Root/drivers/char/random.c

1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
251#include <linux/mm.h>
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
255#include <linux/fips.h>
256#include <linux/ptrace.h>
257#include <linux/kmemcheck.h>
258
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
266#include <asm/irq_regs.h>
267#include <asm/io.h>
268
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
272/*
273 * Configuration information
274 */
275#define INPUT_POOL_WORDS 128
276#define OUTPUT_POOL_WORDS 32
277#define SEC_XFER_SIZE 512
278#define EXTRACT_SIZE 10
279
280#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
281
282/*
283 * The minimum number of bits of entropy before we wake up a read on
284 * /dev/random. Should be enough to do a significant reseed.
285 */
286static int random_read_wakeup_thresh = 64;
287
288/*
289 * If the entropy count falls under this number of bits, then we
290 * should wake up processes which are selecting or polling on write
291 * access to /dev/random.
292 */
293static int random_write_wakeup_thresh = 128;
294
295/*
296 * When the input pool goes over trickle_thresh, start dropping most
297 * samples to avoid wasting CPU time and reduce lock contention.
298 */
299
300static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
301
302static DEFINE_PER_CPU(int, trickle_count);
303
304/*
305 * A pool of size .poolwords is stirred with a primitive polynomial
306 * of degree .poolwords over GF(2). The taps for various sizes are
307 * defined below. They are chosen to be evenly spaced (minimum RMS
308 * distance from evenly spaced; the numbers in the comments are a
309 * scaled squared error sum) except for the last tap, which is 1 to
310 * get the twisting happening as fast as possible.
311 */
312static struct poolinfo {
313    int poolwords;
314    int tap1, tap2, tap3, tap4, tap5;
315} poolinfo_table[] = {
316    /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
317    { 128, 103, 76, 51, 25, 1 },
318    /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
319    { 32, 26, 20, 14, 7, 1 },
320#if 0
321    /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
322    { 2048, 1638, 1231, 819, 411, 1 },
323
324    /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
325    { 1024, 817, 615, 412, 204, 1 },
326
327    /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
328    { 1024, 819, 616, 410, 207, 2 },
329
330    /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
331    { 512, 411, 308, 208, 104, 1 },
332
333    /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
334    { 512, 409, 307, 206, 102, 2 },
335    /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
336    { 512, 409, 309, 205, 103, 2 },
337
338    /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
339    { 256, 205, 155, 101, 52, 1 },
340
341    /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
342    { 128, 103, 78, 51, 27, 2 },
343
344    /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
345    { 64, 52, 39, 26, 14, 1 },
346#endif
347};
348
349#define POOLBITS poolwords*32
350#define POOLBYTES poolwords*4
351
352/*
353 * For the purposes of better mixing, we use the CRC-32 polynomial as
354 * well to make a twisted Generalized Feedback Shift Reigster
355 *
356 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
357 * Transactions on Modeling and Computer Simulation 2(3):179-194.
358 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
359 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
360 *
361 * Thanks to Colin Plumb for suggesting this.
362 *
363 * We have not analyzed the resultant polynomial to prove it primitive;
364 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
365 * of a random large-degree polynomial over GF(2) are more than large enough
366 * that periodicity is not a concern.
367 *
368 * The input hash is much less sensitive than the output hash. All
369 * that we want of it is that it be a good non-cryptographic hash;
370 * i.e. it not produce collisions when fed "random" data of the sort
371 * we expect to see. As long as the pool state differs for different
372 * inputs, we have preserved the input entropy and done a good job.
373 * The fact that an intelligent attacker can construct inputs that
374 * will produce controlled alterations to the pool's state is not
375 * important because we don't consider such inputs to contribute any
376 * randomness. The only property we need with respect to them is that
377 * the attacker can't increase his/her knowledge of the pool's state.
378 * Since all additions are reversible (knowing the final state and the
379 * input, you can reconstruct the initial state), if an attacker has
380 * any uncertainty about the initial state, he/she can only shuffle
381 * that uncertainty about, but never cause any collisions (which would
382 * decrease the uncertainty).
383 *
384 * The chosen system lets the state of the pool be (essentially) the input
385 * modulo the generator polymnomial. Now, for random primitive polynomials,
386 * this is a universal class of hash functions, meaning that the chance
387 * of a collision is limited by the attacker's knowledge of the generator
388 * polynomail, so if it is chosen at random, an attacker can never force
389 * a collision. Here, we use a fixed polynomial, but we *can* assume that
390 * ###--> it is unknown to the processes generating the input entropy. <-###
391 * Because of this important property, this is a good, collision-resistant
392 * hash; hash collisions will occur no more often than chance.
