof(CommandList_struct), |
4027 | "] not divisible by 32, no performant mode..\n"); |
4028 | return; |
4029 | } |
4030 | |
4031 | /* Performant mode ring buffer and supporting data structures */ |
4032 | h->reply_pool = (__u64 *)pci_alloc_consistent( |
4033 | h->pdev, h->max_commands * sizeof(__u64), |
4034 | &(h->reply_pool_dhandle)); |
4035 | |
4036 | /* Need a block fetch table for performant mode */ |
4037 | h->blockFetchTable = kmalloc(((h->maxsgentries+1) * |
4038 | sizeof(__u32)), GFP_KERNEL); |
4039 | |
4040 | if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL)) |
4041 | goto clean_up; |
4042 | |
4043 | cciss_enter_performant_mode(h, |
4044 | trans_support & CFGTBL_Trans_use_short_tags); |
4045 | |
4046 | /* Change the access methods to the performant access methods */ |
4047 | h->access = SA5_performant_access; |
4048 | h->transMethod = CFGTBL_Trans_Performant; |
4049 | |
4050 | return; |
4051 | clean_up: |
4052 | kfree(h->blockFetchTable); |
4053 | if (h->reply_pool) |
4054 | pci_free_consistent(h->pdev, |
4055 | h->max_commands * sizeof(__u64), |
4056 | h->reply_pool, |
4057 | h->reply_pool_dhandle); |
4058 | return; |
4059 | |
4060 | } /* cciss_put_controller_into_performant_mode */ |
4061 | |
4062 | /* If MSI/MSI-X is supported by the kernel we will try to enable it on |
4063 | * controllers that are capable. If not, we use IO-APIC mode. |
4064 | */ |
4065 | |
4066 | static void __devinit cciss_interrupt_mode(ctlr_info_t *h) |
4067 | { |
4068 | #ifdef CONFIG_PCI_MSI |
4069 | int err; |
4070 | struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1}, |
4071 | {0, 2}, {0, 3} |
4072 | }; |
4073 | |
4074 | /* Some boards advertise MSI but don't really support it */ |
4075 | if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || |
4076 | (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) |
4077 | goto default_int_mode; |
4078 | |
4079 | if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { |
4080 | err = pci_enable_msix(h->pdev, cciss_msix_entries, 4); |
4081 | if (!err) { |
4082 | h->intr[0] = cciss_msix_entries[0].vector; |
4083 | h->intr[1] = cciss_msix_entries[1].vector; |
4084 | h->intr[2] = cciss_msix_entries[2].vector; |
4085 | h->intr[3] = cciss_msix_entries[3].vector; |
4086 | h->msix_vector = 1; |
4087 | return; |
4088 | } |
4089 | if (err > 0) { |
4090 | dev_warn(&h->pdev->dev, |
4091 | "only %d MSI-X vectors available\n", err); |
4092 | goto default_int_mode; |
4093 | } else { |
4094 | dev_warn(&h->pdev->dev, |
4095 | "MSI-X init failed %d\n", err); |
4096 | goto default_int_mode; |
4097 | } |
4098 | } |
4099 | if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { |
4100 | if (!pci_enable_msi(h->pdev)) |
4101 | h->msi_vector = 1; |
4102 | else |
4103 | dev_warn(&h->pdev->dev, "MSI init failed\n"); |
4104 | } |
4105 | default_int_mode: |
4106 | #endif /* CONFIG_PCI_MSI */ |
4107 | /* if we get here we're going to use the default interrupt mode */ |
4108 | h->intr[h->intr_mode] = h->pdev->irq; |
4109 | return; |
4110 | } |
4111 | |
4112 | static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id) |
4113 | { |
4114 | int i; |
4115 | u32 subsystem_vendor_id, subsystem_device_id; |
4116 | |
4117 | subsystem_vendor_id = pdev->subsystem_vendor; |
4118 | subsystem_device_id = pdev->subsystem_device; |
4119 | *board_id = ((subsystem_device_id << 16) & 0xffff0000) | |
4120 | subsystem_vendor_id; |
4121 | |
4122 | for (i = 0; i < ARRAY_SIZE(products); i++) |
4123 | if (*board_id == products[i].board_id) |
4124 | return i; |
4125 | dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n", |
4126 | *board_id); |
4127 | return -ENODEV; |
4128 | } |
4129 | |
4130 | static inline bool cciss_board_disabled(ctlr_info_t *h) |
4131 | { |
4132 | u16 command; |
4133 | |
4134 | (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command); |
4135 | return ((command & PCI_COMMAND_MEMORY) == 0); |
4136 | } |
4137 | |
4138 | static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev, |
4139 | unsigned long *memory_bar) |
4140 | { |
4141 | int i; |
4142 | |
4143 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
4144 | if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { |
4145 | /* addressing mode bits already removed */ |
4146 | *memory_bar = pci_resource_start(pdev, i); |
4147 | dev_dbg(&pdev->dev, "memory BAR = %lx\n", |
4148 | *memory_bar); |
4149 | return 0; |
4150 | } |
4151 | dev_warn(&pdev->dev, "no memory BAR found\n"); |
4152 | return -ENODEV; |
4153 | } |
4154 | |
4155 | static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev, |
4156 | void __iomem *vaddr, int wait_for_ready) |
4157 | #define BOARD_READY 1 |
4158 | #define BOARD_NOT_READY 0 |
4159 | { |
4160 | int i, iterations; |
4161 | u32 scratchpad; |
4162 | |
4163 | if (wait_for_ready) |
4164 | iterations = CCISS_BOARD_READY_ITERATIONS; |
4165 | else |
4166 | iterations = CCISS_BOARD_NOT_READY_ITERATIONS; |
4167 | |
4168 | for (i = 0; i < iterations; i++) { |
4169 | scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); |
4170 | if (wait_for_ready) { |
4171 | if (scratchpad == CCISS_FIRMWARE_READY) |
4172 | return 0; |
4173 | } else { |
4174 | if (scratchpad != CCISS_FIRMWARE_READY) |
4175 | return 0; |
4176 | } |
4177 | msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS); |
4178 | } |
4179 | dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
4180 | return -ENODEV; |
4181 | } |
4182 | |
4183 | static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev, |
4184 | void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
4185 | u64 *cfg_offset) |
4186 | { |
4187 | *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); |
4188 | *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); |
4189 | *cfg_base_addr &= (u32) 0x0000ffff; |
4190 | *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); |
4191 | if (*cfg_base_addr_index == -1) { |
4192 | dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, " |
