Root/drivers/block/cciss.c

1/*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/pci-aspm.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/init.h>
39#include <linux/jiffies.h>
40#include <linux/hdreg.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/mutex.h>
44#include <asm/uaccess.h>
45#include <asm/io.h>
46
47#include <linux/dma-mapping.h>
48#include <linux/blkdev.h>
49#include <linux/genhd.h>
50#include <linux/completion.h>
51#include <scsi/scsi.h>
52#include <scsi/sg.h>
53#include <scsi/scsi_ioctl.h>
54#include <linux/cdrom.h>
55#include <linux/scatterlist.h>
56#include <linux/kthread.h>
57
58#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61
62/* Embedded module documentation macros - see modules.h */
63MODULE_AUTHOR("Hewlett-Packard Company");
64MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66MODULE_VERSION("3.6.26");
67MODULE_LICENSE("GPL");
68static int cciss_tape_cmds = 6;
69module_param(cciss_tape_cmds, int, 0644);
70MODULE_PARM_DESC(cciss_tape_cmds,
71    "number of commands to allocate for tape devices (default: 6)");
72static int cciss_simple_mode;
73module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
74MODULE_PARM_DESC(cciss_simple_mode,
75    "Use 'simple mode' rather than 'performant mode'");
76
77static DEFINE_MUTEX(cciss_mutex);
78static struct proc_dir_entry *proc_cciss;
79
80#include "cciss_cmd.h"
81#include "cciss.h"
82#include <linux/cciss_ioctl.h>
83
84/* define the PCI info for the cards we can control */
85static const struct pci_device_id cciss_pci_device_id[] = {
86    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
87    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
88    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
89    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
90    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
91    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
92    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
93    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
94    {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
95    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
96    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
97    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
98    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
99    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
100    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
101    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
102    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
103    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
104    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
105    {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
106    {0,}
107};
108
109MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111/* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
114 */
115static struct board_type products[] = {
116    {0x40700E11, "Smart Array 5300", &SA5_access},
117    {0x40800E11, "Smart Array 5i", &SA5B_access},
118    {0x40820E11, "Smart Array 532", &SA5B_access},
119    {0x40830E11, "Smart Array 5312", &SA5B_access},
120    {0x409A0E11, "Smart Array 641", &SA5_access},
121    {0x409B0E11, "Smart Array 642", &SA5_access},
122    {0x409C0E11, "Smart Array 6400", &SA5_access},
123    {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124    {0x40910E11, "Smart Array 6i", &SA5_access},
125    {0x3225103C, "Smart Array P600", &SA5_access},
126    {0x3223103C, "Smart Array P800", &SA5_access},
127    {0x3234103C, "Smart Array P400", &SA5_access},
128    {0x3235103C, "Smart Array P400i", &SA5_access},
129    {0x3211103C, "Smart Array E200i", &SA5_access},
130    {0x3212103C, "Smart Array E200", &SA5_access},
131    {0x3213103C, "Smart Array E200i", &SA5_access},
132    {0x3214103C, "Smart Array E200i", &SA5_access},
133    {0x3215103C, "Smart Array E200i", &SA5_access},
134    {0x3237103C, "Smart Array E500", &SA5_access},
135    {0x3223103C, "Smart Array P800", &SA5_access},
136    {0x3234103C, "Smart Array P400", &SA5_access},
137    {0x323D103C, "Smart Array P700m", &SA5_access},
138};
139
140/* How long to wait (in milliseconds) for board to go into simple mode */
141#define MAX_CONFIG_WAIT 30000
142#define MAX_IOCTL_CONFIG_WAIT 1000
143
144/*define how many times we will try a command because of bus resets */
145#define MAX_CMD_RETRIES 3
146
147#define MAX_CTLR 32
148
149/* Originally cciss driver only supports 8 major numbers */
150#define MAX_CTLR_ORIG 8
151
152static ctlr_info_t *hba[MAX_CTLR];
153
154static struct task_struct *cciss_scan_thread;
155static DEFINE_MUTEX(scan_mutex);
156static LIST_HEAD(scan_q);
157
158static void do_cciss_request(struct request_queue *q);
159static irqreturn_t do_cciss_intx(int irq, void *dev_id);
160static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
161static int cciss_open(struct block_device *bdev, fmode_t mode);
162static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
163static int cciss_release(struct gendisk *disk, fmode_t mode);
164static int do_ioctl(struct block_device *bdev, fmode_t mode,
165            unsigned int cmd, unsigned long arg);
166static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
167               unsigned int cmd, unsigned long arg);
168static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
169
170static int cciss_revalidate(struct gendisk *disk);
171static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
172static int deregister_disk(ctlr_info_t *h, int drv_index,
173               int clear_all, int via_ioctl);
174
175static void cciss_read_capacity(ctlr_info_t *h, int logvol,
176            sector_t *total_size, unsigned int *block_size);
177static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
178            sector_t *total_size, unsigned int *block_size);
179static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
180            sector_t total_size,
181            unsigned int block_size, InquiryData_struct *inq_buff,
182                   drive_info_struct *drv);
183static void __devinit cciss_interrupt_mode(ctlr_info_t *);
184static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
185static void start_io(ctlr_info_t *h);
186static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
187            __u8 page_code, unsigned char scsi3addr[],
188            int cmd_type);
189static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
190    int attempt_retry);
191static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
192
193static int add_to_scan_list(struct ctlr_info *h);
194static int scan_thread(void *data);
195static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
196static void cciss_hba_release(struct device *dev);
197static void cciss_device_release(struct device *dev);
198static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
199static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
200static inline u32 next_command(ctlr_info_t *h);
201static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
202    void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
203    u64 *cfg_offset);
204static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
205    unsigned long *memory_bar);
206static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
207static __devinit int write_driver_ver_to_cfgtable(
208    CfgTable_struct __iomem *cfgtable);
209
210/* performant mode helper functions */
211static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
212                int *bucket_map);
213static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
214
215#ifdef CONFIG_PROC_FS
216static void cciss_procinit(ctlr_info_t *h);
217#else
218static void cciss_procinit(ctlr_info_t *h)
219{
220}
221#endif /* CONFIG_PROC_FS */
222
223#ifdef CONFIG_COMPAT
224static int cciss_compat_ioctl(struct block_device *, fmode_t,
225                  unsigned, unsigned long);
226#endif
227
228static const struct block_device_operations cciss_fops = {
229    .owner = THIS_MODULE,
230    .open = cciss_unlocked_open,
231    .release = cciss_release,
232    .ioctl = do_ioctl,
233    .getgeo = cciss_getgeo,
234#ifdef CONFIG_COMPAT
235    .compat_ioctl = cciss_compat_ioctl,
236#endif
237    .revalidate_disk = cciss_revalidate,
238};
239
240/* set_performant_mode: Modify the tag for cciss performant
241 * set bit 0 for pull model, bits 3-1 for block fetch
242 * register number
243 */
244static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
245{
246    if (likely(h->transMethod & CFGTBL_Trans_Performant))
247        c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
248}
249
250/*
251 * Enqueuing and dequeuing functions for cmdlists.
252 */
253static inline void addQ(struct list_head *list, CommandList_struct *c)
254{
255    list_add_tail(&c->list, list);
256}
257
258static inline void removeQ(CommandList_struct *c)
259{
260    /*
261     * After kexec/dump some commands might still
262     * be in flight, which the firmware will try
263     * to complete. Resetting the firmware doesn't work
264     * with old fw revisions, so we have to mark
265     * them off as 'stale' to prevent the driver from
266     * falling over.
267     */
268    if (WARN_ON(list_empty(&c->list))) {
269        c->cmd_type = CMD_MSG_STALE;
270        return;
271    }
272
273    list_del_init(&c->list);
274}
275
276static void enqueue_cmd_and_start_io(ctlr_info_t *h,
277    CommandList_struct *c)
278{
279    unsigned long flags;
280    set_performant_mode(h, c);
281    spin_lock_irqsave(&h->lock, flags);
282    addQ(&h->reqQ, c);
283    h->Qdepth++;
284    if (h->Qdepth > h->maxQsinceinit)
285        h->maxQsinceinit = h->Qdepth;
286    start_io(h);
287    spin_unlock_irqrestore(&h->lock, flags);
288}
289
290static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
291    int nr_cmds)
292{
293    int i;
294
295    if (!cmd_sg_list)
296        return;
297    for (i = 0; i < nr_cmds; i++) {
298        kfree(cmd_sg_list[i]);
299        cmd_sg_list[i] = NULL;
300    }
301    kfree(cmd_sg_list);
302}
303
304static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
305    ctlr_info_t *h, int chainsize, int nr_cmds)
306{
307    int j;
308    SGDescriptor_struct **cmd_sg_list;
309
310    if (chainsize <= 0)
311        return NULL;
312
313    cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
314    if (!cmd_sg_list)
315        return NULL;
316
317    /* Build up chain blocks for each command */
318    for (j = 0; j < nr_cmds; j++) {
319        /* Need a block of chainsized s/g elements. */
320        cmd_sg_list[j] = kmalloc((chainsize *
321            sizeof(*cmd_sg_list[j])), GFP_KERNEL);
322        if (!cmd_sg_list[j]) {
323            dev_err(&h->pdev->dev, "Cannot get memory "
324                "for s/g chains.\n");
325            goto clean;
326        }
327    }
328    return cmd_sg_list;
329clean:
330    cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
331    return NULL;
332}
333
334static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
335{
336    SGDescriptor_struct *chain_sg;
337    u64bit temp64;
338
339    if (c->Header.SGTotal <= h->max_cmd_sgentries)
340        return;
341
342    chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343    temp64.val32.lower = chain_sg->Addr.lower;
344    temp64.val32.upper = chain_sg->Addr.upper;
345    pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
346}
347
348static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
349    SGDescriptor_struct *chain_block, int len)
350{
351    SGDescriptor_struct *chain_sg;
352    u64bit temp64;
353
354    chain_sg = &c->SG[h->max_cmd_sgentries - 1];
355    chain_sg->Ext = CCISS_SG_CHAIN;
356    chain_sg->Len = len;
357    temp64.val = pci_map_single(h->pdev, chain_block, len,
358                PCI_DMA_TODEVICE);
359    chain_sg->Addr.lower = temp64.val32.lower;
360    chain_sg->Addr.upper = temp64.val32.upper;
361}
362
363#include "cciss_scsi.c" /* For SCSI tape support */
364
365static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
366    "UNKNOWN"
367};
368#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
369
370#ifdef CONFIG_PROC_FS
371
372/*
373 * Report information about this controller.
374 */
375#define ENG_GIG 1000000000
376#define ENG_GIG_FACTOR (ENG_GIG/512)
377#define ENGAGE_SCSI "engage scsi"
378
379static void cciss_seq_show_header(struct seq_file *seq)
380{
381    ctlr_info_t *h = seq->private;
382
383    seq_printf(seq, "%s: HP %s Controller\n"
384        "Board ID: 0x%08lx\n"
385        "Firmware Version: %c%c%c%c\n"
386        "IRQ: %d\n"
387        "Logical drives: %d\n"
388        "Current Q depth: %d\n"
389        "Current # commands on controller: %d\n"
390        "Max Q depth since init: %d\n"
391        "Max # commands on controller since init: %d\n"
392        "Max SG entries since init: %d\n",
393        h->devname,
394        h->product_name,
395        (unsigned long)h->board_id,
396        h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
397        h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
398        h->num_luns,
399        h->Qdepth, h->commands_outstanding,
400        h->maxQsinceinit, h->max_outstanding, h->maxSG);
401
402#ifdef CONFIG_CISS_SCSI_TAPE
403    cciss_seq_tape_report(seq, h);
404#endif /* CONFIG_CISS_SCSI_TAPE */
405}
406
407static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
408{
409    ctlr_info_t *h = seq->private;
410    unsigned long flags;
411
412    /* prevent displaying bogus info during configuration
413     * or deconfiguration of a logical volume
414     */
415    spin_lock_irqsave(&h->lock, flags);
416    if (h->busy_configuring) {
417        spin_unlock_irqrestore(&h->lock, flags);
418        return ERR_PTR(-EBUSY);
419    }
420    h->busy_configuring = 1;
421    spin_unlock_irqrestore(&h->lock, flags);
422
423    if (*pos == 0)
424        cciss_seq_show_header(seq);
425
426    return pos;
427}
428
429static int cciss_seq_show(struct seq_file *seq, void *v)
430{
431    sector_t vol_sz, vol_sz_frac;
432    ctlr_info_t *h = seq->private;
433    unsigned ctlr = h->ctlr;
434    loff_t *pos = v;
435    drive_info_struct *drv = h->drv[*pos];
436
437    if (*pos > h->highest_lun)
438        return 0;
439
440    if (drv == NULL) /* it's possible for h->drv[] to have holes. */
441        return 0;
442
443    if (drv->heads == 0)
444        return 0;
445
446    vol_sz = drv->nr_blocks;
447    vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
448    vol_sz_frac *= 100;
449    sector_div(vol_sz_frac, ENG_GIG_FACTOR);
450
451    if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
452        drv->raid_level = RAID_UNKNOWN;
453    seq_printf(seq, "cciss/c%dd%d:"
454            "\t%4u.%02uGB\tRAID %s\n",
455            ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
456            raid_label[drv->raid_level]);
457    return 0;
458}
459
460static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
461{
462    ctlr_info_t *h = seq->private;
463
464    if (*pos > h->highest_lun)
465        return NULL;
466    *pos += 1;
467
468    return pos;
469}
470
471static void cciss_seq_stop(struct seq_file *seq, void *v)
472{
473    ctlr_info_t *h = seq->private;
474
475    /* Only reset h->busy_configuring if we succeeded in setting
476     * it during cciss_seq_start. */
477    if (v == ERR_PTR(-EBUSY))
478        return;
479
480    h->busy_configuring = 0;
481}
482
483static const struct seq_operations cciss_seq_ops = {
484    .start = cciss_seq_start,
485    .show = cciss_seq_show,
486    .next = cciss_seq_next,
487    .stop = cciss_seq_stop,
488};
489
490static int cciss_seq_open(struct inode *inode, struct file *file)
491{
492    int ret = seq_open(file, &cciss_seq_ops);
493    struct seq_file *seq = file->private_data;
494
495    if (!ret)
496        seq->private = PDE(inode)->data;
497
498    return ret;
499}
500
501static ssize_t
502cciss_proc_write(struct file *file, const char __user *buf,
503         size_t length, loff_t *ppos)
504{
505    int err;
506    char *buffer;
507
508#ifndef CONFIG_CISS_SCSI_TAPE
509    return -EINVAL;
510#endif
511
512    if (!buf || length > PAGE_SIZE - 1)
513        return -EINVAL;
514
515    buffer = (char *)__get_free_page(GFP_KERNEL);
516    if (!buffer)
517        return -ENOMEM;
518
519    err = -EFAULT;
520    if (copy_from_user(buffer, buf, length))
521        goto out;
522    buffer[length] = '\0';
523
524#ifdef CONFIG_CISS_SCSI_TAPE
525    if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
526        struct seq_file *seq = file->private_data;
527        ctlr_info_t *h = seq->private;
528
529        err = cciss_engage_scsi(h);
530        if (err == 0)
531            err = length;
532    } else
533#endif /* CONFIG_CISS_SCSI_TAPE */
534        err = -EINVAL;
535    /* might be nice to have "disengage" too, but it's not
536       safely possible. (only 1 module use count, lock issues.) */
537
538out:
539    free_page((unsigned long)buffer);
540    return err;
541}
542
543static const struct file_operations cciss_proc_fops = {
544    .owner = THIS_MODULE,
545    .open = cciss_seq_open,
546    .read = seq_read,
547    .llseek = seq_lseek,
548    .release = seq_release,
549    .write = cciss_proc_write,
550};
551
552static void __devinit cciss_procinit(ctlr_info_t *h)
553{
554    struct proc_dir_entry *pde;
555
556    if (proc_cciss == NULL)
557        proc_cciss = proc_mkdir("driver/cciss", NULL);
558    if (!proc_cciss)
559        return;
560    pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
561                    S_IROTH, proc_cciss,
562                    &cciss_proc_fops, h);
563}
564#endif /* CONFIG_PROC_FS */
565
566#define MAX_PRODUCT_NAME_LEN 19
567
568#define to_hba(n) container_of(n, struct ctlr_info, dev)
569#define to_drv(n) container_of(n, drive_info_struct, dev)
570
571/* List of controllers which cannot be hard reset on kexec with reset_devices */
572static u32 unresettable_controller[] = {
573    0x324a103C, /* Smart Array P712m */
574    0x324b103C, /* SmartArray P711m */
575    0x3223103C, /* Smart Array P800 */
576    0x3234103C, /* Smart Array P400 */
577    0x3235103C, /* Smart Array P400i */
578    0x3211103C, /* Smart Array E200i */
579    0x3212103C, /* Smart Array E200 */
580    0x3213103C, /* Smart Array E200i */
581    0x3214103C, /* Smart Array E200i */
582    0x3215103C, /* Smart Array E200i */
583    0x3237103C, /* Smart Array E500 */
584    0x323D103C, /* Smart Array P700m */
585    0x409C0E11, /* Smart Array 6400 */
586    0x409D0E11, /* Smart Array 6400 EM */
587};
588
589/* List of controllers which cannot even be soft reset */
590static u32 soft_unresettable_controller[] = {
591    0x409C0E11, /* Smart Array 6400 */
592    0x409D0E11, /* Smart Array 6400 EM */
593};
594
595static int ctlr_is_hard_resettable(u32 board_id)
596{
597    int i;
598
599    for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
600        if (unresettable_controller[i] == board_id)
601            return 0;
602    return 1;
603}
604
605static int ctlr_is_soft_resettable(u32 board_id)
606{
607    int i;
608
609    for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
610        if (soft_unresettable_controller[i] == board_id)
611            return 0;
612    return 1;
613}
614
615static int ctlr_is_resettable(u32 board_id)
616{
617    return ctlr_is_hard_resettable(board_id) ||
618        ctlr_is_soft_resettable(board_id);
619}
620
621static ssize_t host_show_resettable(struct device *dev,
622                    struct device_attribute *attr,
623                    char *buf)
624{
625    struct ctlr_info *h = to_hba(dev);
626
627    return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628}
629static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
630
631static ssize_t host_store_rescan(struct device *dev,
632                 struct device_attribute *attr,
633                 const char *buf, size_t count)
634{
635    struct ctlr_info *h = to_hba(dev);
636
637    add_to_scan_list(h);
638    wake_up_process(cciss_scan_thread);
639    wait_for_completion_interruptible(&h->scan_wait);
640
641    return count;
642}
643static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
644
645static ssize_t host_show_transport_mode(struct device *dev,
646                 struct device_attribute *attr,
647                 char *buf)
648{
649    struct ctlr_info *h = to_hba(dev);
650
651    return snprintf(buf, 20, "%s\n",
652        h->transMethod & CFGTBL_Trans_Performant ?
