Root/
1 | /* |
2 | * Timer device implementation for SGI SN platforms. |
3 | * |
4 | * This file is subject to the terms and conditions of the GNU General Public |
5 | * License. See the file "COPYING" in the main directory of this archive |
6 | * for more details. |
7 | * |
8 | * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved. |
9 | * |
10 | * This driver exports an API that should be supportable by any HPET or IA-PC |
11 | * multimedia timer. The code below is currently specific to the SGI Altix |
12 | * SHub RTC, however. |
13 | * |
14 | * 11/01/01 - jbarnes - initial revision |
15 | * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion |
16 | * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE |
17 | * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt |
18 | * support via the posix timer interface |
19 | */ |
20 | |
21 | #include <linux/types.h> |
22 | #include <linux/kernel.h> |
23 | #include <linux/ioctl.h> |
24 | #include <linux/module.h> |
25 | #include <linux/init.h> |
26 | #include <linux/errno.h> |
27 | #include <linux/mm.h> |
28 | #include <linux/fs.h> |
29 | #include <linux/mmtimer.h> |
30 | #include <linux/miscdevice.h> |
31 | #include <linux/posix-timers.h> |
32 | #include <linux/interrupt.h> |
33 | #include <linux/time.h> |
34 | #include <linux/math64.h> |
35 | #include <linux/mutex.h> |
36 | #include <linux/slab.h> |
37 | |
38 | #include <asm/uaccess.h> |
39 | #include <asm/sn/addrs.h> |
40 | #include <asm/sn/intr.h> |
41 | #include <asm/sn/shub_mmr.h> |
42 | #include <asm/sn/nodepda.h> |
43 | #include <asm/sn/shubio.h> |
44 | |
45 | MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); |
46 | MODULE_DESCRIPTION("SGI Altix RTC Timer"); |
47 | MODULE_LICENSE("GPL"); |
48 | |
49 | /* name of the device, usually in /dev */ |
50 | #define MMTIMER_NAME "mmtimer" |
51 | #define MMTIMER_DESC "SGI Altix RTC Timer" |
52 | #define MMTIMER_VERSION "2.1" |
53 | |
54 | #define RTC_BITS 55 /* 55 bits for this implementation */ |
55 | |
56 | static struct k_clock sgi_clock; |
57 | |
58 | extern unsigned long sn_rtc_cycles_per_second; |
59 | |
60 | #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) |
61 | |
62 | #define rtc_time() (*RTC_COUNTER_ADDR) |
63 | |
64 | static DEFINE_MUTEX(mmtimer_mutex); |
65 | static long mmtimer_ioctl(struct file *file, unsigned int cmd, |
66 | unsigned long arg); |
67 | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); |
68 | |
69 | /* |
70 | * Period in femtoseconds (10^-15 s) |
71 | */ |
72 | static unsigned long mmtimer_femtoperiod = 0; |
73 | |
74 | static const struct file_operations mmtimer_fops = { |
75 | .owner = THIS_MODULE, |
76 | .mmap = mmtimer_mmap, |
77 | .unlocked_ioctl = mmtimer_ioctl, |
78 | .llseek = noop_llseek, |
79 | }; |
80 | |
81 | /* |
82 | * We only have comparison registers RTC1-4 currently available per |
83 | * node. RTC0 is used by SAL. |
84 | */ |
85 | /* Check for an RTC interrupt pending */ |
86 | static int mmtimer_int_pending(int comparator) |
87 | { |
88 | if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & |
89 | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) |
90 | return 1; |
91 | else |
92 | return 0; |
93 | } |
94 | |
95 | /* Clear the RTC interrupt pending bit */ |
96 | static void mmtimer_clr_int_pending(int comparator) |
97 | { |
98 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), |
99 | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); |
100 | } |
101 | |
102 | /* Setup timer on comparator RTC1 */ |
103 | static void mmtimer_setup_int_0(int cpu, u64 expires) |
104 | { |
105 | u64 val; |
106 | |
107 | /* Disable interrupt */ |
108 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); |
109 | |
110 | /* Initialize comparator value */ |
111 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); |
112 | |
113 | /* Clear pending bit */ |