4193 | "*cfg_base_addr = 0x%08x\n", *cfg_base_addr); |
4194 | return -ENODEV; |
4195 | } |
4196 | return 0; |
4197 | } |
4198 | |
4199 | static int __devinit cciss_find_cfgtables(ctlr_info_t *h) |
4200 | { |
4201 | u64 cfg_offset; |
4202 | u32 cfg_base_addr; |
4203 | u64 cfg_base_addr_index; |
4204 | u32 trans_offset; |
4205 | int rc; |
4206 | |
4207 | rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
4208 | &cfg_base_addr_index, &cfg_offset); |
4209 | if (rc) |
4210 | return rc; |
4211 | h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, |
4212 | cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable)); |
4213 | if (!h->cfgtable) |
4214 | return -ENOMEM; |
4215 | rc = write_driver_ver_to_cfgtable(h->cfgtable); |
4216 | if (rc) |
4217 | return rc; |
4218 | /* Find performant mode table. */ |
4219 | trans_offset = readl(&h->cfgtable->TransMethodOffset); |
4220 | h->transtable = remap_pci_mem(pci_resource_start(h->pdev, |
4221 | cfg_base_addr_index)+cfg_offset+trans_offset, |
4222 | sizeof(*h->transtable)); |
4223 | if (!h->transtable) |
4224 | return -ENOMEM; |
4225 | return 0; |
4226 | } |
4227 | |
4228 | static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h) |
4229 | { |
4230 | h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); |
4231 | |
4232 | /* Limit commands in memory limited kdump scenario. */ |
4233 | if (reset_devices && h->max_commands > 32) |
4234 | h->max_commands = 32; |
4235 | |
4236 | if (h->max_commands < 16) { |
4237 | dev_warn(&h->pdev->dev, "Controller reports " |
4238 | "max supported commands of %d, an obvious lie. " |
4239 | "Using 16. Ensure that firmware is up to date.\n", |
4240 | h->max_commands); |
4241 | h->max_commands = 16; |
4242 | } |
4243 | } |
4244 | |
4245 | /* Interrogate the hardware for some limits: |
4246 | * max commands, max SG elements without chaining, and with chaining, |
4247 | * SG chain block size, etc. |
4248 | */ |
4249 | static void __devinit cciss_find_board_params(ctlr_info_t *h) |
4250 | { |
4251 | cciss_get_max_perf_mode_cmds(h); |
4252 | h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds; |
4253 | h->maxsgentries = readl(&(h->cfgtable->MaxSGElements)); |
4254 | /* |
4255 | * Limit in-command s/g elements to 32 save dma'able memory. |
4256 | * Howvever spec says if 0, use 31 |
4257 | */ |
4258 | h->max_cmd_sgentries = 31; |
4259 | if (h->maxsgentries > 512) { |
4260 | h->max_cmd_sgentries = 32; |
4261 | h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1; |
4262 | h->maxsgentries--; /* save one for chain pointer */ |
4263 | } else { |
4264 | h->maxsgentries = 31; /* default to traditional values */ |
4265 | h->chainsize = 0; |
4266 | } |
4267 | } |
4268 | |
4269 | static inline bool CISS_signature_present(ctlr_info_t *h) |
4270 | { |
4271 | if ((readb(&h->cfgtable->Signature[0]) != 'C') || |
4272 | (readb(&h->cfgtable->Signature[1]) != 'I') || |
4273 | (readb(&h->cfgtable->Signature[2]) != 'S') || |
4274 | (readb(&h->cfgtable->Signature[3]) != 'S')) { |
4275 | dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); |
4276 | return false; |
4277 | } |
4278 | return true; |
4279 | } |
4280 | |
4281 | /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
4282 | static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h) |
4283 | { |
4284 | #ifdef CONFIG_X86 |
4285 | u32 prefetch; |
4286 | |
4287 | prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); |
4288 | prefetch |= 0x100; |
4289 | writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); |
4290 | #endif |
4291 | } |
4292 | |
4293 | /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result |
4294 | * in a prefetch beyond physical memory. |
4295 | */ |
4296 | static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h) |
4297 | { |
4298 | u32 dma_prefetch; |
4299 | __u32 dma_refetch; |
4300 | |
4301 | if (h->board_id != 0x3225103C) |
4302 | return; |
4303 | dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); |
4304 | dma_prefetch |= 0x8000; |
4305 | writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); |
4306 | pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch); |
4307 | dma_refetch |= 0x1; |
4308 | pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch); |
4309 | } |
4310 | |
4311 | static int __devinit cciss_pci_init(ctlr_info_t *h) |
4312 | { |
4313 | int prod_index, err; |
4314 | |
4315 | prod_index = cciss_lookup_board_id(h->pdev, &h->board_id); |
4316 | if (prod_index < 0) |
4317 | return -ENODEV; |
4318 | h->product_name = products[prod_index].product_name; |
4319 | h->access = *(products[prod_index].access); |
4320 | |
4321 | if (cciss_board_disabled(h)) { |
4322 | dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); |
4323 | return -ENODEV; |
4324 | } |
4325 | |
4326 | pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | |
4327 | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); |
4328 | |
4329 | err = pci_enable_device(h->pdev); |
4330 | if (err) { |
4331 | dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n"); |
4332 | return err; |
4333 | } |
4334 | |
4335 | err = pci_request_regions(h->pdev, "cciss"); |
4336 | if (err) { |
4337 | dev_warn(&h->pdev->dev, |
4338 | "Cannot obtain PCI resources, aborting\n"); |
4339 | return err; |
4340 | } |
4341 | |
4342 | dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq); |
4343 | dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id); |
4344 | |
4345 | /* If the kernel supports MSI/MSI-X we will try to enable that functionality, |
4346 | * else we use the IO-APIC interrupt assigned to us by system ROM. |
4347 | */ |
4348 | cciss_interrupt_mode(h); |
4349 | err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr); |
4350 | if (err) |
4351 | goto err_out_free_res; |
4352 | h->vaddr = remap_pci_mem(h->paddr, 0x250); |
4353 | if (!h->vaddr) { |
4354 | err = -ENOMEM; |
4355 | goto err_out_free_res; |
4356 | } |
4357 | err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
