Root/
1 | /* |
2 | * The low performance USB storage driver (ub). |
3 | * |
4 | * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net) |
5 | * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com) |
6 | * |
7 | * This work is a part of Linux kernel, is derived from it, |
8 | * and is not licensed separately. See file COPYING for details. |
9 | * |
10 | * TODO (sorted by decreasing priority) |
11 | * -- Return sense now that rq allows it (we always auto-sense anyway). |
12 | * -- set readonly flag for CDs, set removable flag for CF readers |
13 | * -- do inquiry and verify we got a disk and not a tape (for LUN mismatch) |
14 | * -- verify the 13 conditions and do bulk resets |
15 | * -- highmem |
16 | * -- move top_sense and work_bcs into separate allocations (if they survive) |
17 | * for cache purists and esoteric architectures. |
18 | * -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ? |
19 | * -- prune comments, they are too volumnous |
20 | * -- Resove XXX's |
21 | * -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring. |
22 | */ |
23 | #include <linux/kernel.h> |
24 | #include <linux/module.h> |
25 | #include <linux/usb.h> |
26 | #include <linux/usb_usual.h> |
27 | #include <linux/blkdev.h> |
28 | #include <linux/timer.h> |
29 | #include <linux/scatterlist.h> |
30 | #include <linux/slab.h> |
31 | #include <linux/mutex.h> |
32 | #include <scsi/scsi.h> |
33 | |
34 | #define DRV_NAME "ub" |
35 | |
36 | #define UB_MAJOR 180 |
37 | |
38 | /* |
39 | * The command state machine is the key model for understanding of this driver. |
40 | * |
41 | * The general rule is that all transitions are done towards the bottom |
42 | * of the diagram, thus preventing any loops. |
43 | * |
44 | * An exception to that is how the STAT state is handled. A counter allows it |
45 | * to be re-entered along the path marked with [C]. |
46 | * |
47 | * +--------+ |
48 | * ! INIT ! |
49 | * +--------+ |
50 | * ! |
51 | * ub_scsi_cmd_start fails ->--------------------------------------\ |
52 | * ! ! |
53 | * V ! |
54 | * +--------+ ! |
55 | * ! CMD ! ! |
56 | * +--------+ ! |
57 | * ! +--------+ ! |
58 | * was -EPIPE -->-------------------------------->! CLEAR ! ! |
59 | * ! +--------+ ! |
60 | * ! ! ! |
61 | * was error -->------------------------------------- ! --------->\ |
62 | * ! ! ! |
63 | * /--<-- cmd->dir == NONE ? ! ! |
64 | * ! ! ! ! |
65 | * ! V ! ! |
66 | * ! +--------+ ! ! |
67 | * ! ! DATA ! ! ! |
68 | * ! +--------+ ! ! |
69 | * ! ! +---------+ ! ! |
70 | * ! was -EPIPE -->--------------->! CLR2STS ! ! ! |
71 | * ! ! +---------+ ! ! |
72 | * ! ! ! ! ! |
73 | * ! ! was error -->---- ! --------->\ |
74 | * ! was error -->--------------------- ! ------------- ! --------->\ |
75 | * ! ! ! ! ! |
76 | * ! V ! ! ! |
77 | * \--->+--------+ ! ! ! |
78 | * ! STAT !<--------------------------/ ! ! |
79 | * /--->+--------+ ! ! |
80 | * ! ! ! ! |
81 | * [C] was -EPIPE -->-----------\ ! ! |
82 | * ! ! ! ! ! |
83 | * +<---- len == 0 ! ! ! |
84 | * ! ! ! ! ! |
85 | * ! was error -->--------------------------------------!---------->\ |
86 | * ! ! ! ! ! |
87 | * +<---- bad CSW ! ! ! |
88 | * +<---- bad tag ! ! ! |
89 | * ! ! V ! ! |
90 | * ! ! +--------+ ! ! |
91 | * ! ! ! CLRRS ! ! ! |
92 | * ! ! +--------+ ! ! |
93 | * ! ! ! ! ! |
94 | * \------- ! --------------------[C]--------\ ! ! |
95 | * ! ! ! ! |
96 | * cmd->error---\ +--------+ ! ! |
97 | * ! +--------------->! SENSE !<----------/ ! |
98 | * STAT_FAIL----/ +--------+ ! |
99 | * ! ! V |
100 | * ! V +--------+ |
101 | * \--------------------------------\--------------------->! DONE ! |
102 | * +--------+ |
103 | */ |
104 | |
105 | /* |
106 | * This many LUNs per USB device. |
107 | * Every one of them takes a host, see UB_MAX_HOSTS. |
108 | */ |
109 | #define UB_MAX_LUNS 9 |
110 | |
111 | /* |
112 | */ |
113 | |
114 | #define UB_PARTS_PER_LUN 8 |
115 | |
116 | #define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */ |
117 | |
118 | #define UB_SENSE_SIZE 18 |
119 | |
120 | /* |
121 | */ |
122 | struct ub_dev; |
123 | |
124 | #define UB_MAX_REQ_SG 9 /* cdrecord requires 32KB and maybe a header */ |
125 | #define UB_MAX_SECTORS 64 |
126 | |
127 | /* |
128 | * A second is more than enough for a 32K transfer (UB_MAX_SECTORS) |
129 | * even if a webcam hogs the bus, but some devices need time to spin up. |
130 | */ |
131 | #define UB_URB_TIMEOUT (HZ*2) |
132 | #define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */ |
133 | #define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */ |
134 | #define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */ |
135 | |
136 | /* |
137 | * An instance of a SCSI command in transit. |
138 | */ |
139 | #define UB_DIR_NONE 0 |
140 | #define UB_DIR_READ 1 |
141 | #define UB_DIR_ILLEGAL2 2 |
142 | #define UB_DIR_WRITE 3 |
143 | |
144 | #define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \ |
145 | (((c)==UB_DIR_READ)? 'r': 'n')) |
146 | |
147 | enum ub_scsi_cmd_state { |
148 | UB_CMDST_INIT, /* Initial state */ |
149 | UB_CMDST_CMD, /* Command submitted */ |
150 | UB_CMDST_DATA, /* Data phase */ |
151 | UB_CMDST_CLR2STS, /* Clearing before requesting status */ |
152 | UB_CMDST_STAT, /* Status phase */ |
153 | UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */ |
154 | UB_CMDST_CLRRS, /* Clearing before retrying status */ |
155 | UB_CMDST_SENSE, /* Sending Request Sense */ |
156 | UB_CMDST_DONE /* Final state */ |
157 | }; |
158 | |
159 | struct ub_scsi_cmd { |
160 | unsigned char cdb[UB_MAX_CDB_SIZE]; |
161 | unsigned char cdb_len; |
162 | |
163 | unsigned char dir; /* 0 - none, 1 - read, 3 - write. */ |
164 | enum ub_scsi_cmd_state state; |
165 | unsigned int tag; |
166 | struct ub_scsi_cmd *next; |
167 | |
168 | int error; /* Return code - valid upon done */ |
169 | unsigned int act_len; /* Return size */ |
170 | unsigned char key, asc, ascq; /* May be valid if error==-EIO */ |
171 | |
172 | int stat_count; /* Retries getting status. */ |
173 | unsigned int timeo; /* jiffies until rq->timeout changes */ |
174 | |
175 | unsigned int len; /* Requested length */ |
176 | unsigned int current_sg; |
177 | unsigned int nsg; /* sgv[nsg] */ |
178 | struct scatterlist sgv[UB_MAX_REQ_SG]; |
179 | |
180 | struct ub_lun *lun; |
181 | void (*done)(struct ub_dev *, struct ub_scsi_cmd *); |
182 | void *back; |
183 | }; |
184 | |
185 | struct ub_request { |
186 | struct request *rq; |
187 | unsigned int current_try; |
188 | unsigned int nsg; /* sgv[nsg] */ |
189 | struct scatterlist sgv[UB_MAX_REQ_SG]; |
190 | }; |
191 | |
192 | /* |
193 | */ |
194 | struct ub_capacity { |
195 | unsigned long nsec; /* Linux size - 512 byte sectors */ |
196 | unsigned int bsize; /* Linux hardsect_size */ |
197 | unsigned int bshift; /* Shift between 512 and hard sects */ |
198 | }; |
199 | |
200 | /* |
201 | * This is a direct take-off from linux/include/completion.h |
202 | * The difference is that I do not wait on this thing, just poll. |
203 | * When I want to wait (ub_probe), I just use the stock completion. |
204 | * |
205 | * Note that INIT_COMPLETION takes no lock. It is correct. But why |
206 | * in the bloody hell that thing takes struct instead of pointer to struct |
207 | * is quite beyond me. I just copied it from the stock completion. |
208 | */ |
209 | struct ub_completion { |
210 | unsigned int done; |
211 | spinlock_t lock; |
212 | }; |
213 | |
214 | static DEFINE_MUTEX(ub_mutex); |
215 | static inline void ub_init_completion(struct ub_completion *x) |
216 | { |
217 | x->done = 0; |
218 | spin_lock_init(&x->lock); |
219 | } |
220 | |
221 | #define UB_INIT_COMPLETION(x) ((x).done = 0) |
222 | |
223 | static void ub_complete(struct ub_completion *x) |
224 | { |
225 | unsigned long flags; |
226 | |
227 | spin_lock_irqsave(&x->lock, flags); |
228 | x->done++; |
229 | spin_unlock_irqrestore(&x->lock, flags); |
230 | } |
231 | |
232 | static int ub_is_completed(struct ub_completion *x) |
233 | { |
234 | unsigned long flags; |
235 | int ret; |
236 | |
237 | spin_lock_irqsave(&x->lock, flags); |
238 | ret = x->done; |
239 | spin_unlock_irqrestore(&x->lock, flags); |
240 | return ret; |
241 | } |
242 | |
243 | /* |
244 | */ |
245 | struct ub_scsi_cmd_queue { |
246 | int qlen, qmax; |
247 | struct ub_scsi_cmd *head, *tail; |
248 | }; |
249 | |
250 | /* |
251 | * The block device instance (one per LUN). |
252 | */ |
253 | struct ub_lun { |
254 | struct ub_dev *udev; |
255 | struct list_head link; |
256 | struct gendisk *disk; |
257 | int id; /* Host index */ |
258 | int num; /* LUN number */ |
259 | char name[16]; |
260 | |
261 | int changed; /* Media was changed */ |
262 | int removable; |
263 | int readonly; |
264 | |
265 | struct ub_request urq; |
266 | |
267 | /* Use Ingo's mempool if or when we have more than one command. */ |
268 | /* |
269 | * Currently we never need more than one command for the whole device. |
270 | * However, giving every LUN a command is a cheap and automatic way |
271 | * to enforce fairness between them. |
272 | */ |
273 | int cmda[1]; |
274 | struct ub_scsi_cmd cmdv[1]; |
275 | |
276 | struct ub_capacity capacity; |
277 | }; |
278 | |
279 | /* |
280 | * The USB device instance. |
281 | */ |
282 | struct ub_dev { |
283 | spinlock_t *lock; |
284 | atomic_t poison; /* The USB device is disconnected */ |
285 | int openc; /* protected by ub_lock! */ |
286 | /* kref is too implicit for our taste */ |
287 | int reset; /* Reset is running */ |
288 | int bad_resid; |
289 | unsigned int tagcnt; |
290 | char name[12]; |
291 | struct usb_device *dev; |
292 | struct usb_interface *intf; |
293 | |
294 | struct list_head luns; |
295 | |
296 | unsigned int send_bulk_pipe; /* cached pipe values */ |
