Root/drivers/block/umem.c

1/*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
35 */
36
37#undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
38#include <linux/fs.h>
39#include <linux/bio.h>
40#include <linux/kernel.h>
41#include <linux/mm.h>
42#include <linux/mman.h>
43#include <linux/gfp.h>
44#include <linux/ioctl.h>
45#include <linux/module.h>
46#include <linux/init.h>
47#include <linux/interrupt.h>
48#include <linux/timer.h>
49#include <linux/pci.h>
50#include <linux/dma-mapping.h>
51
52#include <linux/fcntl.h> /* O_ACCMODE */
53#include <linux/hdreg.h> /* HDIO_GETGEO */
54
55#include "umem.h"
56
57#include <asm/uaccess.h>
58#include <asm/io.h>
59
60#define MM_MAXCARDS 4
61#define MM_RAHEAD 2 /* two sectors */
62#define MM_BLKSIZE 1024 /* 1k blocks */
63#define MM_HARDSECT 512 /* 512-byte hardware sectors */
64#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
65
66/*
67 * Version Information
68 */
69
70#define DRIVER_NAME "umem"
71#define DRIVER_VERSION "v2.3"
72#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
74
75static int debug;
76/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77#define HW_TRACE(x)
78
79#define DEBUG_LED_ON_TRANSFER 0x01
80#define DEBUG_BATTERY_POLLING 0x02
81
82module_param(debug, int, 0644);
83MODULE_PARM_DESC(debug, "Debug bitmask");
84
85static int pci_read_cmd = 0x0C; /* Read Multiple */
86module_param(pci_read_cmd, int, 0);
87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89static int pci_write_cmd = 0x0F; /* Write and Invalidate */
90module_param(pci_write_cmd, int, 0);
91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93static int pci_cmds;
94
95static int major_nr;
96
97#include <linux/blkdev.h>
98#include <linux/blkpg.h>
99
100struct cardinfo {
101    struct pci_dev *dev;
102
103    unsigned char __iomem *csr_remap;
104    unsigned int mm_size; /* size in kbytes */
105
106    unsigned int init_size; /* initial segment, in sectors,
107                    * that we know to
108                    * have been written
109                    */
110    struct bio *bio, *currentbio, **biotail;
111    int current_idx;
112    sector_t current_sector;
113
114    struct request_queue *queue;
115
116    struct mm_page {
117        dma_addr_t page_dma;
118        struct mm_dma_desc *desc;
119        int cnt, headcnt;
120        struct bio *bio, **biotail;
121        int idx;
122    } mm_pages[2];
123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125    int Active, Ready;
126
127    struct tasklet_struct tasklet;
128    unsigned int dma_status;
129
130    struct {
131        int good;
132        int warned;
133        unsigned long last_change;
134    } battery[2];
135
136    spinlock_t lock;
137    int check_batteries;
138
139    int flags;
140};
141
142static struct cardinfo cards[MM_MAXCARDS];
143static struct timer_list battery_timer;
144
145static int num_cards;
146
147static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149static void check_batteries(struct cardinfo *card);
150
151static int get_userbit(struct cardinfo *card, int bit)
152{
153    unsigned char led;
154
155    led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156    return led & bit;
157}
158
159static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160{
161    unsigned char led;
162
163    led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164    if (state)
165        led |= bit;
166    else
167        led &= ~bit;
168    writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170    return 0;
171}
172
173/*
174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175 */
176static void set_led(struct cardinfo *card, int shift, unsigned char state)
177{
178    unsigned char led;
179
180    led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181    if (state == LED_FLIP)
182        led ^= (1<<shift);
183    else {
184        led &= ~(0x03 << shift);
185        led |= (state << shift);
186    }
187    writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189}
190
191#ifdef MM_DIAG
192static void dump_regs(struct cardinfo *card)
193{
194    unsigned char *p;
195    int i, i1;
196
197    p = card->csr_remap;
198    for (i = 0; i < 8; i++) {
199        printk(KERN_DEBUG "%p ", p);
200
201        for (i1 = 0; i1 < 16; i1++)
202            printk("%02x ", *p++);
203
204        printk("\n");
205    }
206}
207#endif
208
209static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210{
211    dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212    if (dmastat & DMASCR_ANY_ERR)