4358 | if (err) |
4359 | goto err_out_free_res; |
4360 | err = cciss_find_cfgtables(h); |
4361 | if (err) |
4362 | goto err_out_free_res; |
4363 | print_cfg_table(h); |
4364 | cciss_find_board_params(h); |
4365 | |
4366 | if (!CISS_signature_present(h)) { |
4367 | err = -ENODEV; |
4368 | goto err_out_free_res; |
4369 | } |
4370 | cciss_enable_scsi_prefetch(h); |
4371 | cciss_p600_dma_prefetch_quirk(h); |
4372 | err = cciss_enter_simple_mode(h); |
4373 | if (err) |
4374 | goto err_out_free_res; |
4375 | cciss_put_controller_into_performant_mode(h); |
4376 | return 0; |
4377 | |
4378 | err_out_free_res: |
4379 | /* |
4380 | * Deliberately omit pci_disable_device(): it does something nasty to |
4381 | * Smart Array controllers that pci_enable_device does not undo |
4382 | */ |
4383 | if (h->transtable) |
4384 | iounmap(h->transtable); |
4385 | if (h->cfgtable) |
4386 | iounmap(h->cfgtable); |
4387 | if (h->vaddr) |
4388 | iounmap(h->vaddr); |
4389 | pci_release_regions(h->pdev); |
4390 | return err; |
4391 | } |
4392 | |
4393 | /* Function to find the first free pointer into our hba[] array |
4394 | * Returns -1 if no free entries are left. |
4395 | */ |
4396 | static int alloc_cciss_hba(struct pci_dev *pdev) |
4397 | { |
4398 | int i; |
4399 | |
4400 | for (i = 0; i < MAX_CTLR; i++) { |
4401 | if (!hba[i]) { |
4402 | ctlr_info_t *h; |
4403 | |
4404 | h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL); |
4405 | if (!h) |
4406 | goto Enomem; |
4407 | hba[i] = h; |
4408 | return i; |
4409 | } |
4410 | } |
4411 | dev_warn(&pdev->dev, "This driver supports a maximum" |
4412 | " of %d controllers.\n", MAX_CTLR); |
4413 | return -1; |
4414 | Enomem: |
4415 | dev_warn(&pdev->dev, "out of memory.\n"); |
4416 | return -1; |
4417 | } |
4418 | |
4419 | static void free_hba(ctlr_info_t *h) |
4420 | { |
4421 | int i; |
4422 | |
4423 | hba[h->ctlr] = NULL; |
4424 | for (i = 0; i < h->highest_lun + 1; i++) |
4425 | if (h->gendisk[i] != NULL) |
4426 | put_disk(h->gendisk[i]); |
4427 | kfree(h); |
4428 | } |
4429 | |
4430 | /* Send a message CDB to the firmware. */ |
4431 | static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) |
4432 | { |
4433 | typedef struct { |
4434 | CommandListHeader_struct CommandHeader; |
4435 | RequestBlock_struct Request; |
4436 | ErrDescriptor_struct ErrorDescriptor; |
4437 | } Command; |
4438 | static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct); |
4439 | Command *cmd; |
4440 | dma_addr_t paddr64; |
4441 | uint32_t paddr32, tag; |
4442 | void __iomem *vaddr; |
4443 | int i, err; |
4444 | |
4445 | vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); |
4446 | if (vaddr == NULL) |
4447 | return -ENOMEM; |
4448 | |
4449 | /* The Inbound Post Queue only accepts 32-bit physical addresses for the |
4450 | CCISS commands, so they must be allocated from the lower 4GiB of |
4451 | memory. */ |
4452 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
4453 | if (err) { |
4454 | iounmap(vaddr); |
4455 | return -ENOMEM; |
4456 | } |
4457 | |
4458 | cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
4459 | if (cmd == NULL) { |
4460 | iounmap(vaddr); |
4461 | return -ENOMEM; |
4462 | } |
4463 | |
4464 | /* This must fit, because of the 32-bit consistent DMA mask. Also, |
4465 | although there's no guarantee, we assume that the address is at |
4466 | least 4-byte aligned (most likely, it's page-aligned). */ |
4467 | paddr32 = paddr64; |
4468 | |
4469 | cmd->CommandHeader.ReplyQueue = 0; |
4470 | cmd->CommandHeader.SGList = 0; |
4471 | cmd->CommandHeader.SGTotal = 0; |
4472 | cmd->CommandHeader.Tag.lower = paddr32; |
4473 | cmd->CommandHeader.Tag.upper = 0; |
4474 | memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
4475 | |
4476 | cmd->Request.CDBLen = 16; |
4477 | cmd->Request.Type.Type = TYPE_MSG; |
4478 | cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; |
4479 | cmd->Request.Type.Direction = XFER_NONE; |
4480 | cmd->Request.Timeout = 0; /* Don't time out */ |
4481 | cmd->Request.CDB[0] = opcode; |
4482 | cmd->Request.CDB[1] = type; |
4483 | memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */ |
4484 | |
4485 | cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command); |
4486 | cmd->ErrorDescriptor.Addr.upper = 0; |
4487 | cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct); |
4488 | |
4489 | writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); |
4490 | |
4491 | for (i = 0; i < 10; i++) { |
4492 | tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
4493 | if ((tag & ~3) == paddr32) |
4494 | break; |
4495 | msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS); |
4496 | } |
4497 | |
4498 | iounmap(vaddr); |
4499 | |
4500 | /* we leak the DMA buffer here ... no choice since the controller could |
4501 | still complete the command. */ |
4502 | if (i == 10) { |
4503 | dev_err(&pdev->dev, |
4504 | "controller message %02x:%02x timed out\n", |
4505 | opcode, type); |
4506 | return -ETIMEDOUT; |
4507 | } |
4508 | |
4509 | pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
4510 | |
4511 | if (tag & 2) { |
4512 | dev_err(&pdev->dev, "controller message %02x:%02x failed\n", |
4513 | opcode, type); |
4514 | return -EIO; |
4515 | } |
4516 | |
4517 | dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", |
4518 | opcode, type); |
4519 | return 0; |
4520 | } |
4521 | |
4522 | #define cciss_noop(p) cciss_message(p, 3, 0) |
4523 | |
4524 | static int cciss_controller_hard_reset(struct pci_dev *pdev, |
4525 | void * __iomem vaddr, u32 use_doorbell) |
4526 | { |
4527 | u16 pmcsr; |
4528 | int pos; |
4529 | |
4530 | if (use_doorbell) { |
4531 | /* For everything after the P600, the PCI power state method |
4532 | * of resetting the controller doesn't work, so we have this |
4533 | * other way using the doorbell register. |
4534 | */ |
4535 | dev_info(&pdev->dev, "using doorbell to reset controller\n"); |
4536 | writel(use_doorbell, vaddr + SA5_DOORBELL); |