393 */
394
395/*
396 * Static global variables
397 */
398static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
399static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
400static struct fasync_struct *fasync;
401
402#if 0
403static bool debug;
404module_param(debug, bool, 0644);
405#define DEBUG_ENT(fmt, arg...) do { \
406    if (debug) \
407        printk(KERN_DEBUG "random %04d %04d %04d: " \
408        fmt,\
409        input_pool.entropy_count,\
410        blocking_pool.entropy_count,\
411        nonblocking_pool.entropy_count,\
412        ## arg); } while (0)
413#else
414#define DEBUG_ENT(fmt, arg...) do {} while (0)
415#endif
416
417/**********************************************************************
418 *
419 * OS independent entropy store. Here are the functions which handle
420 * storing entropy in an entropy pool.
421 *
422 **********************************************************************/
423
424struct entropy_store;
425struct entropy_store {
426    /* read-only data: */
427    struct poolinfo *poolinfo;
428    __u32 *pool;
429    const char *name;
430    struct entropy_store *pull;
431    int limit;
432
433    /* read-write data: */
434    spinlock_t lock;
435    unsigned add_ptr;
436    unsigned input_rotate;
437    int entropy_count;
438    int entropy_total;
439    unsigned int initialized:1;
440    __u8 last_data[EXTRACT_SIZE];
441};
442
443static __u32 input_pool_data[INPUT_POOL_WORDS];
444static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
445static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
446
447static struct entropy_store input_pool = {
448    .poolinfo = &poolinfo_table[0],
449    .name = "input",
450    .limit = 1,
451    .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
452    .pool = input_pool_data
453};
454
455static struct entropy_store blocking_pool = {
456    .poolinfo = &poolinfo_table[1],
457    .name = "blocking",
458    .limit = 1,
459    .pull = &input_pool,
460    .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
461    .pool = blocking_pool_data
462};
463
464static struct entropy_store nonblocking_pool = {
465    .poolinfo = &poolinfo_table[1],
466    .name = "nonblocking",
467    .pull = &input_pool,
468    .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
469    .pool = nonblocking_pool_data
470};
471
472static __u32 const twist_table[8] = {
473    0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
474    0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
475
476/*
477 * This function adds bytes into the entropy "pool". It does not
478 * update the entropy estimate. The caller should call
479 * credit_entropy_bits if this is appropriate.
480 *
481 * The pool is stirred with a primitive polynomial of the appropriate
482 * degree, and then twisted. We twist by three bits at a time because
483 * it's cheap to do so and helps slightly in the expected case where
484 * the entropy is concentrated in the low-order bits.
485 */
486static void _mix_pool_bytes(struct entropy_store *r, const void *in,
487                int nbytes, __u8 out[64])
488{
489    unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
490    int input_rotate;
491    int wordmask = r->poolinfo->poolwords - 1;
492    const char *bytes = in;
493    __u32 w;
494
495    tap1 = r->poolinfo->tap1;
496    tap2 = r->poolinfo->tap2;
497    tap3 = r->poolinfo->tap3;
498    tap4 = r->poolinfo->tap4;
499    tap5 = r->poolinfo->tap5;
500
501    smp_rmb();
502    input_rotate = ACCESS_ONCE(r->input_rotate);
503    i = ACCESS_ONCE(r->add_ptr);
504
505    /* mix one byte at a time to simplify size handling and churn faster */
506    while (nbytes--) {
507        w = rol32(*bytes++, input_rotate & 31);
508        i = (i - 1) & wordmask;
509
510        /* XOR in the various taps */
511        w ^= r->pool[i];
512        w ^= r->pool[(i + tap1) & wordmask];
513        w ^= r->pool[(i + tap2) & wordmask];
514        w ^= r->pool[(i + tap3) & wordmask];
515        w ^= r->pool[(i + tap4) & wordmask];
516        w ^= r->pool[(i + tap5) & wordmask];
517
518        /* Mix the result back in with a twist */
519        r->pool[i] = (w >> 3) ^ twist_table[w & 7];
520
521        /*
522         * Normally, we add 7 bits of rotation to the pool.
523         * At the beginning of the pool, add an extra 7 bits
524         * rotation, so that successive passes spread the
525         * input bits across the pool evenly.
