Root/drivers/block/nvme.c

1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
49#define NVME_IO_TIMEOUT (5 * HZ)
50#define ADMIN_TIMEOUT (60 * HZ)
51
52static int nvme_major;
53module_param(nvme_major, int, 0);
54
55static int use_threaded_interrupts;
56module_param(use_threaded_interrupts, int, 0);
57
58static DEFINE_SPINLOCK(dev_list_lock);
59static LIST_HEAD(dev_list);
60static struct task_struct *nvme_thread;
61
62/*
63 * Represents an NVM Express device. Each nvme_dev is a PCI function.
64 */
65struct nvme_dev {
66    struct list_head node;
67    struct nvme_queue **queues;
68    u32 __iomem *dbs;
69    struct pci_dev *pci_dev;
70    struct dma_pool *prp_page_pool;
71    struct dma_pool *prp_small_pool;
72    int instance;
73    int queue_count;
74    int db_stride;
75    u32 ctrl_config;
76    struct msix_entry *entry;
77    struct nvme_bar __iomem *bar;
78    struct list_head namespaces;
79    char serial[20];
80    char model[40];
81    char firmware_rev[8];
82    u32 max_hw_sectors;
83};
84
85/*
86 * An NVM Express namespace is equivalent to a SCSI LUN
87 */
88struct nvme_ns {
89    struct list_head list;
90
91    struct nvme_dev *dev;
92    struct request_queue *queue;
93    struct gendisk *disk;
94
95    int ns_id;
96    int lba_shift;
97};
98
99/*
100 * An NVM Express queue. Each device has at least two (one for admin
101 * commands and one for I/O commands).
102 */
103struct nvme_queue {
104    struct device *q_dmadev;
105    struct nvme_dev *dev;
106    spinlock_t q_lock;
107    struct nvme_command *sq_cmds;
108    volatile struct nvme_completion *cqes;
109    dma_addr_t sq_dma_addr;
110    dma_addr_t cq_dma_addr;
111    wait_queue_head_t sq_full;
112    wait_queue_t sq_cong_wait;
113    struct bio_list sq_cong;
114    u32 __iomem *q_db;
115    u16 q_depth;
116    u16 cq_vector;
117    u16 sq_head;
118    u16 sq_tail;
119    u16 cq_head;
120    u16 cq_phase;
121    unsigned long cmdid_data[];
122};
123
124/*
125 * Check we didin't inadvertently grow the command struct
126 */
127static inline void _nvme_check_size(void)
128{
129    BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
130    BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
131    BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
132    BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
133    BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
134    BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135    BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136    BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137    BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138}
139
140typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
141                        struct nvme_completion *);
142
143struct nvme_cmd_info {
144    nvme_completion_fn fn;
145    void *ctx;
146    unsigned long timeout;
147};
148
149static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150{
151    return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
152}
153
154/**
155 * alloc_cmdid() - Allocate a Command ID
156 * @nvmeq: The queue that will be used for this command
157 * @ctx: A pointer that will be passed to the handler
158 * @handler: The function to call on completion
159 *
160 * Allocate a Command ID for a queue. The data passed in will
161 * be passed to the completion handler. This is implemented by using
162 * the bottom two bits of the ctx pointer to store the handler ID.
163 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
164 * We can change this if it becomes a problem.
165 *
166 * May be called with local interrupts disabled and the q_lock held,
167 * or with interrupts enabled and no locks held.
168 */
169static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
170                nvme_completion_fn handler, unsigned timeout)
171{
172    int depth = nvmeq->q_depth - 1;
173    struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
174    int cmdid;
175
176    do {
177        cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
178        if (cmdid >= depth)
179            return -EBUSY;
180    } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
181
182    info[cmdid].fn = handler;
183    info[cmdid].ctx = ctx;
184    info[cmdid].timeout = jiffies + timeout;
185    return cmdid;
186}
187
188static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
189                nvme_completion_fn handler, unsigned timeout)
190{
191    int cmdid;
192    wait_event_killable(nvmeq->sq_full,
193        (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
194    return (cmdid < 0) ? -EINTR : cmdid;
195}
196
197/* Special values must be less than 0x1000 */
198#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
199#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
200#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
201#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
202#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
203
204static void special_completion(struct nvme_dev *dev, void *ctx,
205                        struct nvme_completion *cqe)
206{
207    if (ctx == CMD_CTX_CANCELLED)
208        return;
209    if (ctx == CMD_CTX_FLUSH)
210        return;
211    if (ctx == CMD_CTX_COMPLETED) {
212        dev_warn(&dev->pci_dev->dev,
213                "completed id %d twice on queue %d\n",
214                cqe->command_id, le16_to_cpup(&cqe->sq_id));
215        return;
216    }
217    if (ctx == CMD_CTX_INVALID) {
218        dev_warn(&dev->pci_dev->dev,
219                "invalid id %d completed on queue %d\n",
220                cqe->command_id, le16_to_cpup(&cqe->sq_id));
221        return;
222    }
223
224    dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
225}
226
227/*
228 * Called with local interrupts disabled and the q_lock held. May not sleep.
229 */
230static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
231                        nvme_completion_fn *fn)
232{
233    void *ctx;
234    struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
235
236    if (cmdid >= nvmeq->q_depth) {
237        *fn = special_completion;
238        return CMD_CTX_INVALID;
239    }
240    *fn = info[cmdid].fn;
241    ctx = info[cmdid].ctx;
242    info[cmdid].fn = special_completion;
243    info[cmdid].ctx = CMD_CTX_COMPLETED;
244    clear_bit(cmdid, nvmeq->cmdid_data);
245    wake_up(&nvmeq->sq_full);
246    return ctx;
247}
248
249static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
250                        nvme_completion_fn *fn)
251{
252    void *ctx;
253    struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
254    if (fn)
255        *fn = info[cmdid].fn;
256    ctx = info[cmdid].ctx;
257    info[cmdid].fn = special_completion;
258    info[cmdid].ctx = CMD_CTX_CANCELLED;
259    return ctx;
260}
261
262static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
263{
264    return dev->queues[get_cpu() + 1];
265}
266
267static void put_nvmeq(struct nvme_queue *nvmeq)
268{
269    put_cpu();
270}
271
272/**
273 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
274 * @nvmeq: The queue to use
275 * @cmd: The command to send
276 *
277 * Safe to use from interrupt context
278 */
279static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
280{
281    unsigned long flags;
282    u16 tail;
283    spin_lock_irqsave(&nvmeq->q_lock, flags);
284    tail = nvmeq->sq_tail;
285    memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
286    if (++tail == nvmeq->q_depth)
287        tail = 0;
288    writel(tail, nvmeq->q_db);
289    nvmeq->sq_tail = tail;
290    spin_unlock_irqrestore(&nvmeq->q_lock, flags);
291
292    return 0;
293}
294
295/*
296 * The nvme_iod describes the data in an I/O, including the list of PRP
297 * entries. You can't see it in this data structure because C doesn't let
298 * me express that. Use nvme_alloc_iod to ensure there's enough space
299 * allocated to store the PRP list.