4537 | } else { /* Try to do it the PCI power state way */ |
4538 | |
4539 | /* Quoting from the Open CISS Specification: "The Power |
4540 | * Management Control/Status Register (CSR) controls the power |
4541 | * state of the device. The normal operating state is D0, |
4542 | * CSR=00h. The software off state is D3, CSR=03h. To reset |
4543 | * the controller, place the interface device in D3 then to D0, |
4544 | * this causes a secondary PCI reset which will reset the |
4545 | * controller." */ |
4546 | |
4547 | pos = pci_find_capability(pdev, PCI_CAP_ID_PM); |
4548 | if (pos == 0) { |
4549 | dev_err(&pdev->dev, |
4550 | "cciss_controller_hard_reset: " |
4551 | "PCI PM not supported\n"); |
4552 | return -ENODEV; |
4553 | } |
4554 | dev_info(&pdev->dev, "using PCI PM to reset controller\n"); |
4555 | /* enter the D3hot power management state */ |
4556 | pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); |
4557 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
4558 | pmcsr |= PCI_D3hot; |
4559 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
4560 | |
4561 | msleep(500); |
4562 | |
4563 | /* enter the D0 power management state */ |
4564 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
4565 | pmcsr |= PCI_D0; |
4566 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
4567 | |
4568 | /* |
4569 | * The P600 requires a small delay when changing states. |
4570 | * Otherwise we may think the board did not reset and we bail. |
4571 | * This for kdump only and is particular to the P600. |
4572 | */ |
4573 | msleep(500); |
4574 | } |
4575 | return 0; |
4576 | } |
4577 | |
4578 | static __devinit void init_driver_version(char *driver_version, int len) |
4579 | { |
4580 | memset(driver_version, 0, len); |
4581 | strncpy(driver_version, "cciss " DRIVER_NAME, len - 1); |
4582 | } |
4583 | |
4584 | static __devinit int write_driver_ver_to_cfgtable( |
4585 | CfgTable_struct __iomem *cfgtable) |
4586 | { |
4587 | char *driver_version; |
4588 | int i, size = sizeof(cfgtable->driver_version); |
4589 | |
4590 | driver_version = kmalloc(size, GFP_KERNEL); |
4591 | if (!driver_version) |
4592 | return -ENOMEM; |
4593 | |
4594 | init_driver_version(driver_version, size); |
4595 | for (i = 0; i < size; i++) |
4596 | writeb(driver_version[i], &cfgtable->driver_version[i]); |
4597 | kfree(driver_version); |
4598 | return 0; |
4599 | } |
4600 | |
4601 | static __devinit void read_driver_ver_from_cfgtable( |
4602 | CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver) |
4603 | { |
4604 | int i; |
4605 | |
4606 | for (i = 0; i < sizeof(cfgtable->driver_version); i++) |
4607 | driver_ver[i] = readb(&cfgtable->driver_version[i]); |
4608 | } |
4609 | |
4610 | static __devinit int controller_reset_failed( |
4611 | CfgTable_struct __iomem *cfgtable) |
4612 | { |
4613 | |
4614 | char *driver_ver, *old_driver_ver; |
4615 | int rc, size = sizeof(cfgtable->driver_version); |
4616 | |
4617 | old_driver_ver = kmalloc(2 * size, GFP_KERNEL); |
4618 | if (!old_driver_ver) |
4619 | return -ENOMEM; |
4620 | driver_ver = old_driver_ver + size; |
4621 | |
4622 | /* After a reset, the 32 bytes of "driver version" in the cfgtable |
4623 | * should have been changed, otherwise we know the reset failed. |
4624 | */ |
4625 | init_driver_version(old_driver_ver, size); |
4626 | read_driver_ver_from_cfgtable(cfgtable, driver_ver); |
4627 | rc = !memcmp(driver_ver, old_driver_ver, size); |
4628 | kfree(old_driver_ver); |
4629 | return rc; |
4630 | } |
4631 | |
4632 | /* This does a hard reset of the controller using PCI power management |
4633 | * states or using the doorbell register. */ |
4634 | static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev) |
4635 | { |
4636 | u64 cfg_offset; |
4637 | u32 cfg_base_addr; |
4638 | u64 cfg_base_addr_index; |
4639 | void __iomem *vaddr; |
4640 | unsigned long paddr; |
4641 | u32 misc_fw_support; |
4642 | int rc; |
4643 | CfgTable_struct __iomem *cfgtable; |
4644 | u32 use_doorbell; |
4645 | u32 board_id; |
4646 | u16 command_register; |
4647 | |
4648 | /* For controllers as old a the p600, this is very nearly |
4649 | * the same thing as |
4650 | * |
4651 | * pci_save_state(pci_dev); |
4652 | * pci_set_power_state(pci_dev, PCI_D3hot); |
4653 | * pci_set_power_state(pci_dev, PCI_D0); |
4654 | * pci_restore_state(pci_dev); |
4655 | * |
4656 | * For controllers newer than the P600, the pci power state |
4657 | * method of resetting doesn't work so we have another way |
4658 | * using the doorbell register. |
4659 | */ |
4660 | |
4661 | /* Exclude 640x boards. These are two pci devices in one slot |
4662 | * which share a battery backed cache module. One controls the |
4663 | * cache, the other accesses the cache through the one that controls |
4664 | * it. If we reset the one controlling the cache, the other will |
4665 | * likely not be happy. Just forbid resetting this conjoined mess. |
4666 | */ |
4667 | cciss_lookup_board_id(pdev, &board_id); |
4668 | if (!ctlr_is_resettable(board_id)) { |
4669 | dev_warn(&pdev->dev, "Cannot reset Smart Array 640x " |
4670 | "due to shared cache module."); |
4671 | return -ENODEV; |
4672 | } |
4673 | |
4674 | /* if controller is soft- but not hard resettable... */ |
4675 | if (!ctlr_is_hard_resettable(board_id)) |
4676 | return -ENOTSUPP; /* try soft reset later. */ |
4677 | |
4678 | /* Save the PCI command register */ |
4679 | pci_read_config_word(pdev, 4, &command_register); |
4680 | /* Turn the board off. This is so that later pci_restore_state() |
4681 | * won't turn the board on before the rest of config space is ready. |
4682 | */ |
4683 | pci_disable_device(pdev); |
4684 | pci_save_state(pdev); |
4685 | |
4686 | /* find the first memory BAR, so we can find the cfg table */ |
4687 | rc = cciss_pci_find_memory_BAR(pdev, &paddr); |
4688 | if (rc) |
4689 | return rc; |
4690 | vaddr = remap_pci_mem(paddr, 0x250); |
4691 | if (!vaddr) |