213        printk(KERN_CONT "ANY_ERR ");
214    if (dmastat & DMASCR_MBE_ERR)
215        printk(KERN_CONT "MBE_ERR ");
216    if (dmastat & DMASCR_PARITY_ERR_REP)
217        printk(KERN_CONT "PARITY_ERR_REP ");
218    if (dmastat & DMASCR_PARITY_ERR_DET)
219        printk(KERN_CONT "PARITY_ERR_DET ");
220    if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221        printk(KERN_CONT "SYSTEM_ERR_SIG ");
222    if (dmastat & DMASCR_TARGET_ABT)
223        printk(KERN_CONT "TARGET_ABT ");
224    if (dmastat & DMASCR_MASTER_ABT)
225        printk(KERN_CONT "MASTER_ABT ");
226    if (dmastat & DMASCR_CHAIN_COMPLETE)
227        printk(KERN_CONT "CHAIN_COMPLETE ");
228    if (dmastat & DMASCR_DMA_COMPLETE)
229        printk(KERN_CONT "DMA_COMPLETE ");
230    printk("\n");
231}
232
233/*
234 * Theory of request handling
235 *
236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237 * We have two pages of mm_dma_desc, holding about 64 descriptors
238 * each. These are allocated at init time.
239 * One page is "Ready" and is either full, or can have request added.
240 * The other page might be "Active", which DMA is happening on it.
241 *
242 * Whenever IO on the active page completes, the Ready page is activated
243 * and the ex-Active page is clean out and made Ready.
244 * Otherwise the Ready page is only activated when it becomes full.
245 *
246 * If a request arrives while both pages a full, it is queued, and b_rdev is
247 * overloaded to record whether it was a read or a write.
248 *
249 * The interrupt handler only polls the device to clear the interrupt.
250 * The processing of the result is done in a tasklet.
251 */
252
253static void mm_start_io(struct cardinfo *card)
254{
255    /* we have the lock, we know there is
256     * no IO active, and we know that card->Active
257     * is set
258     */
259    struct mm_dma_desc *desc;
260    struct mm_page *page;
261    int offset;
262
263    /* make the last descriptor end the chain */
264    page = &card->mm_pages[card->Active];
265    pr_debug("start_io: %d %d->%d\n",
266        card->Active, page->headcnt, page->cnt - 1);
267    desc = &page->desc[page->cnt-1];
268
269    desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270    desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271    desc->sem_control_bits = desc->control_bits;
272
273
274    if (debug & DEBUG_LED_ON_TRANSFER)
275        set_led(card, LED_REMOVE, LED_ON);
276
277    desc = &page->desc[page->headcnt];
278    writel(0, card->csr_remap + DMA_PCI_ADDR);
279    writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
280
281    writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282    writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
283
284    writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285    writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
286
287    writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288    writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
289
290    offset = ((char *)desc) - ((char *)page->desc);
291    writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292           card->csr_remap + DMA_DESCRIPTOR_ADDR);
293    /* Force the value to u64 before shifting otherwise >> 32 is undefined C
294     * and on some ports will do nothing ! */
295    writel(cpu_to_le32(((u64)page->page_dma)>>32),
296           card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
297
298    /* Go, go, go */
299    writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300           card->csr_remap + DMA_STATUS_CTRL);
301}
302
303static int add_bio(struct cardinfo *card);
304
305static void activate(struct cardinfo *card)
306{
307    /* if No page is Active, and Ready is
308     * not empty, then switch Ready page
309     * to active and start IO.
310     * Then add any bh's that are available to Ready
311     */
312
313    do {
314        while (add_bio(card))
315            ;
316
317        if (card->Active == -1 &&
318            card->mm_pages[card->Ready].cnt > 0) {
319            card->Active = card->Ready;
320            card->Ready = 1-card->Ready;
321            mm_start_io(card);
322        }
323
324    } while (card->Active == -1 && add_bio(card));
325}
326
327static inline void reset_page(struct mm_page *page)
328{
329    page->cnt = 0;
330    page->headcnt = 0;
331    page->bio = NULL;
332    page->biotail = &page->bio;
333}
334
335/*
336 * If there is room on Ready page, take
337 * one bh off list and add it.