297 | unsigned int recv_bulk_pipe; |
298 | unsigned int send_ctrl_pipe; |
299 | unsigned int recv_ctrl_pipe; |
300 | |
301 | struct tasklet_struct tasklet; |
302 | |
303 | struct ub_scsi_cmd_queue cmd_queue; |
304 | struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */ |
305 | unsigned char top_sense[UB_SENSE_SIZE]; |
306 | |
307 | struct ub_completion work_done; |
308 | struct urb work_urb; |
309 | struct timer_list work_timer; |
310 | int last_pipe; /* What might need clearing */ |
311 | __le32 signature; /* Learned signature */ |
312 | struct bulk_cb_wrap work_bcb; |
313 | struct bulk_cs_wrap work_bcs; |
314 | struct usb_ctrlrequest work_cr; |
315 | |
316 | struct work_struct reset_work; |
317 | wait_queue_head_t reset_wait; |
318 | }; |
319 | |
320 | /* |
321 | */ |
322 | static void ub_cleanup(struct ub_dev *sc); |
323 | static int ub_request_fn_1(struct ub_lun *lun, struct request *rq); |
324 | static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, |
325 | struct ub_scsi_cmd *cmd, struct ub_request *urq); |
326 | static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, |
327 | struct ub_scsi_cmd *cmd, struct ub_request *urq); |
328 | static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
329 | static void ub_end_rq(struct request *rq, unsigned int status); |
330 | static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, |
331 | struct ub_request *urq, struct ub_scsi_cmd *cmd); |
332 | static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
333 | static void ub_urb_complete(struct urb *urb); |
334 | static void ub_scsi_action(unsigned long _dev); |
335 | static void ub_scsi_dispatch(struct ub_dev *sc); |
336 | static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
337 | static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
338 | static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc); |
339 | static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
340 | static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
341 | static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
342 | static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd); |
343 | static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
344 | int stalled_pipe); |
345 | static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd); |
346 | static void ub_reset_enter(struct ub_dev *sc, int try); |
347 | static void ub_reset_task(struct work_struct *work); |
348 | static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun); |
349 | static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, |
350 | struct ub_capacity *ret); |
351 | static int ub_sync_reset(struct ub_dev *sc); |
352 | static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe); |
353 | static int ub_probe_lun(struct ub_dev *sc, int lnum); |
354 | |
355 | /* |
356 | */ |
357 | #ifdef CONFIG_USB_LIBUSUAL |
358 | |
359 | #define ub_usb_ids usb_storage_usb_ids |
360 | #else |
361 | |
362 | static const struct usb_device_id ub_usb_ids[] = { |
363 | { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, USB_SC_SCSI, USB_PR_BULK) }, |
364 | { } |
365 | }; |
366 | |
367 | MODULE_DEVICE_TABLE(usb, ub_usb_ids); |
368 | #endif /* CONFIG_USB_LIBUSUAL */ |
369 | |
370 | /* |
371 | * Find me a way to identify "next free minor" for add_disk(), |
372 | * and the array disappears the next day. However, the number of |
373 | * hosts has something to do with the naming and /proc/partitions. |
374 | * This has to be thought out in detail before changing. |
375 | * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure. |
376 | */ |
377 | #define UB_MAX_HOSTS 26 |
378 | static char ub_hostv[UB_MAX_HOSTS]; |
379 | |
380 | #define UB_QLOCK_NUM 5 |
381 | static spinlock_t ub_qlockv[UB_QLOCK_NUM]; |
382 | static int ub_qlock_next = 0; |
383 | |
384 | static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */ |
385 | |
386 | /* |
387 | * The id allocator. |
388 | * |
389 | * This also stores the host for indexing by minor, which is somewhat dirty. |
390 | */ |
391 | static int ub_id_get(void) |
392 | { |
393 | unsigned long flags; |
394 | int i; |
395 | |
396 | spin_lock_irqsave(&ub_lock, flags); |
397 | for (i = 0; i < UB_MAX_HOSTS; i++) { |
398 | if (ub_hostv[i] == 0) { |
399 | ub_hostv[i] = 1; |
400 | spin_unlock_irqrestore(&ub_lock, flags); |
401 | return i; |
402 | } |
403 | } |
404 | spin_unlock_irqrestore(&ub_lock, flags); |
405 | return -1; |
406 | } |
407 | |
408 | static void ub_id_put(int id) |
409 | { |
410 | unsigned long flags; |
411 | |
412 | if (id < 0 || id >= UB_MAX_HOSTS) { |
413 | printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id); |
414 | return; |
415 | } |
416 | |
417 | spin_lock_irqsave(&ub_lock, flags); |
418 | if (ub_hostv[id] == 0) { |
419 | spin_unlock_irqrestore(&ub_lock, flags); |
420 | printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id); |
421 | return; |
422 | } |
423 | ub_hostv[id] = 0; |
424 | spin_unlock_irqrestore(&ub_lock, flags); |
425 | } |
426 | |
427 | /* |
428 | * This is necessitated by the fact that blk_cleanup_queue does not |
429 | * necesserily destroy the queue. Instead, it may merely decrease q->refcnt. |
430 | * Since our blk_init_queue() passes a spinlock common with ub_dev, |
431 | * we have life time issues when ub_cleanup frees ub_dev. |
432 | */ |
433 | static spinlock_t *ub_next_lock(void) |
434 | { |
435 | unsigned long flags; |
436 | spinlock_t *ret; |
437 | |
438 | spin_lock_irqsave(&ub_lock, flags); |
439 | ret = &ub_qlockv[ub_qlock_next]; |
440 | ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM; |
441 | spin_unlock_irqrestore(&ub_lock, flags); |
442 | return ret; |
443 | } |
444 | |
445 | /* |
446 | * Downcount for deallocation. This rides on two assumptions: |
447 | * - once something is poisoned, its refcount cannot grow |
448 | * - opens cannot happen at this time (del_gendisk was done) |
449 | * If the above is true, we can drop the lock, which we need for |
450 | * blk_cleanup_queue(): the silly thing may attempt to sleep. |
451 | * [Actually, it never needs to sleep for us, but it calls might_sleep()] |
452 | */ |
453 | static void ub_put(struct ub_dev *sc) |
454 | { |
455 | unsigned long flags; |
456 | |
457 | spin_lock_irqsave(&ub_lock, flags); |
458 | --sc->openc; |
459 | if (sc->openc == 0 && atomic_read(&sc->poison)) { |
460 | spin_unlock_irqrestore(&ub_lock, flags); |
461 | ub_cleanup(sc); |
462 | } else { |
463 | spin_unlock_irqrestore(&ub_lock, flags); |
464 | } |
465 | } |
466 | |
467 | /* |
468 | * Final cleanup and deallocation. |
469 | */ |
470 | static void ub_cleanup(struct ub_dev *sc) |
471 | { |
472 | struct list_head *p; |
473 | struct ub_lun *lun; |
474 | struct request_queue *q; |
475 | |
476 | while (!list_empty(&sc->luns)) { |
477 | p = sc->luns.next; |
478 | lun = list_entry(p, struct ub_lun, link); |
479 | list_del(p); |
480 | |
481 | /* I don't think queue can be NULL. But... Stolen from sx8.c */ |
482 | if ((q = lun->disk->queue) != NULL) |
483 | blk_cleanup_queue(q); |
484 | /* |
485 | * If we zero disk->private_data BEFORE put_disk, we have |
486 | * to check for NULL all over the place in open, release, |
487 | * check_media and revalidate, because the block level |
488 | * semaphore is well inside the put_disk. |
489 | * But we cannot zero after the call, because *disk is gone. |
490 | * The sd.c is blatantly racy in this area. |
491 | */ |
492 | /* disk->private_data = NULL; */ |
493 | put_disk(lun->disk); |
494 | lun->disk = NULL; |
495 | |
496 | ub_id_put(lun->id); |
497 | kfree(lun); |
498 | } |
499 | |
500 | usb_set_intfdata(sc->intf, NULL); |
501 | usb_put_intf(sc->intf); |
502 | usb_put_dev(sc->dev); |
503 | kfree(sc); |
504 | } |
505 | |
506 | /* |
507 | * The "command allocator". |
508 | */ |
509 | static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun) |
510 | { |
511 | struct ub_scsi_cmd *ret; |
512 | |
513 | if (lun->cmda[0]) |
514 | return NULL; |
515 | ret = &lun->cmdv[0]; |
516 | lun->cmda[0] = 1; |
517 | return ret; |
518 | } |
519 | |
520 | static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd) |
521 | { |
522 | if (cmd != &lun->cmdv[0]) { |
523 | printk(KERN_WARNING "%s: releasing a foreign cmd %p\n", |
524 | lun->name, cmd); |
525 | return; |
526 | } |
527 | if (!lun->cmda[0]) { |
528 | printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name); |
529 | return; |
530 | } |
531 | lun->cmda[0] = 0; |
532 | } |
533 | |
534 | /* |
535 | * The command queue. |
536 | */ |
537 | static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
538 | { |
539 | struct ub_scsi_cmd_queue *t = &sc->cmd_queue; |
540 | |
541 | if (t->qlen++ == 0) { |
542 | t->head = cmd; |
543 | t->tail = cmd; |
544 | } else { |
545 | t->tail->next = cmd; |
546 | t->tail = cmd; |
547 | } |
548 | |
549 | if (t->qlen > t->qmax) |
550 | t->qmax = t->qlen; |
551 | } |
552 | |
553 | static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
554 | { |
555 | struct ub_scsi_cmd_queue *t = &sc->cmd_queue; |
556 | |
557 | if (t->qlen++ == 0) { |
558 | t->head = cmd; |
559 | t->tail = cmd; |
560 | } else { |
561 | cmd->next = t->head; |
562 | t->head = cmd; |
563 | } |
564 | |
565 | if (t->qlen > t->qmax) |
566 | t->qmax = t->qlen; |
567 | } |
568 | |
569 | static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc) |
570 | { |
571 | struct ub_scsi_cmd_queue *t = &sc->cmd_queue; |
572 | struct ub_scsi_cmd *cmd; |
573 | |
574 | if (t->qlen == 0) |
575 | return NULL; |
576 | if (--t->qlen == 0) |
577 | t->tail = NULL; |
578 | cmd = t->head; |
579 | t->head = cmd->next; |
580 | cmd->next = NULL; |
581 | return cmd; |
582 | } |
583 | |
584 | #define ub_cmdq_peek(sc) ((sc)->cmd_queue.head) |
585 | |
586 | /* |