653            "performant" : "simple");
654}
655static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
656
657static ssize_t dev_show_unique_id(struct device *dev,
658                 struct device_attribute *attr,
659                 char *buf)
660{
661    drive_info_struct *drv = to_drv(dev);
662    struct ctlr_info *h = to_hba(drv->dev.parent);
663    __u8 sn[16];
664    unsigned long flags;
665    int ret = 0;
666
667    spin_lock_irqsave(&h->lock, flags);
668    if (h->busy_configuring)
669        ret = -EBUSY;
670    else
671        memcpy(sn, drv->serial_no, sizeof(sn));
672    spin_unlock_irqrestore(&h->lock, flags);
673
674    if (ret)
675        return ret;
676    else
677        return snprintf(buf, 16 * 2 + 2,
678                "%02X%02X%02X%02X%02X%02X%02X%02X"
679                "%02X%02X%02X%02X%02X%02X%02X%02X\n",
680                sn[0], sn[1], sn[2], sn[3],
681                sn[4], sn[5], sn[6], sn[7],
682                sn[8], sn[9], sn[10], sn[11],
683                sn[12], sn[13], sn[14], sn[15]);
684}
685static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
686
687static ssize_t dev_show_vendor(struct device *dev,
688                   struct device_attribute *attr,
689                   char *buf)
690{
691    drive_info_struct *drv = to_drv(dev);
692    struct ctlr_info *h = to_hba(drv->dev.parent);
693    char vendor[VENDOR_LEN + 1];
694    unsigned long flags;
695    int ret = 0;
696
697    spin_lock_irqsave(&h->lock, flags);
698    if (h->busy_configuring)
699        ret = -EBUSY;
700    else
701        memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
702    spin_unlock_irqrestore(&h->lock, flags);
703
704    if (ret)
705        return ret;
706    else
707        return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
708}
709static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
710
711static ssize_t dev_show_model(struct device *dev,
712                  struct device_attribute *attr,
713                  char *buf)
714{
715    drive_info_struct *drv = to_drv(dev);
716    struct ctlr_info *h = to_hba(drv->dev.parent);
717    char model[MODEL_LEN + 1];
718    unsigned long flags;
719    int ret = 0;
720
721    spin_lock_irqsave(&h->lock, flags);
722    if (h->busy_configuring)
723        ret = -EBUSY;
724    else
725        memcpy(model, drv->model, MODEL_LEN + 1);
726    spin_unlock_irqrestore(&h->lock, flags);
727
728    if (ret)
729        return ret;
730    else
731        return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
732}
733static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
734
735static ssize_t dev_show_rev(struct device *dev,
736                struct device_attribute *attr,
737                char *buf)
738{
739    drive_info_struct *drv = to_drv(dev);
740    struct ctlr_info *h = to_hba(drv->dev.parent);
741    char rev[REV_LEN + 1];
742    unsigned long flags;
743    int ret = 0;
744
745    spin_lock_irqsave(&h->lock, flags);
746    if (h->busy_configuring)
747        ret = -EBUSY;
748    else
749        memcpy(rev, drv->rev, REV_LEN + 1);
750    spin_unlock_irqrestore(&h->lock, flags);
751
752    if (ret)
753        return ret;
754    else
755        return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
756}
757static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
758
759static ssize_t cciss_show_lunid(struct device *dev,
760                struct device_attribute *attr, char *buf)
761{
762    drive_info_struct *drv = to_drv(dev);
763    struct ctlr_info *h = to_hba(drv->dev.parent);
764    unsigned long flags;
765    unsigned char lunid[8];
766
767    spin_lock_irqsave(&h->lock, flags);
768    if (h->busy_configuring) {
769        spin_unlock_irqrestore(&h->lock, flags);
770        return -EBUSY;
771    }
772    if (!drv->heads) {
773        spin_unlock_irqrestore(&h->lock, flags);
774        return -ENOTTY;
775    }
776    memcpy(lunid, drv->LunID, sizeof(lunid));
777    spin_unlock_irqrestore(&h->lock, flags);
778    return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
779        lunid[0], lunid[1], lunid[2], lunid[3],
780        lunid[4], lunid[5], lunid[6], lunid[7]);
781}
782static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
783
784static ssize_t cciss_show_raid_level(struct device *dev,
785                     struct device_attribute *attr, char *buf)
786{
787    drive_info_struct *drv = to_drv(dev);
788    struct ctlr_info *h = to_hba(drv->dev.parent);
789    int raid;
790    unsigned long flags;
791
792    spin_lock_irqsave(&h->lock, flags);
793    if (h->busy_configuring) {
794        spin_unlock_irqrestore(&h->lock, flags);
795        return -EBUSY;
796    }
797    raid = drv->raid_level;
798    spin_unlock_irqrestore(&h->lock, flags);
799    if (raid < 0 || raid > RAID_UNKNOWN)
800        raid = RAID_UNKNOWN;
801
802    return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
803            raid_label[raid]);
804}
805static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
806
807static ssize_t cciss_show_usage_count(struct device *dev,
808                      struct device_attribute *attr, char *buf)
809{
810    drive_info_struct *drv = to_drv(dev);
811    struct ctlr_info *h = to_hba(drv->dev.parent);
812    unsigned long flags;
813    int count;
814
815    spin_lock_irqsave(&h->lock, flags);
816    if (h->busy_configuring) {
817        spin_unlock_irqrestore(&h->lock, flags);
818        return -EBUSY;
819    }
820    count = drv->usage_count;
821    spin_unlock_irqrestore(&h->lock, flags);
822    return snprintf(buf, 20, "%d\n", count);
823}
824static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
825
826static struct attribute *cciss_host_attrs[] = {
827    &dev_attr_rescan.attr,
828    &dev_attr_resettable.attr,
829    &dev_attr_transport_mode.attr,
830    NULL
831};
832
833static struct attribute_group cciss_host_attr_group = {
834    .attrs = cciss_host_attrs,
835};
836
837static const struct attribute_group *cciss_host_attr_groups[] = {
838    &cciss_host_attr_group,
839    NULL
840};
841
842static struct device_type cciss_host_type = {
843    .name = "cciss_host",
844    .groups = cciss_host_attr_groups,
845    .release = cciss_hba_release,
846};
847
848static struct attribute *cciss_dev_attrs[] = {
849    &dev_attr_unique_id.attr,
850    &dev_attr_model.attr,
851    &dev_attr_vendor.attr,
852    &dev_attr_rev.attr,
853    &dev_attr_lunid.attr,
854    &dev_attr_raid_level.attr,
855    &dev_attr_usage_count.attr,
856    NULL
857};
858
859static struct attribute_group cciss_dev_attr_group = {
860    .attrs = cciss_dev_attrs,
861};
862
863static const struct attribute_group *cciss_dev_attr_groups[] = {
864    &cciss_dev_attr_group,
865    NULL
866};
867
868static struct device_type cciss_dev_type = {
869    .name = "cciss_device",
870    .groups = cciss_dev_attr_groups,
871    .release = cciss_device_release,
872};
873
874static struct bus_type cciss_bus_type = {
875    .name = "cciss",
876};
877
878/*
879 * cciss_hba_release is called when the reference count
880 * of h->dev goes to zero.
881 */
882static void cciss_hba_release(struct device *dev)
883{
884    /*
885     * nothing to do, but need this to avoid a warning
886     * about not having a release handler from lib/kref.c.
887     */
888}
889
890/*
891 * Initialize sysfs entry for each controller. This sets up and registers
892 * the 'cciss#' directory for each individual controller under
893 * /sys/bus/pci/devices/<dev>/.
894 */
895static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
896{
897    device_initialize(&h->dev);
898    h->dev.type = &cciss_host_type;
899    h->dev.bus = &cciss_bus_type;
900    dev_set_name(&h->dev, "%s", h->devname);
901    h->dev.parent = &h->pdev->dev;
902
903    return device_add(&h->dev);
904}
905
906/*
907 * Remove sysfs entries for an hba.
908 */
909static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
910{
911    device_del(&h->dev);
912    put_device(&h->dev); /* final put. */
913}
914
915/* cciss_device_release is called when the reference count
916 * of h->drv[x]dev goes to zero.
917 */
918static void cciss_device_release(struct device *dev)
919{
920    drive_info_struct *drv = to_drv(dev);
921    kfree(drv);
922}
923
924/*
925 * Initialize sysfs for each logical drive. This sets up and registers
926 * the 'c#d#' directory for each individual logical drive under
927 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
928 * /sys/block/cciss!c#d# to this entry.
929 */
930static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
931                       int drv_index)
932{
933    struct device *dev;
934
935    if (h->drv[drv_index]->device_initialized)
936        return 0;
937
938    dev = &h->drv[drv_index]->dev;
939    device_initialize(dev);
940    dev->type = &cciss_dev_type;
941    dev->bus = &cciss_bus_type;
942    dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
943    dev->parent = &h->dev;
944    h->drv[drv_index]->device_initialized = 1;
945    return device_add(dev);
946}
947
948/*
949 * Remove sysfs entries for a logical drive.
950 */
951static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
952    int ctlr_exiting)
953{
954    struct device *dev = &h->drv[drv_index]->dev;
955
956    /* special case for c*d0, we only destroy it on controller exit */
957    if (drv_index == 0 && !ctlr_exiting)
958        return;
959
960    device_del(dev);
961    put_device(dev); /* the "final" put. */
962    h->drv[drv_index] = NULL;
963}
964
965/*
966 * For operations that cannot sleep, a command block is allocated at init,
967 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
968 * which ones are free or in use.
969 */
970static CommandList_struct *cmd_alloc(ctlr_info_t *h)
971{
972    CommandList_struct *c;
973    int i;
974    u64bit temp64;
975    dma_addr_t cmd_dma_handle, err_dma_handle;
976
977    do {
978        i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
979        if (i == h->nr_cmds)
980            return NULL;
981    } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
982          h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
983    c = h->cmd_pool + i;
984    memset(c, 0, sizeof(CommandList_struct));
985    cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
986    c->err_info = h->errinfo_pool + i;
987    memset(c->err_info, 0, sizeof(ErrorInfo_struct));
988    err_dma_handle = h->errinfo_pool_dhandle
989        + i * sizeof(ErrorInfo_struct);
990    h->nr_allocs++;
991
992    c->cmdindex = i;
993
994    INIT_LIST_HEAD(&c->list);
995    c->busaddr = (__u32) cmd_dma_handle;
996    temp64.val = (__u64) err_dma_handle;
997    c->ErrDesc.Addr.lower = temp64.val32.lower;
998    c->ErrDesc.Addr.upper = temp64.val32.upper;
999    c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1000
1001    c->ctlr = h->ctlr;
1002    return c;
1003}
1004
1005/* allocate a command using pci_alloc_consistent, used for ioctls,
1006 * etc., not for the main i/o path.
1007 */
1008static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1009{
1010    CommandList_struct *c;
1011    u64bit temp64;
1012    dma_addr_t cmd_dma_handle, err_dma_handle;
1013
1014    c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1015        sizeof(CommandList_struct), &cmd_dma_handle);
1016    if (c == NULL)
1017        return NULL;
1018    memset(c, 0, sizeof(CommandList_struct));
1019
1020    c->cmdindex = -1;
1021
1022    c->err_info = (ErrorInfo_struct *)
1023        pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1024            &err_dma_handle);
1025
1026    if (c->err_info == NULL) {
1027        pci_free_consistent(h->pdev,
1028            sizeof(CommandList_struct), c, cmd_dma_handle);
1029        return NULL;
1030    }
1031    memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1032
1033    INIT_LIST_HEAD(&c->list);
1034    c->busaddr = (__u32) cmd_dma_handle;
1035    temp64.val = (__u64) err_dma_handle;
1036    c->ErrDesc.Addr.lower = temp64.val32.lower;
1037    c->ErrDesc.Addr.upper = temp64.val32.upper;
1038    c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039
1040    c->ctlr = h->ctlr;
1041    return c;
1042}
1043
1044static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045{
1046    int i;
1047
1048    i = c - h->cmd_pool;
1049    clear_bit(i & (BITS_PER_LONG - 1),
1050          h->cmd_pool_bits + (i / BITS_PER_LONG));
1051    h->nr_frees++;
1052}
1053
1054static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1055{
1056    u64bit temp64;
1057
1058    temp64.val32.lower = c->ErrDesc.Addr.lower;
1059    temp64.val32.upper = c->ErrDesc.Addr.upper;
1060    pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1061                c->err_info, (dma_addr_t) temp64.val);
1062    pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1063        (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1064}
1065
1066static inline ctlr_info_t *get_host(struct gendisk *disk)
1067{
1068    return disk->queue->queuedata;
1069}
1070
1071static inline drive_info_struct *get_drv(struct gendisk *disk)
1072{
1073    return disk->private_data;
1074}
1075
1076/*
1077 * Open. Make sure the device is really there.
1078 */
1079static int cciss_open(struct block_device *bdev, fmode_t mode)
1080{
1081    ctlr_info_t *h = get_host(bdev->bd_disk);
1082    drive_info_struct *drv = get_drv(bdev->bd_disk);
1083
1084    dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1085    if (drv->busy_configuring)
1086        return -EBUSY;
1087    /*
1088     * Root is allowed to open raw volume zero even if it's not configured
1089     * so array config can still work. Root is also allowed to open any
1090     * volume that has a LUN ID, so it can issue IOCTL to reread the
1091     * disk information. I don't think I really like this
1092     * but I'm already using way to many device nodes to claim another one
1093     * for "raw controller".
1094     */
1095    if (drv->heads == 0) {
1096        if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1097            /* if not node 0 make sure it is a partition = 0 */
1098            if (MINOR(bdev->bd_dev) & 0x0f) {
1099                return -ENXIO;
1100                /* if it is, make sure we have a LUN ID */
1101            } else if (memcmp(drv->LunID, CTLR_LUNID,
1102                sizeof(drv->LunID))) {
1103                return -ENXIO;
1104            }
1105        }
1106        if (!capable(CAP_SYS_ADMIN))
1107            return -EPERM;
1108    }
1109    drv->usage_count++;
1110    h->usage_count++;
1111    return 0;
1112}
1113
1114static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1115{
1116    int ret;
1117
1118    mutex_lock(&cciss_mutex);
1119    ret = cciss_open(bdev, mode);
1120    mutex_unlock(&cciss_mutex);
1121
1122    return ret;
1123}
1124
1125/*
1126 * Close. Sync first.
1127 */
1128static int cciss_release(struct gendisk *disk, fmode_t mode)
1129{
1130    ctlr_info_t *h;
1131    drive_info_struct *drv;
1132
1133    mutex_lock(&cciss_mutex);
1134    h = get_host(disk);
1135    drv = get_drv(disk);
1136    dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1137    drv->usage_count--;
1138    h->usage_count--;
1139    mutex_unlock(&cciss_mutex);
1140    return 0;
1141}
1142
1143static int do_ioctl(struct block_device *bdev, fmode_t mode,
1144            unsigned cmd, unsigned long arg)
1145{
1146    int ret;
1147    mutex_lock(&cciss_mutex);
1148    ret = cciss_ioctl(bdev, mode, cmd, arg);
1149    mutex_unlock(&cciss_mutex);
1150    return ret;
1151}
1152
1153#ifdef CONFIG_COMPAT
1154
1155static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1156                  unsigned cmd, unsigned long arg);
1157static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1158                      unsigned cmd, unsigned long arg);
1159
1160static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1161                  unsigned cmd, unsigned long arg)
1162{
1163    switch (cmd) {
1164    case CCISS_GETPCIINFO:
1165    case CCISS_GETINTINFO:
1166    case CCISS_SETINTINFO:
1167    case CCISS_GETNODENAME:
1168    case CCISS_SETNODENAME:
1169    case CCISS_GETHEARTBEAT:
1170    case CCISS_GETBUSTYPES:
1171    case CCISS_GETFIRMVER:
1172    case CCISS_GETDRIVVER:
1173    case CCISS_REVALIDVOLS:
1174    case CCISS_DEREGDISK:
1175    case CCISS_REGNEWDISK:
1176    case CCISS_REGNEWD:
1177    case CCISS_RESCANDISK:
1178    case CCISS_GETLUNINFO:
1179        return do_ioctl(bdev, mode, cmd, arg);
1180
1181    case CCISS_PASSTHRU32:
1182        return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1183    case CCISS_BIG_PASSTHRU32:
1184        return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1185
1186    default:
1187        return -ENOIOCTLCMD;
1188    }
1189}
1190
1191static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1192                  unsigned cmd, unsigned long arg)
1193{
1194    IOCTL32_Command_struct __user *arg32 =
1195        (IOCTL32_Command_struct __user *) arg;
1196    IOCTL_Command_struct arg64;
1197    IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1198    int err;
1199    u32 cp;
1200
1201    err = 0;
1202    err |=
1203        copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1204               sizeof(arg64.LUN_info));
1205    err |=
1206        copy_from_user(&arg64.Request, &arg32->Request,
1207               sizeof(arg64.Request));
1208    err |=
1209        copy_from_user(&arg64.error_info, &arg32->error_info,
1210               sizeof(arg64.error_info));
1211    err |= get_user(arg64.buf_size, &arg32->buf_size);
1212    err |= get_user(cp, &arg32->buf);
1213    arg64.buf = compat_ptr(cp);
1214    err |= copy_to_user(p, &arg64, sizeof(arg64));
1215
1216    if (err)
1217        return -EFAULT;
1218
1219    err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1220    if (err)
1221        return err;
1222    err |=
1223        copy_in_user(&arg32->error_info, &p->error_info,
1224             sizeof(arg32->error_info));
1225    if (err)
1226        return -EFAULT;
1227    return err;
1228}
1229
1230static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1231                      unsigned cmd, unsigned long arg)
1232{
1233    BIG_IOCTL32_Command_struct __user *arg32 =
1234        (BIG_IOCTL32_Command_struct __user *) arg;
1235    BIG_IOCTL_Command_struct arg64;
1236    BIG_IOCTL_Command_struct __user *p =
1237        compat_alloc_user_space(sizeof(arg64));
1238    int err;
1239    u32 cp;
1240
1241    memset(&arg64, 0, sizeof(arg64));
1242    err = 0;
1243    err |=
1244        copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1245               sizeof(arg64.LUN_info));
1246    err |=
1247        copy_from_user(&arg64.Request, &arg32->Request,
1248               sizeof(arg64.Request));
1249    err |=
1250        copy_from_user(&arg64.error_info, &arg32->error_info,
1251               sizeof(arg64.error_info));
1252    err |= get_user(arg64.buf_size, &arg32->buf_size);
1253    err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1254    err |= get_user(cp, &arg32->buf);
1255    arg64.buf = compat_ptr(cp);
1256    err |= copy_to_user(p, &arg64, sizeof(arg64));
1257
1258    if (err)
1259        return -EFAULT;
1260
1261    err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1262    if (err)
1263        return err;
1264    err |=
1265        copy_in_user(&arg32->error_info, &p->error_info,
1266             sizeof(arg32->error_info));
1267    if (err)
1268        return -EFAULT;
1269    return err;
1270}
1271#endif
1272
1273static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1274{
1275    drive_info_struct *drv = get_drv(bdev->bd_disk);
1276
1277    if (!drv->cylinders)
1278        return -ENXIO;
1279
1280    geo->heads = drv->heads;
1281    geo->sectors = drv->sectors;
1282    geo->cylinders = drv->cylinders;
1283    return 0;
1284}
1285
1286static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1287{
1288    if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1289            c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1290        (void)check_for_unit_attention(h, c);
1291}
1292
1293static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1294{
1295    cciss_pci_info_struct pciinfo;
1296
1297    if (!argp)
1298        return -EINVAL;
1299    pciinfo.domain = pci_domain_nr(h->pdev->bus);
1300    pciinfo.bus = h->pdev->bus->number;
1301    pciinfo.dev_fn = h->pdev->devfn;
1302    pciinfo.board_id = h->board_id;
1303    if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1304        return -EFAULT;
1305    return 0;
1306}
1307
1308static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1309{
1310    cciss_coalint_struct intinfo;
1311
1312    if (!argp)
1313        return -EINVAL;
1314    intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1315    intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1316    if (copy_to_user
1317        (argp, &intinfo, sizeof(cciss_coalint_struct)))
1318        return -EFAULT;
1319    return 0;
1320}
1321
1322static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1323{
1324    cciss_coalint_struct intinfo;
1325    unsigned long flags;
1326    int i;
1327
1328    if (!argp)
1329        return -EINVAL;
1330    if (!capable(CAP_SYS_ADMIN))
1331        return -EPERM;
1332    if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1333        return -EFAULT;
1334    if ((intinfo.delay == 0) && (intinfo.count == 0))
1335        return -EINVAL;
1336    spin_lock_irqsave(&h->lock, flags);
1337    /* Update the field, and then ring the doorbell */
1338    writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1339    writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1340    writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1341
1342    for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1343        if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1344            break;
1345        udelay(1000); /* delay and try again */
1346    }
1347    spin_unlock_irqrestore(&h->lock, flags);
1348    if (i >= MAX_IOCTL_CONFIG_WAIT)
1349        return -EAGAIN;
1350    return 0;
1351}
1352
1353static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1354{
1355    NodeName_type NodeName;
1356    int i;
1357
1358    if (!argp)
1359        return -EINVAL;
1360    for (i = 0; i < 16; i++)
1361        NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1362    if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1363        return -EFAULT;
1364    return 0;
1365}
1366
1367static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1368{
1369    NodeName_type NodeName;
1370    unsigned long flags;
1371    int i;
1372
1373    if (!argp)
1374        return -EINVAL;
1375    if (!capable(CAP_SYS_ADMIN))
1376        return -EPERM;
1377    if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1378        return -EFAULT;
1379    spin_lock_irqsave(&h->lock, flags);
1380    /* Update the field, and then ring the doorbell */
1381    for (i = 0; i < 16; i++)
1382        writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1383    writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1384    for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1385        if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1386            break;
1387        udelay(1000); /* delay and try again */
1388    }
1389    spin_unlock_irqrestore(&h->lock, flags);
1390    if (i >= MAX_IOCTL_CONFIG_WAIT)
1391        return -EAGAIN;
1392    return 0;
1393}
1394
1395static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1396{
1397    Heartbeat_type heartbeat;
1398
1399    if (!argp)
1400        return -EINVAL;
1401    heartbeat = readl(&h->cfgtable->HeartBeat);
1402    if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1403        return -EFAULT;
1404    return 0;
1405}
1406
1407static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1408{
1409    BusTypes_type BusTypes;
1410
1411    if (!argp)
1412        return -EINVAL;
1413    BusTypes = readl(&h->cfgtable->BusTypes);
1414    if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1415        return -EFAULT;
1416    return 0;
1417}
1418
1419static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1420{
1421    FirmwareVer_type firmware;
1422
1423    if (!argp)
1424        return -EINVAL;
1425    memcpy(firmware, h->firm_ver, 4);
1426
1427    if (copy_to_user
1428        (argp, firmware, sizeof(FirmwareVer_type)))