300 */
301struct nvme_iod {
302    void *private; /* For the use of the submitter of the I/O */
303    int npages; /* In the PRP list. 0 means small pool in use */
304    int offset; /* Of PRP list */
305    int nents; /* Used in scatterlist */
306    int length; /* Of data, in bytes */
307    dma_addr_t first_dma;
308    struct scatterlist sg[0];
309};
310
311static __le64 **iod_list(struct nvme_iod *iod)
312{
313    return ((void *)iod) + iod->offset;
314}
315
316/*
317 * Will slightly overestimate the number of pages needed. This is OK
318 * as it only leads to a small amount of wasted memory for the lifetime of
319 * the I/O.
320 */
321static int nvme_npages(unsigned size)
322{
323    unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
324    return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
325}
326
327static struct nvme_iod *
328nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
329{
330    struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
331                sizeof(__le64 *) * nvme_npages(nbytes) +
332                sizeof(struct scatterlist) * nseg, gfp);
333
334    if (iod) {
335        iod->offset = offsetof(struct nvme_iod, sg[nseg]);
336        iod->npages = -1;
337        iod->length = nbytes;
338    }
339
340    return iod;
341}
342
343static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
344{
345    const int last_prp = PAGE_SIZE / 8 - 1;
346    int i;
347    __le64 **list = iod_list(iod);
348    dma_addr_t prp_dma = iod->first_dma;
349
350    if (iod->npages == 0)
351        dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
352    for (i = 0; i < iod->npages; i++) {
353        __le64 *prp_list = list[i];
354        dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
355        dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
356        prp_dma = next_prp_dma;
357    }
358    kfree(iod);
359}
360
361static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
362{
363    struct nvme_queue *nvmeq = get_nvmeq(dev);
364    if (bio_list_empty(&nvmeq->sq_cong))
365        add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
366    bio_list_add(&nvmeq->sq_cong, bio);
367    put_nvmeq(nvmeq);
368    wake_up_process(nvme_thread);
369}
370
371static void bio_completion(struct nvme_dev *dev, void *ctx,
372                        struct nvme_completion *cqe)
373{
374    struct nvme_iod *iod = ctx;
375    struct bio *bio = iod->private;
376    u16 status = le16_to_cpup(&cqe->status) >> 1;
377
378    dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
379            bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
380    nvme_free_iod(dev, iod);
381    if (status) {
382        bio_endio(bio, -EIO);
383    } else if (bio->bi_vcnt > bio->bi_idx) {
384        requeue_bio(dev, bio);
385    } else {
386        bio_endio(bio, 0);
387    }
388}
389
390/* length is in bytes. gfp flags indicates whether we may sleep. */
391static int nvme_setup_prps(struct nvme_dev *dev,
392            struct nvme_common_command *cmd, struct nvme_iod *iod,
393            int total_len, gfp_t gfp)
394{
395    struct dma_pool *pool;
396    int length = total_len;
397    struct scatterlist *sg = iod->sg;
398    int dma_len = sg_dma_len(sg);
399    u64 dma_addr = sg_dma_address(sg);
400    int offset = offset_in_page(dma_addr);
401    __le64 *prp_list;
402    __le64 **list = iod_list(iod);
403    dma_addr_t prp_dma;
404    int nprps, i;
405
406    cmd->prp1 = cpu_to_le64(dma_addr);
407    length -= (PAGE_SIZE - offset);
408    if (length <= 0)
409        return total_len;
410
411    dma_len -= (PAGE_SIZE - offset);
412    if (dma_len) {
413        dma_addr += (PAGE_SIZE - offset);
414    } else {
415        sg = sg_next(sg);
416        dma_addr = sg_dma_address(sg);
417        dma_len = sg_dma_len(sg);
418    }
419
420    if (length <= PAGE_SIZE) {
421        cmd->prp2 = cpu_to_le64(dma_addr);
422        return total_len;
423    }
424
425    nprps = DIV_ROUND_UP(length, PAGE_SIZE);
426    if (nprps <= (256 / 8)) {
427        pool = dev->prp_small_pool;
428        iod->npages = 0;
429    } else {
430        pool = dev->prp_page_pool;
431        iod->npages = 1;
432    }
433
434    prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
435    if (!prp_list) {
436        cmd->prp2 = cpu_to_le64(dma_addr);
437        iod->npages = -1;
438        return (total_len - length) + PAGE_SIZE;
439    }
440    list[0] = prp_list;
441    iod->first_dma = prp_dma;
442    cmd->prp2 = cpu_to_le64(prp_dma);
443    i = 0;
444    for (;;) {
445        if (i == PAGE_SIZE / 8) {
446            __le64 *old_prp_list = prp_list;
447            prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
448            if (!prp_list)
449                return total_len - length;
450            list[iod->npages++] = prp_list;
451            prp_list[0] = old_prp_list[i - 1];
452            old_prp_list[i - 1] = cpu_to_le64(prp_dma);
453            i = 1;
454        }
455        prp_list[i++] = cpu_to_le64(dma_addr);
456        dma_len -= PAGE_SIZE;
457        dma_addr += PAGE_SIZE;
458        length -= PAGE_SIZE;
459        if (length <= 0)
460            break;
461        if (dma_len > 0)
462            continue;
463        BUG_ON(dma_len < 0);
464        sg = sg_next(sg);
465        dma_addr = sg_dma_address(sg);
466        dma_len = sg_dma_len(sg);
467    }
468
469    return total_len;
470}
471
472/* NVMe scatterlists require no holes in the virtual address */
473#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
474            (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
475
476static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
477        struct bio *bio, enum dma_data_direction dma_dir, int psegs)
478{
479    struct bio_vec *bvec, *bvprv = NULL;
480    struct scatterlist *sg = NULL;
481    int i, old_idx, length = 0, nsegs = 0;
482
483    sg_init_table(iod->sg, psegs);
484    old_idx = bio->bi_idx;
485    bio_for_each_segment(bvec, bio, i) {
486        if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
487            sg->length += bvec->bv_len;
488        } else {
489            if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
490                break;
491            sg = sg ? sg + 1 : iod->sg;
492            sg_set_page(sg, bvec->bv_page, bvec->bv_len,
493                            bvec->bv_offset);
494            nsegs++;
495        }
496        length += bvec->bv_len;
497        bvprv = bvec;
498    }
499    bio->bi_idx = i;
500    iod->nents = nsegs;
501    sg_mark_end(sg);
502    if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
503        bio->bi_idx = old_idx;
504        return -ENOMEM;
505    }
506    return length;
507}
508
509static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
510                                int cmdid)
511{
512    struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
513
514    memset(cmnd, 0, sizeof(*cmnd));
515    cmnd->common.opcode = nvme_cmd_flush;
516    cmnd->common.command_id = cmdid;
517    cmnd->common.nsid = cpu_to_le32(ns->ns_id);
518
519    if (++nvmeq->sq_tail == nvmeq->q_depth)
520        nvmeq->sq_tail = 0;
521    writel(nvmeq->sq_tail, nvmeq->q_db);
522
523    return 0;
524}
525
526static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
527{
528    int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
529                    special_completion, NVME_IO_TIMEOUT);
530    if (unlikely(cmdid < 0))
531        return cmdid;
532
533    return nvme_submit_flush(nvmeq, ns, cmdid);
534}
535
536/*
537 * Called with local interrupts disabled and the q_lock held. May not sleep.