587 | * The request function is our main entry point |
588 | */ |
589 | |
590 | static void ub_request_fn(struct request_queue *q) |
591 | { |
592 | struct ub_lun *lun = q->queuedata; |
593 | struct request *rq; |
594 | |
595 | while ((rq = blk_peek_request(q)) != NULL) { |
596 | if (ub_request_fn_1(lun, rq) != 0) { |
597 | blk_stop_queue(q); |
598 | break; |
599 | } |
600 | } |
601 | } |
602 | |
603 | static int ub_request_fn_1(struct ub_lun *lun, struct request *rq) |
604 | { |
605 | struct ub_dev *sc = lun->udev; |
606 | struct ub_scsi_cmd *cmd; |
607 | struct ub_request *urq; |
608 | int n_elem; |
609 | |
610 | if (atomic_read(&sc->poison)) { |
611 | blk_start_request(rq); |
612 | ub_end_rq(rq, DID_NO_CONNECT << 16); |
613 | return 0; |
614 | } |
615 | |
616 | if (lun->changed && rq->cmd_type != REQ_TYPE_BLOCK_PC) { |
617 | blk_start_request(rq); |
618 | ub_end_rq(rq, SAM_STAT_CHECK_CONDITION); |
619 | return 0; |
620 | } |
621 | |
622 | if (lun->urq.rq != NULL) |
623 | return -1; |
624 | if ((cmd = ub_get_cmd(lun)) == NULL) |
625 | return -1; |
626 | memset(cmd, 0, sizeof(struct ub_scsi_cmd)); |
627 | |
628 | blk_start_request(rq); |
629 | |
630 | urq = &lun->urq; |
631 | memset(urq, 0, sizeof(struct ub_request)); |
632 | urq->rq = rq; |
633 | |
634 | /* |
635 | * get scatterlist from block layer |
636 | */ |
637 | sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG); |
638 | n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]); |
639 | if (n_elem < 0) { |
640 | /* Impossible, because blk_rq_map_sg should not hit ENOMEM. */ |
641 | printk(KERN_INFO "%s: failed request map (%d)\n", |
642 | lun->name, n_elem); |
643 | goto drop; |
644 | } |
645 | if (n_elem > UB_MAX_REQ_SG) { /* Paranoia */ |
646 | printk(KERN_WARNING "%s: request with %d segments\n", |
647 | lun->name, n_elem); |
648 | goto drop; |
649 | } |
650 | urq->nsg = n_elem; |
651 | |
652 | if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { |
653 | ub_cmd_build_packet(sc, lun, cmd, urq); |
654 | } else { |
655 | ub_cmd_build_block(sc, lun, cmd, urq); |
656 | } |
657 | cmd->state = UB_CMDST_INIT; |
658 | cmd->lun = lun; |
659 | cmd->done = ub_rw_cmd_done; |
660 | cmd->back = urq; |
661 | |
662 | cmd->tag = sc->tagcnt++; |
663 | if (ub_submit_scsi(sc, cmd) != 0) |
664 | goto drop; |
665 | |
666 | return 0; |
667 | |
668 | drop: |
669 | ub_put_cmd(lun, cmd); |
670 | ub_end_rq(rq, DID_ERROR << 16); |
671 | return 0; |
672 | } |
673 | |
674 | static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, |
675 | struct ub_scsi_cmd *cmd, struct ub_request *urq) |
676 | { |
677 | struct request *rq = urq->rq; |
678 | unsigned int block, nblks; |
679 | |
680 | if (rq_data_dir(rq) == WRITE) |
681 | cmd->dir = UB_DIR_WRITE; |
682 | else |
683 | cmd->dir = UB_DIR_READ; |
684 | |
685 | cmd->nsg = urq->nsg; |
686 | memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); |
687 | |
688 | /* |
689 | * build the command |
690 | * |
691 | * The call to blk_queue_logical_block_size() guarantees that request |
692 | * is aligned, but it is given in terms of 512 byte units, always. |
693 | */ |
694 | block = blk_rq_pos(rq) >> lun->capacity.bshift; |
695 | nblks = blk_rq_sectors(rq) >> lun->capacity.bshift; |
696 | |
697 | cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10; |
698 | /* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */ |
699 | cmd->cdb[2] = block >> 24; |
700 | cmd->cdb[3] = block >> 16; |
701 | cmd->cdb[4] = block >> 8; |
702 | cmd->cdb[5] = block; |
703 | cmd->cdb[7] = nblks >> 8; |
704 | cmd->cdb[8] = nblks; |
705 | cmd->cdb_len = 10; |
706 | |
707 | cmd->len = blk_rq_bytes(rq); |
708 | } |
709 | |
710 | static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, |
711 | struct ub_scsi_cmd *cmd, struct ub_request *urq) |
712 | { |
713 | struct request *rq = urq->rq; |
714 | |
715 | if (blk_rq_bytes(rq) == 0) { |
716 | cmd->dir = UB_DIR_NONE; |
717 | } else { |
718 | if (rq_data_dir(rq) == WRITE) |
719 | cmd->dir = UB_DIR_WRITE; |
720 | else |
721 | cmd->dir = UB_DIR_READ; |
722 | } |
723 | |
724 | cmd->nsg = urq->nsg; |
725 | memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); |
726 | |
727 | memcpy(&cmd->cdb, rq->cmd, rq->cmd_len); |
728 | cmd->cdb_len = rq->cmd_len; |
729 | |
730 | cmd->len = blk_rq_bytes(rq); |
731 | |
732 | /* |
733 | * To reapply this to every URB is not as incorrect as it looks. |
734 | * In return, we avoid any complicated tracking calculations. |
735 | */ |
736 | cmd->timeo = rq->timeout; |
737 | } |
738 | |
739 | static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
740 | { |
741 | struct ub_lun *lun = cmd->lun; |
742 | struct ub_request *urq = cmd->back; |
743 | struct request *rq; |
744 | unsigned int scsi_status; |
745 | |
746 | rq = urq->rq; |
747 | |
748 | if (cmd->error == 0) { |
749 | if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { |
750 | if (cmd->act_len >= rq->resid_len) |
751 | rq->resid_len = 0; |
752 | else |
753 | rq->resid_len -= cmd->act_len; |
754 | scsi_status = 0; |
755 | } else { |
756 | if (cmd->act_len != cmd->len) { |
757 | scsi_status = SAM_STAT_CHECK_CONDITION; |
758 | } else { |
759 | scsi_status = 0; |
760 | } |
761 | } |
762 | } else { |
763 | if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { |
764 | /* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */ |
765 | memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE); |
766 | rq->sense_len = UB_SENSE_SIZE; |
767 | if (sc->top_sense[0] != 0) |
768 | scsi_status = SAM_STAT_CHECK_CONDITION; |
769 | else |
770 | scsi_status = DID_ERROR << 16; |
771 | } else { |
772 | if (cmd->error == -EIO && |
773 | (cmd->key == 0 || |
774 | cmd->key == MEDIUM_ERROR || |
775 | cmd->key == UNIT_ATTENTION)) { |
776 | if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0) |
777 | return; |
778 | } |
779 | scsi_status = SAM_STAT_CHECK_CONDITION; |
780 | } |
781 | } |
782 | |
783 | urq->rq = NULL; |
784 | |
785 | ub_put_cmd(lun, cmd); |
786 | ub_end_rq(rq, scsi_status); |
787 | blk_start_queue(lun->disk->queue); |
788 | } |
789 | |
790 | static void ub_end_rq(struct request *rq, unsigned int scsi_status) |
791 | { |
792 | int error; |
793 | |
794 | if (scsi_status == 0) { |
795 | error = 0; |
796 | } else { |
797 | error = -EIO; |
798 | rq->errors = scsi_status; |
799 | } |
800 | __blk_end_request_all(rq, error); |
801 | } |
802 | |
803 | static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, |
804 | struct ub_request *urq, struct ub_scsi_cmd *cmd) |
805 | { |
806 | |
807 | if (atomic_read(&sc->poison)) |
808 | return -ENXIO; |
809 | |
810 | ub_reset_enter(sc, urq->current_try); |
811 | |
812 | if (urq->current_try >= 3) |
813 | return -EIO; |
814 | urq->current_try++; |
815 | |
816 | /* Remove this if anyone complains of flooding. */ |
817 | printk(KERN_DEBUG "%s: dir %c len/act %d/%d " |
818 | "[sense %x %02x %02x] retry %d\n", |
819 | sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len, |
820 | cmd->key, cmd->asc, cmd->ascq, urq->current_try); |
821 | |
822 | memset(cmd, 0, sizeof(struct ub_scsi_cmd)); |
823 | ub_cmd_build_block(sc, lun, cmd, urq); |
824 | |
825 | cmd->state = UB_CMDST_INIT; |
826 | cmd->lun = lun; |
827 | cmd->done = ub_rw_cmd_done; |
828 | cmd->back = urq; |
829 | |
830 | cmd->tag = sc->tagcnt++; |
831 | |
832 | #if 0 /* Wasteful */ |
833 | return ub_submit_scsi(sc, cmd); |
834 | #else |
835 | ub_cmdq_add(sc, cmd); |
836 | return 0; |
837 | #endif |
838 | } |
839 | |
840 | /* |
841 | * Submit a regular SCSI operation (not an auto-sense). |
842 | * |
843 | * The Iron Law of Good Submit Routine is: |
844 | * Zero return - callback is done, Nonzero return - callback is not done. |
845 | * No exceptions. |
846 | * |
847 | * Host is assumed locked. |
848 | */ |
849 | static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
850 | { |
851 | |
852 | if (cmd->state != UB_CMDST_INIT || |
853 | (cmd->dir != UB_DIR_NONE && cmd->len == 0)) { |
854 | return -EINVAL; |
855 | } |
856 | |
857 | ub_cmdq_add(sc, cmd); |
858 | /* |
859 | * We can call ub_scsi_dispatch(sc) right away here, but it's a little |
860 | * safer to jump to a tasklet, in case upper layers do something silly. |
861 | */ |
862 | tasklet_schedule(&sc->tasklet); |
863 | return 0; |
864 | } |
865 | |
866 | /* |
867 | * Submit the first URB for the queued command. |
868 | * This function does not deal with queueing in any way. |
869 | */ |
870 | static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
871 | { |
872 | struct bulk_cb_wrap *bcb; |
873 | int rc; |
874 | |
875 | bcb = &sc->work_bcb; |
876 | |
877 | /* |
878 | * ``If the allocation length is eighteen or greater, and a device |
879 | * server returns less than eithteen bytes of data, the application |
880 | * client should assume that the bytes not transferred would have been |
881 | * zeroes had the device server returned those bytes.'' |
882 | * |
883 | * We zero sense for all commands so that when a packet request |
884 | * fails it does not return a stale sense. |
885 | */ |
886 | memset(&sc->top_sense, 0, UB_SENSE_SIZE); |
887 | |
888 | /* set up the command wrapper */ |
889 | bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); |
890 | bcb->Tag = cmd->tag; /* Endianness is not important */ |
891 | bcb->DataTransferLength = cpu_to_le32(cmd->len); |
892 | bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0; |
893 | bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0; |
894 | bcb->Length = cmd->cdb_len; |
895 | |
896 | /* copy the command payload */ |
897 | memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE); |
898 | |
899 | UB_INIT_COMPLETION(sc->work_done); |
900 | |
901 | sc->last_pipe = sc->send_bulk_pipe; |