1429        return -EFAULT;
1430    return 0;
1431}
1432
1433static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1434{
1435    DriverVer_type DriverVer = DRIVER_VERSION;
1436
1437    if (!argp)
1438        return -EINVAL;
1439    if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1440        return -EFAULT;
1441    return 0;
1442}
1443
1444static int cciss_getluninfo(ctlr_info_t *h,
1445    struct gendisk *disk, void __user *argp)
1446{
1447    LogvolInfo_struct luninfo;
1448    drive_info_struct *drv = get_drv(disk);
1449
1450    if (!argp)
1451        return -EINVAL;
1452    memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1453    luninfo.num_opens = drv->usage_count;
1454    luninfo.num_parts = 0;
1455    if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1456        return -EFAULT;
1457    return 0;
1458}
1459
1460static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1461{
1462    IOCTL_Command_struct iocommand;
1463    CommandList_struct *c;
1464    char *buff = NULL;
1465    u64bit temp64;
1466    DECLARE_COMPLETION_ONSTACK(wait);
1467
1468    if (!argp)
1469        return -EINVAL;
1470
1471    if (!capable(CAP_SYS_RAWIO))
1472        return -EPERM;
1473
1474    if (copy_from_user
1475        (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1476        return -EFAULT;
1477    if ((iocommand.buf_size < 1) &&
1478        (iocommand.Request.Type.Direction != XFER_NONE)) {
1479        return -EINVAL;
1480    }
1481    if (iocommand.buf_size > 0) {
1482        buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1483        if (buff == NULL)
1484            return -EFAULT;
1485    }
1486    if (iocommand.Request.Type.Direction == XFER_WRITE) {
1487        /* Copy the data into the buffer we created */
1488        if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1489            kfree(buff);
1490            return -EFAULT;
1491        }
1492    } else {
1493        memset(buff, 0, iocommand.buf_size);
1494    }
1495    c = cmd_special_alloc(h);
1496    if (!c) {
1497        kfree(buff);
1498        return -ENOMEM;
1499    }
1500    /* Fill in the command type */
1501    c->cmd_type = CMD_IOCTL_PEND;
1502    /* Fill in Command Header */
1503    c->Header.ReplyQueue = 0; /* unused in simple mode */
1504    if (iocommand.buf_size > 0) { /* buffer to fill */
1505        c->Header.SGList = 1;
1506        c->Header.SGTotal = 1;
1507    } else { /* no buffers to fill */
1508        c->Header.SGList = 0;
1509        c->Header.SGTotal = 0;
1510    }
1511    c->Header.LUN = iocommand.LUN_info;
1512    /* use the kernel address the cmd block for tag */
1513    c->Header.Tag.lower = c->busaddr;
1514
1515    /* Fill in Request block */
1516    c->Request = iocommand.Request;
1517
1518    /* Fill in the scatter gather information */
1519    if (iocommand.buf_size > 0) {
1520        temp64.val = pci_map_single(h->pdev, buff,
1521            iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1522        c->SG[0].Addr.lower = temp64.val32.lower;
1523        c->SG[0].Addr.upper = temp64.val32.upper;
1524        c->SG[0].Len = iocommand.buf_size;
1525        c->SG[0].Ext = 0; /* we are not chaining */
1526    }
1527    c->waiting = &wait;
1528
1529    enqueue_cmd_and_start_io(h, c);
1530    wait_for_completion(&wait);
1531
1532    /* unlock the buffers from DMA */
1533    temp64.val32.lower = c->SG[0].Addr.lower;
1534    temp64.val32.upper = c->SG[0].Addr.upper;
1535    pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1536             PCI_DMA_BIDIRECTIONAL);
1537    check_ioctl_unit_attention(h, c);
1538
1539    /* Copy the error information out */
1540    iocommand.error_info = *(c->err_info);
1541    if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1542        kfree(buff);
1543        cmd_special_free(h, c);
1544        return -EFAULT;
1545    }
1546
1547    if (iocommand.Request.Type.Direction == XFER_READ) {
1548        /* Copy the data out of the buffer we created */
1549        if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1550            kfree(buff);
1551            cmd_special_free(h, c);
1552            return -EFAULT;
1553        }
1554    }
1555    kfree(buff);
1556    cmd_special_free(h, c);
1557    return 0;
1558}
1559
1560static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1561{
1562    BIG_IOCTL_Command_struct *ioc;
1563    CommandList_struct *c;
1564    unsigned char **buff = NULL;
1565    int *buff_size = NULL;
1566    u64bit temp64;
1567    BYTE sg_used = 0;
1568    int status = 0;
1569    int i;
1570    DECLARE_COMPLETION_ONSTACK(wait);
1571    __u32 left;
1572    __u32 sz;
1573    BYTE __user *data_ptr;
1574
1575    if (!argp)
1576        return -EINVAL;
1577    if (!capable(CAP_SYS_RAWIO))
1578        return -EPERM;
1579    ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1580    if (!ioc) {
1581        status = -ENOMEM;
1582        goto cleanup1;
1583    }
1584    if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1585        status = -EFAULT;
1586        goto cleanup1;
1587    }
1588    if ((ioc->buf_size < 1) &&
1589        (ioc->Request.Type.Direction != XFER_NONE)) {
1590        status = -EINVAL;
1591        goto cleanup1;
1592    }
1593    /* Check kmalloc limits using all SGs */
1594    if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1595        status = -EINVAL;
1596        goto cleanup1;
1597    }
1598    if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1599        status = -EINVAL;
1600        goto cleanup1;
1601    }
1602    buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1603    if (!buff) {
1604        status = -ENOMEM;
1605        goto cleanup1;
1606    }
1607    buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1608    if (!buff_size) {
1609        status = -ENOMEM;
1610        goto cleanup1;
1611    }
1612    left = ioc->buf_size;
1613    data_ptr = ioc->buf;
1614    while (left) {
1615        sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1616        buff_size[sg_used] = sz;
1617        buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1618        if (buff[sg_used] == NULL) {
1619            status = -ENOMEM;
1620            goto cleanup1;
1621        }
1622        if (ioc->Request.Type.Direction == XFER_WRITE) {
1623            if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1624                status = -EFAULT;
1625                goto cleanup1;
1626            }
1627        } else {
1628            memset(buff[sg_used], 0, sz);
1629        }
1630        left -= sz;
1631        data_ptr += sz;
1632        sg_used++;
1633    }
1634    c = cmd_special_alloc(h);
1635    if (!c) {
1636        status = -ENOMEM;
1637        goto cleanup1;
1638    }
1639    c->cmd_type = CMD_IOCTL_PEND;
1640    c->Header.ReplyQueue = 0;
1641    c->Header.SGList = sg_used;
1642    c->Header.SGTotal = sg_used;
1643    c->Header.LUN = ioc->LUN_info;
1644    c->Header.Tag.lower = c->busaddr;
1645
1646    c->Request = ioc->Request;
1647    for (i = 0; i < sg_used; i++) {
1648        temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1649                    PCI_DMA_BIDIRECTIONAL);
1650        c->SG[i].Addr.lower = temp64.val32.lower;
1651        c->SG[i].Addr.upper = temp64.val32.upper;
1652        c->SG[i].Len = buff_size[i];
1653        c->SG[i].Ext = 0; /* we are not chaining */
1654    }
1655    c->waiting = &wait;
1656    enqueue_cmd_and_start_io(h, c);
1657    wait_for_completion(&wait);
1658    /* unlock the buffers from DMA */
1659    for (i = 0; i < sg_used; i++) {
1660        temp64.val32.lower = c->SG[i].Addr.lower;
1661        temp64.val32.upper = c->SG[i].Addr.upper;
1662        pci_unmap_single(h->pdev,
1663            (dma_addr_t) temp64.val, buff_size[i],
1664            PCI_DMA_BIDIRECTIONAL);
1665    }
1666    check_ioctl_unit_attention(h, c);
1667    /* Copy the error information out */
1668    ioc->error_info = *(c->err_info);
1669    if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670        cmd_special_free(h, c);
1671        status = -EFAULT;
1672        goto cleanup1;
1673    }
1674    if (ioc->Request.Type.Direction == XFER_READ) {
1675        /* Copy the data out of the buffer we created */
1676        BYTE __user *ptr = ioc->buf;
1677        for (i = 0; i < sg_used; i++) {
1678            if (copy_to_user(ptr, buff[i], buff_size[i])) {
1679                cmd_special_free(h, c);
1680                status = -EFAULT;
1681                goto cleanup1;
1682            }
1683            ptr += buff_size[i];
1684        }
1685    }
1686    cmd_special_free(h, c);
1687    status = 0;
1688cleanup1:
1689    if (buff) {
1690        for (i = 0; i < sg_used; i++)
1691            kfree(buff[i]);
1692        kfree(buff);
1693    }
1694    kfree(buff_size);
1695    kfree(ioc);
1696    return status;
1697}
1698
1699static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1700    unsigned int cmd, unsigned long arg)
1701{
1702    struct gendisk *disk = bdev->bd_disk;
1703    ctlr_info_t *h = get_host(disk);
1704    void __user *argp = (void __user *)arg;
1705
1706    dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1707        cmd, arg);
1708    switch (cmd) {
1709    case CCISS_GETPCIINFO:
1710        return cciss_getpciinfo(h, argp);
1711    case CCISS_GETINTINFO:
1712        return cciss_getintinfo(h, argp);
1713    case CCISS_SETINTINFO:
1714        return cciss_setintinfo(h, argp);
1715    case CCISS_GETNODENAME:
1716        return cciss_getnodename(h, argp);
1717    case CCISS_SETNODENAME:
1718        return cciss_setnodename(h, argp);
1719    case CCISS_GETHEARTBEAT:
1720        return cciss_getheartbeat(h, argp);
1721    case CCISS_GETBUSTYPES:
1722        return cciss_getbustypes(h, argp);
1723    case CCISS_GETFIRMVER:
1724        return cciss_getfirmver(h, argp);
1725    case CCISS_GETDRIVVER:
1726        return cciss_getdrivver(h, argp);
1727    case CCISS_DEREGDISK:
1728    case CCISS_REGNEWD:
1729    case CCISS_REVALIDVOLS:
1730        return rebuild_lun_table(h, 0, 1);
1731    case CCISS_GETLUNINFO:
1732        return cciss_getluninfo(h, disk, argp);
1733    case CCISS_PASSTHRU:
1734        return cciss_passthru(h, argp);
1735    case CCISS_BIG_PASSTHRU:
1736        return cciss_bigpassthru(h, argp);
1737
1738    /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1739    /* very meaningful for cciss. SG_IO is the main one people want. */
1740
1741    case SG_GET_VERSION_NUM:
1742    case SG_SET_TIMEOUT:
1743    case SG_GET_TIMEOUT:
1744    case SG_GET_RESERVED_SIZE:
1745    case SG_SET_RESERVED_SIZE:
1746    case SG_EMULATED_HOST:
1747    case SG_IO:
1748    case SCSI_IOCTL_SEND_COMMAND:
1749        return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1750
1751    /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1752    /* they aren't a good fit for cciss, as CD-ROMs are */
1753    /* not supported, and we don't have any bus/target/lun */
1754    /* which we present to the kernel. */
1755
1756    case CDROM_SEND_PACKET:
1757    case CDROMCLOSETRAY:
1758    case CDROMEJECT:
1759    case SCSI_IOCTL_GET_IDLUN:
1760    case SCSI_IOCTL_GET_BUS_NUMBER:
1761    default:
1762        return -ENOTTY;
1763    }
1764}
1765
1766static void cciss_check_queues(ctlr_info_t *h)
1767{
1768    int start_queue = h->next_to_run;
1769    int i;
1770
1771    /* check to see if we have maxed out the number of commands that can
1772     * be placed on the queue. If so then exit. We do this check here
1773     * in case the interrupt we serviced was from an ioctl and did not
1774     * free any new commands.
1775     */
1776    if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1777        return;
1778
1779    /* We have room on the queue for more commands. Now we need to queue
1780     * them up. We will also keep track of the next queue to run so
1781     * that every queue gets a chance to be started first.
1782     */
1783    for (i = 0; i < h->highest_lun + 1; i++) {
1784        int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1785        /* make sure the disk has been added and the drive is real
1786         * because this can be called from the middle of init_one.
1787         */
1788        if (!h->drv[curr_queue])
1789            continue;
1790        if (!(h->drv[curr_queue]->queue) ||
1791            !(h->drv[curr_queue]->heads))
1792            continue;
1793        blk_start_queue(h->gendisk[curr_queue]->queue);
1794
1795        /* check to see if we have maxed out the number of commands
1796         * that can be placed on the queue.
1797         */
1798        if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1799            if (curr_queue == start_queue) {
1800                h->next_to_run =
1801                    (start_queue + 1) % (h->highest_lun + 1);
1802                break;
1803            } else {
1804                h->next_to_run = curr_queue;
1805                break;
1806            }
1807        }
1808    }
1809}
1810
1811static void cciss_softirq_done(struct request *rq)
1812{
1813    CommandList_struct *c = rq->completion_data;
1814    ctlr_info_t *h = hba[c->ctlr];
1815    SGDescriptor_struct *curr_sg = c->SG;
1816    u64bit temp64;
1817    unsigned long flags;
1818    int i, ddir;
1819    int sg_index = 0;
1820
1821    if (c->Request.Type.Direction == XFER_READ)
1822        ddir = PCI_DMA_FROMDEVICE;
1823    else
1824        ddir = PCI_DMA_TODEVICE;
1825
1826    /* command did not need to be retried */
1827    /* unmap the DMA mapping for all the scatter gather elements */
1828    for (i = 0; i < c->Header.SGList; i++) {
1829        if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1830            cciss_unmap_sg_chain_block(h, c);
1831            /* Point to the next block */
1832            curr_sg = h->cmd_sg_list[c->cmdindex];
1833            sg_index = 0;
1834        }
1835        temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1836        temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1837        pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1838                ddir);
1839        ++sg_index;
1840    }
1841
1842    dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1843
1844    /* set the residual count for pc requests */
1845    if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1846        rq->resid_len = c->err_info->ResidualCnt;
1847
1848    blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1849
1850    spin_lock_irqsave(&h->lock, flags);
1851    cmd_free(h, c);
1852    cciss_check_queues(h);
1853    spin_unlock_irqrestore(&h->lock, flags);
1854}
1855
1856static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1857    unsigned char scsi3addr[], uint32_t log_unit)
1858{
1859    memcpy(scsi3addr, h->drv[log_unit]->LunID,
1860        sizeof(h->drv[log_unit]->LunID));
1861}
1862
1863/* This function gets the SCSI vendor, model, and revision of a logical drive
1864 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1865 * they cannot be read.
1866 */
1867static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1868                   char *vendor, char *model, char *rev)
1869{
1870    int rc;
1871    InquiryData_struct *inq_buf;
1872    unsigned char scsi3addr[8];
1873
1874    *vendor = '\0';
1875    *model = '\0';
1876    *rev = '\0';
1877
1878    inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1879    if (!inq_buf)
1880        return;
1881
1882    log_unit_to_scsi3addr(h, scsi3addr, logvol);
1883    rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1884            scsi3addr, TYPE_CMD);
1885    if (rc == IO_OK) {
1886        memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1887        vendor[VENDOR_LEN] = '\0';
1888        memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1889        model[MODEL_LEN] = '\0';
1890        memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1891        rev[REV_LEN] = '\0';
1892    }
1893
1894    kfree(inq_buf);
1895    return;
1896}
1897
1898/* This function gets the serial number of a logical drive via
1899 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1900 * number cannot be had, for whatever reason, 16 bytes of 0xff
1901 * are returned instead.
1902 */
1903static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1904                unsigned char *serial_no, int buflen)
1905{
1906#define PAGE_83_INQ_BYTES 64
1907    int rc;
1908    unsigned char *buf;
1909    unsigned char scsi3addr[8];
1910
1911    if (buflen > 16)
1912        buflen = 16;
1913    memset(serial_no, 0xff, buflen);
1914    buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1915    if (!buf)
1916        return;
1917    memset(serial_no, 0, buflen);
1918    log_unit_to_scsi3addr(h, scsi3addr, logvol);
1919    rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1920        PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1921    if (rc == IO_OK)
1922        memcpy(serial_no, &buf[8], buflen);
1923    kfree(buf);
1924    return;
1925}
1926
1927/*
1928 * cciss_add_disk sets up the block device queue for a logical drive
1929 */
1930static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1931                int drv_index)
1932{
1933    disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1934    if (!disk->queue)
1935        goto init_queue_failure;
1936    sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1937    disk->major = h->major;
1938    disk->first_minor = drv_index << NWD_SHIFT;
1939    disk->fops = &cciss_fops;
1940    if (cciss_create_ld_sysfs_entry(h, drv_index))
1941        goto cleanup_queue;
1942    disk->private_data = h->drv[drv_index];
1943    disk->driverfs_dev = &h->drv[drv_index]->dev;
1944
1945    /* Set up queue information */
1946    blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1947
1948    /* This is a hardware imposed limit. */
1949    blk_queue_max_segments(disk->queue, h->maxsgentries);
1950
1951    blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1952
1953    blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1954
1955    disk->queue->queuedata = h;
1956
1957    blk_queue_logical_block_size(disk->queue,
1958                     h->drv[drv_index]->block_size);
1959
1960    /* Make sure all queue data is written out before */
1961    /* setting h->drv[drv_index]->queue, as setting this */
1962    /* allows the interrupt handler to start the queue */
1963    wmb();
1964    h->drv[drv_index]->queue = disk->queue;
1965    add_disk(disk);
1966    return 0;
1967
1968cleanup_queue:
1969    blk_cleanup_queue(disk->queue);
1970    disk->queue = NULL;
1971init_queue_failure:
1972    return -1;
1973}
1974
1975/* This function will check the usage_count of the drive to be updated/added.
1976 * If the usage_count is zero and it is a heretofore unknown drive, or,
1977 * the drive's capacity, geometry, or serial number has changed,
1978 * then the drive information will be updated and the disk will be
1979 * re-registered with the kernel. If these conditions don't hold,
1980 * then it will be left alone for the next reboot. The exception to this
1981 * is disk 0 which will always be left registered with the kernel since it
1982 * is also the controller node. Any changes to disk 0 will show up on
1983 * the next reboot.
1984 */
1985static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1986    int first_time, int via_ioctl)
1987{
1988    struct gendisk *disk;
1989    InquiryData_struct *inq_buff = NULL;
1990    unsigned int block_size;
1991    sector_t total_size;
1992    unsigned long flags = 0;
1993    int ret = 0;
1994    drive_info_struct *drvinfo;
1995
1996    /* Get information about the disk and modify the driver structure */
1997    inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1998    drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1999    if (inq_buff == NULL || drvinfo == NULL)
2000        goto mem_msg;
2001
2002    /* testing to see if 16-byte CDBs are already being used */
2003    if (h->cciss_read == CCISS_READ_16) {
2004        cciss_read_capacity_16(h, drv_index,
2005            &total_size, &block_size);
2006
2007    } else {
2008        cciss_read_capacity(h, drv_index, &total_size, &block_size);
2009        /* if read_capacity returns all F's this volume is >2TB */
2010        /* in size so we switch to 16-byte CDB's for all */
2011        /* read/write ops */
2012        if (total_size == 0xFFFFFFFFULL) {
2013            cciss_read_capacity_16(h, drv_index,
2014            &total_size, &block_size);
2015            h->cciss_read = CCISS_READ_16;
2016            h->cciss_write = CCISS_WRITE_16;
2017        } else {
2018            h->cciss_read = CCISS_READ_10;
2019            h->cciss_write = CCISS_WRITE_10;
2020        }
2021    }
2022
2023    cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2024                   inq_buff, drvinfo);
2025    drvinfo->block_size = block_size;
2026    drvinfo->nr_blocks = total_size + 1;
2027
2028    cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2029                drvinfo->model, drvinfo->rev);
2030    cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2031            sizeof(drvinfo->serial_no));
2032    /* Save the lunid in case we deregister the disk, below. */
2033    memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2034        sizeof(drvinfo->LunID));
2035
2036    /* Is it the same disk we already know, and nothing's changed? */
2037    if (h->drv[drv_index]->raid_level != -1 &&
2038        ((memcmp(drvinfo->serial_no,
2039                h->drv[drv_index]->serial_no, 16) == 0) &&
2040        drvinfo->block_size == h->drv[drv_index]->block_size &&
2041        drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2042        drvinfo->heads == h->drv[drv_index]->heads &&
2043        drvinfo->sectors == h->drv[drv_index]->sectors &&
2044        drvinfo->cylinders == h->drv[drv_index]->cylinders))
2045            /* The disk is unchanged, nothing to update */
2046            goto freeret;
2047
2048    /* If we get here it's not the same disk, or something's changed,
2049     * so we need to * deregister it, and re-register it, if it's not
2050     * in use.
2051     * If the disk already exists then deregister it before proceeding
2052     * (unless it's the first disk (for the controller node).
2053     */
2054    if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2055        dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2056        spin_lock_irqsave(&h->lock, flags);
2057        h->drv[drv_index]->busy_configuring = 1;
2058        spin_unlock_irqrestore(&h->lock, flags);
2059
2060        /* deregister_disk sets h->drv[drv_index]->queue = NULL
2061         * which keeps the interrupt handler from starting
2062         * the queue.
2063         */
2064        ret = deregister_disk(h, drv_index, 0, via_ioctl);
2065    }
2066
2067    /* If the disk is in use return */
2068    if (ret)
2069        goto freeret;
2070
2071    /* Save the new information from cciss_geometry_inquiry
2072     * and serial number inquiry. If the disk was deregistered
2073     * above, then h->drv[drv_index] will be NULL.
2074     */
2075    if (h->drv[drv_index] == NULL) {
2076        drvinfo->device_initialized = 0;
2077        h->drv[drv_index] = drvinfo;
2078        drvinfo = NULL; /* so it won't be freed below. */
2079    } else {
2080        /* special case for cxd0 */
2081        h->drv[drv_index]->block_size = drvinfo->block_size;
2082        h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2083        h->drv[drv_index]->heads = drvinfo->heads;
2084        h->drv[drv_index]->sectors = drvinfo->sectors;
2085        h->drv[drv_index]->cylinders = drvinfo->cylinders;
2086        h->drv[drv_index]->raid_level = drvinfo->raid_level;
2087        memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2088        memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2089            VENDOR_LEN + 1);
2090        memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2091        memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2092    }
2093
2094    ++h->num_luns;
2095    disk = h->gendisk[drv_index];
2096    set_capacity(disk, h->drv[drv_index]->nr_blocks);
2097
2098    /* If it's not disk 0 (drv_index != 0)
2099     * or if it was disk 0, but there was previously
2100     * no actual corresponding configured logical drive
2101     * (raid_leve == -1) then we want to update the
2102     * logical drive's information.