4692 | return -ENOMEM; |
4693 | |
4694 | /* find cfgtable in order to check if reset via doorbell is supported */ |
4695 | rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, |
4696 | &cfg_base_addr_index, &cfg_offset); |
4697 | if (rc) |
4698 | goto unmap_vaddr; |
4699 | cfgtable = remap_pci_mem(pci_resource_start(pdev, |
4700 | cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); |
4701 | if (!cfgtable) { |
4702 | rc = -ENOMEM; |
4703 | goto unmap_vaddr; |
4704 | } |
4705 | rc = write_driver_ver_to_cfgtable(cfgtable); |
4706 | if (rc) |
4707 | goto unmap_vaddr; |
4708 | |
4709 | /* If reset via doorbell register is supported, use that. |
4710 | * There are two such methods. Favor the newest method. |
4711 | */ |
4712 | misc_fw_support = readl(&cfgtable->misc_fw_support); |
4713 | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; |
4714 | if (use_doorbell) { |
4715 | use_doorbell = DOORBELL_CTLR_RESET2; |
4716 | } else { |
4717 | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; |
4718 | if (use_doorbell) { |
4719 | dev_warn(&pdev->dev, "Controller claims that " |
4720 | "'Bit 2 doorbell reset' is " |
4721 | "supported, but not 'bit 5 doorbell reset'. " |
4722 | "Firmware update is recommended.\n"); |
4723 | rc = -ENOTSUPP; /* use the soft reset */ |
4724 | goto unmap_cfgtable; |
4725 | } |
4726 | } |
4727 | |
4728 | rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell); |
4729 | if (rc) |
4730 | goto unmap_cfgtable; |
4731 | pci_restore_state(pdev); |
4732 | rc = pci_enable_device(pdev); |
4733 | if (rc) { |
4734 | dev_warn(&pdev->dev, "failed to enable device.\n"); |
4735 | goto unmap_cfgtable; |
4736 | } |
4737 | pci_write_config_word(pdev, 4, command_register); |
4738 | |
4739 | /* Some devices (notably the HP Smart Array 5i Controller) |
4740 | need a little pause here */ |
4741 | msleep(CCISS_POST_RESET_PAUSE_MSECS); |
4742 | |
4743 | /* Wait for board to become not ready, then ready. */ |
4744 | dev_info(&pdev->dev, "Waiting for board to reset.\n"); |
4745 | rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); |
4746 | if (rc) { |
4747 | dev_warn(&pdev->dev, "Failed waiting for board to hard reset." |
4748 | " Will try soft reset.\n"); |
4749 | rc = -ENOTSUPP; /* Not expected, but try soft reset later */ |
4750 | goto unmap_cfgtable; |
4751 | } |
4752 | rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY); |
4753 | if (rc) { |
4754 | dev_warn(&pdev->dev, |
4755 | "failed waiting for board to become ready " |
4756 | "after hard reset\n"); |
4757 | goto unmap_cfgtable; |
4758 | } |
4759 | |
4760 | rc = controller_reset_failed(vaddr); |
4761 | if (rc < 0) |
4762 | goto unmap_cfgtable; |
4763 | if (rc) { |
4764 | dev_warn(&pdev->dev, "Unable to successfully hard reset " |
4765 | "controller. Will try soft reset.\n"); |
4766 | rc = -ENOTSUPP; /* Not expected, but try soft reset later */ |
4767 | } else { |
4768 | dev_info(&pdev->dev, "Board ready after hard reset.\n"); |
4769 | } |
4770 | |
4771 | unmap_cfgtable: |
4772 | iounmap(cfgtable); |
4773 | |
4774 | unmap_vaddr: |
4775 | iounmap(vaddr); |
4776 | return rc; |
4777 | } |
4778 | |
4779 | static __devinit int cciss_init_reset_devices(struct pci_dev *pdev) |
4780 | { |
4781 | int rc, i; |
4782 | |
4783 | if (!reset_devices) |
4784 | return 0; |
4785 | |
4786 | /* Reset the controller with a PCI power-cycle or via doorbell */ |
4787 | rc = cciss_kdump_hard_reset_controller(pdev); |
4788 | |
4789 | /* -ENOTSUPP here means we cannot reset the controller |
4790 | * but it's already (and still) up and running in |
4791 | * "performant mode". Or, it might be 640x, which can't reset |
4792 | * due to concerns about shared bbwc between 6402/6404 pair. |
4793 | */ |
4794 | if (rc == -ENOTSUPP) |
4795 | return rc; /* just try to do the kdump anyhow. */ |
4796 | if (rc) |
4797 | return -ENODEV; |
4798 | |
4799 | /* Now try to get the controller to respond to a no-op */ |
4800 | dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); |
4801 | for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) { |
4802 | if (cciss_noop(pdev) == 0) |
4803 | break; |
4804 | else |
4805 | dev_warn(&pdev->dev, "no-op failed%s\n", |
4806 | (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ? |
4807 | "; re-trying" : "")); |
4808 | msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS); |
4809 | } |
4810 | return 0; |
4811 | } |
4812 | |
4813 | static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h) |
4814 | { |
4815 | h->cmd_pool_bits = kmalloc( |
4816 | DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * |
4817 | sizeof(unsigned long), GFP_KERNEL); |
4818 | h->cmd_pool = pci_alloc_consistent(h->pdev, |
4819 | h->nr_cmds * sizeof(CommandList_struct), |
4820 | &(h->cmd_pool_dhandle)); |
4821 | h->errinfo_pool = pci_alloc_consistent(h->pdev, |
4822 | h->nr_cmds * sizeof(ErrorInfo_struct), |
4823 | &(h->errinfo_pool_dhandle)); |
4824 | if ((h->cmd_pool_bits == NULL) |
4825 | || (h->cmd_pool == NULL) |
4826 | || (h->errinfo_pool == NULL)) { |
4827 | dev_err(&h->pdev->dev, "out of memory"); |
4828 | return -ENOMEM; |
4829 | } |
4830 | return 0; |
4831 | } |
4832 | |
4833 | static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h) |
4834 | { |
4835 | int i; |
4836 | |
4837 | /* zero it, so that on free we need not know how many were alloc'ed */ |
4838 | h->scatter_list = kzalloc(h->max_commands * |
4839 | sizeof(struct scatterlist *), GFP_KERNEL); |
4840 | if (!h->scatter_list) |
4841 | return -ENOMEM; |
4842 | |
4843 | for (i = 0; i < h->nr_cmds; i++) { |
4844 | h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) * |
4845 | h->maxsgentries, GFP_KERNEL); |
4846 | if (h->scatter_list[i] == NULL) { |
4847 | dev_err(&h->pdev->dev, "could not allocate " |
4848 | "s/g lists\n"); |
4849 | return -ENOMEM; |
4850 | } |
4851 | } |
4852 | return 0; |
4853 | } |
4854 | |
4855 | static void cciss_free_scatterlists(ctlr_info_t *h) |
4856 | { |