114 | mmtimer_clr_int_pending(0); |
115 | |
116 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | |
117 | ((u64)cpu_physical_id(cpu) << |
118 | SH_RTC1_INT_CONFIG_PID_SHFT); |
119 | |
120 | /* Set configuration */ |
121 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); |
122 | |
123 | /* Enable RTC interrupts */ |
124 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); |
125 | |
126 | /* Initialize comparator value */ |
127 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); |
128 | |
129 | |
130 | } |
131 | |
132 | /* Setup timer on comparator RTC2 */ |
133 | static void mmtimer_setup_int_1(int cpu, u64 expires) |
134 | { |
135 | u64 val; |
136 | |
137 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); |
138 | |
139 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); |
140 | |
141 | mmtimer_clr_int_pending(1); |
142 | |
143 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | |
144 | ((u64)cpu_physical_id(cpu) << |
145 | SH_RTC2_INT_CONFIG_PID_SHFT); |
146 | |
147 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); |
148 | |
149 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); |
150 | |
151 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); |
152 | } |
153 | |
154 | /* Setup timer on comparator RTC3 */ |
155 | static void mmtimer_setup_int_2(int cpu, u64 expires) |
156 | { |
157 | u64 val; |
158 | |
159 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); |
160 | |
161 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); |
162 | |
163 | mmtimer_clr_int_pending(2); |
164 | |
165 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | |
166 | ((u64)cpu_physical_id(cpu) << |
167 | SH_RTC3_INT_CONFIG_PID_SHFT); |
168 | |
169 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); |
170 | |
171 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); |
172 | |
173 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); |
174 | } |
175 | |
176 | /* |
177 | * This function must be called with interrupts disabled and preemption off |
178 | * in order to insure that the setup succeeds in a deterministic time frame. |
179 | * It will check if the interrupt setup succeeded. |
180 | */ |
181 | static int mmtimer_setup(int cpu, int comparator, unsigned long expires, |
182 | u64 *set_completion_time) |
183 | { |
184 | switch (comparator) { |
185 | case 0: |
186 | mmtimer_setup_int_0(cpu, expires); |
187 | break; |
188 | case 1: |
189 | mmtimer_setup_int_1(cpu, expires); |
190 | break; |
191 | case 2: |
192 | mmtimer_setup_int_2(cpu, expires); |
193 | break; |
194 | } |
195 | /* We might've missed our expiration time */ |
196 | *set_completion_time = rtc_time(); |
197 | if (*set_completion_time <= expires) |
198 | return 1; |
199 | |
200 | /* |
201 | * If an interrupt is already pending then its okay |
202 | * if not then we failed |
203 | */ |
204 | return mmtimer_int_pending(comparator); |
205 | } |
206 | |
207 | static int mmtimer_disable_int(long nasid, int comparator) |
208 | { |
209 | switch (comparator) { |
210 | case 0: |
211 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), |
212 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); |
213 | break; |
214 | case 1: |
215 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), |
216 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); |
217 | break; |
218 | case 2: |
219 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), |
220 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); |
221 | break; |
222 | default: |
223 | return -EFAULT; |
224 | } |
225 | return 0; |
226 | } |
227 | |
228 | #define COMPARATOR 1 /* The comparator to use */ |
229 | |
230 | #define TIMER_OFF 0xbadcabLL /* Timer is not setup */ |
231 | #define TIMER_SET 0 /* Comparator is set for this timer */ |
232 | |
233 | #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40 |