338 * return 1 if there was room, else 0.
339 */
340static int add_bio(struct cardinfo *card)
341{
342    struct mm_page *p;
343    struct mm_dma_desc *desc;
344    dma_addr_t dma_handle;
345    int offset;
346    struct bio *bio;
347    struct bio_vec *vec;
348    int idx;
349    int rw;
350    int len;
351
352    bio = card->currentbio;
353    if (!bio && card->bio) {
354        card->currentbio = card->bio;
355        card->current_idx = card->bio->bi_idx;
356        card->current_sector = card->bio->bi_sector;
357        card->bio = card->bio->bi_next;
358        if (card->bio == NULL)
359            card->biotail = &card->bio;
360        card->currentbio->bi_next = NULL;
361        return 1;
362    }
363    if (!bio)
364        return 0;
365    idx = card->current_idx;
366
367    rw = bio_rw(bio);
368    if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369        return 0;
370
371    vec = bio_iovec_idx(bio, idx);
372    len = vec->bv_len;
373    dma_handle = pci_map_page(card->dev,
374                  vec->bv_page,
375                  vec->bv_offset,
376                  len,
377                  (rw == READ) ?
378                  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
379
380    p = &card->mm_pages[card->Ready];
381    desc = &p->desc[p->cnt];
382    p->cnt++;
383    if (p->bio == NULL)
384        p->idx = idx;
385    if ((p->biotail) != &bio->bi_next) {
386        *(p->biotail) = bio;
387        p->biotail = &(bio->bi_next);
388        bio->bi_next = NULL;
389    }
390
391    desc->data_dma_handle = dma_handle;
392
393    desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394    desc->local_addr = cpu_to_le64(card->current_sector << 9);
395    desc->transfer_size = cpu_to_le32(len);
396    offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397    desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398    desc->zero1 = desc->zero2 = 0;
399    offset = (((char *)(desc+1)) - ((char *)p->desc));
400    desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401    desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402                     DMASCR_PARITY_INT_EN|
403                     DMASCR_CHAIN_EN |
404                     DMASCR_SEM_EN |
405                     pci_cmds);
406    if (rw == WRITE)
407        desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408    desc->sem_control_bits = desc->control_bits;
409
410    card->current_sector += (len >> 9);
411    idx++;
412    card->current_idx = idx;
413    if (idx >= bio->bi_vcnt)
414        card->currentbio = NULL;
415
416    return 1;
417}
418
419static void process_page(unsigned long data)
420{
421    /* check if any of the requests in the page are DMA_COMPLETE,
422     * and deal with them appropriately.
423     * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424     * dma must have hit an error on that descriptor, so use dma_status
425     * instead and assume that all following descriptors must be re-tried.
426     */
427    struct mm_page *page;
428    struct bio *return_bio = NULL;
429    struct cardinfo *card = (struct cardinfo *)data;
430    unsigned int dma_status = card->dma_status;
431
432    spin_lock_bh(&card->lock);
433    if (card->Active < 0)
434        goto out_unlock;
435    page = &card->mm_pages[card->Active];
436
437    while (page->headcnt < page->cnt) {
438        struct bio *bio = page->bio;
439        struct mm_dma_desc *desc = &page->desc[page->headcnt];
440        int control = le32_to_cpu(desc->sem_control_bits);
441        int last = 0;
442        int idx;
443
444        if (!(control & DMASCR_DMA_COMPLETE)) {
445            control = dma_status;
446            last = 1;
447        }
448        page->headcnt++;
449        idx = page->idx;
450        page->idx++;
451        if (page->idx >= bio->bi_vcnt) {
452            page->bio = bio->bi_next;
453            if (page->bio)
454                page->idx = page->bio->bi_idx;
455        }
456
457        pci_unmap_page(card->dev, desc->data_dma_handle,
458                   bio_iovec_idx(bio, idx)->bv_len,
459                 (control & DMASCR_TRANSFER_READ) ?