4857 | int i; |
4858 | |
4859 | if (h->scatter_list) { |
4860 | for (i = 0; i < h->nr_cmds; i++) |
4861 | kfree(h->scatter_list[i]); |
4862 | kfree(h->scatter_list); |
4863 | } |
4864 | } |
4865 | |
4866 | static void cciss_free_cmd_pool(ctlr_info_t *h) |
4867 | { |
4868 | kfree(h->cmd_pool_bits); |
4869 | if (h->cmd_pool) |
4870 | pci_free_consistent(h->pdev, |
4871 | h->nr_cmds * sizeof(CommandList_struct), |
4872 | h->cmd_pool, h->cmd_pool_dhandle); |
4873 | if (h->errinfo_pool) |
4874 | pci_free_consistent(h->pdev, |
4875 | h->nr_cmds * sizeof(ErrorInfo_struct), |
4876 | h->errinfo_pool, h->errinfo_pool_dhandle); |
4877 | } |
4878 | |
4879 | static int cciss_request_irq(ctlr_info_t *h, |
4880 | irqreturn_t (*msixhandler)(int, void *), |
4881 | irqreturn_t (*intxhandler)(int, void *)) |
4882 | { |
4883 | if (h->msix_vector || h->msi_vector) { |
4884 | if (!request_irq(h->intr[h->intr_mode], msixhandler, |
4885 | 0, h->devname, h)) |
4886 | return 0; |
4887 | dev_err(&h->pdev->dev, "Unable to get msi irq %d" |
4888 | " for %s\n", h->intr[h->intr_mode], |
4889 | h->devname); |
4890 | return -1; |
4891 | } |
4892 | |
4893 | if (!request_irq(h->intr[h->intr_mode], intxhandler, |
4894 | IRQF_SHARED, h->devname, h)) |
4895 | return 0; |
4896 | dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n", |
4897 | h->intr[h->intr_mode], h->devname); |
4898 | return -1; |
4899 | } |
4900 | |
4901 | static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h) |
4902 | { |
4903 | if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) { |
4904 | dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); |
4905 | return -EIO; |
4906 | } |
4907 | |
4908 | dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); |
4909 | if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { |
4910 | dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); |
4911 | return -1; |
4912 | } |
4913 | |
4914 | dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); |
4915 | if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { |
4916 | dev_warn(&h->pdev->dev, "Board failed to become ready " |
4917 | "after soft reset.\n"); |
4918 | return -1; |
4919 | } |
4920 | |
4921 | return 0; |
4922 | } |
4923 | |
4924 | static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h) |
4925 | { |
4926 | int ctlr = h->ctlr; |
4927 | |
4928 | free_irq(h->intr[h->intr_mode], h); |
4929 | #ifdef CONFIG_PCI_MSI |
4930 | if (h->msix_vector) |
4931 | pci_disable_msix(h->pdev); |
4932 | else if (h->msi_vector) |
4933 | pci_disable_msi(h->pdev); |
4934 | #endif /* CONFIG_PCI_MSI */ |
4935 | cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); |
4936 | cciss_free_scatterlists(h); |
4937 | cciss_free_cmd_pool(h); |
4938 | kfree(h->blockFetchTable); |
4939 | if (h->reply_pool) |
4940 | pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64), |
4941 | h->reply_pool, h->reply_pool_dhandle); |
4942 | if (h->transtable) |
4943 | iounmap(h->transtable); |
4944 | if (h->cfgtable) |
4945 | iounmap(h->cfgtable); |
4946 | if (h->vaddr) |
4947 | iounmap(h->vaddr); |
4948 | unregister_blkdev(h->major, h->devname); |
4949 | cciss_destroy_hba_sysfs_entry(h); |
4950 | pci_release_regions(h->pdev); |
4951 | kfree(h); |
4952 | hba[ctlr] = NULL; |
4953 | } |
4954 | |
4955 | /* |
4956 | * This is it. Find all the controllers and register them. I really hate |
4957 | * stealing all these major device numbers. |
4958 | * returns the number of block devices registered. |
4959 | */ |
4960 | static int __devinit cciss_init_one(struct pci_dev *pdev, |
4961 | const struct pci_device_id *ent) |
4962 | { |
4963 | int i; |
4964 | int j = 0; |
4965 | int rc; |
4966 | int try_soft_reset = 0; |
4967 | int dac, return_code; |
4968 | InquiryData_struct *inq_buff; |
4969 | ctlr_info_t *h; |
4970 | unsigned long flags; |
4971 | |
4972 | rc = cciss_init_reset_devices(pdev); |
4973 | if (rc) { |
4974 | if (rc != -ENOTSUPP) |
4975 | return rc; |
4976 | /* If the reset fails in a particular way (it has no way to do |
4977 | * a proper hard reset, so returns -ENOTSUPP) we can try to do |
4978 | * a soft reset once we get the controller configured up to the |
4979 | * point that it can accept a command. |
4980 | */ |
4981 | try_soft_reset = 1; |
4982 | rc = 0; |
4983 | } |
4984 | |
4985 | reinit_after_soft_reset: |
4986 | |
4987 | i = alloc_cciss_hba(pdev); |
4988 | if (i < 0) |
4989 | return -1; |
4990 | |
4991 | h = hba[i]; |
4992 | h->pdev = pdev; |
4993 | h->busy_initializing = 1; |
4994 | h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; |
4995 | INIT_LIST_HEAD(&h->cmpQ); |
4996 | INIT_LIST_HEAD(&h->reqQ); |
4997 | mutex_init(&h->busy_shutting_down); |
4998 | |
4999 | if (cciss_pci_init(h) != 0) |
5000 | goto clean_no_release_regions; |
5001 | |
5002 | sprintf(h->devname, "cciss%d", i); |
5003 | h->ctlr = i; |
5004 | |
5005 | if (cciss_tape_cmds < 2) |
5006 | cciss_tape_cmds = 2; |
5007 | if (cciss_tape_cmds > 16) |
5008 | cciss_tape_cmds = 16; |
5009 | |
5010 | init_completion(&h->scan_wait); |
5011 | |
5012 | if (cciss_create_hba_sysfs_entry(h)) |
5013 | goto clean0; |
5014 | |
5015 | /* configure PCI DMA stuff */ |
5016 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) |
5017 | dac = 1; |
5018 | else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) |
5019 | dac = 0; |
5020 | else { |
5021 | dev_err(&h->pdev->dev, "no suitable DMA available\n"); |
5022 | goto clean1; |
5023 | } |
5024 | |
5025 | /* |
5026 | * register with the major number, or get a dynamic major number |
5027 | * by passing 0 as argument. This is done for greater than |
5028 | * 8 controller support. |
5029 | */ |
5030 | if (i < MAX_CTLR_ORIG) |
5031 | h->major = COMPAQ_CISS_MAJOR + i; |
5032 | rc = register_blkdev(h->major, h->devname); |
5033 | if (rc == -EBUSY || rc == -EINVAL) { |
5034 | dev_err(&h->pdev->dev, |
5035 | "Unable to get major number %d for %s " |
5036 | "on hba %d\n", h->major, h->devname, i); |