2103     */
2104    if (drv_index || first_time) {
2105        if (cciss_add_disk(h, disk, drv_index) != 0) {
2106            cciss_free_gendisk(h, drv_index);
2107            cciss_free_drive_info(h, drv_index);
2108            dev_warn(&h->pdev->dev, "could not update disk %d\n",
2109                drv_index);
2110            --h->num_luns;
2111        }
2112    }
2113
2114freeret:
2115    kfree(inq_buff);
2116    kfree(drvinfo);
2117    return;
2118mem_msg:
2119    dev_err(&h->pdev->dev, "out of memory\n");
2120    goto freeret;
2121}
2122
2123/* This function will find the first index of the controllers drive array
2124 * that has a null drv pointer and allocate the drive info struct and
2125 * will return that index This is where new drives will be added.
2126 * If the index to be returned is greater than the highest_lun index for
2127 * the controller then highest_lun is set * to this new index.
2128 * If there are no available indexes or if tha allocation fails, then -1
2129 * is returned. * "controller_node" is used to know if this is a real
2130 * logical drive, or just the controller node, which determines if this
2131 * counts towards highest_lun.
2132 */
2133static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2134{
2135    int i;
2136    drive_info_struct *drv;
2137
2138    /* Search for an empty slot for our drive info */
2139    for (i = 0; i < CISS_MAX_LUN; i++) {
2140
2141        /* if not cxd0 case, and it's occupied, skip it. */
2142        if (h->drv[i] && i != 0)
2143            continue;
2144        /*
2145         * If it's cxd0 case, and drv is alloc'ed already, and a
2146         * disk is configured there, skip it.
2147         */
2148        if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2149            continue;
2150
2151        /*
2152         * We've found an empty slot. Update highest_lun
2153         * provided this isn't just the fake cxd0 controller node.
2154         */
2155        if (i > h->highest_lun && !controller_node)
2156            h->highest_lun = i;
2157
2158        /* If adding a real disk at cxd0, and it's already alloc'ed */
2159        if (i == 0 && h->drv[i] != NULL)
2160            return i;
2161
2162        /*
2163         * Found an empty slot, not already alloc'ed. Allocate it.
2164         * Mark it with raid_level == -1, so we know it's new later on.
2165         */
2166        drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2167        if (!drv)
2168            return -1;
2169        drv->raid_level = -1; /* so we know it's new */
2170        h->drv[i] = drv;
2171        return i;
2172    }
2173    return -1;
2174}
2175
2176static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2177{
2178    kfree(h->drv[drv_index]);
2179    h->drv[drv_index] = NULL;
2180}
2181
2182static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2183{
2184    put_disk(h->gendisk[drv_index]);
2185    h->gendisk[drv_index] = NULL;
2186}
2187
2188/* cciss_add_gendisk finds a free hba[]->drv structure
2189 * and allocates a gendisk if needed, and sets the lunid
2190 * in the drvinfo structure. It returns the index into
2191 * the ->drv[] array, or -1 if none are free.
2192 * is_controller_node indicates whether highest_lun should
2193 * count this disk, or if it's only being added to provide
2194 * a means to talk to the controller in case no logical
2195 * drives have yet been configured.
2196 */
2197static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2198    int controller_node)
2199{
2200    int drv_index;
2201
2202    drv_index = cciss_alloc_drive_info(h, controller_node);
2203    if (drv_index == -1)
2204        return -1;
2205
2206    /*Check if the gendisk needs to be allocated */
2207    if (!h->gendisk[drv_index]) {
2208        h->gendisk[drv_index] =
2209            alloc_disk(1 << NWD_SHIFT);
2210        if (!h->gendisk[drv_index]) {
2211            dev_err(&h->pdev->dev,
2212                "could not allocate a new disk %d\n",
2213                drv_index);
2214            goto err_free_drive_info;
2215        }
2216    }
2217    memcpy(h->drv[drv_index]->LunID, lunid,
2218        sizeof(h->drv[drv_index]->LunID));
2219    if (cciss_create_ld_sysfs_entry(h, drv_index))
2220        goto err_free_disk;
2221    /* Don't need to mark this busy because nobody */
2222    /* else knows about this disk yet to contend */
2223    /* for access to it. */
2224    h->drv[drv_index]->busy_configuring = 0;
2225    wmb();
2226    return drv_index;
2227
2228err_free_disk:
2229    cciss_free_gendisk(h, drv_index);
2230err_free_drive_info:
2231    cciss_free_drive_info(h, drv_index);
2232    return -1;
2233}
2234
2235/* This is for the special case of a controller which
2236 * has no logical drives. In this case, we still need
2237 * to register a disk so the controller can be accessed
2238 * by the Array Config Utility.
2239 */
2240static void cciss_add_controller_node(ctlr_info_t *h)
2241{
2242    struct gendisk *disk;
2243    int drv_index;
2244
2245    if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2246        return;
2247
2248    drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2249    if (drv_index == -1)
2250        goto error;
2251    h->drv[drv_index]->block_size = 512;
2252    h->drv[drv_index]->nr_blocks = 0;
2253    h->drv[drv_index]->heads = 0;
2254    h->drv[drv_index]->sectors = 0;
2255    h->drv[drv_index]->cylinders = 0;
2256    h->drv[drv_index]->raid_level = -1;
2257    memset(h->drv[drv_index]->serial_no, 0, 16);
2258    disk = h->gendisk[drv_index];
2259    if (cciss_add_disk(h, disk, drv_index) == 0)
2260        return;
2261    cciss_free_gendisk(h, drv_index);
2262    cciss_free_drive_info(h, drv_index);
2263error:
2264    dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2265    return;
2266}
2267
2268/* This function will add and remove logical drives from the Logical
2269 * drive array of the controller and maintain persistency of ordering
2270 * so that mount points are preserved until the next reboot. This allows
2271 * for the removal of logical drives in the middle of the drive array
2272 * without a re-ordering of those drives.
2273 * INPUT
2274 * h = The controller to perform the operations on
2275 */
2276static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2277    int via_ioctl)
2278{
2279    int num_luns;
2280    ReportLunData_struct *ld_buff = NULL;
2281    int return_code;
2282    int listlength = 0;
2283    int i;
2284    int drv_found;
2285    int drv_index = 0;
2286    unsigned char lunid[8] = CTLR_LUNID;
2287    unsigned long flags;
2288
2289    if (!capable(CAP_SYS_RAWIO))
2290        return -EPERM;
2291
2292    /* Set busy_configuring flag for this operation */
2293    spin_lock_irqsave(&h->lock, flags);
2294    if (h->busy_configuring) {
2295        spin_unlock_irqrestore(&h->lock, flags);
2296        return -EBUSY;
2297    }
2298    h->busy_configuring = 1;
2299    spin_unlock_irqrestore(&h->lock, flags);
2300
2301    ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2302    if (ld_buff == NULL)
2303        goto mem_msg;
2304
2305    return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2306                      sizeof(ReportLunData_struct),
2307                      0, CTLR_LUNID, TYPE_CMD);
2308
2309    if (return_code == IO_OK)
2310        listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2311    else { /* reading number of logical volumes failed */
2312        dev_warn(&h->pdev->dev,
2313            "report logical volume command failed\n");
2314        listlength = 0;
2315        goto freeret;
2316    }
2317
2318    num_luns = listlength / 8; /* 8 bytes per entry */
2319    if (num_luns > CISS_MAX_LUN) {
2320        num_luns = CISS_MAX_LUN;
2321        dev_warn(&h->pdev->dev, "more luns configured"
2322               " on controller than can be handled by"
2323               " this driver.\n");
2324    }
2325
2326    if (num_luns == 0)
2327        cciss_add_controller_node(h);
2328
2329    /* Compare controller drive array to driver's drive array
2330     * to see if any drives are missing on the controller due
2331     * to action of Array Config Utility (user deletes drive)
2332     * and deregister logical drives which have disappeared.
2333     */
2334    for (i = 0; i <= h->highest_lun; i++) {
2335        int j;
2336        drv_found = 0;
2337
2338        /* skip holes in the array from already deleted drives */
2339        if (h->drv[i] == NULL)
2340            continue;
2341
2342        for (j = 0; j < num_luns; j++) {
2343            memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2344            if (memcmp(h->drv[i]->LunID, lunid,
2345                sizeof(lunid)) == 0) {
2346                drv_found = 1;
2347                break;
2348            }
2349        }
2350        if (!drv_found) {
2351            /* Deregister it from the OS, it's gone. */
2352            spin_lock_irqsave(&h->lock, flags);
2353            h->drv[i]->busy_configuring = 1;
2354            spin_unlock_irqrestore(&h->lock, flags);
2355            return_code = deregister_disk(h, i, 1, via_ioctl);
2356            if (h->drv[i] != NULL)
2357                h->drv[i]->busy_configuring = 0;
2358        }
2359    }
2360
2361    /* Compare controller drive array to driver's drive array.
2362     * Check for updates in the drive information and any new drives
2363     * on the controller due to ACU adding logical drives, or changing
2364     * a logical drive's size, etc. Reregister any new/changed drives
2365     */
2366    for (i = 0; i < num_luns; i++) {
2367        int j;
2368
2369        drv_found = 0;
2370
2371        memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2372        /* Find if the LUN is already in the drive array
2373         * of the driver. If so then update its info
2374         * if not in use. If it does not exist then find
2375         * the first free index and add it.
2376         */
2377        for (j = 0; j <= h->highest_lun; j++) {
2378            if (h->drv[j] != NULL &&
2379                memcmp(h->drv[j]->LunID, lunid,
2380                    sizeof(h->drv[j]->LunID)) == 0) {
2381                drv_index = j;
2382                drv_found = 1;
2383                break;
2384            }
2385        }
2386
2387        /* check if the drive was found already in the array */
2388        if (!drv_found) {
2389            drv_index = cciss_add_gendisk(h, lunid, 0);
2390            if (drv_index == -1)
2391                goto freeret;
2392        }
2393        cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2394    } /* end for */
2395
2396freeret:
2397    kfree(ld_buff);
2398    h->busy_configuring = 0;
2399    /* We return -1 here to tell the ACU that we have registered/updated
2400     * all of the drives that we can and to keep it from calling us
2401     * additional times.
2402     */
2403    return -1;
2404mem_msg:
2405    dev_err(&h->pdev->dev, "out of memory\n");
2406    h->busy_configuring = 0;
2407    goto freeret;
2408}
2409
2410static void cciss_clear_drive_info(drive_info_struct *drive_info)
2411{
2412    /* zero out the disk size info */
2413    drive_info->nr_blocks = 0;
2414    drive_info->block_size = 0;
2415    drive_info->heads = 0;
2416    drive_info->sectors = 0;
2417    drive_info->cylinders = 0;
2418    drive_info->raid_level = -1;
2419    memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2420    memset(drive_info->model, 0, sizeof(drive_info->model));
2421    memset(drive_info->rev, 0, sizeof(drive_info->rev));
2422    memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2423    /*
2424     * don't clear the LUNID though, we need to remember which
2425     * one this one is.
2426     */
2427}
2428
2429/* This function will deregister the disk and it's queue from the
2430 * kernel. It must be called with the controller lock held and the
2431 * drv structures busy_configuring flag set. It's parameters are:
2432 *
2433 * disk = This is the disk to be deregistered
2434 * drv = This is the drive_info_struct associated with the disk to be
2435 * deregistered. It contains information about the disk used
2436 * by the driver.
2437 * clear_all = This flag determines whether or not the disk information
2438 * is going to be completely cleared out and the highest_lun
2439 * reset. Sometimes we want to clear out information about
2440 * the disk in preparation for re-adding it. In this case
2441 * the highest_lun should be left unchanged and the LunID
2442 * should not be cleared.
2443 * via_ioctl
2444 * This indicates whether we've reached this path via ioctl.
2445 * This affects the maximum usage count allowed for c0d0 to be messed with.
2446 * If this path is reached via ioctl(), then the max_usage_count will
2447 * be 1, as the process calling ioctl() has got to have the device open.
2448 * If we get here via sysfs, then the max usage count will be zero.
2449*/
2450static int deregister_disk(ctlr_info_t *h, int drv_index,
2451               int clear_all, int via_ioctl)
2452{
2453    int i;
2454    struct gendisk *disk;
2455    drive_info_struct *drv;
2456    int recalculate_highest_lun;
2457
2458    if (!capable(CAP_SYS_RAWIO))
2459        return -EPERM;
2460
2461    drv = h->drv[drv_index];
2462    disk = h->gendisk[drv_index];
2463
2464    /* make sure logical volume is NOT is use */
2465    if (clear_all || (h->gendisk[0] == disk)) {
2466        if (drv->usage_count > via_ioctl)
2467            return -EBUSY;
2468    } else if (drv->usage_count > 0)
2469        return -EBUSY;
2470
2471    recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2472
2473    /* invalidate the devices and deregister the disk. If it is disk
2474     * zero do not deregister it but just zero out it's values. This
2475     * allows us to delete disk zero but keep the controller registered.
2476     */
2477    if (h->gendisk[0] != disk) {
2478        struct request_queue *q = disk->queue;
2479        if (disk->flags & GENHD_FL_UP) {
2480            cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2481            del_gendisk(disk);
2482        }
2483        if (q)
2484            blk_cleanup_queue(q);
2485        /* If clear_all is set then we are deleting the logical
2486         * drive, not just refreshing its info. For drives
2487         * other than disk 0 we will call put_disk. We do not
2488         * do this for disk 0 as we need it to be able to
2489         * configure the controller.
2490         */
2491        if (clear_all){
2492            /* This isn't pretty, but we need to find the
2493             * disk in our array and NULL our the pointer.
2494             * This is so that we will call alloc_disk if
2495             * this index is used again later.
2496             */
2497            for (i=0; i < CISS_MAX_LUN; i++){
2498                if (h->gendisk[i] == disk) {
2499                    h->gendisk[i] = NULL;
2500                    break;
2501                }
2502            }
2503            put_disk(disk);
2504        }
2505    } else {
2506        set_capacity(disk, 0);
2507        cciss_clear_drive_info(drv);
2508    }
2509
2510    --h->num_luns;
2511
2512    /* if it was the last disk, find the new hightest lun */
2513    if (clear_all && recalculate_highest_lun) {
2514        int newhighest = -1;
2515        for (i = 0; i <= h->highest_lun; i++) {
2516            /* if the disk has size > 0, it is available */
2517            if (h->drv[i] && h->drv[i]->heads)
2518                newhighest = i;
2519        }
2520        h->highest_lun = newhighest;
2521    }
2522    return 0;
2523}
2524
2525static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2526        size_t size, __u8 page_code, unsigned char *scsi3addr,
2527        int cmd_type)
2528{
2529    u64bit buff_dma_handle;
2530    int status = IO_OK;
2531
2532    c->cmd_type = CMD_IOCTL_PEND;
2533    c->Header.ReplyQueue = 0;
2534    if (buff != NULL) {
2535        c->Header.SGList = 1;
2536        c->Header.SGTotal = 1;
2537    } else {
2538        c->Header.SGList = 0;
2539        c->Header.SGTotal = 0;
2540    }
2541    c->Header.Tag.lower = c->busaddr;
2542    memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2543
2544    c->Request.Type.Type = cmd_type;
2545    if (cmd_type == TYPE_CMD) {
2546        switch (cmd) {
2547        case CISS_INQUIRY:
2548            /* are we trying to read a vital product page */
2549            if (page_code != 0) {
2550                c->Request.CDB[1] = 0x01;
2551                c->Request.CDB[2] = page_code;
2552            }
2553            c->Request.CDBLen = 6;
2554            c->Request.Type.Attribute = ATTR_SIMPLE;
2555            c->Request.Type.Direction = XFER_READ;
2556            c->Request.Timeout = 0;
2557            c->Request.CDB[0] = CISS_INQUIRY;
2558            c->Request.CDB[4] = size & 0xFF;
2559            break;
2560        case CISS_REPORT_LOG:
2561        case CISS_REPORT_PHYS:
2562            /* Talking to controller so It's a physical command
2563               mode = 00 target = 0. Nothing to write.
2564             */
2565            c->Request.CDBLen = 12;
2566            c->Request.Type.Attribute = ATTR_SIMPLE;
2567            c->Request.Type.Direction = XFER_READ;
2568            c->Request.Timeout = 0;
2569            c->Request.CDB[0] = cmd;
2570            c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2571            c->Request.CDB[7] = (size >> 16) & 0xFF;
2572            c->Request.CDB[8] = (size >> 8) & 0xFF;
2573            c->Request.CDB[9] = size & 0xFF;
2574            break;
2575
2576        case CCISS_READ_CAPACITY:
2577            c->Request.CDBLen = 10;
2578            c->Request.Type.Attribute = ATTR_SIMPLE;
2579            c->Request.Type.Direction = XFER_READ;
2580            c->Request.Timeout = 0;
2581            c->Request.CDB[0] = cmd;
2582            break;
2583        case CCISS_READ_CAPACITY_16:
2584            c->Request.CDBLen = 16;
2585            c->Request.Type.Attribute = ATTR_SIMPLE;
2586            c->Request.Type.Direction = XFER_READ;
2587            c->Request.Timeout = 0;
2588            c->Request.CDB[0] = cmd;
2589            c->Request.CDB[1] = 0x10;
2590            c->Request.CDB[10] = (size >> 24) & 0xFF;
2591            c->Request.CDB[11] = (size >> 16) & 0xFF;
2592            c->Request.CDB[12] = (size >> 8) & 0xFF;
2593            c->Request.CDB[13] = size & 0xFF;
2594            c->Request.Timeout = 0;
2595            c->Request.CDB[0] = cmd;
2596            break;
2597        case CCISS_CACHE_FLUSH:
2598            c->Request.CDBLen = 12;
2599            c->Request.Type.Attribute = ATTR_SIMPLE;
2600            c->Request.Type.Direction = XFER_WRITE;
2601            c->Request.Timeout = 0;
2602            c->Request.CDB[0] = BMIC_WRITE;
2603            c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2604            c->Request.CDB[7] = (size >> 8) & 0xFF;
2605            c->Request.CDB[8] = size & 0xFF;
2606            break;
2607        case TEST_UNIT_READY:
2608            c->Request.CDBLen = 6;
2609            c->Request.Type.Attribute = ATTR_SIMPLE;
2610            c->Request.Type.Direction = XFER_NONE;
2611            c->Request.Timeout = 0;
2612            break;
2613        default:
2614            dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2615            return IO_ERROR;
2616        }
2617    } else if (cmd_type == TYPE_MSG) {
2618        switch (cmd) {
2619        case CCISS_ABORT_MSG:
2620            c->Request.CDBLen = 12;
2621            c->Request.Type.Attribute = ATTR_SIMPLE;
2622            c->Request.Type.Direction = XFER_WRITE;
2623            c->Request.Timeout = 0;
2624            c->Request.CDB[0] = cmd; /* abort */
2625            c->Request.CDB[1] = 0; /* abort a command */
2626            /* buff contains the tag of the command to abort */
2627            memcpy(&c->Request.CDB[4], buff, 8);
2628            break;
2629        case CCISS_RESET_MSG:
2630            c->Request.CDBLen = 16;
2631            c->Request.Type.Attribute = ATTR_SIMPLE;
2632            c->Request.Type.Direction = XFER_NONE;
2633            c->Request.Timeout = 0;
2634            memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2635            c->Request.CDB[0] = cmd; /* reset */
2636            c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2637            break;
2638        case CCISS_NOOP_MSG:
2639            c->Request.CDBLen = 1;
2640            c->Request.Type.Attribute = ATTR_SIMPLE;
2641            c->Request.Type.Direction = XFER_WRITE;
2642            c->Request.Timeout = 0;
2643            c->Request.CDB[0] = cmd;
2644            break;
2645        default:
2646            dev_warn(&h->pdev->dev,
2647                "unknown message type %d\n", cmd);
2648            return IO_ERROR;
2649        }
2650    } else {
2651        dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2652        return IO_ERROR;
2653    }
2654    /* Fill in the scatter gather information */
2655    if (size > 0) {
2656        buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2657                                 buff, size,
2658                                 PCI_DMA_BIDIRECTIONAL);
2659        c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2660        c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2661        c->SG[0].Len = size;
2662        c->SG[0].Ext = 0; /* we are not chaining */
2663    }
2664    return status;
2665}
2666
2667static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2668    u8 reset_type)
2669{
2670    CommandList_struct *c;
2671    int return_status;
2672
2673    c = cmd_alloc(h);
2674    if (!c)
2675        return -ENOMEM;
2676    return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2677        CTLR_LUNID, TYPE_MSG);
2678    c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2679    if (return_status != IO_OK) {
2680        cmd_special_free(h, c);
2681        return return_status;
2682    }
2683    c->waiting = NULL;
2684    enqueue_cmd_and_start_io(h, c);
2685    /* Don't wait for completion, the reset won't complete. Don't free
2686     * the command either. This is the last command we will send before
2687     * re-initializing everything, so it doesn't matter and won't leak.