460                PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461        if (control & DMASCR_HARD_ERROR) {
462            /* error */
463            clear_bit(BIO_UPTODATE, &bio->bi_flags);
464            dev_printk(KERN_WARNING, &card->dev->dev,
465                "I/O error on sector %d/%d\n",
466                le32_to_cpu(desc->local_addr)>>9,
467                le32_to_cpu(desc->transfer_size));
468            dump_dmastat(card, control);
469        } else if ((bio->bi_rw & REQ_WRITE) &&
470               le32_to_cpu(desc->local_addr) >> 9 ==
471                card->init_size) {
472            card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473            if (card->init_size >> 1 >= card->mm_size) {
474                dev_printk(KERN_INFO, &card->dev->dev,
475                    "memory now initialised\n");
476                set_userbit(card, MEMORY_INITIALIZED, 1);
477            }
478        }
479        if (bio != page->bio) {
480            bio->bi_next = return_bio;
481            return_bio = bio;
482        }
483
484        if (last)
485            break;
486    }
487
488    if (debug & DEBUG_LED_ON_TRANSFER)
489        set_led(card, LED_REMOVE, LED_OFF);
490
491    if (card->check_batteries) {
492        card->check_batteries = 0;
493        check_batteries(card);
494    }
495    if (page->headcnt >= page->cnt) {
496        reset_page(page);
497        card->Active = -1;
498        activate(card);
499    } else {
500        /* haven't finished with this one yet */
501        pr_debug("do some more\n");
502        mm_start_io(card);
503    }
504 out_unlock:
505    spin_unlock_bh(&card->lock);
506
507    while (return_bio) {
508        struct bio *bio = return_bio;
509
510        return_bio = bio->bi_next;
511        bio->bi_next = NULL;
512        bio_endio(bio, 0);
513    }
514}
515
516static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
517{
518    struct cardinfo *card = cb->data;
519
520    spin_lock_irq(&card->lock);
521    activate(card);
522    spin_unlock_irq(&card->lock);
523    kfree(cb);
524}
525
526static int mm_check_plugged(struct cardinfo *card)
527{
528    return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
529}
530
531static void mm_make_request(struct request_queue *q, struct bio *bio)
532{
533    struct cardinfo *card = q->queuedata;
534    pr_debug("mm_make_request %llu %u\n",
535         (unsigned long long)bio->bi_sector, bio->bi_size);
536
537    spin_lock_irq(&card->lock);
538    *card->biotail = bio;
539    bio->bi_next = NULL;
540    card->biotail = &bio->bi_next;
541    if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
542        activate(card);
543    spin_unlock_irq(&card->lock);
544
545    return;
546}
547
548static irqreturn_t mm_interrupt(int irq, void *__card)
549{
550    struct cardinfo *card = (struct cardinfo *) __card;
551    unsigned int dma_status;
552    unsigned short cfg_status;
553
554HW_TRACE(0x30);
555
556    dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
557
558    if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
559        /* interrupt wasn't for me ... */
560        return IRQ_NONE;
561    }
562
563    /* clear COMPLETION interrupts */
564    if (card->flags & UM_FLAG_NO_BYTE_STATUS)
565        writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
566               card->csr_remap + DMA_STATUS_CTRL);
567    else
568        writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
569               card->csr_remap + DMA_STATUS_CTRL + 2);
570
571    /* log errors and clear interrupt status */
572    if (dma_status & DMASCR_ANY_ERR) {
573        unsigned int data_log1, data_log2;
574        unsigned int addr_log1, addr_log2;
575        unsigned char stat, count, syndrome, check;
576
577        stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
578
579        data_log1 = le32_to_cpu(readl(card->csr_remap +
580                        ERROR_DATA_LOG));
581        data_log2 = le32_to_cpu(readl(card->csr_remap +
582                        ERROR_DATA_LOG + 4));
583        addr_log1 = le32_to_cpu(readl(card->csr_remap +
584                        ERROR_ADDR_LOG));
585        addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
586
587        count = readb(card->csr_remap + ERROR_COUNT);
588        syndrome = readb(card->csr_remap + ERROR_SYNDROME);
589        check = readb(card->csr_remap + ERROR_CHECK);
590
591        dump_dmastat(card, dma_status);
592
593        if (stat & 0x01)
594            dev_printk(KERN_ERR, &card->dev->dev,
595                "Memory access error detected (err count %d)\n",
596                count);
597        if (stat & 0x02)
598            dev_printk(KERN_ERR, &card->dev->dev,
599                "Multi-bit EDC error\n");
600
601        dev_printk(KERN_ERR, &card->dev->dev,
602            "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
603            addr_log2, addr_log1, data_log2, data_log1);
604        dev_printk(KERN_ERR, &card->dev->dev,
605            "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
606            check, syndrome);
607
608        writeb(0, card->csr_remap + ERROR_COUNT);
609    }
610
611    if (dma_status & DMASCR_PARITY_ERR_REP) {
