Root/drivers/clocksource/dw_apb_timer.c

1/*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
4 *
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Support for the Synopsys DesignWare APB Timers.
12 */
13#include <linux/dw_apb_timer.h>
14#include <linux/delay.h>
15#include <linux/kernel.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20
21#define APBT_MIN_PERIOD 4
22#define APBT_MIN_DELTA_USEC 200
23
24#define APBTMR_N_LOAD_COUNT 0x00
25#define APBTMR_N_CURRENT_VALUE 0x04
26#define APBTMR_N_CONTROL 0x08
27#define APBTMR_N_EOI 0x0c
28#define APBTMR_N_INT_STATUS 0x10
29
30#define APBTMRS_INT_STATUS 0xa0
31#define APBTMRS_EOI 0xa4
32#define APBTMRS_RAW_INT_STATUS 0xa8
33#define APBTMRS_COMP_VERSION 0xac
34
35#define APBTMR_CONTROL_ENABLE (1 << 0)
36/* 1: periodic, 0:free running. */
37#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38#define APBTMR_CONTROL_INT (1 << 2)
39
40static inline struct dw_apb_clock_event_device *
41ced_to_dw_apb_ced(struct clock_event_device *evt)
42{
43    return container_of(evt, struct dw_apb_clock_event_device, ced);
44}
45
46static inline struct dw_apb_clocksource *
47clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48{
49    return container_of(cs, struct dw_apb_clocksource, cs);
50}
51
52static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53{
54    return readl(timer->base + offs);
55}
56
57static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58         unsigned long offs)
59{
60    writel(val, timer->base + offs);
61}
62
63static void apbt_disable_int(struct dw_apb_timer *timer)
64{
65    unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
66
67    ctrl |= APBTMR_CONTROL_INT;
68    apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
69}
70
71/**
72 * dw_apb_clockevent_pause() - stop the clock_event_device from running
73 *
74 * @dw_ced: The APB clock to stop generating events.
75 */
76void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
77{
78    disable_irq(dw_ced->timer.irq);
79    apbt_disable_int(&dw_ced->timer);
80}
81
82static void apbt_eoi(struct dw_apb_timer *timer)
83{
84    apbt_readl(timer, APBTMR_N_EOI);
85}
86
87static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
88{
89    struct clock_event_device *evt = data;
90    struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
91
92    if (!evt->event_handler) {
93        pr_info("Spurious APBT timer interrupt %d", irq);
94        return IRQ_NONE;
95    }
96
97    if (dw_ced->eoi)
98        dw_ced->eoi(&dw_ced->timer);
99
100    evt->event_handler(evt);
101    return IRQ_HANDLED;
102}
103
104static void apbt_enable_int(struct dw_apb_timer *timer)
105{
106    unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107    /* clear pending intr */
108    apbt_readl(timer, APBTMR_N_EOI);
109    ctrl &= ~APBTMR_CONTROL_INT;
110    apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111}
112
113static void apbt_set_mode(enum clock_event_mode mode,
114              struct clock_event_device *evt)
115{
116    unsigned long ctrl;
117    unsigned long period;
118    struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119
120    pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
121         mode);
122
123    switch (mode) {
124    case CLOCK_EVT_MODE_PERIODIC:
125        period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
126        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
127        ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
128        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
129        /*
130         * DW APB p. 46, have to disable timer before load counter,
131         * may cause sync problem.
132         */
133        ctrl &= ~APBTMR_CONTROL_ENABLE;
134        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135        udelay(1);
136        pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
137        apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
138        ctrl |= APBTMR_CONTROL_ENABLE;
139        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
140        break;
141
142    case CLOCK_EVT_MODE_ONESHOT:
143        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
144        /*
145         * set free running mode, this mode will let timer reload max
146         * timeout which will give time (3min on 25MHz clock) to rearm
147         * the next event, therefore emulate the one-shot mode.
148         */
149        ctrl &= ~APBTMR_CONTROL_ENABLE;
150        ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
151
152        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
153        /* write again to set free running mode */
154        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
155
156        /*
157         * DW APB p. 46, load counter with all 1s before starting free
158         * running mode.
159         */
160        apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
161        ctrl &= ~APBTMR_CONTROL_INT;
162        ctrl |= APBTMR_CONTROL_ENABLE;
163        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
164        break;
165
166    case CLOCK_EVT_MODE_UNUSED:
167    case CLOCK_EVT_MODE_SHUTDOWN:
168        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169        ctrl &= ~APBTMR_CONTROL_ENABLE;
170        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171        break;
172
173    case CLOCK_EVT_MODE_RESUME:
174        apbt_enable_int(&dw_ced->timer);
175        break;
176    }
177}
178
179static int apbt_next_event(unsigned long delta,
180               struct clock_event_device *evt)
181{
182    unsigned long ctrl;
183    struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
184
185    /* Disable timer */
186    ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
187    ctrl &= ~APBTMR_CONTROL_ENABLE;
188    apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
189    /* write new count */
190    apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
191    ctrl |= APBTMR_CONTROL_ENABLE;
192    apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193
194    return 0;
195}
196
197/**
198 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
199 *
200 * @cpu: The CPU the events will be targeted at.
201 * @name: The name used for the timer and the IRQ for it.
202 * @rating: The rating to give the timer.
203 * @base: I/O base for the timer registers.
204 * @irq: The interrupt number to use for the timer.
205 * @freq: The frequency that the timer counts at.