902 | usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe, |
903 | bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc); |
904 | |
905 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
906 | /* XXX Clear stalls */ |
907 | ub_complete(&sc->work_done); |
908 | return rc; |
909 | } |
910 | |
911 | sc->work_timer.expires = jiffies + UB_URB_TIMEOUT; |
912 | add_timer(&sc->work_timer); |
913 | |
914 | cmd->state = UB_CMDST_CMD; |
915 | return 0; |
916 | } |
917 | |
918 | /* |
919 | * Timeout handler. |
920 | */ |
921 | static void ub_urb_timeout(unsigned long arg) |
922 | { |
923 | struct ub_dev *sc = (struct ub_dev *) arg; |
924 | unsigned long flags; |
925 | |
926 | spin_lock_irqsave(sc->lock, flags); |
927 | if (!ub_is_completed(&sc->work_done)) |
928 | usb_unlink_urb(&sc->work_urb); |
929 | spin_unlock_irqrestore(sc->lock, flags); |
930 | } |
931 | |
932 | /* |
933 | * Completion routine for the work URB. |
934 | * |
935 | * This can be called directly from usb_submit_urb (while we have |
936 | * the sc->lock taken) and from an interrupt (while we do NOT have |
937 | * the sc->lock taken). Therefore, bounce this off to a tasklet. |
938 | */ |
939 | static void ub_urb_complete(struct urb *urb) |
940 | { |
941 | struct ub_dev *sc = urb->context; |
942 | |
943 | ub_complete(&sc->work_done); |
944 | tasklet_schedule(&sc->tasklet); |
945 | } |
946 | |
947 | static void ub_scsi_action(unsigned long _dev) |
948 | { |
949 | struct ub_dev *sc = (struct ub_dev *) _dev; |
950 | unsigned long flags; |
951 | |
952 | spin_lock_irqsave(sc->lock, flags); |
953 | ub_scsi_dispatch(sc); |
954 | spin_unlock_irqrestore(sc->lock, flags); |
955 | } |
956 | |
957 | static void ub_scsi_dispatch(struct ub_dev *sc) |
958 | { |
959 | struct ub_scsi_cmd *cmd; |
960 | int rc; |
961 | |
962 | while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) { |
963 | if (cmd->state == UB_CMDST_DONE) { |
964 | ub_cmdq_pop(sc); |
965 | (*cmd->done)(sc, cmd); |
966 | } else if (cmd->state == UB_CMDST_INIT) { |
967 | if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0) |
968 | break; |
969 | cmd->error = rc; |
970 | cmd->state = UB_CMDST_DONE; |
971 | } else { |
972 | if (!ub_is_completed(&sc->work_done)) |
973 | break; |
974 | del_timer(&sc->work_timer); |
975 | ub_scsi_urb_compl(sc, cmd); |
976 | } |
977 | } |
978 | } |
979 | |
980 | static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
981 | { |
982 | struct urb *urb = &sc->work_urb; |
983 | struct bulk_cs_wrap *bcs; |
984 | int endp; |
985 | int len; |
986 | int rc; |
987 | |
988 | if (atomic_read(&sc->poison)) { |
989 | ub_state_done(sc, cmd, -ENODEV); |
990 | return; |
991 | } |
992 | |
993 | endp = usb_pipeendpoint(sc->last_pipe); |
994 | if (usb_pipein(sc->last_pipe)) |
995 | endp |= USB_DIR_IN; |
996 | |
997 | if (cmd->state == UB_CMDST_CLEAR) { |
998 | if (urb->status == -EPIPE) { |
999 | /* |
1000 | * STALL while clearning STALL. |
1001 | * The control pipe clears itself - nothing to do. |
1002 | */ |
1003 | printk(KERN_NOTICE "%s: stall on control pipe\n", |
1004 | sc->name); |
1005 | goto Bad_End; |
1006 | } |
1007 | |
1008 | /* |
1009 | * We ignore the result for the halt clear. |
1010 | */ |
1011 | |
1012 | usb_reset_endpoint(sc->dev, endp); |
1013 | |
1014 | ub_state_sense(sc, cmd); |
1015 | |
1016 | } else if (cmd->state == UB_CMDST_CLR2STS) { |
1017 | if (urb->status == -EPIPE) { |
1018 | printk(KERN_NOTICE "%s: stall on control pipe\n", |
1019 | sc->name); |
1020 | goto Bad_End; |
1021 | } |
1022 | |
1023 | /* |
1024 | * We ignore the result for the halt clear. |
1025 | */ |
1026 | |
1027 | usb_reset_endpoint(sc->dev, endp); |
1028 | |
1029 | ub_state_stat(sc, cmd); |
1030 | |
1031 | } else if (cmd->state == UB_CMDST_CLRRS) { |
1032 | if (urb->status == -EPIPE) { |
1033 | printk(KERN_NOTICE "%s: stall on control pipe\n", |
1034 | sc->name); |
1035 | goto Bad_End; |
1036 | } |
1037 | |
1038 | /* |
1039 | * We ignore the result for the halt clear. |
1040 | */ |
1041 | |
1042 | usb_reset_endpoint(sc->dev, endp); |
1043 | |
1044 | ub_state_stat_counted(sc, cmd); |
1045 | |
1046 | } else if (cmd->state == UB_CMDST_CMD) { |
1047 | switch (urb->status) { |
1048 | case 0: |
1049 | break; |
1050 | case -EOVERFLOW: |
1051 | goto Bad_End; |
1052 | case -EPIPE: |
1053 | rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); |
1054 | if (rc != 0) { |
1055 | printk(KERN_NOTICE "%s: " |
1056 | "unable to submit clear (%d)\n", |
1057 | sc->name, rc); |
1058 | /* |
1059 | * This is typically ENOMEM or some other such shit. |
1060 | * Retrying is pointless. Just do Bad End on it... |
1061 | */ |
1062 | ub_state_done(sc, cmd, rc); |
1063 | return; |
1064 | } |
1065 | cmd->state = UB_CMDST_CLEAR; |
1066 | return; |
1067 | case -ESHUTDOWN: /* unplug */ |
1068 | case -EILSEQ: /* unplug timeout on uhci */ |
1069 | ub_state_done(sc, cmd, -ENODEV); |
1070 | return; |
1071 | default: |
1072 | goto Bad_End; |
1073 | } |
1074 | if (urb->actual_length != US_BULK_CB_WRAP_LEN) { |
1075 | goto Bad_End; |
1076 | } |
1077 | |
1078 | if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) { |
1079 | ub_state_stat(sc, cmd); |
1080 | return; |
1081 | } |
1082 | |
1083 | // udelay(125); // usb-storage has this |
1084 | ub_data_start(sc, cmd); |
1085 | |
1086 | } else if (cmd->state == UB_CMDST_DATA) { |
1087 | if (urb->status == -EPIPE) { |
1088 | rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); |
1089 | if (rc != 0) { |
1090 | printk(KERN_NOTICE "%s: " |
1091 | "unable to submit clear (%d)\n", |
1092 | sc->name, rc); |
1093 | ub_state_done(sc, cmd, rc); |
1094 | return; |
1095 | } |
1096 | cmd->state = UB_CMDST_CLR2STS; |
1097 | return; |
1098 | } |
1099 | if (urb->status == -EOVERFLOW) { |
1100 | /* |
1101 | * A babble? Failure, but we must transfer CSW now. |
1102 | */ |
1103 | cmd->error = -EOVERFLOW; /* A cheap trick... */ |
1104 | ub_state_stat(sc, cmd); |
1105 | return; |
1106 | } |
1107 | |
1108 | if (cmd->dir == UB_DIR_WRITE) { |
1109 | /* |
1110 | * Do not continue writes in case of a failure. |
1111 | * Doing so would cause sectors to be mixed up, |
1112 | * which is worse than sectors lost. |
1113 | * |
1114 | * We must try to read the CSW, or many devices |
1115 | * get confused. |
1116 | */ |
1117 | len = urb->actual_length; |
1118 | if (urb->status != 0 || |
1119 | len != cmd->sgv[cmd->current_sg].length) { |
1120 | cmd->act_len += len; |
1121 | |
1122 | cmd->error = -EIO; |
1123 | ub_state_stat(sc, cmd); |
1124 | return; |
1125 | } |
1126 | |
1127 | } else { |
1128 | /* |
1129 | * If an error occurs on read, we record it, and |
1130 | * continue to fetch data in order to avoid bubble. |
1131 | * |
1132 | * As a small shortcut, we stop if we detect that |
1133 | * a CSW mixed into data. |
1134 | */ |
1135 | if (urb->status != 0) |
1136 | cmd->error = -EIO; |
1137 | |
1138 | len = urb->actual_length; |
1139 | if (urb->status != 0 || |
1140 | len != cmd->sgv[cmd->current_sg].length) { |
1141 | if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN) |
1142 | goto Bad_End; |
1143 | } |
1144 | } |
1145 | |
1146 | cmd->act_len += urb->actual_length; |
1147 | |
1148 | if (++cmd->current_sg < cmd->nsg) { |
1149 | ub_data_start(sc, cmd); |
1150 | return; |
1151 | } |
1152 | ub_state_stat(sc, cmd); |
1153 | |
1154 | } else if (cmd->state == UB_CMDST_STAT) { |
1155 | if (urb->status == -EPIPE) { |
1156 | rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); |
1157 | if (rc != 0) { |
1158 | printk(KERN_NOTICE "%s: " |
1159 | "unable to submit clear (%d)\n", |
1160 | sc->name, rc); |
1161 | ub_state_done(sc, cmd, rc); |
1162 | return; |
1163 | } |
1164 | |
1165 | /* |
1166 | * Having a stall when getting CSW is an error, so |
1167 | * make sure uppper levels are not oblivious to it. |
1168 | */ |
1169 | cmd->error = -EIO; /* A cheap trick... */ |
1170 | |
1171 | cmd->state = UB_CMDST_CLRRS; |
1172 | return; |
1173 | } |
1174 | |
1175 | /* Catch everything, including -EOVERFLOW and other nasties. */ |
1176 | if (urb->status != 0) |
1177 | goto Bad_End; |
1178 | |
1179 | if (urb->actual_length == 0) { |
1180 | ub_state_stat_counted(sc, cmd); |
1181 | return; |
1182 | } |
1183 | |
1184 | /* |
1185 | * Check the returned Bulk protocol status. |
1186 | * The status block has to be validated first. |
1187 | */ |
1188 | |
1189 | bcs = &sc->work_bcs; |
1190 | |
1191 | if (sc->signature == cpu_to_le32(0)) { |
1192 | /* |
1193 | * This is the first reply, so do not perform the check. |
1194 | * Instead, remember the signature the device uses |
1195 | * for future checks. But do not allow a nul. |
1196 | */ |
1197 | sc->signature = bcs->Signature; |
1198 | if (sc->signature == cpu_to_le32(0)) { |
1199 | ub_state_stat_counted(sc, cmd); |
1200 | return; |
1201 | } |
1202 | } else { |
1203 | if (bcs->Signature != sc->signature) { |
1204 | ub_state_stat_counted(sc, cmd); |
1205 | return; |
1206 | } |
1207 | } |
1208 | |
1209 | if (bcs->Tag != cmd->tag) { |
1210 | /* |
1211 | * This usually happens when we disagree with the |
1212 | * device's microcode about something. For instance, |
1213 | * a few of them throw this after timeouts. They buffer |
1214 | * commands and reply at commands we timed out before. |
1215 | * Without flushing these replies we loop forever. |
1216 | */ |
1217 | ub_state_stat_counted(sc, cmd); |
1218 | return; |
1219 | } |
1220 | |
1221 | if (!sc->bad_resid) { |
1222 | len = le32_to_cpu(bcs->Residue); |
1223 | if (len != cmd->len - cmd->act_len) { |
1224 | /* |
1225 | * Only start ignoring if this cmd ended well. |
1226 | */ |
1227 | if (cmd->len == cmd->act_len) { |
1228 | printk(KERN_NOTICE "%s: " |
1229 | "bad residual %d of %d, ignoring\n", |
1230 | sc->name, len, cmd->len); |