612        dev_printk(KERN_ERR, &card->dev->dev,
613            "PARITY ERROR REPORTED\n");
614        pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
615        pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
616    }
617
618    if (dma_status & DMASCR_PARITY_ERR_DET) {
619        dev_printk(KERN_ERR, &card->dev->dev,
620            "PARITY ERROR DETECTED\n");
621        pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
622        pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
623    }
624
625    if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
626        dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
627        pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
628        pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
629    }
630
631    if (dma_status & DMASCR_TARGET_ABT) {
632        dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
633        pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
634        pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
635    }
636
637    if (dma_status & DMASCR_MASTER_ABT) {
638        dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
639        pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
640        pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
641    }
642
643    /* and process the DMA descriptors */
644    card->dma_status = dma_status;
645    tasklet_schedule(&card->tasklet);
646
647HW_TRACE(0x36);
648
649    return IRQ_HANDLED;
650}
651
652/*
653 * If both batteries are good, no LED
654 * If either battery has been warned, solid LED
655 * If both batteries are bad, flash the LED quickly
656 * If either battery is bad, flash the LED semi quickly
657 */
658static void set_fault_to_battery_status(struct cardinfo *card)
659{
660    if (card->battery[0].good && card->battery[1].good)
661        set_led(card, LED_FAULT, LED_OFF);
662    else if (card->battery[0].warned || card->battery[1].warned)
663        set_led(card, LED_FAULT, LED_ON);
664    else if (!card->battery[0].good && !card->battery[1].good)
665        set_led(card, LED_FAULT, LED_FLASH_7_0);
666    else
667        set_led(card, LED_FAULT, LED_FLASH_3_5);
668}
669
670static void init_battery_timer(void);
671
672static int check_battery(struct cardinfo *card, int battery, int status)
673{
674    if (status != card->battery[battery].good) {
675        card->battery[battery].good = !card->battery[battery].good;
676        card->battery[battery].last_change = jiffies;
677
678        if (card->battery[battery].good) {
679            dev_printk(KERN_ERR, &card->dev->dev,
680                "Battery %d now good\n", battery + 1);
681            card->battery[battery].warned = 0;
682        } else
683            dev_printk(KERN_ERR, &card->dev->dev,
684                "Battery %d now FAILED\n", battery + 1);
685
686        return 1;
687    } else if (!card->battery[battery].good &&
688           !card->battery[battery].warned &&
689           time_after_eq(jiffies, card->battery[battery].last_change +
690                 (HZ * 60 * 60 * 5))) {
691        dev_printk(KERN_ERR, &card->dev->dev,
692            "Battery %d still FAILED after 5 hours\n", battery + 1);
693        card->battery[battery].warned = 1;
694
695        return 1;
696    }
697
698    return 0;
699}
700
701static void check_batteries(struct cardinfo *card)
702{
703    /* NOTE: this must *never* be called while the card
704     * is doing (bus-to-card) DMA, or you will need the
705     * reset switch
706     */
707    unsigned char status;
708    int ret1, ret2;
709
710    status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
711    if (debug & DEBUG_BATTERY_POLLING)
712        dev_printk(KERN_DEBUG, &card->dev->dev,
713            "checking battery status, 1 = %s, 2 = %s\n",
714               (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
715               (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
716
717    ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
718    ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
719
720    if (ret1 || ret2)
721        set_fault_to_battery_status(card);
722}
723
724static void check_all_batteries(unsigned long ptr)
725{
726    int i;
727
728    for (i = 0; i < num_cards; i++)
729        if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
730            struct cardinfo *card = &cards[i];
731            spin_lock_bh(&card->lock);
732            if (card->Active >= 0)
733                card->check_batteries = 1;
734            else
735                check_batteries(card);
736            spin_unlock_bh(&card->lock);
737        }
738
739    init_battery_timer();
740}
741
742static void init_battery_timer(void)
743{
744    init_timer(&battery_timer);
745    battery_timer.function = check_all_batteries;
746    battery_timer.expires = jiffies + (HZ * 60);
747    add_timer(&battery_timer);
748}
749
750static void del_battery_timer(void)
751{
752    del_timer(&battery_timer);
753}
754
755/*
756 * Note no locks taken out here. In a worst case scenario, we could drop
757 * a chunk of system memory. But that should never happen, since validation
758 * happens at open or mount time, when locks are held.