2688     */
2689    return 0;
2690}
2691
2692static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2693{
2694    switch (c->err_info->ScsiStatus) {
2695    case SAM_STAT_GOOD:
2696        return IO_OK;
2697    case SAM_STAT_CHECK_CONDITION:
2698        switch (0xf & c->err_info->SenseInfo[2]) {
2699        case 0: return IO_OK; /* no sense */
2700        case 1: return IO_OK; /* recovered error */
2701        default:
2702            if (check_for_unit_attention(h, c))
2703                return IO_NEEDS_RETRY;
2704            dev_warn(&h->pdev->dev, "cmd 0x%02x "
2705                "check condition, sense key = 0x%02x\n",
2706                c->Request.CDB[0], c->err_info->SenseInfo[2]);
2707        }
2708        break;
2709    default:
2710        dev_warn(&h->pdev->dev, "cmd 0x%02x"
2711            "scsi status = 0x%02x\n",
2712            c->Request.CDB[0], c->err_info->ScsiStatus);
2713        break;
2714    }
2715    return IO_ERROR;
2716}
2717
2718static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2719{
2720    int return_status = IO_OK;
2721
2722    if (c->err_info->CommandStatus == CMD_SUCCESS)
2723        return IO_OK;
2724
2725    switch (c->err_info->CommandStatus) {
2726    case CMD_TARGET_STATUS:
2727        return_status = check_target_status(h, c);
2728        break;
2729    case CMD_DATA_UNDERRUN:
2730    case CMD_DATA_OVERRUN:
2731        /* expected for inquiry and report lun commands */
2732        break;
2733    case CMD_INVALID:
2734        dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2735               "reported invalid\n", c->Request.CDB[0]);
2736        return_status = IO_ERROR;
2737        break;
2738    case CMD_PROTOCOL_ERR:
2739        dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2740               "protocol error\n", c->Request.CDB[0]);
2741        return_status = IO_ERROR;
2742        break;
2743    case CMD_HARDWARE_ERR:
2744        dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2745               " hardware error\n", c->Request.CDB[0]);
2746        return_status = IO_ERROR;
2747        break;
2748    case CMD_CONNECTION_LOST:
2749        dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2750               "connection lost\n", c->Request.CDB[0]);
2751        return_status = IO_ERROR;
2752        break;
2753    case CMD_ABORTED:
2754        dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2755               "aborted\n", c->Request.CDB[0]);
2756        return_status = IO_ERROR;
2757        break;
2758    case CMD_ABORT_FAILED:
2759        dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2760               "abort failed\n", c->Request.CDB[0]);
2761        return_status = IO_ERROR;
2762        break;
2763    case CMD_UNSOLICITED_ABORT:
2764        dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2765            c->Request.CDB[0]);
2766        return_status = IO_NEEDS_RETRY;
2767        break;
2768    case CMD_UNABORTABLE:
2769        dev_warn(&h->pdev->dev, "cmd unabortable\n");
2770        return_status = IO_ERROR;
2771        break;
2772    default:
2773        dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2774               "unknown status %x\n", c->Request.CDB[0],
2775               c->err_info->CommandStatus);
2776        return_status = IO_ERROR;
2777    }
2778    return return_status;
2779}
2780
2781static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2782    int attempt_retry)
2783{
2784    DECLARE_COMPLETION_ONSTACK(wait);
2785    u64bit buff_dma_handle;
2786    int return_status = IO_OK;
2787
2788resend_cmd2:
2789    c->waiting = &wait;
2790    enqueue_cmd_and_start_io(h, c);
2791
2792    wait_for_completion(&wait);
2793
2794    if (c->err_info->CommandStatus == 0 || !attempt_retry)
2795        goto command_done;
2796
2797    return_status = process_sendcmd_error(h, c);
2798
2799    if (return_status == IO_NEEDS_RETRY &&
2800        c->retry_count < MAX_CMD_RETRIES) {
2801        dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2802            c->Request.CDB[0]);
2803        c->retry_count++;
2804        /* erase the old error information */
2805        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2806        return_status = IO_OK;
2807        INIT_COMPLETION(wait);
2808        goto resend_cmd2;
2809    }
2810
2811command_done:
2812    /* unlock the buffers from DMA */
2813    buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2814    buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2815    pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2816             c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2817    return return_status;
2818}
2819
2820static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2821               __u8 page_code, unsigned char scsi3addr[],
2822            int cmd_type)
2823{
2824    CommandList_struct *c;
2825    int return_status;
2826
2827    c = cmd_special_alloc(h);
2828    if (!c)
2829        return -ENOMEM;
2830    return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2831        scsi3addr, cmd_type);
2832    if (return_status == IO_OK)
2833        return_status = sendcmd_withirq_core(h, c, 1);
2834
2835    cmd_special_free(h, c);
2836    return return_status;
2837}
2838
2839static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2840                   sector_t total_size,
2841                   unsigned int block_size,
2842                   InquiryData_struct *inq_buff,
2843                   drive_info_struct *drv)
2844{
2845    int return_code;
2846    unsigned long t;
2847    unsigned char scsi3addr[8];
2848
2849    memset(inq_buff, 0, sizeof(InquiryData_struct));
2850    log_unit_to_scsi3addr(h, scsi3addr, logvol);
2851    return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2852            sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2853    if (return_code == IO_OK) {
2854        if (inq_buff->data_byte[8] == 0xFF) {
2855            dev_warn(&h->pdev->dev,
2856                   "reading geometry failed, volume "
2857                   "does not support reading geometry\n");
2858            drv->heads = 255;
2859            drv->sectors = 32; /* Sectors per track */
2860            drv->cylinders = total_size + 1;
2861            drv->raid_level = RAID_UNKNOWN;
2862        } else {
2863            drv->heads = inq_buff->data_byte[6];
2864            drv->sectors = inq_buff->data_byte[7];
2865            drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2866            drv->cylinders += inq_buff->data_byte[5];
2867            drv->raid_level = inq_buff->data_byte[8];
2868        }
2869        drv->block_size = block_size;
2870        drv->nr_blocks = total_size + 1;
2871        t = drv->heads * drv->sectors;
2872        if (t > 1) {
2873            sector_t real_size = total_size + 1;
2874            unsigned long rem = sector_div(real_size, t);
2875            if (rem)
2876                real_size++;
2877            drv->cylinders = real_size;
2878        }
2879    } else { /* Get geometry failed */
2880        dev_warn(&h->pdev->dev, "reading geometry failed\n");
2881    }
2882}
2883
2884static void
2885cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2886            unsigned int *block_size)
2887{
2888    ReadCapdata_struct *buf;
2889    int return_code;
2890    unsigned char scsi3addr[8];
2891
2892    buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2893    if (!buf) {
2894        dev_warn(&h->pdev->dev, "out of memory\n");
2895        return;
2896    }
2897
2898    log_unit_to_scsi3addr(h, scsi3addr, logvol);
2899    return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2900        sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2901    if (return_code == IO_OK) {
2902        *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2903        *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2904    } else { /* read capacity command failed */
2905        dev_warn(&h->pdev->dev, "read capacity failed\n");
2906        *total_size = 0;
2907        *block_size = BLOCK_SIZE;
2908    }
2909    kfree(buf);
2910}
2911
2912static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2913    sector_t *total_size, unsigned int *block_size)
2914{
2915    ReadCapdata_struct_16 *buf;
2916    int return_code;
2917    unsigned char scsi3addr[8];
2918
2919    buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2920    if (!buf) {
2921        dev_warn(&h->pdev->dev, "out of memory\n");
2922        return;
2923    }
2924
2925    log_unit_to_scsi3addr(h, scsi3addr, logvol);
2926    return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2927        buf, sizeof(ReadCapdata_struct_16),
2928            0, scsi3addr, TYPE_CMD);
2929    if (return_code == IO_OK) {
2930        *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2931        *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2932    } else { /* read capacity command failed */
2933        dev_warn(&h->pdev->dev, "read capacity failed\n");
2934        *total_size = 0;
2935        *block_size = BLOCK_SIZE;
2936    }
2937    dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2938           (unsigned long long)*total_size+1, *block_size);
2939    kfree(buf);
2940}
2941
2942static int cciss_revalidate(struct gendisk *disk)
2943{
2944    ctlr_info_t *h = get_host(disk);
2945    drive_info_struct *drv = get_drv(disk);
2946    int logvol;
2947    int FOUND = 0;
2948    unsigned int block_size;
2949    sector_t total_size;
2950    InquiryData_struct *inq_buff = NULL;
2951
2952    for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2953        if (!h->drv[logvol])
2954            continue;
2955        if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2956            sizeof(drv->LunID)) == 0) {
2957            FOUND = 1;
2958            break;
2959        }
2960    }
2961
2962    if (!FOUND)
2963        return 1;
2964
2965    inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2966    if (inq_buff == NULL) {
2967        dev_warn(&h->pdev->dev, "out of memory\n");
2968        return 1;
2969    }
2970    if (h->cciss_read == CCISS_READ_10) {
2971        cciss_read_capacity(h, logvol,
2972                    &total_size, &block_size);
2973    } else {
2974        cciss_read_capacity_16(h, logvol,
2975                    &total_size, &block_size);
2976    }
2977    cciss_geometry_inquiry(h, logvol, total_size, block_size,
2978                   inq_buff, drv);
2979
2980    blk_queue_logical_block_size(drv->queue, drv->block_size);
2981    set_capacity(disk, drv->nr_blocks);
2982
2983    kfree(inq_buff);
2984    return 0;
2985}
2986
2987/*
2988 * Map (physical) PCI mem into (virtual) kernel space
2989 */
2990static void __iomem *remap_pci_mem(ulong base, ulong size)
2991{
2992    ulong page_base = ((ulong) base) & PAGE_MASK;
2993    ulong page_offs = ((ulong) base) - page_base;
2994    void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2995
2996    return page_remapped ? (page_remapped + page_offs) : NULL;
2997}
2998
2999/*
3000 * Takes jobs of the Q and sends them to the hardware, then puts it on
3001 * the Q to wait for completion.
3002 */
3003static void start_io(ctlr_info_t *h)
3004{
3005    CommandList_struct *c;
3006
3007    while (!list_empty(&h->reqQ)) {
3008        c = list_entry(h->reqQ.next, CommandList_struct, list);
3009        /* can't do anything if fifo is full */
3010        if ((h->access.fifo_full(h))) {
3011            dev_warn(&h->pdev->dev, "fifo full\n");
3012            break;
3013        }
3014
3015        /* Get the first entry from the Request Q */
3016        removeQ(c);
3017        h->Qdepth--;
3018
3019        /* Tell the controller execute command */
3020        h->access.submit_command(h, c);
3021
3022        /* Put job onto the completed Q */
3023        addQ(&h->cmpQ, c);
3024    }
3025}
3026
3027/* Assumes that h->lock is held. */
3028/* Zeros out the error record and then resends the command back */
3029/* to the controller */
3030static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3031{
3032    /* erase the old error information */
3033    memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3034
3035    /* add it to software queue and then send it to the controller */
3036    addQ(&h->reqQ, c);
3037    h->Qdepth++;
3038    if (h->Qdepth > h->maxQsinceinit)
3039        h->maxQsinceinit = h->Qdepth;
3040
3041    start_io(h);
3042}
3043
3044static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3045    unsigned int msg_byte, unsigned int host_byte,
3046    unsigned int driver_byte)
3047{
3048    /* inverse of macros in scsi.h */
3049    return (scsi_status_byte & 0xff) |
3050        ((msg_byte & 0xff) << 8) |
3051        ((host_byte & 0xff) << 16) |
3052        ((driver_byte & 0xff) << 24);
3053}
3054
3055static inline int evaluate_target_status(ctlr_info_t *h,
3056            CommandList_struct *cmd, int *retry_cmd)
3057{
3058    unsigned char sense_key;
3059    unsigned char status_byte, msg_byte, host_byte, driver_byte;
3060    int error_value;
3061
3062    *retry_cmd = 0;
3063    /* If we get in here, it means we got "target status", that is, scsi status */
3064    status_byte = cmd->err_info->ScsiStatus;
3065    driver_byte = DRIVER_OK;
3066    msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3067
3068    if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3069        host_byte = DID_PASSTHROUGH;
3070    else
3071        host_byte = DID_OK;
3072
3073    error_value = make_status_bytes(status_byte, msg_byte,
3074        host_byte, driver_byte);
3075
3076    if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3077        if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3078            dev_warn(&h->pdev->dev, "cmd %p "
3079                   "has SCSI Status 0x%x\n",
3080                   cmd, cmd->err_info->ScsiStatus);
3081        return error_value;
3082    }
3083
3084    /* check the sense key */
3085    sense_key = 0xf & cmd->err_info->SenseInfo[2];
3086    /* no status or recovered error */
3087    if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3088        (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3089        error_value = 0;
3090
3091    if (check_for_unit_attention(h, cmd)) {
3092        *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3093        return 0;
3094    }
3095
3096    /* Not SG_IO or similar? */
3097    if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3098        if (error_value != 0)
3099            dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3100                   " sense key = 0x%x\n", cmd, sense_key);
3101        return error_value;
3102    }
3103
3104    /* SG_IO or similar, copy sense data back */
3105    if (cmd->rq->sense) {
3106        if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3107            cmd->rq->sense_len = cmd->err_info->SenseLen;
3108        memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3109            cmd->rq->sense_len);
3110    } else
3111        cmd->rq->sense_len = 0;
3112
3113    return error_value;
3114}
3115
3116/* checks the status of the job and calls complete buffers to mark all
3117 * buffers for the completed job. Note that this function does not need
3118 * to hold the hba/queue lock.
3119 */
3120static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3121                    int timeout)
3122{
3123    int retry_cmd = 0;
3124    struct request *rq = cmd->rq;
3125
3126    rq->errors = 0;
3127
3128    if (timeout)
3129        rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3130
3131    if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3132        goto after_error_processing;
3133
3134    switch (cmd->err_info->CommandStatus) {
3135    case CMD_TARGET_STATUS:
3136        rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3137        break;
3138    case CMD_DATA_UNDERRUN:
3139        if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3140            dev_warn(&h->pdev->dev, "cmd %p has"
3141                   " completed with data underrun "
3142                   "reported\n", cmd);
3143            cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3144        }
3145        break;
3146    case CMD_DATA_OVERRUN:
3147        if (cmd->rq->cmd_type == REQ_TYPE_FS)
3148            dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3149                   " completed with data overrun "
3150                   "reported\n", cmd);
3151        break;
3152    case CMD_INVALID:
3153        dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3154               "reported invalid\n", cmd);
3155        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156            cmd->err_info->CommandStatus, DRIVER_OK,
3157            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158                DID_PASSTHROUGH : DID_ERROR);
3159        break;
3160    case CMD_PROTOCOL_ERR:
3161        dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3162               "protocol error\n", cmd);
3163        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3164            cmd->err_info->CommandStatus, DRIVER_OK,
3165            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3166                DID_PASSTHROUGH : DID_ERROR);
3167        break;
3168    case CMD_HARDWARE_ERR:
3169        dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3170               " hardware error\n", cmd);
3171        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3172            cmd->err_info->CommandStatus, DRIVER_OK,
3173            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3174                DID_PASSTHROUGH : DID_ERROR);
3175        break;
3176    case CMD_CONNECTION_LOST:
3177        dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3178               "connection lost\n", cmd);
3179        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3180            cmd->err_info->CommandStatus, DRIVER_OK,
3181            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3182                DID_PASSTHROUGH : DID_ERROR);
3183        break;
3184    case CMD_ABORTED:
3185        dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3186               "aborted\n", cmd);
3187        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3188            cmd->err_info->CommandStatus, DRIVER_OK,
3189            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3190                DID_PASSTHROUGH : DID_ABORT);
3191        break;
3192    case CMD_ABORT_FAILED:
3193        dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3194               "abort failed\n", cmd);
3195        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3196            cmd->err_info->CommandStatus, DRIVER_OK,
3197            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3198                DID_PASSTHROUGH : DID_ERROR);
3199        break;
3200    case CMD_UNSOLICITED_ABORT:
3201        dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3202               "abort %p\n", h->ctlr, cmd);
3203        if (cmd->retry_count < MAX_CMD_RETRIES) {
3204            retry_cmd = 1;
3205            dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3206            cmd->retry_count++;
3207        } else
3208            dev_warn(&h->pdev->dev,
3209                "%p retried too many times\n", cmd);
3210        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3211            cmd->err_info->CommandStatus, DRIVER_OK,
3212            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3213                DID_PASSTHROUGH : DID_ABORT);
3214        break;
3215    case CMD_TIMEOUT:
3216        dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3217        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218            cmd->err_info->CommandStatus, DRIVER_OK,
3219            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3220                DID_PASSTHROUGH : DID_ERROR);
3221        break;
3222    case CMD_UNABORTABLE:
3223        dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3224        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3225            cmd->err_info->CommandStatus, DRIVER_OK,
3226            cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3227                DID_PASSTHROUGH : DID_ERROR);
3228        break;
3229    default:
3230        dev_warn(&h->pdev->dev, "cmd %p returned "
3231               "unknown status %x\n", cmd,
3232               cmd->err_info->CommandStatus);
3233        rq->errors = make_status_bytes(SAM_STAT_GOOD,
3234            cmd->err_info->CommandStatus, DRIVER_OK,
3235            (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3236                DID_PASSTHROUGH : DID_ERROR);
3237    }
3238
3239after_error_processing:
3240
3241    /* We need to return this command */
3242    if (retry_cmd) {
3243        resend_cciss_cmd(h, cmd);
3244        return;
3245    }
3246    cmd->rq->completion_data = cmd;
3247    blk_complete_request(cmd->rq);
3248}
3249
3250static inline u32 cciss_tag_contains_index(u32 tag)
3251{
3252#define DIRECT_LOOKUP_BIT 0x10
3253    return tag & DIRECT_LOOKUP_BIT;
3254}
3255
3256static inline u32 cciss_tag_to_index(u32 tag)
3257{
3258#define DIRECT_LOOKUP_SHIFT 5
3259    return tag >> DIRECT_LOOKUP_SHIFT;
3260}
3261
3262static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3263{
3264#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3265#define CCISS_SIMPLE_ERROR_BITS 0x03
3266    if (likely(h->transMethod & CFGTBL_Trans_Performant))
3267        return tag & ~CCISS_PERF_ERROR_BITS;
3268    return tag & ~CCISS_SIMPLE_ERROR_BITS;
3269}
3270
3271static inline void cciss_mark_tag_indexed(u32 *tag)
3272{
3273    *tag |= DIRECT_LOOKUP_BIT;
3274}
3275
3276static inline void cciss_set_tag_index(u32 *tag, u32 index)
3277{
3278    *tag |= (index << DIRECT_LOOKUP_SHIFT);
3279}
3280
3281/*
3282 * Get a request and submit it to the controller.
3283 */
3284static void do_cciss_request(struct request_queue *q)
3285{
3286    ctlr_info_t *h = q->queuedata;
3287    CommandList_struct *c;
3288    sector_t start_blk;
3289    int seg;
3290    struct request *creq;
3291    u64bit temp64;
3292    struct scatterlist *tmp_sg;
3293    SGDescriptor_struct *curr_sg;
3294    drive_info_struct *drv;
3295    int i, dir;
3296    int sg_index = 0;
3297    int chained = 0;
3298
3299      queue:
3300    creq = blk_peek_request(q);
3301    if (!creq)
3302        goto startio;
3303
3304    BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3305
3306    c = cmd_alloc(h);
3307    if (!c)
3308        goto full;
3309
3310    blk_start_request(creq);
3311
3312    tmp_sg = h->scatter_list[c->cmdindex];
3313    spin_unlock_irq(q->queue_lock);
3314
3315    c->cmd_type = CMD_RWREQ;
3316    c->rq = creq;
3317
3318    /* fill in the request */
3319    drv = creq->rq_disk->private_data;
3320    c->Header.ReplyQueue = 0; /* unused in simple mode */
3321    /* got command from pool, so use the command block index instead */
3322    /* for direct lookups. */
3323    /* The first 2 bits are reserved for controller error reporting. */
3324    cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3325    cciss_mark_tag_indexed(&c->Header.Tag.lower);
3326    memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3327    c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3328    c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3329    c->Request.Type.Attribute = ATTR_SIMPLE;
3330    c->Request.Type.Direction =
3331        (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3332    c->Request.Timeout = 0; /* Don't time out */
3333    c->Request.CDB[0] =
3334        (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3335    start_blk = blk_rq_pos(creq);
3336    dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3337           (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3338    sg_init_table(tmp_sg, h->maxsgentries);
3339    seg = blk_rq_map_sg(q, creq, tmp_sg);
3340
3341    /* get the DMA records for the setup */
3342    if (c->Request.Type.Direction == XFER_READ)
3343        dir = PCI_DMA_FROMDEVICE;
3344    else
3345        dir = PCI_DMA_TODEVICE;
3346
3347    curr_sg = c->SG;
3348    sg_index = 0;
3349    chained = 0;
3350
3351    for (i = 0; i < seg; i++) {
3352        if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3353            !chained && ((seg - i) > 1)) {
3354            /* Point to next chain block. */
3355            curr_sg = h->cmd_sg_list[c->cmdindex];
3356            sg_index = 0;
3357            chained = 1;
3358        }
3359        curr_sg[sg_index].Len = tmp_sg[i].length;
3360        temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3361                        tmp_sg[i].offset,
3362                        tmp_sg[i].length, dir);
3363        curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3364        curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3365        curr_sg[sg_index].Ext = 0; /* we are not chaining */
3366        ++sg_index;
3367    }
3368    if (chained)
3369        cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3370            (seg - (h->max_cmd_sgentries - 1)) *
3371                sizeof(SGDescriptor_struct));
3372
3373    /* track how many SG entries we are using */
3374    if (seg > h->maxSG)
3375        h->maxSG = seg;
3376
3377    dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3378            "chained[%d]\n",
3379            blk_rq_sectors(creq), seg, chained);
3380
3381    c->Header.SGTotal = seg + chained;
3382    if (seg <= h->max_cmd_sgentries)
3383        c->Header.SGList = c->Header.SGTotal;
3384    else
3385        c->Header.SGList = h->max_cmd_sgentries;
3386    set_performant_mode(h, c);
3387
3388    if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3389        if(h->cciss_read == CCISS_READ_10) {
3390            c->Request.CDB[1] = 0;
3391            c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3392            c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3393            c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3394            c->Request.CDB[5] = start_blk & 0xff;
3395            c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3396            c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3397            c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3398            c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3399        } else {
3400            u32 upper32 = upper_32_bits(start_blk);
3401
3402            c->Request.CDBLen = 16;
3403            c->Request.CDB[1]= 0;
3404            c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3405            c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3406            c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3407            c->Request.CDB[5]= upper32 & 0xff;
3408            c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3409            c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3410            c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3411            c->Request.CDB[9]= start_blk & 0xff;
3412            c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3413            c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3414            c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3415            c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3416            c->Request.CDB[14] = c->Request.CDB[15] = 0;
3417        }
3418    } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3419        c->Request.CDBLen = creq->cmd_len;
3420        memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3421    } else {
3422        dev_warn(&h->pdev->dev, "bad request type %d\n",
3423            creq->cmd_type);
3424        BUG();
3425    }
3426
3427    spin_lock_irq(q->queue_lock);
3428
3429    addQ(&h->reqQ, c);
3430    h->Qdepth++;
3431    if (h->Qdepth > h->maxQsinceinit)
3432        h->maxQsinceinit = h->Qdepth;
3433
3434    goto queue;
3435full:
3436    blk_stop_queue(q);
3437startio:
3438    /* We will already have the driver lock here so not need
3439     * to lock it.