1231 | sc->bad_resid = 1; |
1232 | } |
1233 | } |
1234 | } |
1235 | |
1236 | switch (bcs->Status) { |
1237 | case US_BULK_STAT_OK: |
1238 | break; |
1239 | case US_BULK_STAT_FAIL: |
1240 | ub_state_sense(sc, cmd); |
1241 | return; |
1242 | case US_BULK_STAT_PHASE: |
1243 | goto Bad_End; |
1244 | default: |
1245 | printk(KERN_INFO "%s: unknown CSW status 0x%x\n", |
1246 | sc->name, bcs->Status); |
1247 | ub_state_done(sc, cmd, -EINVAL); |
1248 | return; |
1249 | } |
1250 | |
1251 | /* Not zeroing error to preserve a babble indicator */ |
1252 | if (cmd->error != 0) { |
1253 | ub_state_sense(sc, cmd); |
1254 | return; |
1255 | } |
1256 | cmd->state = UB_CMDST_DONE; |
1257 | ub_cmdq_pop(sc); |
1258 | (*cmd->done)(sc, cmd); |
1259 | |
1260 | } else if (cmd->state == UB_CMDST_SENSE) { |
1261 | ub_state_done(sc, cmd, -EIO); |
1262 | |
1263 | } else { |
1264 | printk(KERN_WARNING "%s: wrong command state %d\n", |
1265 | sc->name, cmd->state); |
1266 | ub_state_done(sc, cmd, -EINVAL); |
1267 | return; |
1268 | } |
1269 | return; |
1270 | |
1271 | Bad_End: /* Little Excel is dead */ |
1272 | ub_state_done(sc, cmd, -EIO); |
1273 | } |
1274 | |
1275 | /* |
1276 | * Factorization helper for the command state machine: |
1277 | * Initiate a data segment transfer. |
1278 | */ |
1279 | static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
1280 | { |
1281 | struct scatterlist *sg = &cmd->sgv[cmd->current_sg]; |
1282 | int pipe; |
1283 | int rc; |
1284 | |
1285 | UB_INIT_COMPLETION(sc->work_done); |
1286 | |
1287 | if (cmd->dir == UB_DIR_READ) |
1288 | pipe = sc->recv_bulk_pipe; |
1289 | else |
1290 | pipe = sc->send_bulk_pipe; |
1291 | sc->last_pipe = pipe; |
1292 | usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg), |
1293 | sg->length, ub_urb_complete, sc); |
1294 | |
1295 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
1296 | /* XXX Clear stalls */ |
1297 | ub_complete(&sc->work_done); |
1298 | ub_state_done(sc, cmd, rc); |
1299 | return; |
1300 | } |
1301 | |
1302 | if (cmd->timeo) |
1303 | sc->work_timer.expires = jiffies + cmd->timeo; |
1304 | else |
1305 | sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT; |
1306 | add_timer(&sc->work_timer); |
1307 | |
1308 | cmd->state = UB_CMDST_DATA; |
1309 | } |
1310 | |
1311 | /* |
1312 | * Factorization helper for the command state machine: |
1313 | * Finish the command. |
1314 | */ |
1315 | static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc) |
1316 | { |
1317 | |
1318 | cmd->error = rc; |
1319 | cmd->state = UB_CMDST_DONE; |
1320 | ub_cmdq_pop(sc); |
1321 | (*cmd->done)(sc, cmd); |
1322 | } |
1323 | |
1324 | /* |
1325 | * Factorization helper for the command state machine: |
1326 | * Submit a CSW read. |
1327 | */ |
1328 | static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
1329 | { |
1330 | int rc; |
1331 | |
1332 | UB_INIT_COMPLETION(sc->work_done); |
1333 | |
1334 | sc->last_pipe = sc->recv_bulk_pipe; |
1335 | usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe, |
1336 | &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc); |
1337 | |
1338 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
1339 | /* XXX Clear stalls */ |
1340 | ub_complete(&sc->work_done); |
1341 | ub_state_done(sc, cmd, rc); |
1342 | return -1; |
1343 | } |
1344 | |
1345 | if (cmd->timeo) |
1346 | sc->work_timer.expires = jiffies + cmd->timeo; |
1347 | else |
1348 | sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT; |
1349 | add_timer(&sc->work_timer); |
1350 | return 0; |
1351 | } |
1352 | |
1353 | /* |
1354 | * Factorization helper for the command state machine: |
1355 | * Submit a CSW read and go to STAT state. |
1356 | */ |
1357 | static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
1358 | { |
1359 | |
1360 | if (__ub_state_stat(sc, cmd) != 0) |
1361 | return; |
1362 | |
1363 | cmd->stat_count = 0; |
1364 | cmd->state = UB_CMDST_STAT; |
1365 | } |
1366 | |
1367 | /* |
1368 | * Factorization helper for the command state machine: |
1369 | * Submit a CSW read and go to STAT state with counter (along [C] path). |
1370 | */ |
1371 | static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
1372 | { |
1373 | |
1374 | if (++cmd->stat_count >= 4) { |
1375 | ub_state_sense(sc, cmd); |
1376 | return; |
1377 | } |
1378 | |
1379 | if (__ub_state_stat(sc, cmd) != 0) |
1380 | return; |
1381 | |
1382 | cmd->state = UB_CMDST_STAT; |
1383 | } |
1384 | |
1385 | /* |
1386 | * Factorization helper for the command state machine: |
1387 | * Submit a REQUEST SENSE and go to SENSE state. |
1388 | */ |
1389 | static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
1390 | { |
1391 | struct ub_scsi_cmd *scmd; |
1392 | struct scatterlist *sg; |
1393 | int rc; |
1394 | |
1395 | if (cmd->cdb[0] == REQUEST_SENSE) { |
1396 | rc = -EPIPE; |
1397 | goto error; |
1398 | } |
1399 | |
1400 | scmd = &sc->top_rqs_cmd; |
1401 | memset(scmd, 0, sizeof(struct ub_scsi_cmd)); |
1402 | scmd->cdb[0] = REQUEST_SENSE; |
1403 | scmd->cdb[4] = UB_SENSE_SIZE; |
1404 | scmd->cdb_len = 6; |
1405 | scmd->dir = UB_DIR_READ; |
1406 | scmd->state = UB_CMDST_INIT; |
1407 | scmd->nsg = 1; |
1408 | sg = &scmd->sgv[0]; |
1409 | sg_init_table(sg, UB_MAX_REQ_SG); |
1410 | sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE, |
1411 | (unsigned long)sc->top_sense & (PAGE_SIZE-1)); |
1412 | scmd->len = UB_SENSE_SIZE; |
1413 | scmd->lun = cmd->lun; |
1414 | scmd->done = ub_top_sense_done; |
1415 | scmd->back = cmd; |
1416 | |
1417 | scmd->tag = sc->tagcnt++; |
1418 | |
1419 | cmd->state = UB_CMDST_SENSE; |
1420 | |
1421 | ub_cmdq_insert(sc, scmd); |
1422 | return; |
1423 | |
1424 | error: |
1425 | ub_state_done(sc, cmd, rc); |
1426 | } |
1427 | |
1428 | /* |
1429 | * A helper for the command's state machine: |
1430 | * Submit a stall clear. |
1431 | */ |
1432 | static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, |
1433 | int stalled_pipe) |
1434 | { |
1435 | int endp; |
1436 | struct usb_ctrlrequest *cr; |
1437 | int rc; |
1438 | |
1439 | endp = usb_pipeendpoint(stalled_pipe); |
1440 | if (usb_pipein (stalled_pipe)) |
1441 | endp |= USB_DIR_IN; |
1442 | |
1443 | cr = &sc->work_cr; |
1444 | cr->bRequestType = USB_RECIP_ENDPOINT; |
1445 | cr->bRequest = USB_REQ_CLEAR_FEATURE; |
1446 | cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); |
1447 | cr->wIndex = cpu_to_le16(endp); |
1448 | cr->wLength = cpu_to_le16(0); |
1449 | |
1450 | UB_INIT_COMPLETION(sc->work_done); |
1451 | |
1452 | usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, |
1453 | (unsigned char*) cr, NULL, 0, ub_urb_complete, sc); |
1454 | |
1455 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { |
1456 | ub_complete(&sc->work_done); |
1457 | return rc; |
1458 | } |
1459 | |
1460 | sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT; |
1461 | add_timer(&sc->work_timer); |
1462 | return 0; |
1463 | } |
1464 | |
1465 | /* |
1466 | */ |
1467 | static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd) |
1468 | { |
1469 | unsigned char *sense = sc->top_sense; |
1470 | struct ub_scsi_cmd *cmd; |
1471 | |
1472 | /* |
1473 | * Find the command which triggered the unit attention or a check, |
1474 | * save the sense into it, and advance its state machine. |
1475 | */ |
1476 | if ((cmd = ub_cmdq_peek(sc)) == NULL) { |
1477 | printk(KERN_WARNING "%s: sense done while idle\n", sc->name); |
1478 | return; |
1479 | } |
1480 | if (cmd != scmd->back) { |
1481 | printk(KERN_WARNING "%s: " |
1482 | "sense done for wrong command 0x%x\n", |
1483 | sc->name, cmd->tag); |
1484 | return; |
1485 | } |
1486 | if (cmd->state != UB_CMDST_SENSE) { |
1487 | printk(KERN_WARNING "%s: sense done with bad cmd state %d\n", |
1488 | sc->name, cmd->state); |
1489 | return; |
1490 | } |
1491 | |
1492 | /* |
1493 | * Ignoring scmd->act_len, because the buffer was pre-zeroed. |
1494 | */ |
1495 | cmd->key = sense[2] & 0x0F; |
1496 | cmd->asc = sense[12]; |
1497 | cmd->ascq = sense[13]; |
1498 | |
1499 | ub_scsi_urb_compl(sc, cmd); |
1500 | } |
1501 | |
1502 | /* |
1503 | * Reset management |
1504 | */ |
1505 | |
1506 | static void ub_reset_enter(struct ub_dev *sc, int try) |
1507 | { |
1508 | |
1509 | if (sc->reset) { |
1510 | /* This happens often on multi-LUN devices. */ |
1511 | return; |
1512 | } |
1513 | sc->reset = try + 1; |
1514 | |
1515 | #if 0 /* Not needed because the disconnect waits for us. */ |
1516 | unsigned long flags; |
1517 | spin_lock_irqsave(&ub_lock, flags); |
1518 | sc->openc++; |
1519 | spin_unlock_irqrestore(&ub_lock, flags); |
1520 | #endif |
1521 | |
1522 | #if 0 /* We let them stop themselves. */ |
1523 | struct ub_lun *lun; |
1524 | list_for_each_entry(lun, &sc->luns, link) { |
1525 | blk_stop_queue(lun->disk->queue); |
1526 | } |
1527 | #endif |
1528 | |
1529 | schedule_work(&sc->reset_work); |
1530 | } |
1531 | |
1532 | static void ub_reset_task(struct work_struct *work) |
1533 | { |
1534 | struct ub_dev *sc = container_of(work, struct ub_dev, reset_work); |
1535 | unsigned long flags; |
1536 | struct ub_lun *lun; |
1537 | int rc; |
1538 | |
1539 | if (!sc->reset) { |
1540 | printk(KERN_WARNING "%s: Running reset unrequested\n", |
1541 | sc->name); |
1542 | return; |
1543 | } |
1544 | |
1545 | if (atomic_read(&sc->poison)) { |
1546 | ; |
1547 | } else if ((sc->reset & 1) == 0) { |
1548 | ub_sync_reset(sc); |
1549 | msleep(700); /* usb-storage sleeps 6s (!) */ |
1550 | ub_probe_clear_stall(sc, sc->recv_bulk_pipe); |
1551 | ub_probe_clear_stall(sc, sc->send_bulk_pipe); |
1552 | } else if (sc->dev->actconfig->desc.bNumInterfaces != 1) { |
1553 | ; |
1554 | } else { |
1555 | rc = usb_lock_device_for_reset(sc->dev, sc->intf); |
1556 | if (rc < 0) { |
1557 | printk(KERN_NOTICE |
1558 | "%s: usb_lock_device_for_reset failed (%d)\n", |