538 */
539static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
540                                struct bio *bio)
541{
542    struct nvme_command *cmnd;
543    struct nvme_iod *iod;
544    enum dma_data_direction dma_dir;
545    int cmdid, length, result = -ENOMEM;
546    u16 control;
547    u32 dsmgmt;
548    int psegs = bio_phys_segments(ns->queue, bio);
549
550    if ((bio->bi_rw & REQ_FLUSH) && psegs) {
551        result = nvme_submit_flush_data(nvmeq, ns);
552        if (result)
553            return result;
554    }
555
556    iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
557    if (!iod)
558        goto nomem;
559    iod->private = bio;
560
561    result = -EBUSY;
562    cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
563    if (unlikely(cmdid < 0))
564        goto free_iod;
565
566    if ((bio->bi_rw & REQ_FLUSH) && !psegs)
567        return nvme_submit_flush(nvmeq, ns, cmdid);
568
569    control = 0;
570    if (bio->bi_rw & REQ_FUA)
571        control |= NVME_RW_FUA;
572    if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
573        control |= NVME_RW_LR;
574
575    dsmgmt = 0;
576    if (bio->bi_rw & REQ_RAHEAD)
577        dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
578
579    cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
580
581    memset(cmnd, 0, sizeof(*cmnd));
582    if (bio_data_dir(bio)) {
583        cmnd->rw.opcode = nvme_cmd_write;
584        dma_dir = DMA_TO_DEVICE;
585    } else {
586        cmnd->rw.opcode = nvme_cmd_read;
587        dma_dir = DMA_FROM_DEVICE;
588    }
589
590    result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
591    if (result < 0)
592        goto free_iod;
593    length = result;
594
595    cmnd->rw.command_id = cmdid;
596    cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
597    length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
598                                GFP_ATOMIC);
599    cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
600    cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
601    cmnd->rw.control = cpu_to_le16(control);
602    cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
603
604    bio->bi_sector += length >> 9;
605
606    if (++nvmeq->sq_tail == nvmeq->q_depth)
607        nvmeq->sq_tail = 0;
608    writel(nvmeq->sq_tail, nvmeq->q_db);
609
610    return 0;
611
612 free_iod:
613    nvme_free_iod(nvmeq->dev, iod);
614 nomem:
615    return result;
616}
617
618static void nvme_make_request(struct request_queue *q, struct bio *bio)
619{
620    struct nvme_ns *ns = q->queuedata;
621    struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
622    int result = -EBUSY;
623
624    spin_lock_irq(&nvmeq->q_lock);
625    if (bio_list_empty(&nvmeq->sq_cong))
626        result = nvme_submit_bio_queue(nvmeq, ns, bio);
627    if (unlikely(result)) {
628        if (bio_list_empty(&nvmeq->sq_cong))
629            add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
630        bio_list_add(&nvmeq->sq_cong, bio);
631    }
632
633    spin_unlock_irq(&nvmeq->q_lock);
634    put_nvmeq(nvmeq);
635}
636
637static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
638{
639    u16 head, phase;
640
641    head = nvmeq->cq_head;
642    phase = nvmeq->cq_phase;
643
644    for (;;) {
645        void *ctx;
646        nvme_completion_fn fn;
647        struct nvme_completion cqe = nvmeq->cqes[head];
648        if ((le16_to_cpu(cqe.status) & 1) != phase)
649            break;
650        nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
651        if (++head == nvmeq->q_depth) {
652            head = 0;
653            phase = !phase;
654        }
655
656        ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
657        fn(nvmeq->dev, ctx, &cqe);
658    }
659
660    /* If the controller ignores the cq head doorbell and continuously
661     * writes to the queue, it is theoretically possible to wrap around
662     * the queue twice and mistakenly return IRQ_NONE. Linux only
663     * requires that 0.1% of your interrupts are handled, so this isn't
664     * a big problem.