3440     */
3441    start_io(h);
3442}
3443
3444static inline unsigned long get_next_completion(ctlr_info_t *h)
3445{
3446    return h->access.command_completed(h);
3447}
3448
3449static inline int interrupt_pending(ctlr_info_t *h)
3450{
3451    return h->access.intr_pending(h);
3452}
3453
3454static inline long interrupt_not_for_us(ctlr_info_t *h)
3455{
3456    return ((h->access.intr_pending(h) == 0) ||
3457        (h->interrupts_enabled == 0));
3458}
3459
3460static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3461            u32 raw_tag)
3462{
3463    if (unlikely(tag_index >= h->nr_cmds)) {
3464        dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3465        return 1;
3466    }
3467    return 0;
3468}
3469
3470static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3471                u32 raw_tag)
3472{
3473    removeQ(c);
3474    if (likely(c->cmd_type == CMD_RWREQ))
3475        complete_command(h, c, 0);
3476    else if (c->cmd_type == CMD_IOCTL_PEND)
3477        complete(c->waiting);
3478#ifdef CONFIG_CISS_SCSI_TAPE
3479    else if (c->cmd_type == CMD_SCSI)
3480        complete_scsi_command(c, 0, raw_tag);
3481#endif
3482}
3483
3484static inline u32 next_command(ctlr_info_t *h)
3485{
3486    u32 a;
3487
3488    if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3489        return h->access.command_completed(h);
3490
3491    if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3492        a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3493        (h->reply_pool_head)++;
3494        h->commands_outstanding--;
3495    } else {
3496        a = FIFO_EMPTY;
3497    }
3498    /* Check for wraparound */
3499    if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3500        h->reply_pool_head = h->reply_pool;
3501        h->reply_pool_wraparound ^= 1;
3502    }
3503    return a;
3504}
3505
3506/* process completion of an indexed ("direct lookup") command */
3507static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3508{
3509    u32 tag_index;
3510    CommandList_struct *c;
3511
3512    tag_index = cciss_tag_to_index(raw_tag);
3513    if (bad_tag(h, tag_index, raw_tag))
3514        return next_command(h);
3515    c = h->cmd_pool + tag_index;
3516    finish_cmd(h, c, raw_tag);
3517    return next_command(h);
3518}
3519
3520/* process completion of a non-indexed command */
3521static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3522{
3523    CommandList_struct *c = NULL;
3524    __u32 busaddr_masked, tag_masked;
3525
3526    tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3527    list_for_each_entry(c, &h->cmpQ, list) {
3528        busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3529        if (busaddr_masked == tag_masked) {
3530            finish_cmd(h, c, raw_tag);
3531            return next_command(h);
3532        }
3533    }
3534    bad_tag(h, h->nr_cmds + 1, raw_tag);
3535    return next_command(h);
3536}
3537
3538/* Some controllers, like p400, will give us one interrupt
3539 * after a soft reset, even if we turned interrupts off.
3540 * Only need to check for this in the cciss_xxx_discard_completions
3541 * functions.
3542 */
3543static int ignore_bogus_interrupt(ctlr_info_t *h)
3544{
3545    if (likely(!reset_devices))
3546        return 0;
3547
3548    if (likely(h->interrupts_enabled))
3549        return 0;
3550
3551    dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3552        "(known firmware bug.) Ignoring.\n");
3553
3554    return 1;
3555}
3556
3557static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3558{
3559    ctlr_info_t *h = dev_id;
3560    unsigned long flags;
3561    u32 raw_tag;
3562
3563    if (ignore_bogus_interrupt(h))
3564        return IRQ_NONE;
3565
3566    if (interrupt_not_for_us(h))
3567        return IRQ_NONE;
3568    spin_lock_irqsave(&h->lock, flags);
3569    while (interrupt_pending(h)) {
3570        raw_tag = get_next_completion(h);
3571        while (raw_tag != FIFO_EMPTY)
3572            raw_tag = next_command(h);
3573    }
3574    spin_unlock_irqrestore(&h->lock, flags);
3575    return IRQ_HANDLED;
3576}
3577
3578static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3579{
3580    ctlr_info_t *h = dev_id;
3581    unsigned long flags;
3582    u32 raw_tag;
3583
3584    if (ignore_bogus_interrupt(h))
3585        return IRQ_NONE;
3586
3587    spin_lock_irqsave(&h->lock, flags);
3588    raw_tag = get_next_completion(h);
3589    while (raw_tag != FIFO_EMPTY)
3590        raw_tag = next_command(h);
3591    spin_unlock_irqrestore(&h->lock, flags);
3592    return IRQ_HANDLED;
3593}
3594
3595static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3596{
3597    ctlr_info_t *h = dev_id;
3598    unsigned long flags;
3599    u32 raw_tag;
3600
3601    if (interrupt_not_for_us(h))
3602        return IRQ_NONE;
3603    spin_lock_irqsave(&h->lock, flags);
3604    while (interrupt_pending(h)) {
3605        raw_tag = get_next_completion(h);
3606        while (raw_tag != FIFO_EMPTY) {
3607            if (cciss_tag_contains_index(raw_tag))
3608                raw_tag = process_indexed_cmd(h, raw_tag);
3609            else
3610                raw_tag = process_nonindexed_cmd(h, raw_tag);
3611        }
3612    }
3613    spin_unlock_irqrestore(&h->lock, flags);
3614    return IRQ_HANDLED;
3615}
3616
3617/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3618 * check the interrupt pending register because it is not set.
3619 */
3620static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3621{
3622    ctlr_info_t *h = dev_id;
3623    unsigned long flags;
3624    u32 raw_tag;
3625
3626    spin_lock_irqsave(&h->lock, flags);
3627    raw_tag = get_next_completion(h);
3628    while (raw_tag != FIFO_EMPTY) {
3629        if (cciss_tag_contains_index(raw_tag))
3630            raw_tag = process_indexed_cmd(h, raw_tag);
3631        else
3632            raw_tag = process_nonindexed_cmd(h, raw_tag);
3633    }
3634    spin_unlock_irqrestore(&h->lock, flags);
3635    return IRQ_HANDLED;
3636}
3637
3638/**
3639 * add_to_scan_list() - add controller to rescan queue
3640 * @h: Pointer to the controller.
3641 *
3642 * Adds the controller to the rescan queue if not already on the queue.
3643 *
3644 * returns 1 if added to the queue, 0 if skipped (could be on the
3645 * queue already, or the controller could be initializing or shutting
3646 * down).
3647 **/
3648static int add_to_scan_list(struct ctlr_info *h)
3649{
3650    struct ctlr_info *test_h;
3651    int found = 0;
3652    int ret = 0;
3653
3654    if (h->busy_initializing)
3655        return 0;
3656
3657    if (!mutex_trylock(&h->busy_shutting_down))
3658        return 0;
3659
3660    mutex_lock(&scan_mutex);
3661    list_for_each_entry(test_h, &scan_q, scan_list) {
3662        if (test_h == h) {
3663            found = 1;
3664            break;
3665        }
3666    }
3667    if (!found && !h->busy_scanning) {
3668        INIT_COMPLETION(h->scan_wait);
3669        list_add_tail(&h->scan_list, &scan_q);
3670        ret = 1;
3671    }
3672    mutex_unlock(&scan_mutex);
3673    mutex_unlock(&h->busy_shutting_down);
3674
3675    return ret;
3676}
3677
3678/**
3679 * remove_from_scan_list() - remove controller from rescan queue
3680 * @h: Pointer to the controller.
3681 *
3682 * Removes the controller from the rescan queue if present. Blocks if
3683 * the controller is currently conducting a rescan. The controller
3684 * can be in one of three states:
3685 * 1. Doesn't need a scan
3686 * 2. On the scan list, but not scanning yet (we remove it)
3687 * 3. Busy scanning (and not on the list). In this case we want to wait for
3688 * the scan to complete to make sure the scanning thread for this
3689 * controller is completely idle.
3690 **/
3691static void remove_from_scan_list(struct ctlr_info *h)
3692{
3693    struct ctlr_info *test_h, *tmp_h;
3694
3695    mutex_lock(&scan_mutex);
3696    list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3697        if (test_h == h) { /* state 2. */
3698            list_del(&h->scan_list);
3699            complete_all(&h->scan_wait);
3700            mutex_unlock(&scan_mutex);
3701            return;
3702        }
3703    }
3704    if (h->busy_scanning) { /* state 3. */
3705        mutex_unlock(&scan_mutex);
3706        wait_for_completion(&h->scan_wait);
3707    } else { /* state 1, nothing to do. */
3708        mutex_unlock(&scan_mutex);
3709    }
3710}
3711
3712/**
3713 * scan_thread() - kernel thread used to rescan controllers
3714 * @data: Ignored.
3715 *
3716 * A kernel thread used scan for drive topology changes on
3717 * controllers. The thread processes only one controller at a time
3718 * using a queue. Controllers are added to the queue using
3719 * add_to_scan_list() and removed from the queue either after done
3720 * processing or using remove_from_scan_list().
3721 *
3722 * returns 0.
3723 **/
3724static int scan_thread(void *data)
3725{
3726    struct ctlr_info *h;
3727
3728    while (1) {
3729        set_current_state(TASK_INTERRUPTIBLE);
3730        schedule();
3731        if (kthread_should_stop())
3732            break;
3733
3734        while (1) {
3735            mutex_lock(&scan_mutex);
3736            if (list_empty(&scan_q)) {
3737                mutex_unlock(&scan_mutex);
3738                break;
3739            }
3740
3741            h = list_entry(scan_q.next,
3742                       struct ctlr_info,
3743                       scan_list);
3744            list_del(&h->scan_list);
3745            h->busy_scanning = 1;
3746            mutex_unlock(&scan_mutex);
3747
3748            rebuild_lun_table(h, 0, 0);
3749            complete_all(&h->scan_wait);
3750            mutex_lock(&scan_mutex);
3751            h->busy_scanning = 0;
3752            mutex_unlock(&scan_mutex);
3753        }
3754    }
3755
3756    return 0;
3757}
3758
3759static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3760{
3761    if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3762        return 0;
3763
3764    switch (c->err_info->SenseInfo[12]) {
3765    case STATE_CHANGED:
3766        dev_warn(&h->pdev->dev, "a state change "
3767            "detected, command retried\n");
3768        return 1;
3769    break;
3770    case LUN_FAILED:
3771        dev_warn(&h->pdev->dev, "LUN failure "
3772            "detected, action required\n");
3773        return 1;
3774    break;
3775    case REPORT_LUNS_CHANGED:
3776        dev_warn(&h->pdev->dev, "report LUN data changed\n");
3777    /*
3778     * Here, we could call add_to_scan_list and wake up the scan thread,
3779     * except that it's quite likely that we will get more than one
3780     * REPORT_LUNS_CHANGED condition in quick succession, which means
3781     * that those which occur after the first one will likely happen
3782     * *during* the scan_thread's rescan. And the rescan code is not
3783     * robust enough to restart in the middle, undoing what it has already
3784     * done, and it's not clear that it's even possible to do this, since
3785     * part of what it does is notify the block layer, which starts
3786     * doing it's own i/o to read partition tables and so on, and the
3787     * driver doesn't have visibility to know what might need undoing.
3788     * In any event, if possible, it is horribly complicated to get right
3789     * so we just don't do it for now.
3790     *
3791     * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3792     */
3793        return 1;
3794    break;
3795    case POWER_OR_RESET:
3796        dev_warn(&h->pdev->dev,
3797            "a power on or device reset detected\n");
3798        return 1;
3799    break;
3800    case UNIT_ATTENTION_CLEARED:
3801        dev_warn(&h->pdev->dev,
3802            "unit attention cleared by another initiator\n");
3803        return 1;
3804    break;
3805    default:
3806        dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3807        return 1;
3808    }
3809}
3810
3811/*
3812 * We cannot read the structure directly, for portability we must use
3813 * the io functions.
3814 * This is for debug only.
3815 */
3816static void print_cfg_table(ctlr_info_t *h)
3817{
3818    int i;
3819    char temp_name[17];
3820    CfgTable_struct *tb = h->cfgtable;
3821
3822    dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3823    dev_dbg(&h->pdev->dev, "------------------------------------\n");
3824    for (i = 0; i < 4; i++)
3825        temp_name[i] = readb(&(tb->Signature[i]));
3826    temp_name[4] = '\0';
3827    dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3828    dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3829        readl(&(tb->SpecValence)));
3830    dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3831           readl(&(tb->TransportSupport)));
3832    dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3833           readl(&(tb->TransportActive)));
3834    dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3835           readl(&(tb->HostWrite.TransportRequest)));
3836    dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3837           readl(&(tb->HostWrite.CoalIntDelay)));
3838    dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3839           readl(&(tb->HostWrite.CoalIntCount)));
3840    dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3841           readl(&(tb->CmdsOutMax)));
3842    dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3843        readl(&(tb->BusTypes)));
3844    for (i = 0; i < 16; i++)
3845        temp_name[i] = readb(&(tb->ServerName[i]));
3846    temp_name[16] = '\0';
3847    dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3848    dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3849        readl(&(tb->HeartBeat)));
3850}
3851
3852static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3853{
3854    int i, offset, mem_type, bar_type;
3855    if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3856        return 0;
3857    offset = 0;
3858    for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3859        bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3860        if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3861            offset += 4;
3862        else {
3863            mem_type = pci_resource_flags(pdev, i) &
3864                PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3865            switch (mem_type) {
3866            case PCI_BASE_ADDRESS_MEM_TYPE_32:
3867            case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3868                offset += 4; /* 32 bit */
3869                break;
3870            case PCI_BASE_ADDRESS_MEM_TYPE_64:
3871                offset += 8;
3872                break;
3873            default: /* reserved in PCI 2.2 */
3874                dev_warn(&pdev->dev,
3875                       "Base address is invalid\n");
3876                return -1;
3877                break;
3878            }
3879        }
3880        if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3881            return i + 1;
3882    }
3883    return -1;
3884}
3885
3886/* Fill in bucket_map[], given nsgs (the max number of
3887 * scatter gather elements supported) and bucket[],
3888 * which is an array of 8 integers. The bucket[] array
3889 * contains 8 different DMA transfer sizes (in 16
3890 * byte increments) which the controller uses to fetch
3891 * commands. This function fills in bucket_map[], which
3892 * maps a given number of scatter gather elements to one of
3893 * the 8 DMA transfer sizes. The point of it is to allow the
3894 * controller to only do as much DMA as needed to fetch the
3895 * command, with the DMA transfer size encoded in the lower
3896 * bits of the command address.
3897 */
3898static void calc_bucket_map(int bucket[], int num_buckets,
3899    int nsgs, int *bucket_map)
3900{
3901    int i, j, b, size;
3902
3903    /* even a command with 0 SGs requires 4 blocks */
3904#define MINIMUM_TRANSFER_BLOCKS 4
3905#define NUM_BUCKETS 8
3906    /* Note, bucket_map must have nsgs+1 entries. */
3907    for (i = 0; i <= nsgs; i++) {
3908        /* Compute size of a command with i SG entries */
3909        size = i + MINIMUM_TRANSFER_BLOCKS;
3910        b = num_buckets; /* Assume the biggest bucket */
3911        /* Find the bucket that is just big enough */
3912        for (j = 0; j < 8; j++) {
3913            if (bucket[j] >= size) {
3914                b = j;
3915                break;
3916            }
3917        }
3918        /* for a command with i SG entries, use bucket b. */
3919        bucket_map[i] = b;
3920    }
3921}
3922
3923static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3924{
3925    int i;
3926
3927    /* under certain very rare conditions, this can take awhile.
3928     * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3929     * as we enter this code.) */
3930    for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3931        if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3932            break;
3933        usleep_range(10000, 20000);
3934    }
3935}
3936
3937static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3938    u32 use_short_tags)
3939{
3940    /* This is a bit complicated. There are 8 registers on
3941     * the controller which we write to to tell it 8 different
3942     * sizes of commands which there may be. It's a way of
3943     * reducing the DMA done to fetch each command. Encoded into
3944     * each command's tag are 3 bits which communicate to the controller
3945     * which of the eight sizes that command fits within. The size of
3946     * each command depends on how many scatter gather entries there are.
3947     * Each SG entry requires 16 bytes. The eight registers are programmed
3948     * with the number of 16-byte blocks a command of that size requires.
3949     * The smallest command possible requires 5 such 16 byte blocks.
3950     * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951     * blocks. Note, this only extends to the SG entries contained
3952     * within the command block, and does not extend to chained blocks
3953     * of SG elements. bft[] contains the eight values we write to
3954     * the registers. They are not evenly distributed, but have more
3955     * sizes for small commands, and fewer sizes for larger commands.
3956     */
3957    __u32 trans_offset;
3958    int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3959            /*
3960             * 5 = 1 s/g entry or 4k
3961             * 6 = 2 s/g entry or 8k
3962             * 8 = 4 s/g entry or 16k
3963             * 10 = 6 s/g entry or 24k
3964             */
3965    unsigned long register_value;
3966    BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3967
3968    h->reply_pool_wraparound = 1; /* spec: init to 1 */
3969
3970    /* Controller spec: zero out this buffer. */
3971    memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3972    h->reply_pool_head = h->reply_pool;
3973
3974    trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3975    calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3976                h->blockFetchTable);
3977    writel(bft[0], &h->transtable->BlockFetch0);
3978    writel(bft[1], &h->transtable->BlockFetch1);
3979    writel(bft[2], &h->transtable->BlockFetch2);
3980    writel(bft[3], &h->transtable->BlockFetch3);
3981    writel(bft[4], &h->transtable->BlockFetch4);
3982    writel(bft[5], &h->transtable->BlockFetch5);
3983    writel(bft[6], &h->transtable->BlockFetch6);
3984    writel(bft[7], &h->transtable->BlockFetch7);
3985
3986    /* size of controller ring buffer */
3987    writel(h->max_commands, &h->transtable->RepQSize);
3988    writel(1, &h->transtable->RepQCount);
3989    writel(0, &h->transtable->RepQCtrAddrLow32);
3990    writel(0, &h->transtable->RepQCtrAddrHigh32);
3991    writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3992    writel(0, &h->transtable->RepQAddr0High32);
3993    writel(CFGTBL_Trans_Performant | use_short_tags,
3994            &(h->cfgtable->HostWrite.TransportRequest));
3995
3996    writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3997    cciss_wait_for_mode_change_ack(h);
3998    register_value = readl(&(h->cfgtable->TransportActive));
3999    if (!(register_value & CFGTBL_Trans_Performant))
4000        dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4001                    " performant mode\n");
4002}
4003
4004static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4005{
4006    __u32 trans_support;
4007
4008    if (cciss_simple_mode)
4009        return;
4010
4011    dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4012    /* Attempt to put controller into performant mode if supported */
4013    /* Does board support performant mode? */
4014    trans_support = readl(&(h->cfgtable->TransportSupport));
4015    if (!(trans_support & PERFORMANT_MODE))
4016        return;
4017
4018    dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4019    /* Performant mode demands commands on a 32 byte boundary
4020     * pci_alloc_consistent aligns on page boundarys already.