526         */
527        input_rotate += i ? 7 : 14;
528    }
529
530    ACCESS_ONCE(r->input_rotate) = input_rotate;
531    ACCESS_ONCE(r->add_ptr) = i;
532    smp_wmb();
533
534    if (out)
535        for (j = 0; j < 16; j++)
536            ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
537}
538
539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540                 int nbytes, __u8 out[64])
541{
542    trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543    _mix_pool_bytes(r, in, nbytes, out);
544}
545
546static void mix_pool_bytes(struct entropy_store *r, const void *in,
547               int nbytes, __u8 out[64])
548{
549    unsigned long flags;
550
551    trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552    spin_lock_irqsave(&r->lock, flags);
553    _mix_pool_bytes(r, in, nbytes, out);
554    spin_unlock_irqrestore(&r->lock, flags);
555}
556
557struct fast_pool {
558    __u32 pool[4];
559    unsigned long last;
560    unsigned short count;
561    unsigned char rotate;
562    unsigned char last_timer_intr;
563};
564
565/*
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
569 */
570static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
571{
572    const char *bytes = in;
573    __u32 w;
574    unsigned i = f->count;
575    unsigned input_rotate = f->rotate;
576
577    while (nbytes--) {
578        w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
579            f->pool[(i + 1) & 3];
580        f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
581        input_rotate += (i++ & 3) ? 7 : 14;
582    }
583    f->count = i;
584    f->rotate = input_rotate;
585}
586
587/*
588 * Credit (or debit) the entropy store with n bits of entropy
589 */
590static void credit_entropy_bits(struct entropy_store *r, int nbits)
591{
592    int entropy_count, orig;
593
594    if (!nbits)
595        return;
596
597    DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
598retry:
599    entropy_count = orig = ACCESS_ONCE(r->entropy_count);
600    entropy_count += nbits;
601
602    if (entropy_count < 0) {
603        DEBUG_ENT("negative entropy/overflow\n");
604        entropy_count = 0;
605    } else if (entropy_count > r->poolinfo->POOLBITS)
606        entropy_count = r->poolinfo->POOLBITS;
607    if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
608        goto retry;
609
610    if (!r->initialized && nbits > 0) {
611        r->entropy_total += nbits;
612        if (r->entropy_total > 128)
613            r->initialized = 1;
614    }
615
616    trace_credit_entropy_bits(r->name, nbits, entropy_count,
617                  r->entropy_total, _RET_IP_);
618
619    /* should we wake readers? */
620    if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
621        wake_up_interruptible(&random_read_wait);
622        kill_fasync(&fasync, SIGIO, POLL_IN);
623    }
624}
625
626/*********************************************************************
627 *
628 * Entropy input management
629 *
630 *********************************************************************/
631
632/* There is one of these per entropy source */
633struct timer_rand_state {
634    cycles_t last_time;
635    long last_delta, last_delta2;
636    unsigned dont_count_entropy:1;
637};
638
639/*
640 * Add device- or boot-specific data to the input and nonblocking
641 * pools to help initialize them to unique values.
642 *
643 * None of this adds any entropy, it is meant to avoid the
644 * problem of the nonblocking pool having similar initial state
645 * across largely identical devices.
646 */
647void add_device_randomness(const void *buf, unsigned int size)
648{
649    unsigned long time = get_cycles() ^ jiffies;
650
651    mix_pool_bytes(&input_pool, buf, size, NULL);
652    mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
653    mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
654    mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
655}
656EXPORT_SYMBOL(add_device_randomness);
657
658static struct timer_rand_state input_timer_state;
659
660/*
661 * This function adds entropy to the entropy "pool" by using timing
662 * delays. It uses the timer_rand_state structure to make an estimate
663 * of how many bits of entropy this call has added to the pool.
664 *
665 * The number "num" is also added to the pool - it should somehow describe
666 * the type of event which just happened. This is currently 0-255 for
667 * keyboard scan codes, and 256 upwards for interrupts.
668 *
669 */
670static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
671{
672    struct {
673        long jiffies;
674        unsigned cycles;
675        unsigned num;
676    } sample;
677    long delta, delta2, delta3;
678
679    preempt_disable();
680    /* if over the trickle threshold, use only 1 in 4096 samples */
681    if (input_pool.entropy_count > trickle_thresh &&
682        ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
683        goto out;
684
685    sample.jiffies = jiffies;
686    sample.cycles = get_cycles();
687    sample.num = num;
688    mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
689
690    /*
691     * Calculate number of bits of randomness we probably added.
692     * We take into account the first, second and third-order deltas
693     * in order to make our estimate.
694     */
695
696    if (!state->dont_count_entropy) {
697        delta = sample.jiffies - state->last_time;
698        state->last_time = sample.jiffies;
699
700        delta2 = delta - state->last_delta;
701        state->last_delta = delta;
702
703        delta3 = delta2 - state->last_delta2;
704        state->last_delta2 = delta2;
705
706        if (delta < 0)
707            delta = -delta;
708        if (delta2 < 0)
709            delta2 = -delta2;
710        if (delta3 < 0)
711            delta3 = -delta3;
712        if (delta > delta2)
713            delta = delta2;
714        if (delta > delta3)
715            delta = delta3;
716
717        /*
718         * delta is now minimum absolute delta.
719         * Round down by 1 bit on general principles,
720         * and limit entropy entimate to 12 bits.