234 | |
235 | /* There is one of these for each timer */ |
236 | struct mmtimer { |
237 | struct rb_node list; |
238 | struct k_itimer *timer; |
239 | int cpu; |
240 | }; |
241 | |
242 | struct mmtimer_node { |
243 | spinlock_t lock ____cacheline_aligned; |
244 | struct rb_root timer_head; |
245 | struct rb_node *next; |
246 | struct tasklet_struct tasklet; |
247 | }; |
248 | static struct mmtimer_node *timers; |
249 | |
250 | static unsigned mmtimer_interval_retry_increment = |
251 | MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT; |
252 | module_param(mmtimer_interval_retry_increment, uint, 0644); |
253 | MODULE_PARM_DESC(mmtimer_interval_retry_increment, |
254 | "RTC ticks to add to expiration on interval retry (default 40)"); |
255 | |
256 | /* |
257 | * Add a new mmtimer struct to the node's mmtimer list. |
258 | * This function assumes the struct mmtimer_node is locked. |
259 | */ |
260 | static void mmtimer_add_list(struct mmtimer *n) |
261 | { |
262 | int nodeid = n->timer->it.mmtimer.node; |
263 | unsigned long expires = n->timer->it.mmtimer.expires; |
264 | struct rb_node **link = &timers[nodeid].timer_head.rb_node; |
265 | struct rb_node *parent = NULL; |
266 | struct mmtimer *x; |
267 | |
268 | /* |
269 | * Find the right place in the rbtree: |
270 | */ |
271 | while (*link) { |
272 | parent = *link; |
273 | x = rb_entry(parent, struct mmtimer, list); |
274 | |
275 | if (expires < x->timer->it.mmtimer.expires) |
276 | link = &(*link)->rb_left; |
277 | else |
278 | link = &(*link)->rb_right; |
279 | } |
280 | |
281 | /* |
282 | * Insert the timer to the rbtree and check whether it |
283 | * replaces the first pending timer |
284 | */ |
285 | rb_link_node(&n->list, parent, link); |
286 | rb_insert_color(&n->list, &timers[nodeid].timer_head); |
287 | |
288 | if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next, |
289 | struct mmtimer, list)->timer->it.mmtimer.expires) |
290 | timers[nodeid].next = &n->list; |
291 | } |
292 | |
293 | /* |
294 | * Set the comparator for the next timer. |
295 | * This function assumes the struct mmtimer_node is locked. |
296 | */ |
297 | static void mmtimer_set_next_timer(int nodeid) |
298 | { |
299 | struct mmtimer_node *n = &timers[nodeid]; |
300 | struct mmtimer *x; |
301 | struct k_itimer *t; |
302 | u64 expires, exp, set_completion_time; |
303 | int i; |
304 | |
305 | restart: |
306 | if (n->next == NULL) |
307 | return; |
308 | |
309 | x = rb_entry(n->next, struct mmtimer, list); |
310 | t = x->timer; |
311 | if (!t->it.mmtimer.incr) { |
312 | /* Not an interval timer */ |
313 | if (!mmtimer_setup(x->cpu, COMPARATOR, |
314 | t->it.mmtimer.expires, |
315 | &set_completion_time)) { |
316 | /* Late setup, fire now */ |
317 | tasklet_schedule(&n->tasklet); |
318 | } |
319 | return; |
320 | } |
321 | |
322 | /* Interval timer */ |
323 | i = 0; |
324 | expires = exp = t->it.mmtimer.expires; |
325 | while (!mmtimer_setup(x->cpu, COMPARATOR, expires, |
326 | &set_completion_time)) { |
327 | int to; |
328 | |
329 | i++; |
330 | expires = set_completion_time + |
331 | mmtimer_interval_retry_increment + (1 << i); |
332 | /* Calculate overruns as we go. */ |
333 | to = ((u64)(expires - exp) / t->it.mmtimer.incr); |
334 | if (to) { |
335 | t->it_overrun += to; |
336 | t->it.mmtimer.expires += t->it.mmtimer.incr * to; |
337 | exp = t->it.mmtimer.expires; |
338 | } |
339 | if (i > 20) { |
340 | printk(KERN_ALERT "mmtimer: cannot reschedule timer\n"); |
341 | t->it.mmtimer.clock = TIMER_OFF; |
342 | n->next = rb_next(&x->list); |
343 | rb_erase(&x->list, &n->timer_head); |
344 | kfree(x); |
345 | goto restart; |
346 | } |
347 | } |
348 | } |
349 | |
350 | /** |
351 | * mmtimer_ioctl - ioctl interface for /dev/mmtimer |
352 | * @file: file structure for the device |
353 | * @cmd: command to execute |