665     */
666    if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
667        return IRQ_NONE;
668
669    writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
670    nvmeq->cq_head = head;
671    nvmeq->cq_phase = phase;
672
673    return IRQ_HANDLED;
674}
675
676static irqreturn_t nvme_irq(int irq, void *data)
677{
678    irqreturn_t result;
679    struct nvme_queue *nvmeq = data;
680    spin_lock(&nvmeq->q_lock);
681    result = nvme_process_cq(nvmeq);
682    spin_unlock(&nvmeq->q_lock);
683    return result;
684}
685
686static irqreturn_t nvme_irq_check(int irq, void *data)
687{
688    struct nvme_queue *nvmeq = data;
689    struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
690    if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
691        return IRQ_NONE;
692    return IRQ_WAKE_THREAD;
693}
694
695static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
696{
697    spin_lock_irq(&nvmeq->q_lock);
698    cancel_cmdid(nvmeq, cmdid, NULL);
699    spin_unlock_irq(&nvmeq->q_lock);
700}
701
702struct sync_cmd_info {
703    struct task_struct *task;
704    u32 result;
705    int status;
706};
707
708static void sync_completion(struct nvme_dev *dev, void *ctx,
709                        struct nvme_completion *cqe)
710{
711    struct sync_cmd_info *cmdinfo = ctx;
712    cmdinfo->result = le32_to_cpup(&cqe->result);
713    cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
714    wake_up_process(cmdinfo->task);
715}
716
717/*
718 * Returns 0 on success. If the result is negative, it's a Linux error code;
719 * if the result is positive, it's an NVM Express status code
720 */
721static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
722            struct nvme_command *cmd, u32 *result, unsigned timeout)
723{
724    int cmdid;
725    struct sync_cmd_info cmdinfo;
726
727    cmdinfo.task = current;
728    cmdinfo.status = -EINTR;
729
730    cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
731                                timeout);
732    if (cmdid < 0)
733        return cmdid;
734    cmd->common.command_id = cmdid;
735
736    set_current_state(TASK_KILLABLE);
737    nvme_submit_cmd(nvmeq, cmd);
738    schedule();
739
740    if (cmdinfo.status == -EINTR) {
741        nvme_abort_command(nvmeq, cmdid);
742        return -EINTR;
743    }
744
745    if (result)
746        *result = cmdinfo.result;
747
748    return cmdinfo.status;
749}
750
751static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
752                                u32 *result)
753{
754    return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
755}
756
757static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
758{
759    int status;
760    struct nvme_command c;
761
762    memset(&c, 0, sizeof(c));
763    c.delete_queue.opcode = opcode;
764    c.delete_queue.qid = cpu_to_le16(id);
765
766    status = nvme_submit_admin_cmd(dev, &c, NULL);
767    if (status)
768        return -EIO;
769    return 0;
770}
771
772static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
773                        struct nvme_queue *nvmeq)
774{
775    int status;
776    struct nvme_command c;
777    int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
778
779    memset(&c, 0, sizeof(c));
780    c.create_cq.opcode = nvme_admin_create_cq;
781    c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
782    c.create_cq.cqid = cpu_to_le16(qid);
783    c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
784    c.create_cq.cq_flags = cpu_to_le16(flags);
785    c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
786
787    status = nvme_submit_admin_cmd(dev, &c, NULL);
788    if (status)
789        return -EIO;
790    return 0;
791}
792
793static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
794                        struct nvme_queue *nvmeq)
795{
796    int status;
797    struct nvme_command c;
798    int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
799
800    memset(&c, 0, sizeof(c));
801    c.create_sq.opcode = nvme_admin_create_sq;
802    c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
803    c.create_sq.sqid = cpu_to_le16(qid);
804    c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
805    c.create_sq.sq_flags = cpu_to_le16(flags);
806    c.create_sq.cqid = cpu_to_le16(qid);
807
808    status = nvme_submit_admin_cmd(dev, &c, NULL);
809    if (status)
810        return -EIO;
811    return 0;
812}
813
814static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
815{
816    return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
817}
818
819static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
820{
821    return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
822}
823
824static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
825                            dma_addr_t dma_addr)
826{
827    struct nvme_command c;
828
829    memset(&c, 0, sizeof(c));
830    c.identify.opcode = nvme_admin_identify;
831    c.identify.nsid = cpu_to_le32(nsid);
832    c.identify.prp1 = cpu_to_le64(dma_addr);
833    c.identify.cns = cpu_to_le32(cns);
834
835    return nvme_submit_admin_cmd(dev, &c, NULL);
836}
837
838static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
839                unsigned nsid, dma_addr_t dma_addr)
840{
841    struct nvme_command c;
842
843    memset(&c, 0, sizeof(c));
844    c.features.opcode = nvme_admin_get_features;
845    c.features.nsid = cpu_to_le32(nsid);
846    c.features.prp1 = cpu_to_le64(dma_addr);
847    c.features.fid = cpu_to_le32(fid);
848
849    return nvme_submit_admin_cmd(dev, &c, NULL);
850}
851
852static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
853            unsigned dword11, dma_addr_t dma_addr, u32 *result)
854{
855    struct nvme_command c;
856
857    memset(&c, 0, sizeof(c));
858    c.features.opcode = nvme_admin_set_features;
859    c.features.prp1 = cpu_to_le64(dma_addr);
860    c.features.fid = cpu_to_le32(fid);
861    c.features.dword11 = cpu_to_le32(dword11);
862
863    return nvme_submit_admin_cmd(dev, &c, result);
864}
865
866/**
867 * nvme_cancel_ios - Cancel outstanding I/Os
868 * @queue: The queue to cancel I/Os on
869 * @timeout: True to only cancel I/Os which have timed out
870 */
871static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
872{
873    int depth = nvmeq->q_depth - 1;
874    struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
875    unsigned long now = jiffies;
876    int cmdid;
877
878    for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
879        void *ctx;
880        nvme_completion_fn fn;
881        static struct nvme_completion cqe = {
882            .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
883        };
884
885        if (timeout && !time_after(now, info[cmdid].timeout))
886            continue;
887        dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
888        ctx = cancel_cmdid(nvmeq, cmdid, &fn);
889        fn(nvmeq->dev, ctx, &cqe);
890    }
891}
892
893static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
894{
895    dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
896                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
897    dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
898                    nvmeq->sq_cmds, nvmeq->sq_dma_addr);
899    kfree(nvmeq);
900}
901
902static void nvme_free_queue(struct nvme_dev *dev, int qid)
903{
904    struct nvme_queue *nvmeq = dev->queues[qid];
905    int vector = dev->entry[nvmeq->cq_vector].vector;
906
907    spin_lock_irq(&nvmeq->q_lock);
908    nvme_cancel_ios(nvmeq, false);
909    spin_unlock_irq(&nvmeq->q_lock);
910
911    irq_set_affinity_hint(vector, NULL);
912    free_irq(vector, nvmeq);
913
914    /* Don't tell the adapter to delete the admin queue */
915    if (qid) {
916        adapter_delete_sq(dev, qid);
917        adapter_delete_cq(dev, qid);
918    }
919
920    nvme_free_queue_mem(nvmeq);
921}
922
923static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
924                            int depth, int vector)
925{
926    struct device *dmadev = &dev->pci_dev->dev;
927    unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