759 *
760 * That's crap, since doing that while some partitions are opened
761 * or mounted will give you really nasty results.
762 */
763static int mm_revalidate(struct gendisk *disk)
764{
765    struct cardinfo *card = disk->private_data;
766    set_capacity(disk, card->mm_size << 1);
767    return 0;
768}
769
770static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
771{
772    struct cardinfo *card = bdev->bd_disk->private_data;
773    int size = card->mm_size * (1024 / MM_HARDSECT);
774
775    /*
776     * get geometry: we have to fake one... trim the size to a
777     * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
778     * whatever cylinders.
779     */
780    geo->heads = 64;
781    geo->sectors = 32;
782    geo->cylinders = size / (geo->heads * geo->sectors);
783    return 0;
784}
785
786static const struct block_device_operations mm_fops = {
787    .owner = THIS_MODULE,
788    .getgeo = mm_getgeo,
789    .revalidate_disk = mm_revalidate,
790};
791
792static int __devinit mm_pci_probe(struct pci_dev *dev,
793                const struct pci_device_id *id)
794{
795    int ret = -ENODEV;
796    struct cardinfo *card = &cards[num_cards];
797    unsigned char mem_present;
798    unsigned char batt_status;
799    unsigned int saved_bar, data;
800    unsigned long csr_base;
801    unsigned long csr_len;
802    int magic_number;
803    static int printed_version;
804
805    if (!printed_version++)
806        printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
807
808    ret = pci_enable_device(dev);
809    if (ret)
810        return ret;
811
812    pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
813    pci_set_master(dev);
814
815    card->dev = dev;
816
817    csr_base = pci_resource_start(dev, 0);
818    csr_len = pci_resource_len(dev, 0);
819    if (!csr_base || !csr_len)
820        return -ENODEV;
821
822    dev_printk(KERN_INFO, &dev->dev,
823      "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
824
825    if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
826        pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
827        dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
828        return -ENOMEM;
829    }
830
831    ret = pci_request_regions(dev, DRIVER_NAME);
832    if (ret) {
833        dev_printk(KERN_ERR, &card->dev->dev,
834            "Unable to request memory region\n");
835        goto failed_req_csr;
836    }
837
838    card->csr_remap = ioremap_nocache(csr_base, csr_len);
839    if (!card->csr_remap) {
840        dev_printk(KERN_ERR, &card->dev->dev,
841            "Unable to remap memory region\n");
842        ret = -ENOMEM;
843
844        goto failed_remap_csr;
845    }
846
847    dev_printk(KERN_INFO, &card->dev->dev,
848        "CSR 0x%08lx -> 0x%p (0x%lx)\n",
849           csr_base, card->csr_remap, csr_len);
850
851    switch (card->dev->device) {
852    case 0x5415:
853        card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
854        magic_number = 0x59;
855        break;
856
857    case 0x5425:
858        card->flags |= UM_FLAG_NO_BYTE_STATUS;
859        magic_number = 0x5C;
860        break;
861
862    case 0x6155:
863        card->flags |= UM_FLAG_NO_BYTE_STATUS |
864                UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
865        magic_number = 0x99;
866        break;
867
868    default:
869        magic_number = 0x100;
870        break;
871    }
872
873    if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
874        dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
875        ret = -ENOMEM;
876        goto failed_magic;
877    }
878
879    card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
880                        PAGE_SIZE * 2,
881                        &card->mm_pages[0].page_dma);
882    card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
883                        PAGE_SIZE * 2,
884                        &card->mm_pages[1].page_dma);
885    if (card->mm_pages[0].desc == NULL ||
886        card->mm_pages[1].desc == NULL) {