1559 | sc->name, rc); |
1560 | } else { |
1561 | rc = usb_reset_device(sc->dev); |
1562 | if (rc < 0) { |
1563 | printk(KERN_NOTICE "%s: " |
1564 | "usb_lock_device_for_reset failed (%d)\n", |
1565 | sc->name, rc); |
1566 | } |
1567 | usb_unlock_device(sc->dev); |
1568 | } |
1569 | } |
1570 | |
1571 | /* |
1572 | * In theory, no commands can be running while reset is active, |
1573 | * so nobody can ask for another reset, and so we do not need any |
1574 | * queues of resets or anything. We do need a spinlock though, |
1575 | * to interact with block layer. |
1576 | */ |
1577 | spin_lock_irqsave(sc->lock, flags); |
1578 | sc->reset = 0; |
1579 | tasklet_schedule(&sc->tasklet); |
1580 | list_for_each_entry(lun, &sc->luns, link) { |
1581 | blk_start_queue(lun->disk->queue); |
1582 | } |
1583 | wake_up(&sc->reset_wait); |
1584 | spin_unlock_irqrestore(sc->lock, flags); |
1585 | } |
1586 | |
1587 | /* |
1588 | * XXX Reset brackets are too much hassle to implement, so just stub them |
1589 | * in order to prevent forced unbinding (which deadlocks solid when our |
1590 | * ->disconnect method waits for the reset to complete and this kills keventd). |
1591 | * |
1592 | * XXX Tell Alan to move usb_unlock_device inside of usb_reset_device, |
1593 | * or else the post_reset is invoked, and restats I/O on a locked device. |
1594 | */ |
1595 | static int ub_pre_reset(struct usb_interface *iface) { |
1596 | return 0; |
1597 | } |
1598 | |
1599 | static int ub_post_reset(struct usb_interface *iface) { |
1600 | return 0; |
1601 | } |
1602 | |
1603 | /* |
1604 | * This is called from a process context. |
1605 | */ |
1606 | static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun) |
1607 | { |
1608 | |
1609 | lun->readonly = 0; /* XXX Query this from the device */ |
1610 | |
1611 | lun->capacity.nsec = 0; |
1612 | lun->capacity.bsize = 512; |
1613 | lun->capacity.bshift = 0; |
1614 | |
1615 | if (ub_sync_tur(sc, lun) != 0) |
1616 | return; /* Not ready */ |
1617 | lun->changed = 0; |
1618 | |
1619 | if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { |
1620 | /* |
1621 | * The retry here means something is wrong, either with the |
1622 | * device, with the transport, or with our code. |
1623 | * We keep this because sd.c has retries for capacity. |
1624 | */ |
1625 | if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { |
1626 | lun->capacity.nsec = 0; |
1627 | lun->capacity.bsize = 512; |
1628 | lun->capacity.bshift = 0; |
1629 | } |
1630 | } |
1631 | } |
1632 | |
1633 | /* |
1634 | * The open funcion. |
1635 | * This is mostly needed to keep refcounting, but also to support |
1636 | * media checks on removable media drives. |
1637 | */ |
1638 | static int ub_bd_open(struct block_device *bdev, fmode_t mode) |
1639 | { |
1640 | struct ub_lun *lun = bdev->bd_disk->private_data; |
1641 | struct ub_dev *sc = lun->udev; |
1642 | unsigned long flags; |
1643 | int rc; |
1644 | |
1645 | spin_lock_irqsave(&ub_lock, flags); |
1646 | if (atomic_read(&sc->poison)) { |
1647 | spin_unlock_irqrestore(&ub_lock, flags); |
1648 | return -ENXIO; |
1649 | } |
1650 | sc->openc++; |
1651 | spin_unlock_irqrestore(&ub_lock, flags); |
1652 | |
1653 | if (lun->removable || lun->readonly) |
1654 | check_disk_change(bdev); |
1655 | |
1656 | /* |
1657 | * The sd.c considers ->media_present and ->changed not equivalent, |
1658 | * under some pretty murky conditions (a failure of READ CAPACITY). |
1659 | * We may need it one day. |
1660 | */ |
1661 | if (lun->removable && lun->changed && !(mode & FMODE_NDELAY)) { |
1662 | rc = -ENOMEDIUM; |
1663 | goto err_open; |
1664 | } |
1665 | |
1666 | if (lun->readonly && (mode & FMODE_WRITE)) { |
1667 | rc = -EROFS; |
1668 | goto err_open; |
1669 | } |
1670 | |
1671 | return 0; |
1672 | |
1673 | err_open: |
1674 | ub_put(sc); |
1675 | return rc; |
1676 | } |
1677 | |
1678 | static int ub_bd_unlocked_open(struct block_device *bdev, fmode_t mode) |
1679 | { |
1680 | int ret; |
1681 | |
1682 | mutex_lock(&ub_mutex); |
1683 | ret = ub_bd_open(bdev, mode); |
1684 | mutex_unlock(&ub_mutex); |
1685 | |
1686 | return ret; |
1687 | } |
1688 | |
1689 | |
1690 | /* |
1691 | */ |
1692 | static int ub_bd_release(struct gendisk *disk, fmode_t mode) |
1693 | { |
1694 | struct ub_lun *lun = disk->private_data; |
1695 | struct ub_dev *sc = lun->udev; |
1696 | |
1697 | mutex_lock(&ub_mutex); |
1698 | ub_put(sc); |
1699 | mutex_unlock(&ub_mutex); |
1700 | |
1701 | return 0; |
1702 | } |
1703 | |
1704 | /* |
1705 | * The ioctl interface. |
1706 | */ |
1707 | static int ub_bd_ioctl(struct block_device *bdev, fmode_t mode, |
1708 | unsigned int cmd, unsigned long arg) |
1709 | { |
1710 | void __user *usermem = (void __user *) arg; |
1711 | int ret; |
1712 | |
1713 | mutex_lock(&ub_mutex); |
1714 | ret = scsi_cmd_blk_ioctl(bdev, mode, cmd, usermem); |
1715 | mutex_unlock(&ub_mutex); |
1716 | |
1717 | return ret; |
1718 | } |
1719 | |
1720 | /* |
1721 | * This is called by check_disk_change if we reported a media change. |
1722 | * The main onjective here is to discover the features of the media such as |
1723 | * the capacity, read-only status, etc. USB storage generally does not |
1724 | * need to be spun up, but if we needed it, this would be the place. |
1725 | * |
1726 | * This call can sleep. |
1727 | * |
1728 | * The return code is not used. |
1729 | */ |
1730 | static int ub_bd_revalidate(struct gendisk *disk) |
1731 | { |
1732 | struct ub_lun *lun = disk->private_data; |
1733 | |
1734 | ub_revalidate(lun->udev, lun); |
1735 | |
1736 | /* XXX Support sector size switching like in sr.c */ |
1737 | blk_queue_logical_block_size(disk->queue, lun->capacity.bsize); |
1738 | set_capacity(disk, lun->capacity.nsec); |
1739 | // set_disk_ro(sdkp->disk, lun->readonly); |
1740 | |
1741 | return 0; |
1742 | } |
1743 | |
1744 | /* |
1745 | * The check is called by the block layer to verify if the media |
1746 | * is still available. It is supposed to be harmless, lightweight and |
1747 | * non-intrusive in case the media was not changed. |
1748 | * |
1749 | * This call can sleep. |
1750 | * |
1751 | * The return code is bool! |
1752 | */ |
1753 | static unsigned int ub_bd_check_events(struct gendisk *disk, |
1754 | unsigned int clearing) |
1755 | { |
1756 | struct ub_lun *lun = disk->private_data; |
1757 | |
1758 | if (!lun->removable) |
1759 | return 0; |
1760 | |
1761 | /* |
1762 | * We clean checks always after every command, so this is not |
1763 | * as dangerous as it looks. If the TEST_UNIT_READY fails here, |
1764 | * the device is actually not ready with operator or software |
1765 | * intervention required. One dangerous item might be a drive which |
1766 | * spins itself down, and come the time to write dirty pages, this |
1767 | * will fail, then block layer discards the data. Since we never |
1768 | * spin drives up, such devices simply cannot be used with ub anyway. |
1769 | */ |
1770 | if (ub_sync_tur(lun->udev, lun) != 0) { |
1771 | lun->changed = 1; |
1772 | return DISK_EVENT_MEDIA_CHANGE; |
1773 | } |
1774 | |
1775 | return lun->changed ? DISK_EVENT_MEDIA_CHANGE : 0; |
1776 | } |
1777 | |
1778 | static const struct block_device_operations ub_bd_fops = { |
1779 | .owner = THIS_MODULE, |
1780 | .open = ub_bd_unlocked_open, |
1781 | .release = ub_bd_release, |
1782 | .ioctl = ub_bd_ioctl, |
1783 | .check_events = ub_bd_check_events, |
1784 | .revalidate_disk = ub_bd_revalidate, |
1785 | }; |
1786 | |
1787 | /* |
1788 | * Common ->done routine for commands executed synchronously. |
1789 | */ |
1790 | static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) |
1791 | { |
1792 | struct completion *cop = cmd->back; |
1793 | complete(cop); |
1794 | } |
1795 | |
1796 | /* |
1797 | * Test if the device has a check condition on it, synchronously. |
1798 | */ |
1799 | static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun) |
1800 | { |
1801 | struct ub_scsi_cmd *cmd; |
1802 | enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) }; |
1803 | unsigned long flags; |
1804 | struct completion compl; |
1805 | int rc; |
1806 | |
1807 | init_completion(&compl); |
1808 | |
1809 | rc = -ENOMEM; |
1810 | if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) |
1811 | goto err_alloc; |
1812 | |
1813 | cmd->cdb[0] = TEST_UNIT_READY; |
1814 | cmd->cdb_len = 6; |
1815 | cmd->dir = UB_DIR_NONE; |
1816 | cmd->state = UB_CMDST_INIT; |
1817 | cmd->lun = lun; /* This may be NULL, but that's ok */ |
1818 | cmd->done = ub_probe_done; |
1819 | cmd->back = &compl; |
1820 | |
1821 | spin_lock_irqsave(sc->lock, flags); |
1822 | cmd->tag = sc->tagcnt++; |
1823 | |
1824 | rc = ub_submit_scsi(sc, cmd); |
1825 | spin_unlock_irqrestore(sc->lock, flags); |
1826 | |
1827 | if (rc != 0) |
1828 | goto err_submit; |
1829 | |
1830 | wait_for_completion(&compl); |
1831 | |
1832 | rc = cmd->error; |
1833 | |
1834 | if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */ |
1835 | rc = cmd->key; |
1836 | |
1837 | err_submit: |
1838 | kfree(cmd); |
1839 | err_alloc: |
1840 | return rc; |
1841 | } |
1842 | |
1843 | /* |
1844 | * Read the SCSI capacity synchronously (for probing). |
1845 | */ |
1846 | static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, |
1847 | struct ub_capacity *ret) |
1848 | { |
1849 | struct ub_scsi_cmd *cmd; |
1850 | struct scatterlist *sg; |
1851 | char *p; |
1852 | enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 }; |
1853 | unsigned long flags; |
1854 | unsigned int bsize, shift; |
1855 | unsigned long nsec; |
1856 | struct completion compl; |
1857 | int rc; |
1858 | |
1859 | init_completion(&compl); |
1860 | |
1861 | rc = -ENOMEM; |
1862 | if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) |