928                        sizeof(struct nvme_cmd_info));
929    struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
930    if (!nvmeq)
931        return NULL;
932
933    nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
934                    &nvmeq->cq_dma_addr, GFP_KERNEL);
935    if (!nvmeq->cqes)
936        goto free_nvmeq;
937    memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
938
939    nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
940                    &nvmeq->sq_dma_addr, GFP_KERNEL);
941    if (!nvmeq->sq_cmds)
942        goto free_cqdma;
943
944    nvmeq->q_dmadev = dmadev;
945    nvmeq->dev = dev;
946    spin_lock_init(&nvmeq->q_lock);
947    nvmeq->cq_head = 0;
948    nvmeq->cq_phase = 1;
949    init_waitqueue_head(&nvmeq->sq_full);
950    init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
951    bio_list_init(&nvmeq->sq_cong);
952    nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
953    nvmeq->q_depth = depth;
954    nvmeq->cq_vector = vector;
955
956    return nvmeq;
957
958 free_cqdma:
959    dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
960                            nvmeq->cq_dma_addr);
961 free_nvmeq:
962    kfree(nvmeq);
963    return NULL;
964}
965
966static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
967                            const char *name)
968{
969    if (use_threaded_interrupts)
970        return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
971                    nvme_irq_check, nvme_irq,
972                    IRQF_DISABLED | IRQF_SHARED,
973                    name, nvmeq);
974    return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
975                IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
976}
977
978static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
979                    int qid, int cq_size, int vector)
980{
981    int result;
982    struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
983
984    if (!nvmeq)
985        return ERR_PTR(-ENOMEM);
986
987    result = adapter_alloc_cq(dev, qid, nvmeq);
988    if (result < 0)
989        goto free_nvmeq;
990
991    result = adapter_alloc_sq(dev, qid, nvmeq);
992    if (result < 0)
993        goto release_cq;
994
995    result = queue_request_irq(dev, nvmeq, "nvme");
996    if (result < 0)
997        goto release_sq;
998
999    return nvmeq;
1000
1001 release_sq:
1002    adapter_delete_sq(dev, qid);
1003 release_cq:
1004    adapter_delete_cq(dev, qid);
1005 free_nvmeq:
1006    dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1007                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1008    dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1009                    nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1010    kfree(nvmeq);
1011    return ERR_PTR(result);
1012}
1013
1014static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
1015{
1016    int result = 0;
1017    u32 aqa;
1018    u64 cap;
1019    unsigned long timeout;
1020    struct nvme_queue *nvmeq;
1021
1022    dev->dbs = ((void __iomem *)dev->bar) + 4096;
1023
1024    nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1025    if (!nvmeq)
1026        return -ENOMEM;
1027
1028    aqa = nvmeq->q_depth - 1;
1029    aqa |= aqa << 16;
1030
1031    dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1032    dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1033    dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1034    dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1035
1036    writel(0, &dev->bar->cc);
1037    writel(aqa, &dev->bar->aqa);
1038    writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1039    writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1040    writel(dev->ctrl_config, &dev->bar->cc);
1041
1042    cap = readq(&dev->bar->cap);
1043    timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1044    dev->db_stride = NVME_CAP_STRIDE(cap);
1045
1046    while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1047        msleep(100);
1048        if (fatal_signal_pending(current))
1049            result = -EINTR;
1050        if (time_after(jiffies, timeout)) {
1051            dev_err(&dev->pci_dev->dev,
1052                "Device not ready; aborting initialisation\n");
1053            result = -ENODEV;
1054        }
1055    }
1056
1057    if (result) {
1058        nvme_free_queue_mem(nvmeq);
1059        return result;
1060    }
1061
1062    result = queue_request_irq(dev, nvmeq, "nvme admin");
1063    dev->queues[0] = nvmeq;
1064    return result;
1065}
1066
1067static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1068                unsigned long addr, unsigned length)
1069{
1070    int i, err, count, nents, offset;
1071    struct scatterlist *sg;
1072    struct page **pages;
1073    struct nvme_iod *iod;
1074
1075    if (addr & 3)
1076        return ERR_PTR(-EINVAL);
1077    if (!length)
1078        return ERR_PTR(-EINVAL);
1079
1080    offset = offset_in_page(addr);
1081    count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1082    pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1083    if (!pages)
1084        return ERR_PTR(-ENOMEM);
1085
1086    err = get_user_pages_fast(addr, count, 1, pages);
1087    if (err < count) {
1088        count = err;
1089        err = -EFAULT;
1090        goto put_pages;
1091    }
1092
1093    iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1094    sg = iod->sg;
1095    sg_init_table(sg, count);
1096    for (i = 0; i < count; i++) {
1097        sg_set_page(&sg[i], pages[i],
1098                min_t(int, length, PAGE_SIZE - offset), offset);
1099        length -= (PAGE_SIZE - offset);
1100        offset = 0;
1101    }
1102    sg_mark_end(&sg[i - 1]);
1103    iod->nents = count;
1104
1105    err = -ENOMEM;
1106    nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1107                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1108    if (!nents)
1109        goto free_iod;
1110
1111    kfree(pages);
1112    return iod;
1113
1114 free_iod:
1115    kfree(iod);
1116 put_pages:
1117    for (i = 0; i < count; i++)
1118        put_page(pages[i]);
1119    kfree(pages);
1120    return ERR_PTR(err);
1121}
1122
1123static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1124            struct nvme_iod *iod)
1125{
1126    int i;
1127
1128    dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1129                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1130
1131    for (i = 0; i < iod->nents; i++)
1132        put_page(sg_page(&iod->sg[i]));
1133}
1134
1135static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1136{
1137    struct nvme_dev *dev = ns->dev;
1138    struct nvme_queue *nvmeq;
1139    struct nvme_user_io io;
1140    struct nvme_command c;
1141    unsigned length;
1142    int status;
1143    struct nvme_iod *iod;
1144
1145    if (copy_from_user(&io, uio, sizeof(io)))
1146        return -EFAULT;
1147    length = (io.nblocks + 1) << ns->lba_shift;
1148
1149    switch (io.opcode) {
1150    case nvme_cmd_write:
1151    case nvme_cmd_read:
1152    case nvme_cmd_compare:
1153        iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1154        break;
1155    default:
1156        return -EINVAL;
1157    }
1158
1159    if (IS_ERR(iod))
1160        return PTR_ERR(iod);
1161
1162    memset(&c, 0, sizeof(c));
1163    c.rw.opcode = io.opcode;
1164    c.rw.flags = io.flags;
1165    c.rw.nsid = cpu_to_le32(ns->ns_id);
1166    c.rw.slba = cpu_to_le64(io.slba);
1167    c.rw.length = cpu_to_le16(io.nblocks);
1168    c.rw.control = cpu_to_le16(io.control);
1169    c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1170    c.rw.reftag = io.reftag;
1171    c.rw.apptag = io.apptag;
1172    c.rw.appmask = io.appmask;
1173    /* XXX: metadata */
1174    length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1175
1176    nvmeq = get_nvmeq(dev);
1177    /*
1178     * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1179     * disabled. We may be preempted at any point, and be rescheduled
1180     * to a different CPU. That will cause cacheline bouncing, but no
1181     * additional races since q_lock already protects against other CPUs.