354 | * @arg: optional argument to command |
355 | * |
356 | * Executes the command specified by @cmd. Returns 0 for success, < 0 for |
357 | * failure. |
358 | * |
359 | * Valid commands: |
360 | * |
361 | * %MMTIMER_GETOFFSET - Should return the offset (relative to the start |
362 | * of the page where the registers are mapped) for the counter in question. |
363 | * |
364 | * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) |
365 | * seconds |
366 | * |
367 | * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address |
368 | * specified by @arg |
369 | * |
370 | * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter |
371 | * |
372 | * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace |
373 | * |
374 | * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it |
375 | * in the address specified by @arg. |
376 | */ |
377 | static long mmtimer_ioctl(struct file *file, unsigned int cmd, |
378 | unsigned long arg) |
379 | { |
380 | int ret = 0; |
381 | |
382 | mutex_lock(&mmtimer_mutex); |
383 | |
384 | switch (cmd) { |
385 | case MMTIMER_GETOFFSET: /* offset of the counter */ |
386 | /* |
387 | * SN RTC registers are on their own 64k page |
388 | */ |
389 | if(PAGE_SIZE <= (1 << 16)) |
390 | ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; |
391 | else |
392 | ret = -ENOSYS; |
393 | break; |
394 | |
395 | case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ |
396 | if(copy_to_user((unsigned long __user *)arg, |
397 | &mmtimer_femtoperiod, sizeof(unsigned long))) |
398 | ret = -EFAULT; |
399 | break; |
400 | |
401 | case MMTIMER_GETFREQ: /* frequency in Hz */ |
402 | if(copy_to_user((unsigned long __user *)arg, |
403 | &sn_rtc_cycles_per_second, |
404 | sizeof(unsigned long))) |
405 | ret = -EFAULT; |
406 | break; |
407 | |
408 | case MMTIMER_GETBITS: /* number of bits in the clock */ |
409 | ret = RTC_BITS; |
410 | break; |
411 | |
412 | case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ |
413 | ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; |
414 | break; |
415 | |
416 | case MMTIMER_GETCOUNTER: |
417 | if(copy_to_user((unsigned long __user *)arg, |
418 | RTC_COUNTER_ADDR, sizeof(unsigned long))) |
419 | ret = -EFAULT; |
420 | break; |
421 | default: |
422 | ret = -ENOTTY; |
423 | break; |
424 | } |
425 | mutex_unlock(&mmtimer_mutex); |
426 | return ret; |
427 | } |
428 | |
429 | /** |
430 | * mmtimer_mmap - maps the clock's registers into userspace |
431 | * @file: file structure for the device |
432 | * @vma: VMA to map the registers into |
433 | * |
434 | * Calls remap_pfn_range() to map the clock's registers into |
435 | * the calling process' address space. |
436 | */ |
437 | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) |
438 | { |
439 | unsigned long mmtimer_addr; |
440 | |
441 | if (vma->vm_end - vma->vm_start != PAGE_SIZE) |
442 | return -EINVAL; |
443 | |
444 | if (vma->vm_flags & VM_WRITE) |
445 | return -EPERM; |
446 | |
447 | if (PAGE_SIZE > (1 << 16)) |
448 | return -ENOSYS; |
449 | |
450 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
451 | |
452 | mmtimer_addr = __pa(RTC_COUNTER_ADDR); |
453 | mmtimer_addr &= ~(PAGE_SIZE - 1); |
454 | mmtimer_addr &= 0xfffffffffffffffUL; |
455 | |
456 | if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, |
457 | PAGE_SIZE, vma->vm_page_prot)) { |
458 | printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); |
459 | return -EAGAIN; |
460 | } |
461 | |
462 | return 0; |
463 | } |
464 | |
465 | static struct miscdevice mmtimer_miscdev = { |
466 | SGI_MMTIMER, |
467 | MMTIMER_NAME, |
468 | &mmtimer_fops |
469 | }; |
470 | |
471 | static struct timespec sgi_clock_offset; |
472 | static int sgi_clock_period; |
473 | |
474 | /* |
475 | * Posix Timer Interface |
476 | */ |
477 | |
478 | static struct timespec sgi_clock_offset; |
479 | static int sgi_clock_period; |