5037 | goto clean1; |
5038 | } else { |
5039 | if (i >= MAX_CTLR_ORIG) |
5040 | h->major = rc; |
5041 | } |
5042 | |
5043 | /* make sure the board interrupts are off */ |
5044 | h->access.set_intr_mask(h, CCISS_INTR_OFF); |
5045 | rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx); |
5046 | if (rc) |
5047 | goto clean2; |
5048 | |
5049 | dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", |
5050 | h->devname, pdev->device, pci_name(pdev), |
5051 | h->intr[h->intr_mode], dac ? "" : " not"); |
5052 | |
5053 | if (cciss_allocate_cmd_pool(h)) |
5054 | goto clean4; |
5055 | |
5056 | if (cciss_allocate_scatterlists(h)) |
5057 | goto clean4; |
5058 | |
5059 | h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h, |
5060 | h->chainsize, h->nr_cmds); |
5061 | if (!h->cmd_sg_list && h->chainsize > 0) |
5062 | goto clean4; |
5063 | |
5064 | spin_lock_init(&h->lock); |
5065 | |
5066 | /* Initialize the pdev driver private data. |
5067 | have it point to h. */ |
5068 | pci_set_drvdata(pdev, h); |
5069 | /* command and error info recs zeroed out before |
5070 | they are used */ |
5071 | memset(h->cmd_pool_bits, 0, |
5072 | DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) |
5073 | * sizeof(unsigned long)); |
5074 | |
5075 | h->num_luns = 0; |
5076 | h->highest_lun = -1; |
5077 | for (j = 0; j < CISS_MAX_LUN; j++) { |
5078 | h->drv[j] = NULL; |
5079 | h->gendisk[j] = NULL; |
5080 | } |
5081 | |
5082 | /* At this point, the controller is ready to take commands. |
5083 | * Now, if reset_devices and the hard reset didn't work, try |
5084 | * the soft reset and see if that works. |
5085 | */ |
5086 | if (try_soft_reset) { |
5087 | |
5088 | /* This is kind of gross. We may or may not get a completion |
5089 | * from the soft reset command, and if we do, then the value |
5090 | * from the fifo may or may not be valid. So, we wait 10 secs |
5091 | * after the reset throwing away any completions we get during |
5092 | * that time. Unregister the interrupt handler and register |
5093 | * fake ones to scoop up any residual completions. |
5094 | */ |
5095 | spin_lock_irqsave(&h->lock, flags); |
5096 | h->access.set_intr_mask(h, CCISS_INTR_OFF); |
5097 | spin_unlock_irqrestore(&h->lock, flags); |
5098 | free_irq(h->intr[h->intr_mode], h); |
5099 | rc = cciss_request_irq(h, cciss_msix_discard_completions, |
5100 | cciss_intx_discard_completions); |
5101 | if (rc) { |
5102 | dev_warn(&h->pdev->dev, "Failed to request_irq after " |
5103 | "soft reset.\n"); |
5104 | goto clean4; |
5105 | } |
5106 | |
5107 | rc = cciss_kdump_soft_reset(h); |
5108 | if (rc) { |
5109 | dev_warn(&h->pdev->dev, "Soft reset failed.\n"); |
5110 | goto clean4; |
5111 | } |
5112 | |
5113 | dev_info(&h->pdev->dev, "Board READY.\n"); |
5114 | dev_info(&h->pdev->dev, |
5115 | "Waiting for stale completions to drain.\n"); |
5116 | h->access.set_intr_mask(h, CCISS_INTR_ON); |
5117 | msleep(10000); |
5118 | h->access.set_intr_mask(h, CCISS_INTR_OFF); |
5119 | |
5120 | rc = controller_reset_failed(h->cfgtable); |
5121 | if (rc) |
5122 | dev_info(&h->pdev->dev, |
5123 | "Soft reset appears to have failed.\n"); |
5124 | |
5125 | /* since the controller's reset, we have to go back and re-init |
5126 | * everything. Easiest to just forget what we've done and do it |
5127 | * all over again. |
5128 | */ |
5129 | cciss_undo_allocations_after_kdump_soft_reset(h); |
5130 | try_soft_reset = 0; |
5131 | if (rc) |
5132 | /* don't go to clean4, we already unallocated */ |
5133 | return -ENODEV; |
5134 | |
5135 | goto reinit_after_soft_reset; |
5136 | } |
5137 | |
5138 | cciss_scsi_setup(h); |
5139 | |
5140 | /* Turn the interrupts on so we can service requests */ |
5141 | h->access.set_intr_mask(h, CCISS_INTR_ON); |
5142 | |
5143 | /* Get the firmware version */ |
5144 | inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
5145 | if (inq_buff == NULL) { |
5146 | dev_err(&h->pdev->dev, "out of memory\n"); |
5147 | goto clean4; |
5148 | } |
5149 | |
5150 | return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff, |
5151 | sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD); |
5152 | if (return_code == IO_OK) { |
5153 | h->firm_ver[0] = inq_buff->data_byte[32]; |
5154 | h->firm_ver[1] = inq_buff->data_byte[33]; |
5155 | h->firm_ver[2] = inq_buff->data_byte[34]; |
5156 | h->firm_ver[3] = inq_buff->data_byte[35]; |
5157 | } else { /* send command failed */ |
5158 | dev_warn(&h->pdev->dev, "unable to determine firmware" |
5159 | " version of controller\n"); |
5160 | } |
5161 | kfree(inq_buff); |
5162 | |
5163 | cciss_procinit(h); |
5164 | |
5165 | h->cciss_max_sectors = 8192; |
5166 | |
5167 | rebuild_lun_table(h, 1, 0); |
5168 | cciss_engage_scsi(h); |
5169 | h->busy_initializing = 0; |
5170 | return 1; |
5171 | |
5172 | clean4: |
5173 | cciss_free_cmd_pool(h); |
5174 | cciss_free_scatterlists(h); |
5175 | cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); |
5176 | free_irq(h->intr[h->intr_mode], h); |
5177 | clean2: |
5178 | unregister_blkdev(h->major, h->devname); |
5179 | clean1: |
5180 | cciss_destroy_hba_sysfs_entry(h); |
5181 | clean0: |
5182 | pci_release_regions(pdev); |
5183 | clean_no_release_regions: |
5184 | h->busy_initializing = 0; |
5185 | |
5186 | /* |
5187 | * Deliberately omit pci_disable_device(): it does something nasty to |
5188 | * Smart Array controllers that pci_enable_device does not undo |
5189 | */ |
5190 | pci_set_drvdata(pdev, NULL); |
5191 | free_hba(h); |
5192 | return -1; |
5193 | } |
5194 | |
5195 | static void cciss_shutdown(struct pci_dev *pdev) |
5196 | { |
5197 | ctlr_info_t *h; |
5198 | char *flush_buf; |
5199 | int return_code; |
5200 | |
5201 | h = pci_get_drvdata(pdev); |
5202 | flush_buf = kzalloc(4, GFP_KERNEL); |
5203 | if (!flush_buf) { |
5204 | dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n"); |
5205 | return; |
5206 | } |
5207 | /* write all data in the battery backed cache to disk */ |