1182     */
1183    put_nvmeq(nvmeq);
1184    if (length != (io.nblocks + 1) << ns->lba_shift)
1185        status = -ENOMEM;
1186    else
1187        status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1188
1189    nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1190    nvme_free_iod(dev, iod);
1191    return status;
1192}
1193
1194static int nvme_user_admin_cmd(struct nvme_dev *dev,
1195                    struct nvme_admin_cmd __user *ucmd)
1196{
1197    struct nvme_admin_cmd cmd;
1198    struct nvme_command c;
1199    int status, length;
1200    struct nvme_iod *uninitialized_var(iod);
1201
1202    if (!capable(CAP_SYS_ADMIN))
1203        return -EACCES;
1204    if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1205        return -EFAULT;
1206
1207    memset(&c, 0, sizeof(c));
1208    c.common.opcode = cmd.opcode;
1209    c.common.flags = cmd.flags;
1210    c.common.nsid = cpu_to_le32(cmd.nsid);
1211    c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1212    c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1213    c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1214    c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1215    c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1216    c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1217    c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1218    c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1219
1220    length = cmd.data_len;
1221    if (cmd.data_len) {
1222        iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1223                                length);
1224        if (IS_ERR(iod))
1225            return PTR_ERR(iod);
1226        length = nvme_setup_prps(dev, &c.common, iod, length,
1227                                GFP_KERNEL);
1228    }
1229
1230    if (length != cmd.data_len)
1231        status = -ENOMEM;
1232    else
1233        status = nvme_submit_admin_cmd(dev, &c, NULL);
1234
1235    if (cmd.data_len) {
1236        nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1237        nvme_free_iod(dev, iod);
1238    }
1239    return status;
1240}
1241
1242static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1243                            unsigned long arg)
1244{
1245    struct nvme_ns *ns = bdev->bd_disk->private_data;
1246
1247    switch (cmd) {
1248    case NVME_IOCTL_ID:
1249        return ns->ns_id;
1250    case NVME_IOCTL_ADMIN_CMD:
1251        return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1252    case NVME_IOCTL_SUBMIT_IO:
1253        return nvme_submit_io(ns, (void __user *)arg);
1254    default:
1255        return -ENOTTY;
1256    }
1257}
1258
1259static const struct block_device_operations nvme_fops = {
1260    .owner = THIS_MODULE,
1261    .ioctl = nvme_ioctl,
1262    .compat_ioctl = nvme_ioctl,
1263};
1264
1265static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1266{
1267    while (bio_list_peek(&nvmeq->sq_cong)) {
1268        struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1269        struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1270        if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1271            bio_list_add_head(&nvmeq->sq_cong, bio);
1272            break;
1273        }
1274        if (bio_list_empty(&nvmeq->sq_cong))
1275            remove_wait_queue(&nvmeq->sq_full,
1276                            &nvmeq->sq_cong_wait);
1277    }
1278}
1279
1280static int nvme_kthread(void *data)
1281{
1282    struct nvme_dev *dev;
1283
1284    while (!kthread_should_stop()) {
1285        __set_current_state(TASK_RUNNING);
1286        spin_lock(&dev_list_lock);
1287        list_for_each_entry(dev, &dev_list, node) {
1288            int i;
1289            for (i = 0; i < dev->queue_count; i++) {
1290                struct nvme_queue *nvmeq = dev->queues[i];
1291                if (!nvmeq)
1292                    continue;
1293                spin_lock_irq(&nvmeq->q_lock);
1294                if (nvme_process_cq(nvmeq))
1295                    printk("process_cq did something\n");
1296                nvme_cancel_ios(nvmeq, true);
1297                nvme_resubmit_bios(nvmeq);
1298                spin_unlock_irq(&nvmeq->q_lock);
1299            }
1300        }
1301        spin_unlock(&dev_list_lock);
1302        set_current_state(TASK_INTERRUPTIBLE);
1303        schedule_timeout(HZ);
1304    }
1305    return 0;
1306}
1307
1308static DEFINE_IDA(nvme_index_ida);
1309
1310static int nvme_get_ns_idx(void)
1311{
1312    int index, error;
1313
1314    do {
1315        if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1316            return -1;
1317
1318        spin_lock(&dev_list_lock);
1319        error = ida_get_new(&nvme_index_ida, &index);
1320        spin_unlock(&dev_list_lock);
1321    } while (error == -EAGAIN);
1322
1323    if (error)
1324        index = -1;
1325    return index;
1326}
1327
1328static void nvme_put_ns_idx(int index)
1329{
1330    spin_lock(&dev_list_lock);
1331    ida_remove(&nvme_index_ida, index);
1332    spin_unlock(&dev_list_lock);
1333}
1334
1335static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1336            struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1337{
1338    struct nvme_ns *ns;
1339    struct gendisk *disk;
1340    int lbaf;
1341
1342    if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1343        return NULL;
1344
1345    ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1346    if (!ns)
1347        return NULL;
1348    ns->queue = blk_alloc_queue(GFP_KERNEL);
1349    if (!ns->queue)
1350        goto out_free_ns;
1351    ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1352    queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1353    queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1354/* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1355    blk_queue_make_request(ns->queue, nvme_make_request);
1356    ns->dev = dev;
1357    ns->queue->queuedata = ns;
1358
1359    disk = alloc_disk(NVME_MINORS);
1360    if (!disk)
1361        goto out_free_queue;
1362    ns->ns_id = nsid;
1363    ns->disk = disk;
1364    lbaf = id->flbas & 0xf;
1365    ns->lba_shift = id->lbaf[lbaf].ds;
1366    blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1367    if (dev->max_hw_sectors)
1368        blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1369