721         */
722        credit_entropy_bits(&input_pool,
723                    min_t(int, fls(delta>>1), 11));
724    }
725out:
726    preempt_enable();
727}
728
729void add_input_randomness(unsigned int type, unsigned int code,
730                 unsigned int value)
731{
732    static unsigned char last_value;
733
734    /* ignore autorepeat and the like */
735    if (value == last_value)
736        return;
737
738    DEBUG_ENT("input event\n");
739    last_value = value;
740    add_timer_randomness(&input_timer_state,
741                 (type << 4) ^ code ^ (code >> 4) ^ value);
742}
743EXPORT_SYMBOL_GPL(add_input_randomness);
744
745static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
746
747void add_interrupt_randomness(int irq, int irq_flags)
748{
749    struct entropy_store *r;
750    struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
751    struct pt_regs *regs = get_irq_regs();
752    unsigned long now = jiffies;
753    __u32 input[4], cycles = get_cycles();
754
755    input[0] = cycles ^ jiffies;
756    input[1] = irq;
757    if (regs) {
758        __u64 ip = instruction_pointer(regs);
759        input[2] = ip;
760        input[3] = ip >> 32;
761    }
762
763    fast_mix(fast_pool, input, sizeof(input));
764
765    if ((fast_pool->count & 1023) &&
766        !time_after(now, fast_pool->last + HZ))
767        return;
768
769    fast_pool->last = now;
770
771    r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
772    __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
773    /*
774     * If we don't have a valid cycle counter, and we see
775     * back-to-back timer interrupts, then skip giving credit for
776     * any entropy.
777     */
778    if (cycles == 0) {
779        if (irq_flags & __IRQF_TIMER) {
780            if (fast_pool->last_timer_intr)
781                return;
782            fast_pool->last_timer_intr = 1;
783        } else
784            fast_pool->last_timer_intr = 0;
785    }
786    credit_entropy_bits(r, 1);
787}
788
789#ifdef CONFIG_BLOCK
790void add_disk_randomness(struct gendisk *disk)
791{
792    if (!disk || !disk->random)
793        return;
794    /* first major is 1, so we get >= 0x200 here */
795    DEBUG_ENT("disk event %d:%d\n",
796          MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
797
798    add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
799}
800#endif
801
802/*********************************************************************
803 *
804 * Entropy extraction routines
805 *
806 *********************************************************************/
807
808static ssize_t extract_entropy(struct entropy_store *r, void *buf,
809                   size_t nbytes, int min, int rsvd);
810
811/*
812 * This utility inline function is responsible for transferring entropy
813 * from the primary pool to the secondary extraction pool. We make
814 * sure we pull enough for a 'catastrophic reseed'.
815 */
816static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
817{
818    __u32 tmp[OUTPUT_POOL_WORDS];
819
820    if (r->pull && r->entropy_count < nbytes * 8 &&
821        r->entropy_count < r->poolinfo->POOLBITS) {
822        /* If we're limited, always leave two wakeup worth's BITS */
823        int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
824        int bytes = nbytes;
825
826        /* pull at least as many as BYTES as wakeup BITS */
827        bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
828        /* but never more than the buffer size */
829        bytes = min_t(int, bytes, sizeof(tmp));
830
831        DEBUG_ENT("going to reseed %s with %d bits "
832              "(%d of %d requested)\n",
833              r->name, bytes * 8, nbytes * 8, r->entropy_count);
834
835        bytes = extract_entropy(r->pull, tmp, bytes,
836                    random_read_wakeup_thresh / 8, rsvd);
837        mix_pool_bytes(r, tmp, bytes, NULL);
838        credit_entropy_bits(r, bytes*8);
839    }
840}
841
842/*
843 * These functions extracts randomness from the "entropy pool", and
844 * returns it in a buffer.
845 *
846 * The min parameter specifies the minimum amount we can pull before
847 * failing to avoid races that defeat catastrophic reseeding while the
848 * reserved parameter indicates how much entropy we must leave in the
849 * pool after each pull to avoid starving other readers.