480 | |
481 | static int sgi_clock_get(clockid_t clockid, struct timespec *tp) |
482 | { |
483 | u64 nsec; |
484 | |
485 | nsec = rtc_time() * sgi_clock_period |
486 | + sgi_clock_offset.tv_nsec; |
487 | *tp = ns_to_timespec(nsec); |
488 | tp->tv_sec += sgi_clock_offset.tv_sec; |
489 | return 0; |
490 | }; |
491 | |
492 | static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp) |
493 | { |
494 | |
495 | u64 nsec; |
496 | u32 rem; |
497 | |
498 | nsec = rtc_time() * sgi_clock_period; |
499 | |
500 | sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem); |
501 | |
502 | if (rem <= tp->tv_nsec) |
503 | sgi_clock_offset.tv_nsec = tp->tv_sec - rem; |
504 | else { |
505 | sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; |
506 | sgi_clock_offset.tv_sec--; |
507 | } |
508 | return 0; |
509 | } |
510 | |
511 | /** |
512 | * mmtimer_interrupt - timer interrupt handler |
513 | * @irq: irq received |
514 | * @dev_id: device the irq came from |
515 | * |
516 | * Called when one of the comarators matches the counter, This |
517 | * routine will send signals to processes that have requested |
518 | * them. |
519 | * |
520 | * This interrupt is run in an interrupt context |
521 | * by the SHUB. It is therefore safe to locally access SHub |
522 | * registers. |
523 | */ |
524 | static irqreturn_t |
525 | mmtimer_interrupt(int irq, void *dev_id) |
526 | { |
527 | unsigned long expires = 0; |
528 | int result = IRQ_NONE; |
529 | unsigned indx = cpu_to_node(smp_processor_id()); |
530 | struct mmtimer *base; |
531 | |
532 | spin_lock(&timers[indx].lock); |
533 | base = rb_entry(timers[indx].next, struct mmtimer, list); |
534 | if (base == NULL) { |
535 | spin_unlock(&timers[indx].lock); |
536 | return result; |
537 | } |
538 | |
539 | if (base->cpu == smp_processor_id()) { |
540 | if (base->timer) |
541 | expires = base->timer->it.mmtimer.expires; |
542 | /* expires test won't work with shared irqs */ |
543 | if ((mmtimer_int_pending(COMPARATOR) > 0) || |
544 | (expires && (expires <= rtc_time()))) { |
545 | mmtimer_clr_int_pending(COMPARATOR); |
546 | tasklet_schedule(&timers[indx].tasklet); |
547 | result = IRQ_HANDLED; |
548 | } |
549 | } |
550 | spin_unlock(&timers[indx].lock); |
551 | return result; |
552 | } |
553 | |
554 | static void mmtimer_tasklet(unsigned long data) |
555 | { |
556 | int nodeid = data; |
557 | struct mmtimer_node *mn = &timers[nodeid]; |
558 | struct mmtimer *x; |
559 | struct k_itimer *t; |
560 | unsigned long flags; |
561 | |
562 | /* Send signal and deal with periodic signals */ |
563 | spin_lock_irqsave(&mn->lock, flags); |
564 | if (!mn->next) |
565 | goto out; |
566 | |
567 | x = rb_entry(mn->next, struct mmtimer, list); |
568 | t = x->timer; |
569 | |
570 | if (t->it.mmtimer.clock == TIMER_OFF) |
571 | goto out; |
572 | |
573 | t->it_overrun = 0; |
574 | |
575 | mn->next = rb_next(&x->list); |
576 | rb_erase(&x->list, &mn->timer_head); |
577 | |
578 | if (posix_timer_event(t, 0) != 0) |
579 | t->it_overrun++; |
580 | |
581 | if(t->it.mmtimer.incr) { |
582 | t->it.mmtimer.expires += t->it.mmtimer.incr; |
583 | mmtimer_add_list(x); |
584 | } else { |
585 | /* Ensure we don't false trigger in mmtimer_interrupt */ |
586 | t->it.mmtimer.clock = TIMER_OFF; |
587 | t->it.mmtimer.expires = 0; |
588 | kfree(x); |
589 | } |
590 | /* Set comparator for next timer, if there is one */ |
591 | mmtimer_set_next_timer(nodeid); |
592 | |
593 | t->it_overrun_last = t->it_overrun; |
594 | out: |
595 | spin_unlock_irqrestore(&mn->lock, flags); |
596 | } |
597 | |
598 | static int sgi_timer_create(struct k_itimer *timer) |
599 | { |
600 | /* Insure that a newly created timer is off */ |
601 | timer->it.mmtimer.clock = TIMER_OFF; |
602 | return 0; |
603 | } |
604 | |
605 | /* This does not really delete a timer. It just insures |