1863 | goto err_alloc; |
1864 | p = (char *)cmd + sizeof(struct ub_scsi_cmd); |
1865 | |
1866 | cmd->cdb[0] = 0x25; |
1867 | cmd->cdb_len = 10; |
1868 | cmd->dir = UB_DIR_READ; |
1869 | cmd->state = UB_CMDST_INIT; |
1870 | cmd->nsg = 1; |
1871 | sg = &cmd->sgv[0]; |
1872 | sg_init_table(sg, UB_MAX_REQ_SG); |
1873 | sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1)); |
1874 | cmd->len = 8; |
1875 | cmd->lun = lun; |
1876 | cmd->done = ub_probe_done; |
1877 | cmd->back = &compl; |
1878 | |
1879 | spin_lock_irqsave(sc->lock, flags); |
1880 | cmd->tag = sc->tagcnt++; |
1881 | |
1882 | rc = ub_submit_scsi(sc, cmd); |
1883 | spin_unlock_irqrestore(sc->lock, flags); |
1884 | |
1885 | if (rc != 0) |
1886 | goto err_submit; |
1887 | |
1888 | wait_for_completion(&compl); |
1889 | |
1890 | if (cmd->error != 0) { |
1891 | rc = -EIO; |
1892 | goto err_read; |
1893 | } |
1894 | if (cmd->act_len != 8) { |
1895 | rc = -EIO; |
1896 | goto err_read; |
1897 | } |
1898 | |
1899 | /* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */ |
1900 | nsec = be32_to_cpu(*(__be32 *)p) + 1; |
1901 | bsize = be32_to_cpu(*(__be32 *)(p + 4)); |
1902 | switch (bsize) { |
1903 | case 512: shift = 0; break; |
1904 | case 1024: shift = 1; break; |
1905 | case 2048: shift = 2; break; |
1906 | case 4096: shift = 3; break; |
1907 | default: |
1908 | rc = -EDOM; |
1909 | goto err_inv_bsize; |
1910 | } |
1911 | |
1912 | ret->bsize = bsize; |
1913 | ret->bshift = shift; |
1914 | ret->nsec = nsec << shift; |
1915 | rc = 0; |
1916 | |
1917 | err_inv_bsize: |
1918 | err_read: |
1919 | err_submit: |
1920 | kfree(cmd); |
1921 | err_alloc: |
1922 | return rc; |
1923 | } |
1924 | |
1925 | /* |
1926 | */ |
1927 | static void ub_probe_urb_complete(struct urb *urb) |
1928 | { |
1929 | struct completion *cop = urb->context; |
1930 | complete(cop); |
1931 | } |
1932 | |
1933 | static void ub_probe_timeout(unsigned long arg) |
1934 | { |
1935 | struct completion *cop = (struct completion *) arg; |
1936 | complete(cop); |
1937 | } |
1938 | |
1939 | /* |
1940 | * Reset with a Bulk reset. |
1941 | */ |
1942 | static int ub_sync_reset(struct ub_dev *sc) |
1943 | { |
1944 | int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; |
1945 | struct usb_ctrlrequest *cr; |
1946 | struct completion compl; |
1947 | struct timer_list timer; |
1948 | int rc; |
1949 | |
1950 | init_completion(&compl); |
1951 | |
1952 | cr = &sc->work_cr; |
1953 | cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE; |
1954 | cr->bRequest = US_BULK_RESET_REQUEST; |
1955 | cr->wValue = cpu_to_le16(0); |
1956 | cr->wIndex = cpu_to_le16(ifnum); |
1957 | cr->wLength = cpu_to_le16(0); |
1958 | |
1959 | usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, |
1960 | (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); |
1961 | |
1962 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { |
1963 | printk(KERN_WARNING |
1964 | "%s: Unable to submit a bulk reset (%d)\n", sc->name, rc); |
1965 | return rc; |
1966 | } |
1967 | |
1968 | init_timer(&timer); |
1969 | timer.function = ub_probe_timeout; |
1970 | timer.data = (unsigned long) &compl; |
1971 | timer.expires = jiffies + UB_CTRL_TIMEOUT; |
1972 | add_timer(&timer); |
1973 | |
1974 | wait_for_completion(&compl); |
1975 | |
1976 | del_timer_sync(&timer); |
1977 | usb_kill_urb(&sc->work_urb); |
1978 | |
1979 | return sc->work_urb.status; |
1980 | } |
1981 | |
1982 | /* |
1983 | * Get number of LUNs by the way of Bulk GetMaxLUN command. |
1984 | */ |
1985 | static int ub_sync_getmaxlun(struct ub_dev *sc) |
1986 | { |
1987 | int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; |
1988 | unsigned char *p; |
1989 | enum { ALLOC_SIZE = 1 }; |
1990 | struct usb_ctrlrequest *cr; |
1991 | struct completion compl; |
1992 | struct timer_list timer; |
1993 | int nluns; |
1994 | int rc; |
1995 | |
1996 | init_completion(&compl); |
1997 | |
1998 | rc = -ENOMEM; |
1999 | if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) |
2000 | goto err_alloc; |
2001 | *p = 55; |
2002 | |
2003 | cr = &sc->work_cr; |
2004 | cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; |
2005 | cr->bRequest = US_BULK_GET_MAX_LUN; |
2006 | cr->wValue = cpu_to_le16(0); |
2007 | cr->wIndex = cpu_to_le16(ifnum); |
2008 | cr->wLength = cpu_to_le16(1); |
2009 | |
2010 | usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe, |
2011 | (unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl); |
2012 | |
2013 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) |
2014 | goto err_submit; |
2015 | |
2016 | init_timer(&timer); |
2017 | timer.function = ub_probe_timeout; |
2018 | timer.data = (unsigned long) &compl; |
2019 | timer.expires = jiffies + UB_CTRL_TIMEOUT; |
2020 | add_timer(&timer); |
2021 | |
2022 | wait_for_completion(&compl); |
2023 | |
2024 | del_timer_sync(&timer); |
2025 | usb_kill_urb(&sc->work_urb); |
2026 | |
2027 | if ((rc = sc->work_urb.status) < 0) |
2028 | goto err_io; |
2029 | |
2030 | if (sc->work_urb.actual_length != 1) { |
2031 | nluns = 0; |
2032 | } else { |
2033 | if ((nluns = *p) == 55) { |
2034 | nluns = 0; |
2035 | } else { |
2036 | /* GetMaxLUN returns the maximum LUN number */ |
2037 | nluns += 1; |
2038 | if (nluns > UB_MAX_LUNS) |
2039 | nluns = UB_MAX_LUNS; |
2040 | } |
2041 | } |
2042 | |
2043 | kfree(p); |
2044 | return nluns; |
2045 | |
2046 | err_io: |
2047 | err_submit: |
2048 | kfree(p); |
2049 | err_alloc: |
2050 | return rc; |
2051 | } |
2052 | |
2053 | /* |
2054 | * Clear initial stalls. |
2055 | */ |
2056 | static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe) |
2057 | { |
2058 | int endp; |
2059 | struct usb_ctrlrequest *cr; |
2060 | struct completion compl; |
2061 | struct timer_list timer; |
2062 | int rc; |
2063 | |
2064 | init_completion(&compl); |
2065 | |
2066 | endp = usb_pipeendpoint(stalled_pipe); |
2067 | if (usb_pipein (stalled_pipe)) |
2068 | endp |= USB_DIR_IN; |
2069 | |
2070 | cr = &sc->work_cr; |
2071 | cr->bRequestType = USB_RECIP_ENDPOINT; |
2072 | cr->bRequest = USB_REQ_CLEAR_FEATURE; |
2073 | cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); |
2074 | cr->wIndex = cpu_to_le16(endp); |
2075 | cr->wLength = cpu_to_le16(0); |
2076 | |
2077 | usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, |
2078 | (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); |
2079 | |
2080 | if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { |
2081 | printk(KERN_WARNING |
2082 | "%s: Unable to submit a probe clear (%d)\n", sc->name, rc); |
2083 | return rc; |
2084 | } |
2085 | |
2086 | init_timer(&timer); |
2087 | timer.function = ub_probe_timeout; |
2088 | timer.data = (unsigned long) &compl; |
2089 | timer.expires = jiffies + UB_CTRL_TIMEOUT; |
2090 | add_timer(&timer); |
2091 | |
2092 | wait_for_completion(&compl); |
2093 | |
2094 | del_timer_sync(&timer); |
2095 | usb_kill_urb(&sc->work_urb); |
2096 | |
2097 | usb_reset_endpoint(sc->dev, endp); |
2098 | |
2099 | return 0; |
2100 | } |
2101 | |
2102 | /* |
2103 | * Get the pipe settings. |
2104 | */ |
2105 | static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev, |
2106 | struct usb_interface *intf) |
2107 | { |
2108 | struct usb_host_interface *altsetting = intf->cur_altsetting; |
2109 | struct usb_endpoint_descriptor *ep_in = NULL; |
2110 | struct usb_endpoint_descriptor *ep_out = NULL; |
2111 | struct usb_endpoint_descriptor *ep; |
2112 | int i; |
2113 | |
2114 | /* |
2115 | * Find the endpoints we need. |
2116 | * We are expecting a minimum of 2 endpoints - in and out (bulk). |
2117 | * We will ignore any others. |
2118 | */ |
2119 | for (i = 0; i < altsetting->desc.bNumEndpoints; i++) { |
2120 | ep = &altsetting->endpoint[i].desc; |
2121 | |
2122 | /* Is it a BULK endpoint? */ |
2123 | if (usb_endpoint_xfer_bulk(ep)) { |
2124 | /* BULK in or out? */ |
2125 | if (usb_endpoint_dir_in(ep)) { |
2126 | if (ep_in == NULL) |
2127 | ep_in = ep; |
2128 | } else { |
2129 | if (ep_out == NULL) |
2130 | ep_out = ep; |
2131 | } |
2132 | } |
2133 | } |
2134 | |
2135 | if (ep_in == NULL || ep_out == NULL) { |
2136 | printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name); |
2137 | return -ENODEV; |
2138 | } |
2139 | |
2140 | /* Calculate and store the pipe values */ |
2141 | sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0); |
2142 | sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0); |
2143 | sc->send_bulk_pipe = usb_sndbulkpipe(dev, |
2144 | usb_endpoint_num(ep_out)); |
2145 | sc->recv_bulk_pipe = usb_rcvbulkpipe(dev, |
2146 | usb_endpoint_num(ep_in)); |
2147 | |
2148 | return 0; |
2149 | } |
2150 | |
2151 | /* |
2152 | * Probing is done in the process context, which allows us to cheat |
2153 | * and not to build a state machine for the discovery. |
2154 | */ |
2155 | static int ub_probe(struct usb_interface *intf, |
2156 | const struct usb_device_id *dev_id) |
2157 | { |
2158 | struct ub_dev *sc; |
2159 | int nluns; |
2160 | int rc; |
2161 | int i; |
2162 | |
2163 | if (usb_usual_check_type(dev_id, USB_US_TYPE_UB)) |
2164 | return -ENXIO; |
2165 | |
2166 | rc = -ENOMEM; |
2167 | if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL) |
2168 | goto err_core; |
2169 | sc->lock = ub_next_lock(); |
2170 | INIT_LIST_HEAD(&sc->luns); |
2171 | usb_init_urb(&sc->work_urb); |
2172 | tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc); |
2173 | atomic_set(&sc->poison, 0); |
2174 | INIT_WORK(&sc->reset_work, ub_reset_task); |
2175 | init_waitqueue_head(&sc->reset_wait); |
2176 | |
2177 | init_timer(&sc->work_timer); |
2178 | sc->work_timer.data = (unsigned long) sc; |
2179 | sc->work_timer.function = ub_urb_timeout; |
2180 | |
2181 | ub_init_completion(&sc->work_done); |