850 *
851 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
852 */
853
854static size_t account(struct entropy_store *r, size_t nbytes, int min,
855              int reserved)
856{
857    unsigned long flags;
858
859    /* Hold lock while accounting */
860    spin_lock_irqsave(&r->lock, flags);
861
862    BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
863    DEBUG_ENT("trying to extract %d bits from %s\n",
864          nbytes * 8, r->name);
865
866    /* Can we pull enough? */
867    if (r->entropy_count / 8 < min + reserved) {
868        nbytes = 0;
869    } else {
870        /* If limited, never pull more than available */
871        if (r->limit && nbytes + reserved >= r->entropy_count / 8)
872            nbytes = r->entropy_count/8 - reserved;
873
874        if (r->entropy_count / 8 >= nbytes + reserved)
875            r->entropy_count -= nbytes*8;
876        else
877            r->entropy_count = reserved;
878
879        if (r->entropy_count < random_write_wakeup_thresh) {
880            wake_up_interruptible(&random_write_wait);
881            kill_fasync(&fasync, SIGIO, POLL_OUT);
882        }
883    }
884
885    DEBUG_ENT("debiting %d entropy credits from %s%s\n",
886          nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
887
888    spin_unlock_irqrestore(&r->lock, flags);
889
890    return nbytes;
891}
892
893static void extract_buf(struct entropy_store *r, __u8 *out)
894{
895    int i;
896    union {
897        __u32 w[5];
898        unsigned long l[LONGS(EXTRACT_SIZE)];
899    } hash;
900    __u32 workspace[SHA_WORKSPACE_WORDS];
901    __u8 extract[64];
902    unsigned long flags;
903
904    /* Generate a hash across the pool, 16 words (512 bits) at a time */
905    sha_init(hash.w);
906    spin_lock_irqsave(&r->lock, flags);
907    for (i = 0; i < r->poolinfo->poolwords; i += 16)
908        sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
909
910    /*
911     * We mix the hash back into the pool to prevent backtracking
912     * attacks (where the attacker knows the state of the pool
913     * plus the current outputs, and attempts to find previous
914     * ouputs), unless the hash function can be inverted. By
915     * mixing at least a SHA1 worth of hash data back, we make
916     * brute-forcing the feedback as hard as brute-forcing the
917     * hash.
918     */
919    __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
920    spin_unlock_irqrestore(&r->lock, flags);
921
922    /*
923     * To avoid duplicates, we atomically extract a portion of the
924     * pool while mixing, and hash one final time.
925     */
926    sha_transform(hash.w, extract, workspace);
927    memset(extract, 0, sizeof(extract));
928    memset(workspace, 0, sizeof(workspace));
929
930    /*
931     * In case the hash function has some recognizable output
932     * pattern, we fold it in half. Thus, we always feed back
933     * twice as much data as we output.
934     */
935    hash.w[0] ^= hash.w[3];
936    hash.w[1] ^= hash.w[4];
937    hash.w[2] ^= rol32(hash.w[2], 16);
938
939    /*
940     * If we have a architectural hardware random number
941     * generator, mix that in, too.
942     */
943    for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
944        unsigned long v;
945        if (!arch_get_random_long(&v))
946            break;
947        hash.l[i] ^= v;
948    }
949
950    memcpy(out, &hash, EXTRACT_SIZE);
951    memset(&hash, 0, sizeof(hash));
952}
953
954static ssize_t extract_entropy(struct entropy_store *r, void *buf,
955                 size_t nbytes, int min, int reserved)
956{
957    ssize_t ret = 0, i;
958    __u8 tmp[EXTRACT_SIZE];
959
960    trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
961    xfer_secondary_pool(r, nbytes);
962    nbytes = account(r, nbytes, min, reserved);
963
964    while (nbytes) {
965        extract_buf(r, tmp);
966
967        if (fips_enabled) {
968            unsigned long flags;
969
970            spin_lock_irqsave(&r->lock, flags);
971            if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
972                panic("Hardware RNG duplicated output!\n");
973            memcpy(r->last_data, tmp, EXTRACT_SIZE);
974            spin_unlock_irqrestore(&r->lock, flags);
975        }
976        i = min_t(int, nbytes, EXTRACT_SIZE);
977        memcpy(buf, tmp, i);
978        nbytes -= i;
979        buf += i;
980        ret += i;
981    }
982
983    /* Wipe data just returned from memory */
984    memset(tmp, 0, sizeof(tmp));
985
986    return ret;
987}
988
989static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
990                    size_t nbytes)
991{
992    ssize_t ret = 0, i;
993    __u8 tmp[EXTRACT_SIZE];
994
995    trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
996    xfer_secondary_pool(r, nbytes);
997    nbytes = account(r, nbytes, 0, 0);
998
999    while (nbytes) {
1000        if (need_resched()) {
1001            if (signal_pending(current)) {
1002                if (ret == 0)
1003                    ret = -ERESTARTSYS;
1004                break;
1005            }
1006            schedule();
1007        }
1008
1009        extract_buf(r, tmp);
1010        i = min_t(int, nbytes, EXTRACT_SIZE);
1011        if (copy_to_user(buf, tmp, i)) {
1012            ret = -EFAULT;
1013            break;
1014        }
1015
1016        nbytes -= i;
1017        buf += i;
1018        ret += i;
1019    }
1020
1021    /* Wipe data just returned from memory */
1022    memset(tmp, 0, sizeof(tmp));
1023
1024    return ret;
1025}
1026
1027/*
1028 * This function is the exported kernel interface. It returns some
1029 * number of good random numbers, suitable for key generation, seeding
1030 * TCP sequence numbers, etc. It does not use the hw random number
1031 * generator, if available; use get_random_bytes_arch() for that.