606 | * that the timer is not active |
607 | * |
608 | * Assumption: it_lock is already held with irq's disabled |
609 | */ |
610 | static int sgi_timer_del(struct k_itimer *timr) |
611 | { |
612 | cnodeid_t nodeid = timr->it.mmtimer.node; |
613 | unsigned long irqflags; |
614 | |
615 | spin_lock_irqsave(&timers[nodeid].lock, irqflags); |
616 | if (timr->it.mmtimer.clock != TIMER_OFF) { |
617 | unsigned long expires = timr->it.mmtimer.expires; |
618 | struct rb_node *n = timers[nodeid].timer_head.rb_node; |
619 | struct mmtimer *uninitialized_var(t); |
620 | int r = 0; |
621 | |
622 | timr->it.mmtimer.clock = TIMER_OFF; |
623 | timr->it.mmtimer.expires = 0; |
624 | |
625 | while (n) { |
626 | t = rb_entry(n, struct mmtimer, list); |
627 | if (t->timer == timr) |
628 | break; |
629 | |
630 | if (expires < t->timer->it.mmtimer.expires) |
631 | n = n->rb_left; |
632 | else |
633 | n = n->rb_right; |
634 | } |
635 | |
636 | if (!n) { |
637 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
638 | return 0; |
639 | } |
640 | |
641 | if (timers[nodeid].next == n) { |
642 | timers[nodeid].next = rb_next(n); |
643 | r = 1; |
644 | } |
645 | |
646 | rb_erase(n, &timers[nodeid].timer_head); |
647 | kfree(t); |
648 | |
649 | if (r) { |
650 | mmtimer_disable_int(cnodeid_to_nasid(nodeid), |
651 | COMPARATOR); |
652 | mmtimer_set_next_timer(nodeid); |
653 | } |
654 | } |
655 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
656 | return 0; |
657 | } |
658 | |
659 | /* Assumption: it_lock is already held with irq's disabled */ |
660 | static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
661 | { |
662 | |
663 | if (timr->it.mmtimer.clock == TIMER_OFF) { |
664 | cur_setting->it_interval.tv_nsec = 0; |
665 | cur_setting->it_interval.tv_sec = 0; |
666 | cur_setting->it_value.tv_nsec = 0; |
667 | cur_setting->it_value.tv_sec =0; |
668 | return; |
669 | } |
670 | |
671 | cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period); |
672 | cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period); |
673 | } |
674 | |
675 | |
676 | static int sgi_timer_set(struct k_itimer *timr, int flags, |
677 | struct itimerspec * new_setting, |
678 | struct itimerspec * old_setting) |
679 | { |
680 | unsigned long when, period, irqflags; |
681 | int err = 0; |
682 | cnodeid_t nodeid; |
683 | struct mmtimer *base; |
684 | struct rb_node *n; |
685 | |
686 | if (old_setting) |
687 | sgi_timer_get(timr, old_setting); |
688 | |
689 | sgi_timer_del(timr); |
690 | when = timespec_to_ns(&new_setting->it_value); |
691 | period = timespec_to_ns(&new_setting->it_interval); |
692 | |
693 | if (when == 0) |
694 | /* Clear timer */ |
695 | return 0; |
696 | |
697 | base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL); |
698 | if (base == NULL) |
699 | return -ENOMEM; |
700 | |
701 | if (flags & TIMER_ABSTIME) { |
702 | struct timespec n; |
703 | unsigned long now; |
704 | |
705 | getnstimeofday(&n); |
706 | now = timespec_to_ns(&n); |
707 | if (when > now) |
708 | when -= now; |
709 | else |
710 | /* Fire the timer immediately */ |
711 | when = 0; |
712 | } |
713 | |
714 | /* |
715 | * Convert to sgi clock period. Need to keep rtc_time() as near as possible |
716 | * to getnstimeofday() in order to be as faithful as possible to the time |
717 | * specified. |
718 | */ |
719 | when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); |
720 | period = (period + sgi_clock_period - 1) / sgi_clock_period; |
721 | |
722 | /* |
723 | * We are allocating a local SHub comparator. If we would be moved to another |
724 | * cpu then another SHub may be local to us. Prohibit that by switching off |
725 | * preemption. |
726 | */ |
727 | preempt_disable(); |
728 | |
729 | nodeid = cpu_to_node(smp_processor_id()); |
730 | |
731 | /* Lock the node timer structure */ |