4021     * Just need to check if divisible by 32
4022     */
4023    if ((sizeof(CommandList_struct) % 32) != 0) {
4024        dev_warn(&h->pdev->dev, "%s %d %s\n",
4025            "cciss info: command size[",
4026            (int)sizeof(CommandList_struct),
4027            "] not divisible by 32, no performant mode..\n");
4028        return;
4029    }
4030
4031    /* Performant mode ring buffer and supporting data structures */
4032    h->reply_pool = (__u64 *)pci_alloc_consistent(
4033        h->pdev, h->max_commands * sizeof(__u64),
4034        &(h->reply_pool_dhandle));
4035
4036    /* Need a block fetch table for performant mode */
4037    h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4038        sizeof(__u32)), GFP_KERNEL);
4039
4040    if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4041        goto clean_up;
4042
4043    cciss_enter_performant_mode(h,
4044        trans_support & CFGTBL_Trans_use_short_tags);
4045
4046    /* Change the access methods to the performant access methods */
4047    h->access = SA5_performant_access;
4048    h->transMethod = CFGTBL_Trans_Performant;
4049
4050    return;
4051clean_up:
4052    kfree(h->blockFetchTable);
4053    if (h->reply_pool)
4054        pci_free_consistent(h->pdev,
4055                h->max_commands * sizeof(__u64),
4056                h->reply_pool,
4057                h->reply_pool_dhandle);
4058    return;
4059
4060} /* cciss_put_controller_into_performant_mode */
4061
4062/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063 * controllers that are capable. If not, we use IO-APIC mode.
4064 */
4065
4066static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4067{
4068#ifdef CONFIG_PCI_MSI
4069    int err;
4070    struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4071    {0, 2}, {0, 3}
4072    };
4073
4074    /* Some boards advertise MSI but don't really support it */
4075    if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4076        (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4077        goto default_int_mode;
4078
4079    if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4080        err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4081        if (!err) {
4082            h->intr[0] = cciss_msix_entries[0].vector;
4083            h->intr[1] = cciss_msix_entries[1].vector;
4084            h->intr[2] = cciss_msix_entries[2].vector;
4085            h->intr[3] = cciss_msix_entries[3].vector;
4086            h->msix_vector = 1;
4087            return;
4088        }
4089        if (err > 0) {
4090            dev_warn(&h->pdev->dev,
4091                "only %d MSI-X vectors available\n", err);
4092            goto default_int_mode;
4093        } else {
4094            dev_warn(&h->pdev->dev,
4095                "MSI-X init failed %d\n", err);
4096            goto default_int_mode;
4097        }
4098    }
4099    if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4100        if (!pci_enable_msi(h->pdev))
4101            h->msi_vector = 1;
4102        else
4103            dev_warn(&h->pdev->dev, "MSI init failed\n");
4104    }
4105default_int_mode:
4106#endif /* CONFIG_PCI_MSI */
4107    /* if we get here we're going to use the default interrupt mode */
4108    h->intr[h->intr_mode] = h->pdev->irq;
4109    return;
4110}
4111
4112static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4113{
4114    int i;
4115    u32 subsystem_vendor_id, subsystem_device_id;
4116
4117    subsystem_vendor_id = pdev->subsystem_vendor;
4118    subsystem_device_id = pdev->subsystem_device;
4119    *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4120            subsystem_vendor_id;
4121
4122    for (i = 0; i < ARRAY_SIZE(products); i++)
4123        if (*board_id == products[i].board_id)
4124            return i;
4125    dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4126        *board_id);
4127    return -ENODEV;
4128}
4129
4130static inline bool cciss_board_disabled(ctlr_info_t *h)
4131{
4132    u16 command;
4133
4134    (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4135    return ((command & PCI_COMMAND_MEMORY) == 0);
4136}
4137
4138static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4139    unsigned long *memory_bar)
4140{
4141    int i;
4142
4143    for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4144        if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4145            /* addressing mode bits already removed */
4146            *memory_bar = pci_resource_start(pdev, i);
4147            dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4148                *memory_bar);
4149            return 0;
4150        }
4151    dev_warn(&pdev->dev, "no memory BAR found\n");
4152    return -ENODEV;
4153}
4154
4155static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4156    void __iomem *vaddr, int wait_for_ready)
4157#define BOARD_READY 1
4158#define BOARD_NOT_READY 0
4159{
4160    int i, iterations;
4161    u32 scratchpad;
4162
4163    if (wait_for_ready)
4164        iterations = CCISS_BOARD_READY_ITERATIONS;
4165    else
4166        iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4167
4168    for (i = 0; i < iterations; i++) {
4169        scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4170        if (wait_for_ready) {
4171            if (scratchpad == CCISS_FIRMWARE_READY)
4172                return 0;
4173        } else {
4174            if (scratchpad != CCISS_FIRMWARE_READY)
4175                return 0;
4176        }
4177        msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4178    }
4179    dev_warn(&pdev->dev, "board not ready, timed out.\n");
4180    return -ENODEV;
4181}
4182
4183static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4184    void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4185    u64 *cfg_offset)
4186{
4187    *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4188    *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4189    *cfg_base_addr &= (u32) 0x0000ffff;
4190    *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4191    if (*cfg_base_addr_index == -1) {
4192        dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4193            "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4194        return -ENODEV;
4195    }
4196    return 0;
4197}
4198
4199static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4200{
4201    u64 cfg_offset;
4202    u32 cfg_base_addr;
4203    u64 cfg_base_addr_index;
4204    u32 trans_offset;
4205    int rc;
4206
4207    rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4208        &cfg_base_addr_index, &cfg_offset);
4209    if (rc)
4210        return rc;
4211    h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4212        cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4213    if (!h->cfgtable)
4214        return -ENOMEM;
4215    rc = write_driver_ver_to_cfgtable(h->cfgtable);
4216    if (rc)
4217        return rc;
4218    /* Find performant mode table. */
4219    trans_offset = readl(&h->cfgtable->TransMethodOffset);
4220    h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4221                cfg_base_addr_index)+cfg_offset+trans_offset,
4222                sizeof(*h->transtable));
4223    if (!h->transtable)
4224        return -ENOMEM;
4225    return 0;
4226}
4227
4228static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4229{
4230    h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4231
4232    /* Limit commands in memory limited kdump scenario. */
4233    if (reset_devices && h->max_commands > 32)
4234        h->max_commands = 32;
4235
4236    if (h->max_commands < 16) {
4237        dev_warn(&h->pdev->dev, "Controller reports "
4238            "max supported commands of %d, an obvious lie. "
4239            "Using 16. Ensure that firmware is up to date.\n",
4240            h->max_commands);
4241        h->max_commands = 16;
4242    }
4243}
4244
4245/* Interrogate the hardware for some limits:
4246 * max commands, max SG elements without chaining, and with chaining,
4247 * SG chain block size, etc.
4248 */
4249static void __devinit cciss_find_board_params(ctlr_info_t *h)
4250{
4251    cciss_get_max_perf_mode_cmds(h);
4252    h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4253    h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4254    /*
4255     * Limit in-command s/g elements to 32 save dma'able memory.
4256     * Howvever spec says if 0, use 31
4257     */
4258    h->max_cmd_sgentries = 31;
4259    if (h->maxsgentries > 512) {
4260        h->max_cmd_sgentries = 32;
4261        h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4262        h->maxsgentries--; /* save one for chain pointer */
4263    } else {
4264        h->maxsgentries = 31; /* default to traditional values */
4265        h->chainsize = 0;
4266    }
4267}
4268
4269static inline bool CISS_signature_present(ctlr_info_t *h)
4270{
4271    if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4272        (readb(&h->cfgtable->Signature[1]) != 'I') ||
4273        (readb(&h->cfgtable->Signature[2]) != 'S') ||
4274        (readb(&h->cfgtable->Signature[3]) != 'S')) {
4275        dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4276        return false;
4277    }
4278    return true;
4279}
4280
4281/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4282static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4283{
4284#ifdef CONFIG_X86
4285    u32 prefetch;
4286
4287    prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4288    prefetch |= 0x100;
4289    writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4290#endif
4291}
4292
4293/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4294 * in a prefetch beyond physical memory.
4295 */
4296static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4297{
4298    u32 dma_prefetch;
4299    __u32 dma_refetch;
4300
4301    if (h->board_id != 0x3225103C)
4302        return;
4303    dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4304    dma_prefetch |= 0x8000;
4305    writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4306    pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4307    dma_refetch |= 0x1;
4308    pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4309}
4310
4311static int __devinit cciss_pci_init(ctlr_info_t *h)
4312{
4313    int prod_index, err;
4314
4315    prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4316    if (prod_index < 0)
4317        return -ENODEV;
4318    h->product_name = products[prod_index].product_name;
4319    h->access = *(products[prod_index].access);
4320
4321    if (cciss_board_disabled(h)) {
4322        dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4323        return -ENODEV;
4324    }
4325
4326    pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4327                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4328
4329    err = pci_enable_device(h->pdev);
4330    if (err) {
4331        dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4332        return err;
4333    }
4334
4335    err = pci_request_regions(h->pdev, "cciss");
4336    if (err) {
4337        dev_warn(&h->pdev->dev,
4338            "Cannot obtain PCI resources, aborting\n");
4339        return err;
4340    }
4341
4342    dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4343    dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4344
4345/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4346 * else we use the IO-APIC interrupt assigned to us by system ROM.
4347 */
4348    cciss_interrupt_mode(h);
4349    err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4350    if (err)
4351        goto err_out_free_res;
4352    h->vaddr = remap_pci_mem(h->paddr, 0x250);
4353    if (!h->vaddr) {
4354        err = -ENOMEM;
4355        goto err_out_free_res;
4356    }
4357    err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4358    if (err)
4359        goto err_out_free_res;
4360    err = cciss_find_cfgtables(h);
4361    if (err)
4362        goto err_out_free_res;
4363    print_cfg_table(h);
4364    cciss_find_board_params(h);
4365
4366    if (!CISS_signature_present(h)) {
4367        err = -ENODEV;
4368        goto err_out_free_res;
4369    }
4370    cciss_enable_scsi_prefetch(h);
4371    cciss_p600_dma_prefetch_quirk(h);
4372    err = cciss_enter_simple_mode(h);
4373    if (err)
4374        goto err_out_free_res;
4375    cciss_put_controller_into_performant_mode(h);
4376    return 0;
4377
4378err_out_free_res:
4379    /*
4380     * Deliberately omit pci_disable_device(): it does something nasty to
4381     * Smart Array controllers that pci_enable_device does not undo
4382     */
4383    if (h->transtable)
4384        iounmap(h->transtable);
4385    if (h->cfgtable)
4386        iounmap(h->cfgtable);
4387    if (h->vaddr)
4388        iounmap(h->vaddr);
4389    pci_release_regions(h->pdev);
4390    return err;
4391}
4392
4393/* Function to find the first free pointer into our hba[] array
4394 * Returns -1 if no free entries are left.
4395 */
4396static int alloc_cciss_hba(struct pci_dev *pdev)
4397{
4398    int i;
4399
4400    for (i = 0; i < MAX_CTLR; i++) {
4401        if (!hba[i]) {
4402            ctlr_info_t *h;
4403
4404            h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4405            if (!h)
4406                goto Enomem;
4407            hba[i] = h;
4408            return i;
4409        }
4410    }
4411    dev_warn(&pdev->dev, "This driver supports a maximum"
4412           " of %d controllers.\n", MAX_CTLR);
4413    return -1;
4414Enomem:
4415    dev_warn(&pdev->dev, "out of memory.\n");
4416    return -1;
4417}
4418
4419static void free_hba(ctlr_info_t *h)
4420{
4421    int i;
4422
4423    hba[h->ctlr] = NULL;
4424    for (i = 0; i < h->highest_lun + 1; i++)
4425        if (h->gendisk[i] != NULL)
4426            put_disk(h->gendisk[i]);
4427    kfree(h);
4428}
4429
4430/* Send a message CDB to the firmware. */
4431static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4432{
4433    typedef struct {
4434        CommandListHeader_struct CommandHeader;
4435        RequestBlock_struct Request;
4436        ErrDescriptor_struct ErrorDescriptor;
4437    } Command;
4438    static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4439    Command *cmd;
4440    dma_addr_t paddr64;
4441    uint32_t paddr32, tag;
4442    void __iomem *vaddr;
4443    int i, err;
4444
4445    vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4446    if (vaddr == NULL)
4447        return -ENOMEM;
4448
4449    /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4450       CCISS commands, so they must be allocated from the lower 4GiB of
4451       memory. */
4452    err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4453    if (err) {
4454        iounmap(vaddr);
4455        return -ENOMEM;
4456    }
4457
4458    cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4459    if (cmd == NULL) {
4460        iounmap(vaddr);
4461        return -ENOMEM;
4462    }
4463
4464    /* This must fit, because of the 32-bit consistent DMA mask. Also,
4465       although there's no guarantee, we assume that the address is at
4466       least 4-byte aligned (most likely, it's page-aligned). */
4467    paddr32 = paddr64;
4468
4469    cmd->CommandHeader.ReplyQueue = 0;
4470    cmd->CommandHeader.SGList = 0;
4471    cmd->CommandHeader.SGTotal = 0;
4472    cmd->CommandHeader.Tag.lower = paddr32;
4473    cmd->CommandHeader.Tag.upper = 0;
4474    memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4475
4476    cmd->Request.CDBLen = 16;
4477    cmd->Request.Type.Type = TYPE_MSG;
4478    cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4479    cmd->Request.Type.Direction = XFER_NONE;
4480    cmd->Request.Timeout = 0; /* Don't time out */
4481    cmd->Request.CDB[0] = opcode;
4482    cmd->Request.CDB[1] = type;
4483    memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4484
4485    cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4486    cmd->ErrorDescriptor.Addr.upper = 0;
4487    cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4488
4489    writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4490
4491    for (i = 0; i < 10; i++) {
4492        tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4493        if ((tag & ~3) == paddr32)
4494            break;
4495        msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4496    }
4497
4498    iounmap(vaddr);
4499
4500    /* we leak the DMA buffer here ... no choice since the controller could
4501       still complete the command. */
4502    if (i == 10) {
4503        dev_err(&pdev->dev,
4504            "controller message %02x:%02x timed out\n",
4505            opcode, type);
4506        return -ETIMEDOUT;
4507    }
4508
4509    pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4510
4511    if (tag & 2) {
4512        dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4513            opcode, type);
4514        return -EIO;
4515    }
4516
4517    dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4518        opcode, type);
4519    return 0;
4520}
4521
4522#define cciss_noop(p) cciss_message(p, 3, 0)
4523
4524static int cciss_controller_hard_reset(struct pci_dev *pdev,
4525    void * __iomem vaddr, u32 use_doorbell)
4526{
4527    u16 pmcsr;
4528    int pos;
4529
4530    if (use_doorbell) {
4531        /* For everything after the P600, the PCI power state method
4532         * of resetting the controller doesn't work, so we have this
4533         * other way using the doorbell register.
4534         */
4535        dev_info(&pdev->dev, "using doorbell to reset controller\n");
4536        writel(use_doorbell, vaddr + SA5_DOORBELL);
4537    } else { /* Try to do it the PCI power state way */
4538
4539        /* Quoting from the Open CISS Specification: "The Power
4540         * Management Control/Status Register (CSR) controls the power
4541         * state of the device. The normal operating state is D0,
4542         * CSR=00h. The software off state is D3, CSR=03h. To reset
4543         * the controller, place the interface device in D3 then to D0,
4544         * this causes a secondary PCI reset which will reset the
4545         * controller." */
4546
4547        pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4548        if (pos == 0) {
4549            dev_err(&pdev->dev,
4550                "cciss_controller_hard_reset: "
4551                "PCI PM not supported\n");
4552            return -ENODEV;
4553        }
4554        dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4555        /* enter the D3hot power management state */
4556        pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4557        pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4558        pmcsr |= PCI_D3hot;
4559        pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4560
4561        msleep(500);
4562
4563        /* enter the D0 power management state */
4564        pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4565        pmcsr |= PCI_D0;
4566        pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4567
4568        /*
4569         * The P600 requires a small delay when changing states.
4570         * Otherwise we may think the board did not reset and we bail.
4571         * This for kdump only and is particular to the P600.
4572         */
4573        msleep(500);
4574    }
4575    return 0;
4576}
4577
4578static __devinit void init_driver_version(char *driver_version, int len)
4579{
4580    memset(driver_version, 0, len);
4581    strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4582}
4583
4584static __devinit int write_driver_ver_to_cfgtable(
4585    CfgTable_struct __iomem *cfgtable)
4586{
4587    char *driver_version;
4588    int i, size = sizeof(cfgtable->driver_version);
4589
4590    driver_version = kmalloc(size, GFP_KERNEL);
4591    if (!driver_version)
4592        return -ENOMEM;
4593
4594    init_driver_version(driver_version, size);
4595    for (i = 0; i < size; i++)
4596        writeb(driver_version[i], &cfgtable->driver_version[i]);
4597    kfree(driver_version);
4598    return 0;
4599}
4600
4601static __devinit void read_driver_ver_from_cfgtable(
4602    CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4603{
4604    int i;
4605
4606    for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4607        driver_ver[i] = readb(&cfgtable->driver_version[i]);
4608}
4609
4610static __devinit int controller_reset_failed(
4611    CfgTable_struct __iomem *cfgtable)
4612{
4613
4614    char *driver_ver, *old_driver_ver;
4615    int rc, size = sizeof(cfgtable->driver_version);
4616
4617    old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4618    if (!old_driver_ver)
4619        return -ENOMEM;
4620    driver_ver = old_driver_ver + size;
4621
4622    /* After a reset, the 32 bytes of "driver version" in the cfgtable
4623     * should have been changed, otherwise we know the reset failed.
4624     */
4625    init_driver_version(old_driver_ver, size);
4626    read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4627    rc = !memcmp(driver_ver, old_driver_ver, size);
4628    kfree(old_driver_ver);
4629    return rc;
4630}
4631
4632/* This does a hard reset of the controller using PCI power management
4633 * states or using the doorbell register. */
4634static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4635{
4636    u64 cfg_offset;
4637    u32 cfg_base_addr;
4638    u64 cfg_base_addr_index;
4639    void __iomem *vaddr;
4640    unsigned long paddr;
4641    u32 misc_fw_support;
4642    int rc;
4643    CfgTable_struct __iomem *cfgtable;
4644    u32 use_doorbell;
4645    u32 board_id;
4646    u16 command_register;
4647
4648    /* For controllers as old a the p600, this is very nearly
4649     * the same thing as
4650     *
4651     * pci_save_state(pci_dev);
4652     * pci_set_power_state(pci_dev, PCI_D3hot);
4653     * pci_set_power_state(pci_dev, PCI_D0);
4654     * pci_restore_state(pci_dev);
4655     *
4656     * For controllers newer than the P600, the pci power state
4657     * method of resetting doesn't work so we have another way
4658     * using the doorbell register.
4659     */
4660
4661    /* Exclude 640x boards. These are two pci devices in one slot
4662     * which share a battery backed cache module. One controls the
4663     * cache, the other accesses the cache through the one that controls
4664     * it. If we reset the one controlling the cache, the other will
4665     * likely not be happy. Just forbid resetting this conjoined mess.
4666     */
4667    cciss_lookup_board_id(pdev, &board_id);
4668    if (!ctlr_is_resettable(board_id)) {
4669        dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4670                "due to shared cache module.");
4671        return -ENODEV;
4672    }
4673
4674    /* if controller is soft- but not hard resettable... */
4675    if (!ctlr_is_hard_resettable(board_id))
4676        return -ENOTSUPP; /* try soft reset later. */
4677
4678    /* Save the PCI command register */
4679    pci_read_config_word(pdev, 4, &command_register);
4680    /* Turn the board off. This is so that later pci_restore_state()
4681     * won't turn the board on before the rest of config space is ready.
4682     */
4683    pci_disable_device(pdev);
4684    pci_save_state(pdev);
4685
4686    /* find the first memory BAR, so we can find the cfg table */
4687    rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4688    if (rc)
4689        return rc;
4690    vaddr = remap_pci_mem(paddr, 0x250);
4691    if (!vaddr)
4692        return -ENOMEM;
4693
4694    /* find cfgtable in order to check if reset via doorbell is supported */
4695    rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4696                    &cfg_base_addr_index, &cfg_offset);
4697    if (rc)
4698        goto unmap_vaddr;
4699    cfgtable = remap_pci_mem(pci_resource_start(pdev,
4700               cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4701    if (!cfgtable) {
4702        rc = -ENOMEM;
4703        goto unmap_vaddr;
4704    }
4705    rc = write_driver_ver_to_cfgtable(cfgtable);
4706    if (rc)
4707        goto unmap_vaddr;
4708
4709    /* If reset via doorbell register is supported, use that.
4710     * There are two such methods. Favor the newest method.
