Root/drivers/clocksource/i8253.c

1/*
2 * i8253 PIT clocksource
3 */
4#include <linux/clockchips.h>
5#include <linux/init.h>
6#include <linux/io.h>
7#include <linux/spinlock.h>
8#include <linux/timex.h>
9#include <linux/module.h>
10#include <linux/i8253.h>
11#include <linux/smp.h>
12
13/*
14 * Protects access to I/O ports
15 *
16 * 0040-0043 : timer0, i8253 / i8254
17 * 0061-0061 : NMI Control Register which contains two speaker control bits.
18 */
19DEFINE_RAW_SPINLOCK(i8253_lock);
20EXPORT_SYMBOL(i8253_lock);
21
22#ifdef CONFIG_CLKSRC_I8253
23/*
24 * Since the PIT overflows every tick, its not very useful
25 * to just read by itself. So use jiffies to emulate a free
26 * running counter:
27 */
28static cycle_t i8253_read(struct clocksource *cs)
29{
30    static int old_count;
31    static u32 old_jifs;
32    unsigned long flags;
33    int count;
34    u32 jifs;
35
36    raw_spin_lock_irqsave(&i8253_lock, flags);
37    /*
38     * Although our caller may have the read side of xtime_lock,
39     * this is now a seqlock, and we are cheating in this routine
40     * by having side effects on state that we cannot undo if
41     * there is a collision on the seqlock and our caller has to
42     * retry. (Namely, old_jifs and old_count.) So we must treat
43     * jiffies as volatile despite the lock. We read jiffies
44     * before latching the timer count to guarantee that although
45     * the jiffies value might be older than the count (that is,
46     * the counter may underflow between the last point where
47     * jiffies was incremented and the point where we latch the
48     * count), it cannot be newer.
49     */
50    jifs = jiffies;
51    outb_p(0x00, PIT_MODE); /* latch the count ASAP */
52    count = inb_p(PIT_CH0); /* read the latched count */
53    count |= inb_p(PIT_CH0) << 8;
54
55    /* VIA686a test code... reset the latch if count > max + 1 */
56    if (count > PIT_LATCH) {
57        outb_p(0x34, PIT_MODE);
58        outb_p(PIT_LATCH & 0xff, PIT_CH0);
59        outb_p(PIT_LATCH >> 8, PIT_CH0);
60        count = PIT_LATCH - 1;
61    }
62
63    /*
64     * It's possible for count to appear to go the wrong way for a
65     * couple of reasons:
66     *
67     * 1. The timer counter underflows, but we haven't handled the
68     * resulting interrupt and incremented jiffies yet.
69     * 2. Hardware problem with the timer, not giving us continuous time,
70     * the counter does small "jumps" upwards on some Pentium systems,
71     * (see c't 95/10 page 335 for Neptun bug.)
72     *
73     * Previous attempts to handle these cases intelligently were
74     * buggy, so we just do the simple thing now.
75     */
76    if (count > old_count && jifs == old_jifs)
77        count = old_count;
78
79    old_count = count;
80    old_jifs = jifs;
81
82    raw_spin_unlock_irqrestore(&i8253_lock, flags);
83
84    count = (PIT_LATCH - 1) - count;
85
86    return (cycle_t)(jifs * PIT_LATCH) + count;
87}
88
89static struct clocksource i8253_cs = {
90    .name = "pit",
91    .rating = 110,
92    .read = i8253_read,
93    .mask = CLOCKSOURCE_MASK(32),
94};
95
96int __init clocksource_i8253_init(void)
97{
98    return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE);
99}
100#endif
101
102#ifdef CONFIG_CLKEVT_I8253
103/*
104 * Initialize the PIT timer.
105 *
106 * This is also called after resume to bring the PIT into operation again.
107 */
108static void init_pit_timer(enum clock_event_mode mode,
109               struct clock_event_device *evt)
110{
111    raw_spin_lock(&i8253_lock);
112
113    switch (mode) {
114    case CLOCK_EVT_MODE_PERIODIC:
115        /* binary, mode 2, LSB/MSB, ch 0 */
116        outb_p(0x34, PIT_MODE);
117        outb_p(PIT_LATCH & 0xff , PIT_CH0); /* LSB */
118        outb_p(PIT_LATCH >> 8 , PIT_CH0); /* MSB */
119        break;
120
121    case CLOCK_EVT_MODE_SHUTDOWN:
122    case CLOCK_EVT_MODE_UNUSED:
123        if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
124            evt->mode == CLOCK_EVT_MODE_ONESHOT) {
125            outb_p(0x30, PIT_MODE);
126            outb_p(0, PIT_CH0);
127            outb_p(0, PIT_CH0);
128        }
129        break;
130
131    case CLOCK_EVT_MODE_ONESHOT:
132        /* One shot setup */
133        outb_p(0x38, PIT_MODE);
134        break;
135
136    case CLOCK_EVT_MODE_RESUME:
137        /* Nothing to do here */
138        break;
139    }
140    raw_spin_unlock(&i8253_lock);
141}
142
143/*
144 * Program the next event in oneshot mode
145 *
146 * Delta is given in PIT ticks
147 */
148static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
149{
150    raw_spin_lock(&i8253_lock);
151    outb_p(delta & 0xff , PIT_CH0); /* LSB */
152    outb_p(delta >> 8 , PIT_CH0); /* MSB */
153    raw_spin_unlock(&i8253_lock);
154
155    return 0;
156}
157
158/*
159 * On UP the PIT can serve all of the possible timer functions. On SMP systems
160 * it can be solely used for the global tick.
161 */
162struct clock_event_device i8253_clockevent = {
163    .name = "pit",
164    .features = CLOCK_EVT_FEAT_PERIODIC,
165    .set_mode = init_pit_timer,
166    .set_next_event = pit_next_event,
167};
168
169/*
170 * Initialize the conversion factor and the min/max deltas of the clock event
171 * structure and register the clock event source with the framework.
172 */
173void __init clockevent_i8253_init(bool oneshot)
174{
175    if (oneshot)
176        i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT;
177    /*
178     * Start pit with the boot cpu mask. x86 might make it global
179     * when it is used as broadcast device later.
180     */
181    i8253_clockevent.cpumask = cpumask_of(smp_processor_id());
182
183    clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE,
184                    0xF, 0x7FFF);
185}
186#endif
187

Archive Download this file



interactive