1032 */
1033void get_random_bytes(void *buf, int nbytes)
1034{
1035    extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1036}
1037EXPORT_SYMBOL(get_random_bytes);
1038
1039/*
1040 * This function will use the architecture-specific hardware random
1041 * number generator if it is available. The arch-specific hw RNG will
1042 * almost certainly be faster than what we can do in software, but it
1043 * is impossible to verify that it is implemented securely (as
1044 * opposed, to, say, the AES encryption of a sequence number using a
1045 * key known by the NSA). So it's useful if we need the speed, but
1046 * only if we're willing to trust the hardware manufacturer not to
1047 * have put in a back door.
1048 */
1049void get_random_bytes_arch(void *buf, int nbytes)
1050{
1051    char *p = buf;
1052
1053    trace_get_random_bytes(nbytes, _RET_IP_);
1054    while (nbytes) {
1055        unsigned long v;
1056        int chunk = min(nbytes, (int)sizeof(unsigned long));
1057
1058        if (!arch_get_random_long(&v))
1059            break;
1060        
1061        memcpy(p, &v, chunk);
1062        p += chunk;
1063        nbytes -= chunk;
1064    }
1065
1066    if (nbytes)
1067        extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1068}
1069EXPORT_SYMBOL(get_random_bytes_arch);
1070
1071
1072/*
1073 * init_std_data - initialize pool with system data
1074 *
1075 * @r: pool to initialize
1076 *
1077 * This function clears the pool's entropy count and mixes some system
1078 * data into the pool to prepare it for use. The pool is not cleared
1079 * as that can only decrease the entropy in the pool.
1080 */
1081static void init_std_data(struct entropy_store *r)
1082{
1083    int i;
1084    ktime_t now = ktime_get_real();
1085    unsigned long rv;
1086
1087    r->entropy_count = 0;
1088    r->entropy_total = 0;
1089    mix_pool_bytes(r, &now, sizeof(now), NULL);
1090    for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1091        if (!arch_get_random_long(&rv))
1092            break;
1093        mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1094    }
1095    mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1096}
1097
1098/*
1099 * Note that setup_arch() may call add_device_randomness()
1100 * long before we get here. This allows seeding of the pools
1101 * with some platform dependent data very early in the boot
1102 * process. But it limits our options here. We must use
1103 * statically allocated structures that already have all
1104 * initializations complete at compile time. We should also
1105 * take care not to overwrite the precious per platform data
1106 * we were given.
1107 */
1108static int rand_initialize(void)
1109{
1110    init_std_data(&input_pool);
1111    init_std_data(&blocking_pool);
1112    init_std_data(&nonblocking_pool);
1113    return 0;
1114}
1115module_init(rand_initialize);
1116
1117#ifdef CONFIG_BLOCK
1118void rand_initialize_disk(struct gendisk *disk)
1119{
1120    struct timer_rand_state *state;
1121
1122    /*
1123     * If kzalloc returns null, we just won't use that entropy
1124     * source.
1125     */
1126    state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1127    if (state)
1128        disk->random = state;
1129}
1130#endif
1131
1132static ssize_t
1133random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1134{
1135    ssize_t n, retval = 0, count = 0;
1136
1137    if (nbytes == 0)
1138        return 0;
1139
1140    while (nbytes > 0) {
1141        n = nbytes;
1142        if (n > SEC_XFER_SIZE)
1143            n = SEC_XFER_SIZE;
1144
1145        DEBUG_ENT("reading %d bits\n", n*8);
1146
1147        n = extract_entropy_user(&blocking_pool, buf, n);
1148
1149        DEBUG_ENT("read got %d bits (%d still needed)\n",
1150              n*8, (nbytes-n)*8);
1151
1152        if (n == 0) {
1153            if (file->f_flags & O_NONBLOCK) {
1154                retval = -EAGAIN;
1155                break;
1156            }
1157
1158            DEBUG_ENT("sleeping?\n");
1159
1160            wait_event_interruptible(random_read_wait,
1161                input_pool.entropy_count >=
1162                         random_read_wakeup_thresh);
1163
1164            DEBUG_ENT("awake\n");
1165
1166            if (signal_pending(current)) {
1167                retval = -ERESTARTSYS;
1168                break;
1169            }
1170
1171            continue;
1172        }
1173
1174        if (n < 0) {
1175            retval = n;
1176            break;
1177        }
1178        count += n;
1179        buf += n;
1180        nbytes -= n;
1181        break; /* This break makes the device work */
1182                /* like a named pipe */
1183    }
1184
1185    return (count ? count : retval);
1186}
1187
1188static ssize_t
1189urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1190{
1191    return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1192}