5208 | memset(flush_buf, 0, 4); |
5209 | return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf, |
5210 | 4, 0, CTLR_LUNID, TYPE_CMD); |
5211 | kfree(flush_buf); |
5212 | if (return_code != IO_OK) |
5213 | dev_warn(&h->pdev->dev, "Error flushing cache\n"); |
5214 | h->access.set_intr_mask(h, CCISS_INTR_OFF); |
5215 | free_irq(h->intr[h->intr_mode], h); |
5216 | } |
5217 | |
5218 | static int __devinit cciss_enter_simple_mode(struct ctlr_info *h) |
5219 | { |
5220 | u32 trans_support; |
5221 | |
5222 | trans_support = readl(&(h->cfgtable->TransportSupport)); |
5223 | if (!(trans_support & SIMPLE_MODE)) |
5224 | return -ENOTSUPP; |
5225 | |
5226 | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
5227 | writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); |
5228 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
5229 | cciss_wait_for_mode_change_ack(h); |
5230 | print_cfg_table(h); |
5231 | if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { |
5232 | dev_warn(&h->pdev->dev, "unable to get board into simple mode\n"); |
5233 | return -ENODEV; |
5234 | } |
5235 | h->transMethod = CFGTBL_Trans_Simple; |
5236 | return 0; |
5237 | } |
5238 | |
5239 | |
5240 | static void __devexit cciss_remove_one(struct pci_dev *pdev) |
5241 | { |
5242 | ctlr_info_t *h; |
5243 | int i, j; |
5244 | |
5245 | if (pci_get_drvdata(pdev) == NULL) { |
5246 | dev_err(&pdev->dev, "Unable to remove device\n"); |
5247 | return; |
5248 | } |
5249 | |
5250 | h = pci_get_drvdata(pdev); |
5251 | i = h->ctlr; |
5252 | if (hba[i] == NULL) { |
5253 | dev_err(&pdev->dev, "device appears to already be removed\n"); |
5254 | return; |
5255 | } |
5256 | |
5257 | mutex_lock(&h->busy_shutting_down); |
5258 | |
5259 | remove_from_scan_list(h); |
5260 | remove_proc_entry(h->devname, proc_cciss); |
5261 | unregister_blkdev(h->major, h->devname); |
5262 | |
5263 | /* remove it from the disk list */ |
5264 | for (j = 0; j < CISS_MAX_LUN; j++) { |
5265 | struct gendisk *disk = h->gendisk[j]; |
5266 | if (disk) { |
5267 | struct request_queue *q = disk->queue; |
5268 | |
5269 | if (disk->flags & GENHD_FL_UP) { |
5270 | cciss_destroy_ld_sysfs_entry(h, j, 1); |
5271 | del_gendisk(disk); |
5272 | } |
5273 | if (q) |
5274 | blk_cleanup_queue(q); |
5275 | } |
5276 | } |
5277 | |
5278 | #ifdef CONFIG_CISS_SCSI_TAPE |
5279 | cciss_unregister_scsi(h); /* unhook from SCSI subsystem */ |
5280 | #endif |
5281 | |
5282 | cciss_shutdown(pdev); |
5283 | |
5284 | #ifdef CONFIG_PCI_MSI |
5285 | if (h->msix_vector) |
5286 | pci_disable_msix(h->pdev); |
5287 | else if (h->msi_vector) |
5288 | pci_disable_msi(h->pdev); |
5289 | #endif /* CONFIG_PCI_MSI */ |
5290 | |
5291 | iounmap(h->transtable); |
5292 | iounmap(h->cfgtable); |
5293 | iounmap(h->vaddr); |
5294 | |
5295 | cciss_free_cmd_pool(h); |
5296 | /* Free up sg elements */ |
5297 | for (j = 0; j < h->nr_cmds; j++) |
5298 | kfree(h->scatter_list[j]); |
5299 | kfree(h->scatter_list); |
5300 | cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); |
5301 | kfree(h->blockFetchTable); |
5302 | if (h->reply_pool) |
5303 | pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64), |
5304 | h->reply_pool, h->reply_pool_dhandle); |
5305 | /* |
5306 | * Deliberately omit pci_disable_device(): it does something nasty to |
5307 | * Smart Array controllers that pci_enable_device does not undo |
5308 | */ |
5309 | pci_release_regions(pdev); |
5310 | pci_set_drvdata(pdev, NULL); |
5311 | cciss_destroy_hba_sysfs_entry(h); |
5312 | mutex_unlock(&h->busy_shutting_down); |
5313 | free_hba(h); |
5314 | } |
5315 | |
5316 | static struct pci_driver cciss_pci_driver = { |
5317 | .name = "cciss", |
5318 | .probe = cciss_init_one, |
5319 | .remove = __devexit_p(cciss_remove_one), |
5320 | .id_table = cciss_pci_device_id, /* id_table */ |
5321 | .shutdown = cciss_shutdown, |
5322 | }; |
5323 | |
5324 | /* |
5325 | * This is it. Register the PCI driver information for the cards we control |
5326 | * the OS will call our registered routines when it finds one of our cards. |
5327 | */ |
5328 | static int __init cciss_init(void) |
5329 | { |
5330 | int err; |
5331 | |
5332 | /* |
5333 | * The hardware requires that commands are aligned on a 64-bit |
5334 | * boundary. Given that we use pci_alloc_consistent() to allocate an |
5335 | * array of them, the size must be a multiple of 8 bytes. |
5336 | */ |
5337 | BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT); |
5338 | printk(KERN_INFO DRIVER_NAME "\n"); |
5339 | |
5340 | err = bus_register(&cciss_bus_type); |
5341 | if (err) |
5342 | return err; |
5343 | |
5344 | /* Start the scan thread */ |
5345 | cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan"); |
5346 | if (IS_ERR(cciss_scan_thread)) { |
5347 | err = PTR_ERR(cciss_scan_thread); |
5348 | goto err_bus_unregister; |
5349 | } |
5350 | |
5351 | /* Register for our PCI devices */ |
5352 | err = pci_register_driver(&cciss_pci_driver); |
5353 | if (err) |
5354 | goto err_thread_stop; |
5355 | |
5356 | return err; |
5357 | |
5358 | err_thread_stop: |
5359 | kthread_stop(cciss_scan_thread); |
5360 | err_bus_unregister: |
5361 | bus_unregister(&cciss_bus_type); |
5362 | |
5363 | return err; |
5364 | } |
5365 | |
5366 | static void __exit cciss_cleanup(void) |
5367 | { |
5368 | int i; |
5369 | |
5370 | pci_unregister_driver(&cciss_pci_driver); |
5371 | /* double check that all controller entrys have been removed */ |
5372 | for (i = 0; i < MAX_CTLR; i++) { |
5373 | if (hba[i] != NULL) { |
5374 | dev_warn(&hba[i]->pdev->dev, |
5375 | "had to remove controller\n"); |
5376 | cciss_remove_one(hba[i]->pdev); |
5377 | } |
5378 | } |
5379 | kthread_stop(cciss_scan_thread); |
5380 | if (proc_cciss) |
5381 | remove_proc_entry("driver/cciss", NULL); |
5382 | bus_unregister(&cciss_bus_type); |
5383 | } |
5384 | |
5385 | module_init(cciss_init); |
5386 | module_exit(cciss_cleanup); |
5387 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9