4711     */
4712    misc_fw_support = readl(&cfgtable->misc_fw_support);
4713    use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4714    if (use_doorbell) {
4715        use_doorbell = DOORBELL_CTLR_RESET2;
4716    } else {
4717        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4718        if (use_doorbell) {
4719            dev_warn(&pdev->dev, "Controller claims that "
4720                "'Bit 2 doorbell reset' is "
4721                "supported, but not 'bit 5 doorbell reset'. "
4722                "Firmware update is recommended.\n");
4723            rc = -ENOTSUPP; /* use the soft reset */
4724            goto unmap_cfgtable;
4725        }
4726    }
4727
4728    rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4729    if (rc)
4730        goto unmap_cfgtable;
4731    pci_restore_state(pdev);
4732    rc = pci_enable_device(pdev);
4733    if (rc) {
4734        dev_warn(&pdev->dev, "failed to enable device.\n");
4735        goto unmap_cfgtable;
4736    }
4737    pci_write_config_word(pdev, 4, command_register);
4738
4739    /* Some devices (notably the HP Smart Array 5i Controller)
4740       need a little pause here */
4741    msleep(CCISS_POST_RESET_PAUSE_MSECS);
4742
4743    /* Wait for board to become not ready, then ready. */
4744    dev_info(&pdev->dev, "Waiting for board to reset.\n");
4745    rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4746    if (rc) {
4747        dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4748                " Will try soft reset.\n");
4749        rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4750        goto unmap_cfgtable;
4751    }
4752    rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4753    if (rc) {
4754        dev_warn(&pdev->dev,
4755            "failed waiting for board to become ready "
4756            "after hard reset\n");
4757        goto unmap_cfgtable;
4758    }
4759
4760    rc = controller_reset_failed(vaddr);
4761    if (rc < 0)
4762        goto unmap_cfgtable;
4763    if (rc) {
4764        dev_warn(&pdev->dev, "Unable to successfully hard reset "
4765            "controller. Will try soft reset.\n");
4766        rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4767    } else {
4768        dev_info(&pdev->dev, "Board ready after hard reset.\n");
4769    }
4770
4771unmap_cfgtable:
4772    iounmap(cfgtable);
4773
4774unmap_vaddr:
4775    iounmap(vaddr);
4776    return rc;
4777}
4778
4779static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4780{
4781    int rc, i;
4782
4783    if (!reset_devices)
4784        return 0;
4785
4786    /* Reset the controller with a PCI power-cycle or via doorbell */
4787    rc = cciss_kdump_hard_reset_controller(pdev);
4788
4789    /* -ENOTSUPP here means we cannot reset the controller
4790     * but it's already (and still) up and running in
4791     * "performant mode". Or, it might be 640x, which can't reset
4792     * due to concerns about shared bbwc between 6402/6404 pair.
4793     */
4794    if (rc == -ENOTSUPP)
4795        return rc; /* just try to do the kdump anyhow. */
4796    if (rc)
4797        return -ENODEV;
4798
4799    /* Now try to get the controller to respond to a no-op */
4800    dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4801    for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4802        if (cciss_noop(pdev) == 0)
4803            break;
4804        else
4805            dev_warn(&pdev->dev, "no-op failed%s\n",
4806                (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4807                    "; re-trying" : ""));
4808        msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4809    }
4810    return 0;
4811}
4812
4813static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4814{
4815    h->cmd_pool_bits = kmalloc(
4816        DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4817        sizeof(unsigned long), GFP_KERNEL);
4818    h->cmd_pool = pci_alloc_consistent(h->pdev,
4819        h->nr_cmds * sizeof(CommandList_struct),
4820        &(h->cmd_pool_dhandle));
4821    h->errinfo_pool = pci_alloc_consistent(h->pdev,
4822        h->nr_cmds * sizeof(ErrorInfo_struct),
4823        &(h->errinfo_pool_dhandle));
4824    if ((h->cmd_pool_bits == NULL)
4825        || (h->cmd_pool == NULL)
4826        || (h->errinfo_pool == NULL)) {
4827        dev_err(&h->pdev->dev, "out of memory");
4828        return -ENOMEM;
4829    }
4830    return 0;
4831}
4832
4833static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4834{
4835    int i;
4836
4837    /* zero it, so that on free we need not know how many were alloc'ed */
4838    h->scatter_list = kzalloc(h->max_commands *
4839                sizeof(struct scatterlist *), GFP_KERNEL);
4840    if (!h->scatter_list)
4841        return -ENOMEM;
4842
4843    for (i = 0; i < h->nr_cmds; i++) {
4844        h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4845                        h->maxsgentries, GFP_KERNEL);
4846        if (h->scatter_list[i] == NULL) {
4847            dev_err(&h->pdev->dev, "could not allocate "
4848                "s/g lists\n");
4849            return -ENOMEM;
4850        }
4851    }
4852    return 0;
4853}
4854
4855static void cciss_free_scatterlists(ctlr_info_t *h)
4856{
4857    int i;
4858
4859    if (h->scatter_list) {
4860        for (i = 0; i < h->nr_cmds; i++)
4861            kfree(h->scatter_list[i]);
4862        kfree(h->scatter_list);
4863    }
4864}
4865
4866static void cciss_free_cmd_pool(ctlr_info_t *h)
4867{
4868    kfree(h->cmd_pool_bits);
4869    if (h->cmd_pool)
4870        pci_free_consistent(h->pdev,
4871            h->nr_cmds * sizeof(CommandList_struct),
4872            h->cmd_pool, h->cmd_pool_dhandle);
4873    if (h->errinfo_pool)
4874        pci_free_consistent(h->pdev,
4875            h->nr_cmds * sizeof(ErrorInfo_struct),
4876            h->errinfo_pool, h->errinfo_pool_dhandle);
4877}
4878
4879static int cciss_request_irq(ctlr_info_t *h,
4880    irqreturn_t (*msixhandler)(int, void *),
4881    irqreturn_t (*intxhandler)(int, void *))
4882{
4883    if (h->msix_vector || h->msi_vector) {
4884        if (!request_irq(h->intr[h->intr_mode], msixhandler,
4885                0, h->devname, h))
4886            return 0;
4887        dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4888            " for %s\n", h->intr[h->intr_mode],
4889            h->devname);
4890        return -1;
4891    }
4892
4893    if (!request_irq(h->intr[h->intr_mode], intxhandler,
4894            IRQF_SHARED, h->devname, h))
4895        return 0;
4896    dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4897        h->intr[h->intr_mode], h->devname);
4898    return -1;
4899}
4900
4901static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4902{
4903    if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4904        dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4905        return -EIO;
4906    }
4907
4908    dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4909    if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4910        dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4911        return -1;
4912    }
4913
4914    dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4915    if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4916        dev_warn(&h->pdev->dev, "Board failed to become ready "
4917            "after soft reset.\n");
4918        return -1;
4919    }
4920
4921    return 0;
4922}
4923
4924static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4925{
4926    int ctlr = h->ctlr;
4927
4928    free_irq(h->intr[h->intr_mode], h);
4929#ifdef CONFIG_PCI_MSI
4930    if (h->msix_vector)
4931        pci_disable_msix(h->pdev);
4932    else if (h->msi_vector)
4933        pci_disable_msi(h->pdev);
4934#endif /* CONFIG_PCI_MSI */
4935    cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4936    cciss_free_scatterlists(h);
4937    cciss_free_cmd_pool(h);
4938    kfree(h->blockFetchTable);
4939    if (h->reply_pool)
4940        pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4941                h->reply_pool, h->reply_pool_dhandle);
4942    if (h->transtable)
4943        iounmap(h->transtable);
4944    if (h->cfgtable)
4945        iounmap(h->cfgtable);
4946    if (h->vaddr)
4947        iounmap(h->vaddr);
4948    unregister_blkdev(h->major, h->devname);
4949    cciss_destroy_hba_sysfs_entry(h);
4950    pci_release_regions(h->pdev);
4951    kfree(h);
4952    hba[ctlr] = NULL;
4953}
4954
4955/*
4956 * This is it. Find all the controllers and register them. I really hate
4957 * stealing all these major device numbers.
4958 * returns the number of block devices registered.
4959 */
4960static int __devinit cciss_init_one(struct pci_dev *pdev,
4961                    const struct pci_device_id *ent)
4962{
4963    int i;
4964    int j = 0;
4965    int rc;
4966    int try_soft_reset = 0;
4967    int dac, return_code;
4968    InquiryData_struct *inq_buff;
4969    ctlr_info_t *h;
4970    unsigned long flags;
4971
4972    rc = cciss_init_reset_devices(pdev);
4973    if (rc) {
4974        if (rc != -ENOTSUPP)
4975            return rc;
4976        /* If the reset fails in a particular way (it has no way to do
4977         * a proper hard reset, so returns -ENOTSUPP) we can try to do
4978         * a soft reset once we get the controller configured up to the
4979         * point that it can accept a command.
4980         */
4981        try_soft_reset = 1;
4982        rc = 0;
4983    }
4984
4985reinit_after_soft_reset:
4986
4987    i = alloc_cciss_hba(pdev);
4988    if (i < 0)
4989        return -1;
4990
4991    h = hba[i];
4992    h->pdev = pdev;
4993    h->busy_initializing = 1;
4994    h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4995    INIT_LIST_HEAD(&h->cmpQ);
4996    INIT_LIST_HEAD(&h->reqQ);
4997    mutex_init(&h->busy_shutting_down);
4998
4999    if (cciss_pci_init(h) != 0)
5000        goto clean_no_release_regions;
5001
5002    sprintf(h->devname, "cciss%d", i);
5003    h->ctlr = i;
5004
5005    if (cciss_tape_cmds < 2)
5006        cciss_tape_cmds = 2;
5007    if (cciss_tape_cmds > 16)
5008        cciss_tape_cmds = 16;
5009
5010    init_completion(&h->scan_wait);
5011
5012    if (cciss_create_hba_sysfs_entry(h))
5013        goto clean0;
5014
5015    /* configure PCI DMA stuff */
5016    if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5017        dac = 1;
5018    else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5019        dac = 0;
5020    else {
5021        dev_err(&h->pdev->dev, "no suitable DMA available\n");
5022        goto clean1;
5023    }
5024
5025    /*
5026     * register with the major number, or get a dynamic major number
5027     * by passing 0 as argument. This is done for greater than
5028     * 8 controller support.
5029     */
5030    if (i < MAX_CTLR_ORIG)
5031        h->major = COMPAQ_CISS_MAJOR + i;
5032    rc = register_blkdev(h->major, h->devname);
5033    if (rc == -EBUSY || rc == -EINVAL) {
5034        dev_err(&h->pdev->dev,
5035               "Unable to get major number %d for %s "
5036               "on hba %d\n", h->major, h->devname, i);
5037        goto clean1;
5038    } else {
5039        if (i >= MAX_CTLR_ORIG)
5040            h->major = rc;
5041    }
5042
5043    /* make sure the board interrupts are off */
5044    h->access.set_intr_mask(h, CCISS_INTR_OFF);
5045    rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5046    if (rc)
5047        goto clean2;
5048
5049    dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5050           h->devname, pdev->device, pci_name(pdev),
5051           h->intr[h->intr_mode], dac ? "" : " not");
5052
5053    if (cciss_allocate_cmd_pool(h))
5054        goto clean4;
5055
5056    if (cciss_allocate_scatterlists(h))
5057        goto clean4;
5058
5059    h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5060        h->chainsize, h->nr_cmds);
5061    if (!h->cmd_sg_list && h->chainsize > 0)
5062        goto clean4;
5063
5064    spin_lock_init(&h->lock);
5065
5066    /* Initialize the pdev driver private data.
5067       have it point to h. */
5068    pci_set_drvdata(pdev, h);
5069    /* command and error info recs zeroed out before
5070       they are used */
5071    memset(h->cmd_pool_bits, 0,
5072           DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5073            * sizeof(unsigned long));
5074
5075    h->num_luns = 0;
5076    h->highest_lun = -1;
5077    for (j = 0; j < CISS_MAX_LUN; j++) {
5078        h->drv[j] = NULL;
5079        h->gendisk[j] = NULL;
5080    }
5081
5082    /* At this point, the controller is ready to take commands.
5083     * Now, if reset_devices and the hard reset didn't work, try
5084     * the soft reset and see if that works.
5085     */
5086    if (try_soft_reset) {
5087
5088        /* This is kind of gross. We may or may not get a completion
5089         * from the soft reset command, and if we do, then the value
5090         * from the fifo may or may not be valid. So, we wait 10 secs
5091         * after the reset throwing away any completions we get during
5092         * that time. Unregister the interrupt handler and register
5093         * fake ones to scoop up any residual completions.
5094         */
5095        spin_lock_irqsave(&h->lock, flags);
5096        h->access.set_intr_mask(h, CCISS_INTR_OFF);
5097        spin_unlock_irqrestore(&h->lock, flags);
5098        free_irq(h->intr[h->intr_mode], h);
5099        rc = cciss_request_irq(h, cciss_msix_discard_completions,
5100                    cciss_intx_discard_completions);
5101        if (rc) {
5102            dev_warn(&h->pdev->dev, "Failed to request_irq after "
5103                "soft reset.\n");
5104            goto clean4;
5105        }
5106
5107        rc = cciss_kdump_soft_reset(h);
5108        if (rc) {
5109            dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5110            goto clean4;
5111        }
5112
5113        dev_info(&h->pdev->dev, "Board READY.\n");
5114        dev_info(&h->pdev->dev,
5115            "Waiting for stale completions to drain.\n");
5116        h->access.set_intr_mask(h, CCISS_INTR_ON);
5117        msleep(10000);
5118        h->access.set_intr_mask(h, CCISS_INTR_OFF);
5119
5120        rc = controller_reset_failed(h->cfgtable);
5121        if (rc)
5122            dev_info(&h->pdev->dev,
5123                "Soft reset appears to have failed.\n");
5124
5125        /* since the controller's reset, we have to go back and re-init
5126         * everything. Easiest to just forget what we've done and do it
5127         * all over again.
5128         */
5129        cciss_undo_allocations_after_kdump_soft_reset(h);
5130        try_soft_reset = 0;
5131        if (rc)
5132            /* don't go to clean4, we already unallocated */
5133            return -ENODEV;
5134
5135        goto reinit_after_soft_reset;
5136    }
5137
5138    cciss_scsi_setup(h);
5139
5140    /* Turn the interrupts on so we can service requests */
5141    h->access.set_intr_mask(h, CCISS_INTR_ON);
5142
5143    /* Get the firmware version */
5144    inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5145    if (inq_buff == NULL) {
5146        dev_err(&h->pdev->dev, "out of memory\n");
5147        goto clean4;
5148    }
5149
5150    return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5151        sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5152    if (return_code == IO_OK) {
5153        h->firm_ver[0] = inq_buff->data_byte[32];
5154        h->firm_ver[1] = inq_buff->data_byte[33];
5155        h->firm_ver[2] = inq_buff->data_byte[34];
5156        h->firm_ver[3] = inq_buff->data_byte[35];
5157    } else { /* send command failed */
5158        dev_warn(&h->pdev->dev, "unable to determine firmware"
5159            " version of controller\n");
5160    }
5161    kfree(inq_buff);
5162
5163    cciss_procinit(h);
5164
5165    h->cciss_max_sectors = 8192;
5166
5167    rebuild_lun_table(h, 1, 0);
5168    cciss_engage_scsi(h);
5169    h->busy_initializing = 0;
5170    return 1;
5171
5172clean4:
5173    cciss_free_cmd_pool(h);
5174    cciss_free_scatterlists(h);
5175    cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5176    free_irq(h->intr[h->intr_mode], h);
5177clean2:
5178    unregister_blkdev(h->major, h->devname);
5179clean1:
5180    cciss_destroy_hba_sysfs_entry(h);
5181clean0:
5182    pci_release_regions(pdev);
5183clean_no_release_regions:
5184    h->busy_initializing = 0;
5185
5186    /*
5187     * Deliberately omit pci_disable_device(): it does something nasty to
5188     * Smart Array controllers that pci_enable_device does not undo
5189     */
5190    pci_set_drvdata(pdev, NULL);
5191    free_hba(h);
5192    return -1;
5193}
5194
5195static void cciss_shutdown(struct pci_dev *pdev)
5196{
5197    ctlr_info_t *h;
5198    char *flush_buf;
5199    int return_code;
5200
5201    h = pci_get_drvdata(pdev);
5202    flush_buf = kzalloc(4, GFP_KERNEL);
5203    if (!flush_buf) {
5204        dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5205        return;
5206    }
5207    /* write all data in the battery backed cache to disk */
5208    memset(flush_buf, 0, 4);
5209    return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5210        4, 0, CTLR_LUNID, TYPE_CMD);
5211    kfree(flush_buf);
5212    if (return_code != IO_OK)
5213        dev_warn(&h->pdev->dev, "Error flushing cache\n");
5214    h->access.set_intr_mask(h, CCISS_INTR_OFF);
5215    free_irq(h->intr[h->intr_mode], h);
5216}
5217
5218static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5219{
5220    u32 trans_support;
5221
5222    trans_support = readl(&(h->cfgtable->TransportSupport));
5223    if (!(trans_support & SIMPLE_MODE))
5224        return -ENOTSUPP;
5225
5226    h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5227    writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5228    writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5229    cciss_wait_for_mode_change_ack(h);
5230    print_cfg_table(h);
5231    if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5232        dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5233        return -ENODEV;
5234    }
5235    h->transMethod = CFGTBL_Trans_Simple;
5236    return 0;
5237}
5238
5239
5240static void __devexit cciss_remove_one(struct pci_dev *pdev)
5241{
5242    ctlr_info_t *h;
5243    int i, j;
5244
5245    if (pci_get_drvdata(pdev) == NULL) {
5246        dev_err(&pdev->dev, "Unable to remove device\n");
5247        return;
5248    }
5249
5250    h = pci_get_drvdata(pdev);
5251    i = h->ctlr;
5252    if (hba[i] == NULL) {
5253        dev_err(&pdev->dev, "device appears to already be removed\n");
5254        return;
5255    }
5256
5257    mutex_lock(&h->busy_shutting_down);
5258
5259    remove_from_scan_list(h);
5260    remove_proc_entry(h->devname, proc_cciss);
5261    unregister_blkdev(h->major, h->devname);
5262
5263    /* remove it from the disk list */
5264    for (j = 0; j < CISS_MAX_LUN; j++) {
5265        struct gendisk *disk = h->gendisk[j];
5266        if (disk) {
5267            struct request_queue *q = disk->queue;
5268
5269            if (disk->flags & GENHD_FL_UP) {
5270                cciss_destroy_ld_sysfs_entry(h, j, 1);
5271                del_gendisk(disk);
5272            }
5273            if (q)
5274                blk_cleanup_queue(q);
5275        }
5276    }
5277
5278#ifdef CONFIG_CISS_SCSI_TAPE
5279    cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5280#endif
5281
5282    cciss_shutdown(pdev);
5283
5284#ifdef CONFIG_PCI_MSI
5285    if (h->msix_vector)
5286        pci_disable_msix(h->pdev);
5287    else if (h->msi_vector)
5288        pci_disable_msi(h->pdev);
5289#endif /* CONFIG_PCI_MSI */
5290
5291    iounmap(h->transtable);
5292    iounmap(h->cfgtable);
5293    iounmap(h->vaddr);
5294
5295    cciss_free_cmd_pool(h);
5296    /* Free up sg elements */
5297    for (j = 0; j < h->nr_cmds; j++)
5298        kfree(h->scatter_list[j]);
5299    kfree(h->scatter_list);
5300    cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5301    kfree(h->blockFetchTable);
5302    if (h->reply_pool)
5303        pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5304                h->reply_pool, h->reply_pool_dhandle);
5305    /*
5306     * Deliberately omit pci_disable_device(): it does something nasty to
5307     * Smart Array controllers that pci_enable_device does not undo
5308     */
5309    pci_release_regions(pdev);
5310    pci_set_drvdata(pdev, NULL);
5311    cciss_destroy_hba_sysfs_entry(h);
5312    mutex_unlock(&h->busy_shutting_down);
5313    free_hba(h);
5314}
5315
5316static struct pci_driver cciss_pci_driver = {
5317    .name = "cciss",
5318    .probe = cciss_init_one,
5319    .remove = __devexit_p(cciss_remove_one),
5320    .id_table = cciss_pci_device_id, /* id_table */
5321    .shutdown = cciss_shutdown,
5322};
5323
5324/*
5325 * This is it. Register the PCI driver information for the cards we control
5326 * the OS will call our registered routines when it finds one of our cards.
5327 */
5328static int __init cciss_init(void)
5329{
5330    int err;
5331
5332    /*
5333     * The hardware requires that commands are aligned on a 64-bit
5334     * boundary. Given that we use pci_alloc_consistent() to allocate an
5335     * array of them, the size must be a multiple of 8 bytes.
5336     */
5337    BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5338    printk(KERN_INFO DRIVER_NAME "\n");
5339
5340    err = bus_register(&cciss_bus_type);
5341    if (err)
5342        return err;
5343
5344    /* Start the scan thread */
5345    cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5346    if (IS_ERR(cciss_scan_thread)) {
5347        err = PTR_ERR(cciss_scan_thread);
5348        goto err_bus_unregister;
5349    }
5350
5351    /* Register for our PCI devices */
5352    err = pci_register_driver(&cciss_pci_driver);
5353    if (err)
5354        goto err_thread_stop;
5355
5356    return err;
5357
5358err_thread_stop:
5359    kthread_stop(cciss_scan_thread);
5360err_bus_unregister:
5361    bus_unregister(&cciss_bus_type);
5362
5363    return err;
5364}
5365
5366static void __exit cciss_cleanup(void)
5367{
5368    int i;
5369
5370    pci_unregister_driver(&cciss_pci_driver);
5371    /* double check that all controller entrys have been removed */
5372    for (i = 0; i < MAX_CTLR; i++) {
5373        if (hba[i] != NULL) {
5374            dev_warn(&hba[i]->pdev->dev,
5375                "had to remove controller\n");
5376            cciss_remove_one(hba[i]->pdev);
5377        }
5378    }
5379    kthread_stop(cciss_scan_thread);
5380    if (proc_cciss)
5381        remove_proc_entry("driver/cciss", NULL);
5382    bus_unregister(&cciss_bus_type);
5383}
5384
5385module_init(cciss_init);
5386module_exit(cciss_cleanup);
5387

Archive Download this file



interactive