1193
1194static unsigned int
1195random_poll(struct file *file, poll_table * wait)
1196{
1197    unsigned int mask;
1198
1199    poll_wait(file, &random_read_wait, wait);
1200    poll_wait(file, &random_write_wait, wait);
1201    mask = 0;
1202    if (input_pool.entropy_count >= random_read_wakeup_thresh)
1203        mask |= POLLIN | POLLRDNORM;
1204    if (input_pool.entropy_count < random_write_wakeup_thresh)
1205        mask |= POLLOUT | POLLWRNORM;
1206    return mask;
1207}
1208
1209static int
1210write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1211{
1212    size_t bytes;
1213    __u32 buf[16];
1214    const char __user *p = buffer;
1215
1216    while (count > 0) {
1217        bytes = min(count, sizeof(buf));
1218        if (copy_from_user(&buf, p, bytes))
1219            return -EFAULT;
1220
1221        count -= bytes;
1222        p += bytes;
1223
1224        mix_pool_bytes(r, buf, bytes, NULL);
1225        cond_resched();
1226    }
1227
1228    return 0;
1229}
1230
1231static ssize_t random_write(struct file *file, const char __user *buffer,
1232                size_t count, loff_t *ppos)
1233{
1234    size_t ret;
1235
1236    ret = write_pool(&blocking_pool, buffer, count);
1237    if (ret)
1238        return ret;
1239    ret = write_pool(&nonblocking_pool, buffer, count);
1240    if (ret)
1241        return ret;
1242
1243    return (ssize_t)count;
1244}
1245
1246static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1247{
1248    int size, ent_count;
1249    int __user *p = (int __user *)arg;
1250    int retval;
1251
1252    switch (cmd) {
1253    case RNDGETENTCNT:
1254        /* inherently racy, no point locking */
1255        if (put_user(input_pool.entropy_count, p))
1256            return -EFAULT;
1257        return 0;
1258    case RNDADDTOENTCNT:
1259        if (!capable(CAP_SYS_ADMIN))
1260            return -EPERM;
1261        if (get_user(ent_count, p))
1262            return -EFAULT;
1263        credit_entropy_bits(&input_pool, ent_count);
1264        return 0;
1265    case RNDADDENTROPY:
1266        if (!capable(CAP_SYS_ADMIN))
1267            return -EPERM;
1268        if (get_user(ent_count, p++))
1269            return -EFAULT;
1270        if (ent_count < 0)
1271            return -EINVAL;
1272        if (get_user(size, p++))
1273            return -EFAULT;
1274        retval = write_pool(&input_pool, (const char __user *)p,
1275                    size);
1276        if (retval < 0)
1277            return retval;
1278        credit_entropy_bits(&input_pool, ent_count);
1279        return 0;
1280    case RNDZAPENTCNT:
1281    case RNDCLEARPOOL:
1282        /* Clear the entropy pool counters. */
1283        if (!capable(CAP_SYS_ADMIN))
1284            return -EPERM;
1285        rand_initialize();
1286        return 0;
1287    default:
1288        return -EINVAL;
1289    }
1290}
1291
1292static int random_fasync(int fd, struct file *filp, int on)
1293{
1294    return fasync_helper(fd, filp, on, &fasync);
1295}
1296
1297const struct file_operations random_fops = {
1298    .read = random_read,
1299    .write = random_write,
1300    .poll = random_poll,
1301    .unlocked_ioctl = random_ioctl,
1302    .fasync = random_fasync,
1303    .llseek = noop_llseek,
1304};
1305
1306const struct file_operations urandom_fops = {
1307    .read = urandom_read,
1308    .write = random_write,
1309    .unlocked_ioctl = random_ioctl,
1310    .fasync = random_fasync,
1311    .llseek = noop_llseek,
1312};
1313
1314/***************************************************************
1315 * Random UUID interface
1316 *
1317 * Used here for a Boot ID, but can be useful for other kernel
1318 * drivers.
1319 ***************************************************************/
1320
1321/*
1322 * Generate random UUID
1323 */
1324void generate_random_uuid(unsigned char uuid_out[16])
1325{
1326    get_random_bytes(uuid_out, 16);
1327    /* Set UUID version to 4 --- truly random generation */
1328    uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1329    /* Set the UUID variant to DCE */
1330    uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1331}
1332EXPORT_SYMBOL(generate_random_uuid);
1333
1334/********************************************************************
1335 *
1336 * Sysctl interface
1337 *
1338 ********************************************************************/
1339
1340#ifdef CONFIG_SYSCTL
1341
1342#include <linux/sysctl.h>
1343
1344static int min_read_thresh = 8, min_write_thresh;
1345static int max_read_thresh = INPUT_POOL_WORDS * 32;
1346static int max_write_thresh = INPUT_POOL_WORDS * 32;
1347static char sysctl_bootid[16];
1348
1349/*
1350 * These functions is used to return both the bootid UUID, and random
1351 * UUID. The difference is in whether table->data is NULL; if it is,
1352 * then a new UUID is generated and returned to the user.