887        dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
888        goto failed_alloc;
889    }
890    reset_page(&card->mm_pages[0]);
891    reset_page(&card->mm_pages[1]);
892    card->Ready = 0; /* page 0 is ready */
893    card->Active = -1; /* no page is active */
894    card->bio = NULL;
895    card->biotail = &card->bio;
896
897    card->queue = blk_alloc_queue(GFP_KERNEL);
898    if (!card->queue)
899        goto failed_alloc;
900
901    blk_queue_make_request(card->queue, mm_make_request);
902    card->queue->queue_lock = &card->lock;
903    card->queue->queuedata = card;
904
905    tasklet_init(&card->tasklet, process_page, (unsigned long)card);
906
907    card->check_batteries = 0;
908
909    mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
910    switch (mem_present) {
911    case MEM_128_MB:
912        card->mm_size = 1024 * 128;
913        break;
914    case MEM_256_MB:
915        card->mm_size = 1024 * 256;
916        break;
917    case MEM_512_MB:
918        card->mm_size = 1024 * 512;
919        break;
920    case MEM_1_GB:
921        card->mm_size = 1024 * 1024;
922        break;
923    case MEM_2_GB:
924        card->mm_size = 1024 * 2048;
925        break;
926    default:
927        card->mm_size = 0;
928        break;
929    }
930
931    /* Clear the LED's we control */
932    set_led(card, LED_REMOVE, LED_OFF);
933    set_led(card, LED_FAULT, LED_OFF);
934
935    batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
936
937    card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
938    card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
939    card->battery[0].last_change = card->battery[1].last_change = jiffies;
940
941    if (card->flags & UM_FLAG_NO_BATT)
942        dev_printk(KERN_INFO, &card->dev->dev,
943            "Size %d KB\n", card->mm_size);
944    else {
945        dev_printk(KERN_INFO, &card->dev->dev,
946            "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
947               card->mm_size,
948               batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
949               card->battery[0].good ? "OK" : "FAILURE",
950               batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
951               card->battery[1].good ? "OK" : "FAILURE");
952
953        set_fault_to_battery_status(card);
954    }
955
956    pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
957    data = 0xffffffff;
958    pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
959    pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
960    pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
961    data &= 0xfffffff0;
962    data = ~data;
963    data += 1;
964
965    if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
966            card)) {
967        dev_printk(KERN_ERR, &card->dev->dev,
968            "Unable to allocate IRQ\n");
969        ret = -ENODEV;
970        goto failed_req_irq;
971    }
972
973    dev_printk(KERN_INFO, &card->dev->dev,
974        "Window size %d bytes, IRQ %d\n", data, dev->irq);
975
976    spin_lock_init(&card->lock);
977
978    pci_set_drvdata(dev, card);
979
980    if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
981        pci_write_cmd = 0x07; /* then Memory Write command */
982
983    if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
984        unsigned short cfg_command;
985        pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
986        cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
987        pci_write_config_word(dev, PCI_COMMAND, cfg_command);
988    }
989    pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
990
991    num_cards++;
992
993    if (!get_userbit(card, MEMORY_INITIALIZED)) {
994        dev_printk(KERN_INFO, &card->dev->dev,
995          "memory NOT initialized. Consider over-writing whole device.\n");
996        card->init_size = 0;
997    } else {
998        dev_printk(KERN_INFO, &card->dev->dev,
999            "memory already initialized\n");
1000        card->init_size = card->mm_size;
1001    }
1002
1003    /* Enable ECC */