1370    disk->major = nvme_major;
1371    disk->minors = NVME_MINORS;
1372    disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1373    disk->fops = &nvme_fops;
1374    disk->private_data = ns;
1375    disk->queue = ns->queue;
1376    disk->driverfs_dev = &dev->pci_dev->dev;
1377    sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1378    set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1379
1380    return ns;
1381
1382 out_free_queue:
1383    blk_cleanup_queue(ns->queue);
1384 out_free_ns:
1385    kfree(ns);
1386    return NULL;
1387}
1388
1389static void nvme_ns_free(struct nvme_ns *ns)
1390{
1391    int index = ns->disk->first_minor / NVME_MINORS;
1392    put_disk(ns->disk);
1393    nvme_put_ns_idx(index);
1394    blk_cleanup_queue(ns->queue);
1395    kfree(ns);
1396}
1397
1398static int set_queue_count(struct nvme_dev *dev, int count)
1399{
1400    int status;
1401    u32 result;
1402    u32 q_count = (count - 1) | ((count - 1) << 16);
1403
1404    status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1405                                &result);
1406    if (status)
1407        return -EIO;
1408    return min(result & 0xffff, result >> 16) + 1;
1409}
1410
1411static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1412{
1413    int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
1414
1415    nr_io_queues = num_online_cpus();
1416    result = set_queue_count(dev, nr_io_queues);
1417    if (result < 0)
1418        return result;
1419    if (result < nr_io_queues)
1420        nr_io_queues = result;
1421
1422    /* Deregister the admin queue's interrupt */
1423    free_irq(dev->entry[0].vector, dev->queues[0]);
1424
1425    db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1426    if (db_bar_size > 8192) {
1427        iounmap(dev->bar);
1428        dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1429                                db_bar_size);
1430        dev->dbs = ((void __iomem *)dev->bar) + 4096;
1431        dev->queues[0]->q_db = dev->dbs;
1432    }
1433
1434    for (i = 0; i < nr_io_queues; i++)
1435        dev->entry[i].entry = i;
1436    for (;;) {
1437        result = pci_enable_msix(dev->pci_dev, dev->entry,
1438                                nr_io_queues);
1439        if (result == 0) {
1440            break;
1441        } else if (result > 0) {
1442            nr_io_queues = result;
1443            continue;
1444        } else {
1445            nr_io_queues = 1;
1446            break;
1447        }
1448    }
1449
1450    result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1451    /* XXX: handle failure here */
1452
1453    cpu = cpumask_first(cpu_online_mask);
1454    for (i = 0; i < nr_io_queues; i++) {
1455        irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1456        cpu = cpumask_next(cpu, cpu_online_mask);
1457    }
1458
1459    q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1460                                NVME_Q_DEPTH);
1461    for (i = 0; i < nr_io_queues; i++) {
1462        dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1463        if (IS_ERR(dev->queues[i + 1]))
1464            return PTR_ERR(dev->queues[i + 1]);
1465        dev->queue_count++;
1466    }
1467
1468    for (; i < num_possible_cpus(); i++) {
1469        int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1470        dev->queues[i + 1] = dev->queues[target + 1];
1471    }
1472
1473    return 0;
1474}
1475
1476static void nvme_free_queues(struct nvme_dev *dev)
1477{
1478    int i;
1479
1480    for (i = dev->queue_count - 1; i >= 0; i--)
1481        nvme_free_queue(dev, i);
1482}
1483
1484static int __devinit nvme_dev_add(struct nvme_dev *dev)
1485{
1486    int res, nn, i;
1487    struct nvme_ns *ns, *next;
1488    struct nvme_id_ctrl *ctrl;
1489    struct nvme_id_ns *id_ns;
1490    void *mem;
1491    dma_addr_t dma_addr;
1492
1493    res = nvme_setup_io_queues(dev);
1494    if (res)
1495        return res;
1496
1497    mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1498                                GFP_KERNEL);
1499
1500    res = nvme_identify(dev, 0, 1, dma_addr);
1501    if (res) {
1502        res = -EIO;
1503        goto out_free;
1504    }
1505
1506    ctrl = mem;
1507    nn = le32_to_cpup(&ctrl->nn);
1508    memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1509    memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1510    memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1511    if (ctrl->mdts) {
1512        int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1513        dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1514    }
1515
1516    id_ns = mem;
1517    for (i = 1; i <= nn; i++) {
1518        res = nvme_identify(dev, i, 0, dma_addr);
1519        if (res)
1520            continue;
1521
1522        if (id_ns->ncap == 0)
1523            continue;
1524
1525        res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1526                            dma_addr + 4096);
1527        if (res)
1528            continue;
1529
1530        ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1531        if (ns)
1532            list_add_tail(&ns->list, &dev->namespaces);
1533    }
1534    list_for_each_entry(ns, &dev->namespaces, list)
1535        add_disk(ns->disk);
1536
1537    goto out;
1538
1539 out_free:
1540    list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1541        list_del(&ns->list);
1542        nvme_ns_free(ns);
1543    }
1544
1545 out:
1546    dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1547    return res;
1548}
1549
1550static int nvme_dev_remove(struct nvme_dev *dev)
1551{
1552    struct nvme_ns *ns, *next;
1553
1554    spin_lock(&dev_list_lock);
1555    list_del(&dev->node);
1556    spin_unlock(&dev_list_lock);
1557
1558    list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1559        list_del(&ns->list);
1560        del_gendisk(ns->disk);
1561        nvme_ns_free(ns);
1562    }
1563
1564    nvme_free_queues(dev);
1565
1566    return 0;
1567}
1568
1569static int nvme_setup_prp_pools(struct nvme_dev *dev)
1570{
1571    struct device *dmadev = &dev->pci_dev->dev;
1572    dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1573                        PAGE_SIZE, PAGE_SIZE, 0);
1574    if (!dev->prp_page_pool)