732 | spin_lock_irqsave(&timers[nodeid].lock, irqflags); |
733 | |
734 | base->timer = timr; |
735 | base->cpu = smp_processor_id(); |
736 | |
737 | timr->it.mmtimer.clock = TIMER_SET; |
738 | timr->it.mmtimer.node = nodeid; |
739 | timr->it.mmtimer.incr = period; |
740 | timr->it.mmtimer.expires = when; |
741 | |
742 | n = timers[nodeid].next; |
743 | |
744 | /* Add the new struct mmtimer to node's timer list */ |
745 | mmtimer_add_list(base); |
746 | |
747 | if (timers[nodeid].next == n) { |
748 | /* No need to reprogram comparator for now */ |
749 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
750 | preempt_enable(); |
751 | return err; |
752 | } |
753 | |
754 | /* We need to reprogram the comparator */ |
755 | if (n) |
756 | mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR); |
757 | |
758 | mmtimer_set_next_timer(nodeid); |
759 | |
760 | /* Unlock the node timer structure */ |
761 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); |
762 | |
763 | preempt_enable(); |
764 | |
765 | return err; |
766 | } |
767 | |
768 | static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp) |
769 | { |
770 | tp->tv_sec = 0; |
771 | tp->tv_nsec = sgi_clock_period; |
772 | return 0; |
773 | } |
774 | |
775 | static struct k_clock sgi_clock = { |
776 | .clock_set = sgi_clock_set, |
777 | .clock_get = sgi_clock_get, |
778 | .clock_getres = sgi_clock_getres, |
779 | .timer_create = sgi_timer_create, |
780 | .timer_set = sgi_timer_set, |
781 | .timer_del = sgi_timer_del, |
782 | .timer_get = sgi_timer_get |
783 | }; |
784 | |
785 | /** |
786 | * mmtimer_init - device initialization routine |
787 | * |
788 | * Does initial setup for the mmtimer device. |
789 | */ |
790 | static int __init mmtimer_init(void) |
791 | { |
792 | cnodeid_t node, maxn = -1; |
793 | |
794 | if (!ia64_platform_is("sn2")) |
795 | return 0; |
796 | |
797 | /* |
798 | * Sanity check the cycles/sec variable |
799 | */ |
800 | if (sn_rtc_cycles_per_second < 100000) { |
801 | printk(KERN_ERR "%s: unable to determine clock frequency\n", |
802 | MMTIMER_NAME); |
803 | goto out1; |
804 | } |
805 | |
806 | mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / |
807 | 2) / sn_rtc_cycles_per_second; |
808 | |
809 | if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) { |
810 | printk(KERN_WARNING "%s: unable to allocate interrupt.", |
811 | MMTIMER_NAME); |
812 | goto out1; |
813 | } |
814 | |
815 | if (misc_register(&mmtimer_miscdev)) { |
816 | printk(KERN_ERR "%s: failed to register device\n", |
817 | MMTIMER_NAME); |
818 | goto out2; |
819 | } |
820 | |
821 | /* Get max numbered node, calculate slots needed */ |
822 | for_each_online_node(node) { |
823 | maxn = node; |
824 | } |
825 | maxn++; |
826 | |
827 | /* Allocate list of node ptrs to mmtimer_t's */ |
828 | timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL); |
829 | if (timers == NULL) { |
830 | printk(KERN_ERR "%s: failed to allocate memory for device\n", |
831 | MMTIMER_NAME); |
832 | goto out3; |
833 | } |
834 | |
835 | /* Initialize struct mmtimer's for each online node */ |
836 | for_each_online_node(node) { |
837 | spin_lock_init(&timers[node].lock); |
838 | tasklet_init(&timers[node].tasklet, mmtimer_tasklet, |
839 | (unsigned long) node); |
840 | } |
841 | |
842 | sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second; |
843 | posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock); |
844 | |
845 | printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, |
846 | sn_rtc_cycles_per_second/(unsigned long)1E6); |
847 | |
848 | return 0; |
849 | |
850 | out3: |
851 | kfree(timers); |
852 | misc_deregister(&mmtimer_miscdev); |
853 | out2: |
854 | free_irq(SGI_MMTIMER_VECTOR, NULL); |
855 | out1: |
856 | return -1; |
857 | } |
858 | |
859 | module_init(mmtimer_init); |
860 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9