2182 | sc->work_done.done = 1; /* A little yuk, but oh well... */ |
2183 | |
2184 | sc->dev = interface_to_usbdev(intf); |
2185 | sc->intf = intf; |
2186 | // sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber; |
2187 | usb_set_intfdata(intf, sc); |
2188 | usb_get_dev(sc->dev); |
2189 | /* |
2190 | * Since we give the interface struct to the block level through |
2191 | * disk->driverfs_dev, we have to pin it. Otherwise, block_uevent |
2192 | * oopses on close after a disconnect (kernels 2.6.16 and up). |
2193 | */ |
2194 | usb_get_intf(sc->intf); |
2195 | |
2196 | snprintf(sc->name, 12, DRV_NAME "(%d.%d)", |
2197 | sc->dev->bus->busnum, sc->dev->devnum); |
2198 | |
2199 | /* XXX Verify that we can handle the device (from descriptors) */ |
2200 | |
2201 | if (ub_get_pipes(sc, sc->dev, intf) != 0) |
2202 | goto err_dev_desc; |
2203 | |
2204 | /* |
2205 | * At this point, all USB initialization is done, do upper layer. |
2206 | * We really hate halfway initialized structures, so from the |
2207 | * invariants perspective, this ub_dev is fully constructed at |
2208 | * this point. |
2209 | */ |
2210 | |
2211 | /* |
2212 | * This is needed to clear toggles. It is a problem only if we do |
2213 | * `rmmod ub && modprobe ub` without disconnects, but we like that. |
2214 | */ |
2215 | #if 0 /* iPod Mini fails if we do this (big white iPod works) */ |
2216 | ub_probe_clear_stall(sc, sc->recv_bulk_pipe); |
2217 | ub_probe_clear_stall(sc, sc->send_bulk_pipe); |
2218 | #endif |
2219 | |
2220 | /* |
2221 | * The way this is used by the startup code is a little specific. |
2222 | * A SCSI check causes a USB stall. Our common case code sees it |
2223 | * and clears the check, after which the device is ready for use. |
2224 | * But if a check was not present, any command other than |
2225 | * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE). |
2226 | * |
2227 | * If we neglect to clear the SCSI check, the first real command fails |
2228 | * (which is the capacity readout). We clear that and retry, but why |
2229 | * causing spurious retries for no reason. |
2230 | * |
2231 | * Revalidation may start with its own TEST_UNIT_READY, but that one |
2232 | * has to succeed, so we clear checks with an additional one here. |
2233 | * In any case it's not our business how revaliadation is implemented. |
2234 | */ |
2235 | for (i = 0; i < 3; i++) { /* Retries for the schwag key from KS'04 */ |
2236 | if ((rc = ub_sync_tur(sc, NULL)) <= 0) break; |
2237 | if (rc != 0x6) break; |
2238 | msleep(10); |
2239 | } |
2240 | |
2241 | nluns = 1; |
2242 | for (i = 0; i < 3; i++) { |
2243 | if ((rc = ub_sync_getmaxlun(sc)) < 0) |
2244 | break; |
2245 | if (rc != 0) { |
2246 | nluns = rc; |
2247 | break; |
2248 | } |
2249 | msleep(100); |
2250 | } |
2251 | |
2252 | for (i = 0; i < nluns; i++) { |
2253 | ub_probe_lun(sc, i); |
2254 | } |
2255 | return 0; |
2256 | |
2257 | err_dev_desc: |
2258 | usb_set_intfdata(intf, NULL); |
2259 | usb_put_intf(sc->intf); |
2260 | usb_put_dev(sc->dev); |
2261 | kfree(sc); |
2262 | err_core: |
2263 | return rc; |
2264 | } |
2265 | |
2266 | static int ub_probe_lun(struct ub_dev *sc, int lnum) |
2267 | { |
2268 | struct ub_lun *lun; |
2269 | struct request_queue *q; |
2270 | struct gendisk *disk; |
2271 | int rc; |
2272 | |
2273 | rc = -ENOMEM; |
2274 | if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL) |
2275 | goto err_alloc; |
2276 | lun->num = lnum; |
2277 | |
2278 | rc = -ENOSR; |
2279 | if ((lun->id = ub_id_get()) == -1) |
2280 | goto err_id; |
2281 | |
2282 | lun->udev = sc; |
2283 | |
2284 | snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)", |
2285 | lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num); |
2286 | |
2287 | lun->removable = 1; /* XXX Query this from the device */ |
2288 | lun->changed = 1; /* ub_revalidate clears only */ |
2289 | ub_revalidate(sc, lun); |
2290 | |
2291 | rc = -ENOMEM; |
2292 | if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL) |
2293 | goto err_diskalloc; |
2294 | |
2295 | sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a'); |
2296 | disk->major = UB_MAJOR; |
2297 | disk->first_minor = lun->id * UB_PARTS_PER_LUN; |
2298 | disk->fops = &ub_bd_fops; |
2299 | disk->private_data = lun; |
2300 | disk->driverfs_dev = &sc->intf->dev; |
2301 | |
2302 | rc = -ENOMEM; |
2303 | if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL) |
2304 | goto err_blkqinit; |
2305 | |
2306 | disk->queue = q; |
2307 | |
2308 | blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); |
2309 | blk_queue_max_segments(q, UB_MAX_REQ_SG); |
2310 | blk_queue_segment_boundary(q, 0xffffffff); /* Dubious. */ |
2311 | blk_queue_max_hw_sectors(q, UB_MAX_SECTORS); |
2312 | blk_queue_logical_block_size(q, lun->capacity.bsize); |
2313 | |
2314 | lun->disk = disk; |
2315 | q->queuedata = lun; |
2316 | list_add(&lun->link, &sc->luns); |
2317 | |
2318 | set_capacity(disk, lun->capacity.nsec); |
2319 | if (lun->removable) |
2320 | disk->flags |= GENHD_FL_REMOVABLE; |
2321 | |
2322 | add_disk(disk); |
2323 | |
2324 | return 0; |
2325 | |
2326 | err_blkqinit: |
2327 | put_disk(disk); |
2328 | err_diskalloc: |
2329 | ub_id_put(lun->id); |
2330 | err_id: |
2331 | kfree(lun); |
2332 | err_alloc: |
2333 | return rc; |
2334 | } |
2335 | |
2336 | static void ub_disconnect(struct usb_interface *intf) |
2337 | { |
2338 | struct ub_dev *sc = usb_get_intfdata(intf); |
2339 | struct ub_lun *lun; |
2340 | unsigned long flags; |
2341 | |
2342 | /* |
2343 | * Prevent ub_bd_release from pulling the rug from under us. |
2344 | * XXX This is starting to look like a kref. |
2345 | * XXX Why not to take this ref at probe time? |
2346 | */ |
2347 | spin_lock_irqsave(&ub_lock, flags); |
2348 | sc->openc++; |
2349 | spin_unlock_irqrestore(&ub_lock, flags); |
2350 | |
2351 | /* |
2352 | * Fence stall clearings, operations triggered by unlinkings and so on. |
2353 | * We do not attempt to unlink any URBs, because we do not trust the |
2354 | * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway. |
2355 | */ |
2356 | atomic_set(&sc->poison, 1); |
2357 | |
2358 | /* |
2359 | * Wait for reset to end, if any. |
2360 | */ |
2361 | wait_event(sc->reset_wait, !sc->reset); |
2362 | |
2363 | /* |
2364 | * Blow away queued commands. |
2365 | * |
2366 | * Actually, this never works, because before we get here |
2367 | * the HCD terminates outstanding URB(s). It causes our |
2368 | * SCSI command queue to advance, commands fail to submit, |
2369 | * and the whole queue drains. So, we just use this code to |
2370 | * print warnings. |
2371 | */ |
2372 | spin_lock_irqsave(sc->lock, flags); |
2373 | { |
2374 | struct ub_scsi_cmd *cmd; |
2375 | int cnt = 0; |
2376 | while ((cmd = ub_cmdq_peek(sc)) != NULL) { |
2377 | cmd->error = -ENOTCONN; |
2378 | cmd->state = UB_CMDST_DONE; |
2379 | ub_cmdq_pop(sc); |
2380 | (*cmd->done)(sc, cmd); |
2381 | cnt++; |
2382 | } |
2383 | if (cnt != 0) { |
2384 | printk(KERN_WARNING "%s: " |
2385 | "%d was queued after shutdown\n", sc->name, cnt); |
2386 | } |
2387 | } |
2388 | spin_unlock_irqrestore(sc->lock, flags); |
2389 | |
2390 | /* |
2391 | * Unregister the upper layer. |
2392 | */ |
2393 | list_for_each_entry(lun, &sc->luns, link) { |
2394 | del_gendisk(lun->disk); |
2395 | /* |
2396 | * I wish I could do: |
2397 | * queue_flag_set(QUEUE_FLAG_DEAD, q); |
2398 | * As it is, we rely on our internal poisoning and let |
2399 | * the upper levels to spin furiously failing all the I/O. |
2400 | */ |
2401 | } |
2402 | |
2403 | /* |
2404 | * Testing for -EINPROGRESS is always a bug, so we are bending |
2405 | * the rules a little. |
2406 | */ |
2407 | spin_lock_irqsave(sc->lock, flags); |
2408 | if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */ |
2409 | printk(KERN_WARNING "%s: " |
2410 | "URB is active after disconnect\n", sc->name); |
2411 | } |
2412 | spin_unlock_irqrestore(sc->lock, flags); |
2413 | |
2414 | /* |
2415 | * There is virtually no chance that other CPU runs a timeout so long |
2416 | * after ub_urb_complete should have called del_timer, but only if HCD |
2417 | * didn't forget to deliver a callback on unlink. |
2418 | */ |
2419 | del_timer_sync(&sc->work_timer); |
2420 | |
2421 | /* |
2422 | * At this point there must be no commands coming from anyone |
2423 | * and no URBs left in transit. |
2424 | */ |
2425 | |
2426 | ub_put(sc); |
2427 | } |
2428 | |
2429 | static struct usb_driver ub_driver = { |
2430 | .name = "ub", |
2431 | .probe = ub_probe, |
2432 | .disconnect = ub_disconnect, |
2433 | .id_table = ub_usb_ids, |
2434 | .pre_reset = ub_pre_reset, |
2435 | .post_reset = ub_post_reset, |
2436 | }; |
2437 | |
2438 | static int __init ub_init(void) |
2439 | { |
2440 | int rc; |
2441 | int i; |
2442 | |
2443 | pr_info("'Low Performance USB Block' driver is deprecated. " |
2444 | "Please switch to usb-storage\n"); |
2445 | for (i = 0; i < UB_QLOCK_NUM; i++) |
2446 | spin_lock_init(&ub_qlockv[i]); |
2447 | |
2448 | if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0) |
2449 | goto err_regblkdev; |
2450 | |
2451 | if ((rc = usb_register(&ub_driver)) != 0) |
2452 | goto err_register; |
2453 | |
2454 | usb_usual_set_present(USB_US_TYPE_UB); |
2455 | return 0; |
2456 | |
2457 | err_register: |
2458 | unregister_blkdev(UB_MAJOR, DRV_NAME); |
2459 | err_regblkdev: |
2460 | return rc; |
2461 | } |
2462 | |
2463 | static void __exit ub_exit(void) |
2464 | { |
2465 | usb_deregister(&ub_driver); |
2466 | |
2467 | unregister_blkdev(UB_MAJOR, DRV_NAME); |
2468 | usb_usual_clear_present(USB_US_TYPE_UB); |
2469 | } |
2470 | |
2471 | module_init(ub_init); |
2472 | module_exit(ub_exit); |
2473 | |
2474 | MODULE_LICENSE("GPL"); |
2475 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9