1575        return -ENOMEM;
1576
1577    /* Optimisation for I/Os between 4k and 128k */
1578    dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1579                        256, 256, 0);
1580    if (!dev->prp_small_pool) {
1581        dma_pool_destroy(dev->prp_page_pool);
1582        return -ENOMEM;
1583    }
1584    return 0;
1585}
1586
1587static void nvme_release_prp_pools(struct nvme_dev *dev)
1588{
1589    dma_pool_destroy(dev->prp_page_pool);
1590    dma_pool_destroy(dev->prp_small_pool);
1591}
1592
1593static DEFINE_IDA(nvme_instance_ida);
1594
1595static int nvme_set_instance(struct nvme_dev *dev)
1596{
1597    int instance, error;
1598
1599    do {
1600        if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1601            return -ENODEV;
1602
1603        spin_lock(&dev_list_lock);
1604        error = ida_get_new(&nvme_instance_ida, &instance);
1605        spin_unlock(&dev_list_lock);
1606    } while (error == -EAGAIN);
1607
1608    if (error)
1609        return -ENODEV;
1610
1611    dev->instance = instance;
1612    return 0;
1613}
1614
1615static void nvme_release_instance(struct nvme_dev *dev)
1616{
1617    spin_lock(&dev_list_lock);
1618    ida_remove(&nvme_instance_ida, dev->instance);
1619    spin_unlock(&dev_list_lock);
1620}
1621
1622static int __devinit nvme_probe(struct pci_dev *pdev,
1623                        const struct pci_device_id *id)
1624{
1625    int bars, result = -ENOMEM;
1626    struct nvme_dev *dev;
1627
1628    dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1629    if (!dev)
1630        return -ENOMEM;
1631    dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1632                                GFP_KERNEL);
1633    if (!dev->entry)
1634        goto free;
1635    dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1636                                GFP_KERNEL);
1637    if (!dev->queues)
1638        goto free;
1639
1640    if (pci_enable_device_mem(pdev))
1641        goto free;
1642    pci_set_master(pdev);
1643    bars = pci_select_bars(pdev, IORESOURCE_MEM);
1644    if (pci_request_selected_regions(pdev, bars, "nvme"))
1645        goto disable;
1646
1647    INIT_LIST_HEAD(&dev->namespaces);
1648    dev->pci_dev = pdev;
1649    pci_set_drvdata(pdev, dev);
1650    dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1651    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1652    result = nvme_set_instance(dev);
1653    if (result)
1654        goto disable;
1655
1656    dev->entry[0].vector = pdev->irq;
1657
1658    result = nvme_setup_prp_pools(dev);
1659    if (result)
1660        goto disable_msix;
1661
1662    dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1663    if (!dev->bar) {
1664        result = -ENOMEM;
1665        goto disable_msix;
1666    }
1667
1668    result = nvme_configure_admin_queue(dev);
1669    if (result)
1670        goto unmap;
1671    dev->queue_count++;
1672
1673    spin_lock(&dev_list_lock);
1674    list_add(&dev->node, &dev_list);
1675    spin_unlock(&dev_list_lock);
1676
1677    result = nvme_dev_add(dev);
1678    if (result)
1679        goto delete;
1680
1681    return 0;
1682
1683 delete:
1684    spin_lock(&dev_list_lock);
1685    list_del(&dev->node);
1686    spin_unlock(&dev_list_lock);
1687
1688    nvme_free_queues(dev);
1689 unmap:
1690    iounmap(dev->bar);
1691 disable_msix:
1692    pci_disable_msix(pdev);
1693    nvme_release_instance(dev);
1694    nvme_release_prp_pools(dev);
1695 disable:
1696    pci_disable_device(pdev);
1697    pci_release_regions(pdev);
1698 free:
1699    kfree(dev->queues);
1700    kfree(dev->entry);
1701    kfree(dev);
1702    return result;
1703}
1704
1705static void __devexit nvme_remove(struct pci_dev *pdev)
1706{
1707    struct nvme_dev *dev = pci_get_drvdata(pdev);
1708    nvme_dev_remove(dev);
1709    pci_disable_msix(pdev);
1710    iounmap(dev->bar);
1711    nvme_release_instance(dev);
1712    nvme_release_prp_pools(dev);
1713    pci_disable_device(pdev);
1714    pci_release_regions(pdev);
1715    kfree(dev->queues);
1716    kfree(dev->entry);
1717    kfree(dev);
1718}
1719
1720/* These functions are yet to be implemented */
1721#define nvme_error_detected NULL
1722#define nvme_dump_registers NULL
1723#define nvme_link_reset NULL
1724#define nvme_slot_reset NULL
1725#define nvme_error_resume NULL
1726#define nvme_suspend NULL
1727#define nvme_resume NULL
1728
1729static struct pci_error_handlers nvme_err_handler = {
1730    .error_detected = nvme_error_detected,
1731    .mmio_enabled = nvme_dump_registers,
1732    .link_reset = nvme_link_reset,
1733    .slot_reset = nvme_slot_reset,
1734    .resume = nvme_error_resume,
1735};
1736
1737/* Move to pci_ids.h later */
1738#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1739
1740static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1741    { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1742    { 0, }
1743};
1744MODULE_DEVICE_TABLE(pci, nvme_id_table);
1745
1746static struct pci_driver nvme_driver = {
1747    .name = "nvme",
1748    .id_table = nvme_id_table,
1749    .probe = nvme_probe,
1750    .remove = __devexit_p(nvme_remove),
1751    .suspend = nvme_suspend,
1752    .resume = nvme_resume,
1753    .err_handler = &nvme_err_handler,
1754};
1755
1756static int __init nvme_init(void)
1757{
1758    int result;
1759
1760    nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1761    if (IS_ERR(nvme_thread))
1762        return PTR_ERR(nvme_thread);
1763
1764    result = register_blkdev(nvme_major, "nvme");
1765    if (result < 0)
1766        goto kill_kthread;
1767    else if (result > 0)
1768        nvme_major = result;
1769
1770    result = pci_register_driver(&nvme_driver);
1771    if (result)
1772        goto unregister_blkdev;
1773    return 0;
1774
1775 unregister_blkdev:
1776    unregister_blkdev(nvme_major, "nvme");
1777 kill_kthread:
1778    kthread_stop(nvme_thread);
1779    return result;
1780}
1781
1782static void __exit nvme_exit(void)
1783{
1784    pci_unregister_driver(&nvme_driver);
1785    unregister_blkdev(nvme_major, "nvme");
1786    kthread_stop(nvme_thread);
1787}
1788
1789MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1790MODULE_LICENSE("GPL");
1791MODULE_VERSION("0.8");
1792module_init(nvme_init);
1793module_exit(nvme_exit);
1794

Archive Download this file



interactive