1004    writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1005
1006    return 0;
1007
1008 failed_req_irq:
1009 failed_alloc:
1010    if (card->mm_pages[0].desc)
1011        pci_free_consistent(card->dev, PAGE_SIZE*2,
1012                    card->mm_pages[0].desc,
1013                    card->mm_pages[0].page_dma);
1014    if (card->mm_pages[1].desc)
1015        pci_free_consistent(card->dev, PAGE_SIZE*2,
1016                    card->mm_pages[1].desc,
1017                    card->mm_pages[1].page_dma);
1018 failed_magic:
1019    iounmap(card->csr_remap);
1020 failed_remap_csr:
1021    pci_release_regions(dev);
1022 failed_req_csr:
1023
1024    return ret;
1025}
1026
1027static void mm_pci_remove(struct pci_dev *dev)
1028{
1029    struct cardinfo *card = pci_get_drvdata(dev);
1030
1031    tasklet_kill(&card->tasklet);
1032    free_irq(dev->irq, card);
1033    iounmap(card->csr_remap);
1034
1035    if (card->mm_pages[0].desc)
1036        pci_free_consistent(card->dev, PAGE_SIZE*2,
1037                    card->mm_pages[0].desc,
1038                    card->mm_pages[0].page_dma);
1039    if (card->mm_pages[1].desc)
1040        pci_free_consistent(card->dev, PAGE_SIZE*2,
1041                    card->mm_pages[1].desc,
1042                    card->mm_pages[1].page_dma);
1043    blk_cleanup_queue(card->queue);
1044
1045    pci_release_regions(dev);
1046    pci_disable_device(dev);
1047}
1048
1049static const struct pci_device_id mm_pci_ids[] = {
1050    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1051    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1052    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1053    {
1054    .vendor = 0x8086,
1055    .device = 0xB555,
1056    .subvendor = 0x1332,
1057    .subdevice = 0x5460,
1058    .class = 0x050000,
1059    .class_mask = 0,
1060    }, { /* end: all zeroes */ }
1061};
1062
1063MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1064
1065static struct pci_driver mm_pci_driver = {
1066    .name = DRIVER_NAME,
1067    .id_table = mm_pci_ids,
1068    .probe = mm_pci_probe,
1069    .remove = mm_pci_remove,
1070};
1071
1072static int __init mm_init(void)
1073{
1074    int retval, i;
1075    int err;
1076
1077    retval = pci_register_driver(&mm_pci_driver);
1078    if (retval)
1079        return -ENOMEM;
1080
1081    err = major_nr = register_blkdev(0, DRIVER_NAME);
1082    if (err < 0) {
1083        pci_unregister_driver(&mm_pci_driver);
1084        return -EIO;
1085    }
1086
1087    for (i = 0; i < num_cards; i++) {
1088        mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1089        if (!mm_gendisk[i])
1090            goto out;
1091    }
1092
1093    for (i = 0; i < num_cards; i++) {
1094        struct gendisk *disk = mm_gendisk[i];
1095        sprintf(disk->disk_name, "umem%c", 'a'+i);
1096        spin_lock_init(&cards[i].lock);
1097        disk->major = major_nr;
1098        disk->first_minor = i << MM_SHIFT;
1099        disk->fops = &mm_fops;
1100        disk->private_data = &cards[i];
1101        disk->queue = cards[i].queue;
1102        set_capacity(disk, cards[i].mm_size << 1);
1103        add_disk(disk);
1104    }
1105
1106    init_battery_timer();
1107    printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1108/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1109    return 0;
1110
1111out:
1112    pci_unregister_driver(&mm_pci_driver);
1113    unregister_blkdev(major_nr, DRIVER_NAME);
1114    while (i--)
1115        put_disk(mm_gendisk[i]);
1116    return -ENOMEM;
1117}
1118
1119static void __exit mm_cleanup(void)
1120{
1121    int i;
1122
1123    del_battery_timer();
1124
1125    for (i = 0; i < num_cards ; i++) {
1126        del_gendisk(mm_gendisk[i]);
1127        put_disk(mm_gendisk[i]);
1128    }
1129
1130    pci_unregister_driver(&mm_pci_driver);
1131
1132    unregister_blkdev(major_nr, DRIVER_NAME);
1133}
1134
1135module_init(mm_init);
1136module_exit(mm_cleanup);
1137
1138MODULE_AUTHOR(DRIVER_AUTHOR);
1139MODULE_DESCRIPTION(DRIVER_DESC);
1140MODULE_LICENSE("GPL");
1141

Archive Download this file



interactive