1353 *
1354 * If the user accesses this via the proc interface, it will be returned
1355 * as an ASCII string in the standard UUID format. If accesses via the
1356 * sysctl system call, it is returned as 16 bytes of binary data.
1357 */
1358static int proc_do_uuid(ctl_table *table, int write,
1359            void __user *buffer, size_t *lenp, loff_t *ppos)
1360{
1361    ctl_table fake_table;
1362    unsigned char buf[64], tmp_uuid[16], *uuid;
1363
1364    uuid = table->data;
1365    if (!uuid) {
1366        uuid = tmp_uuid;
1367        generate_random_uuid(uuid);
1368    } else {
1369        static DEFINE_SPINLOCK(bootid_spinlock);
1370
1371        spin_lock(&bootid_spinlock);
1372        if (!uuid[8])
1373            generate_random_uuid(uuid);
1374        spin_unlock(&bootid_spinlock);
1375    }
1376
1377    sprintf(buf, "%pU", uuid);
1378
1379    fake_table.data = buf;
1380    fake_table.maxlen = sizeof(buf);
1381
1382    return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1383}
1384
1385static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1386extern ctl_table random_table[];
1387ctl_table random_table[] = {
1388    {
1389        .procname = "poolsize",
1390        .data = &sysctl_poolsize,
1391        .maxlen = sizeof(int),
1392        .mode = 0444,
1393        .proc_handler = proc_dointvec,
1394    },
1395    {
1396        .procname = "entropy_avail",
1397        .maxlen = sizeof(int),
1398        .mode = 0444,
1399        .proc_handler = proc_dointvec,
1400        .data = &input_pool.entropy_count,
1401    },
1402    {
1403        .procname = "read_wakeup_threshold",
1404        .data = &random_read_wakeup_thresh,
1405        .maxlen = sizeof(int),
1406        .mode = 0644,
1407        .proc_handler = proc_dointvec_minmax,
1408        .extra1 = &min_read_thresh,
1409        .extra2 = &max_read_thresh,
1410    },
1411    {
1412        .procname = "write_wakeup_threshold",
1413        .data = &random_write_wakeup_thresh,
1414        .maxlen = sizeof(int),
1415        .mode = 0644,
1416        .proc_handler = proc_dointvec_minmax,
1417        .extra1 = &min_write_thresh,
1418        .extra2 = &max_write_thresh,
1419    },
1420    {
1421        .procname = "boot_id",
1422        .data = &sysctl_bootid,
1423        .maxlen = 16,
1424        .mode = 0444,
1425        .proc_handler = proc_do_uuid,
1426    },
1427    {
1428        .procname = "uuid",
1429        .maxlen = 16,
1430        .mode = 0444,
1431        .proc_handler = proc_do_uuid,
1432    },
1433    { }
1434};
1435#endif /* CONFIG_SYSCTL */
1436
1437static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1438
1439static int __init random_int_secret_init(void)
1440{
1441    get_random_bytes(random_int_secret, sizeof(random_int_secret));
1442    return 0;
1443}
1444late_initcall(random_int_secret_init);
1445
1446/*
1447 * Get a random word for internal kernel use only. Similar to urandom but
1448 * with the goal of minimal entropy pool depletion. As a result, the random
1449 * value is not cryptographically secure but for several uses the cost of
1450 * depleting entropy is too high
1451 */
1452static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1453unsigned int get_random_int(void)
1454{
1455    __u32 *hash;
1456    unsigned int ret;
1457
1458    if (arch_get_random_int(&ret))
1459        return ret;
1460
1461    hash = get_cpu_var(get_random_int_hash);
1462
1463    hash[0] += current->pid + jiffies + get_cycles();
1464    md5_transform(hash, random_int_secret);
1465    ret = hash[0];
1466    put_cpu_var(get_random_int_hash);
1467
1468    return ret;
1469}
1470
1471/*
1472 * randomize_range() returns a start address such that
1473 *
1474 * [...... <range> .....]
1475 * start end
1476 *
1477 * a <range> with size "len" starting at the return value is inside in the
1478 * area defined by [start, end], but is otherwise randomized.
1479 */
1480unsigned long
1481randomize_range(unsigned long start, unsigned long end, unsigned long len)
1482{
1483    unsigned long range = end - len - start;
1484
1485    if (end <= start + len)
1486        return 0;
1487    return PAGE_ALIGN(get_random_int() % range + start);
1488}
1489

Archive Download this file



interactive