206 *
207 * This creates a clock_event_device for using with the generic clock layer
208 * but does not start and register it. This should be done with
209 * dw_apb_clockevent_register() as the next step. If this is the first time
210 * it has been called for a timer then the IRQ will be requested, if not it
211 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
212 * releasing the IRQ.
213 */
214struct dw_apb_clock_event_device *
215dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
216               void __iomem *base, int irq, unsigned long freq)
217{
218    struct dw_apb_clock_event_device *dw_ced =
219        kzalloc(sizeof(*dw_ced), GFP_KERNEL);
220    int err;
221
222    if (!dw_ced)
223        return NULL;
224
225    dw_ced->timer.base = base;
226    dw_ced->timer.irq = irq;
227    dw_ced->timer.freq = freq;
228
229    clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
230    dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
231                               &dw_ced->ced);
232    dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
233    dw_ced->ced.cpumask = cpumask_of(cpu);
234    dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
235    dw_ced->ced.set_mode = apbt_set_mode;
236    dw_ced->ced.set_next_event = apbt_next_event;
237    dw_ced->ced.irq = dw_ced->timer.irq;
238    dw_ced->ced.rating = rating;
239    dw_ced->ced.name = name;
240
241    dw_ced->irqaction.name = dw_ced->ced.name;
242    dw_ced->irqaction.handler = dw_apb_clockevent_irq;
243    dw_ced->irqaction.dev_id = &dw_ced->ced;
244    dw_ced->irqaction.irq = irq;
245    dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
246                      IRQF_NOBALANCING |
247                      IRQF_DISABLED;
248
249    dw_ced->eoi = apbt_eoi;
250    err = setup_irq(irq, &dw_ced->irqaction);
251    if (err) {
252        pr_err("failed to request timer irq\n");
253        kfree(dw_ced);
254        dw_ced = NULL;
255    }
256
257    return dw_ced;
258}
259
260/**
261 * dw_apb_clockevent_resume() - resume a clock that has been paused.
262 *
263 * @dw_ced: The APB clock to resume.
264 */
265void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
266{
267    enable_irq(dw_ced->timer.irq);
268}
269
270/**
271 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
272 *
273 * @dw_ced: The APB clock to stop generating the events.
274 */
275void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
276{
277    free_irq(dw_ced->timer.irq, &dw_ced->ced);
278}
279
280/**
281 * dw_apb_clockevent_register() - register the clock with the generic layer
282 *
283 * @dw_ced: The APB clock to register as a clock_event_device.
284 */
285void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
286{
287    apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
288    clockevents_register_device(&dw_ced->ced);
289    apbt_enable_int(&dw_ced->timer);
290}
291
292/**
293 * dw_apb_clocksource_start() - start the clocksource counting.
294 *
295 * @dw_cs: The clocksource to start.
296 *
297 * This is used to start the clocksource before registration and can be used
298 * to enable calibration of timers.
299 */
300void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
301{
302    /*
303     * start count down from 0xffff_ffff. this is done by toggling the
304     * enable bit then load initial load count to ~0.
305     */
306    unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
307
308    ctrl &= ~APBTMR_CONTROL_ENABLE;
309    apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
310    apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
311    /* enable, mask interrupt */
312    ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
313    ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
314    apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
315    /* read it once to get cached counter value initialized */
316    dw_apb_clocksource_read(dw_cs);
317}
318
319static cycle_t __apbt_read_clocksource(struct clocksource *cs)
320{
321    unsigned long current_count;
322    struct dw_apb_clocksource *dw_cs =
323        clocksource_to_dw_apb_clocksource(cs);
324
325    current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
326
327    return (cycle_t)~current_count;
328}
329
330static void apbt_restart_clocksource(struct clocksource *cs)
331{
332    struct dw_apb_clocksource *dw_cs =
333        clocksource_to_dw_apb_clocksource(cs);
334
335    dw_apb_clocksource_start(dw_cs);
336}
337
338/**
339 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
340 *
341 * @rating: The rating to give the clocksource.
342 * @name: The name for the clocksource.
343 * @base: The I/O base for the timer registers.
344 * @freq: The frequency that the timer counts at.
345 *
346 * This creates a clocksource using an APB timer but does not yet register it
347 * with the clocksource system. This should be done with
348 * dw_apb_clocksource_register() as the next step.
349 */
350struct dw_apb_clocksource *
351dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
352            unsigned long freq)
353{
354    struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
355
356    if (!dw_cs)
357        return NULL;
358
359    dw_cs->timer.base = base;
360    dw_cs->timer.freq = freq;
361    dw_cs->cs.name = name;
362    dw_cs->cs.rating = rating;
363    dw_cs->cs.read = __apbt_read_clocksource;
364    dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
365    dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366    dw_cs->cs.resume = apbt_restart_clocksource;
367
368    return dw_cs;
369}
370
371/**
372 * dw_apb_clocksource_register() - register the APB clocksource.
373 *
374 * @dw_cs: The clocksource to register.
375 */
376void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
377{
378    clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
379}
380
381/**
382 * dw_apb_clocksource_read() - read the current value of a clocksource.
383 *
384 * @dw_cs: The clocksource to read.
385 */
386cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
387{
388    return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
389}
390
391/**
392 * dw_apb_clocksource_unregister() - unregister and free a clocksource.
393 *
394 * @dw_cs: The clocksource to unregister/free.
395 */
396void dw_apb_clocksource_unregister(struct dw_apb_clocksource *dw_cs)
397{
398    clocksource_unregister(&dw_cs->cs);
399
400    kfree(dw_cs);
401}
402

Archive Download this file



interactive