Root/
1 | /* |
2 | * i8253 PIT clocksource |
3 | */ |
4 | #include <linux/clockchips.h> |
5 | #include <linux/init.h> |
6 | #include <linux/io.h> |
7 | #include <linux/spinlock.h> |
8 | #include <linux/timex.h> |
9 | #include <linux/module.h> |
10 | #include <linux/i8253.h> |
11 | #include <linux/smp.h> |
12 | |
13 | /* |
14 | * Protects access to I/O ports |
15 | * |
16 | * 0040-0043 : timer0, i8253 / i8254 |
17 | * 0061-0061 : NMI Control Register which contains two speaker control bits. |
18 | */ |
19 | DEFINE_RAW_SPINLOCK(i8253_lock); |
20 | EXPORT_SYMBOL(i8253_lock); |
21 | |
22 | #ifdef CONFIG_CLKSRC_I8253 |
23 | /* |
24 | * Since the PIT overflows every tick, its not very useful |
25 | * to just read by itself. So use jiffies to emulate a free |
26 | * running counter: |
27 | */ |
28 | static cycle_t i8253_read(struct clocksource *cs) |
29 | { |
30 | static int old_count; |
31 | static u32 old_jifs; |
32 | unsigned long flags; |
33 | int count; |
34 | u32 jifs; |
35 | |
36 | raw_spin_lock_irqsave(&i8253_lock, flags); |
37 | /* |
38 | * Although our caller may have the read side of xtime_lock, |
39 | * this is now a seqlock, and we are cheating in this routine |
40 | * by having side effects on state that we cannot undo if |
41 | * there is a collision on the seqlock and our caller has to |
42 | * retry. (Namely, old_jifs and old_count.) So we must treat |
43 | * jiffies as volatile despite the lock. We read jiffies |
44 | * before latching the timer count to guarantee that although |
45 | * the jiffies value might be older than the count (that is, |
46 | * the counter may underflow between the last point where |
47 | * jiffies was incremented and the point where we latch the |
48 | * count), it cannot be newer. |
49 | */ |
50 | jifs = jiffies; |
51 | outb_p(0x00, PIT_MODE); /* latch the count ASAP */ |
52 | count = inb_p(PIT_CH0); /* read the latched count */ |
53 | count |= inb_p(PIT_CH0) << 8; |
54 | |
55 | /* VIA686a test code... reset the latch if count > max + 1 */ |
56 | if (count > PIT_LATCH) { |
57 | outb_p(0x34, PIT_MODE); |
58 | outb_p(PIT_LATCH & 0xff, PIT_CH0); |
59 | outb_p(PIT_LATCH >> 8, PIT_CH0); |
60 | count = PIT_LATCH - 1; |
61 | } |
62 | |
63 | /* |
64 | * It's possible for count to appear to go the wrong way for a |
65 | * couple of reasons: |
66 | * |
67 | * 1. The timer counter underflows, but we haven't handled the |
68 | * resulting interrupt and incremented jiffies yet. |
69 | * 2. Hardware problem with the timer, not giving us continuous time, |
70 | * the counter does small "jumps" upwards on some Pentium systems, |
71 | * (see c't 95/10 page 335 for Neptun bug.) |
72 | * |
73 | * Previous attempts to handle these cases intelligently were |
74 | * buggy, so we just do the simple thing now. |
75 | */ |
76 | if (count > old_count && jifs == old_jifs) |
77 | count = old_count; |
78 | |
79 | old_count = count; |
80 | old_jifs = jifs; |
81 | |
82 | raw_spin_unlock_irqrestore(&i8253_lock, flags); |
83 | |
84 | count = (PIT_LATCH - 1) - count; |
85 | |
86 | return (cycle_t)(jifs * PIT_LATCH) + count; |
87 | } |
88 | |
89 | static struct clocksource i8253_cs = { |
90 | .name = "pit", |
91 | .rating = 110, |
92 | .read = i8253_read, |
93 | .mask = CLOCKSOURCE_MASK(32), |
94 | }; |
95 | |
96 | int __init clocksource_i8253_init(void) |
97 | { |
98 | return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); |
99 | } |
100 | #endif |
101 | |
102 | #ifdef CONFIG_CLKEVT_I8253 |
103 | /* |
104 | * Initialize the PIT timer. |
105 | * |
106 | * This is also called after resume to bring the PIT into operation again. |
107 | */ |
108 | static void init_pit_timer(enum clock_event_mode mode, |
109 | struct clock_event_device *evt) |
110 | { |
111 | raw_spin_lock(&i8253_lock); |
112 | |
113 | switch (mode) { |
114 | case CLOCK_EVT_MODE_PERIODIC: |
115 | /* binary, mode 2, LSB/MSB, ch 0 */ |
116 | outb_p(0x34, PIT_MODE); |
117 | outb_p(PIT_LATCH & 0xff , PIT_CH0); /* LSB */ |
118 | outb_p(PIT_LATCH >> 8 , PIT_CH0); /* MSB */ |
119 | break; |
120 | |
121 | case CLOCK_EVT_MODE_SHUTDOWN: |
122 | case CLOCK_EVT_MODE_UNUSED: |
123 | if (evt->mode == CLOCK_EVT_MODE_PERIODIC || |
124 | evt->mode == CLOCK_EVT_MODE_ONESHOT) { |
125 | outb_p(0x30, PIT_MODE); |
126 | outb_p(0, PIT_CH0); |
127 | outb_p(0, PIT_CH0); |
128 | } |
129 | break; |
130 | |
131 | case CLOCK_EVT_MODE_ONESHOT: |
132 | /* One shot setup */ |
133 | outb_p(0x38, PIT_MODE); |
134 | break; |
135 | |
136 | case CLOCK_EVT_MODE_RESUME: |
137 | /* Nothing to do here */ |
138 | break; |
139 | } |
140 | raw_spin_unlock(&i8253_lock); |
141 | } |
142 | |
143 | /* |
144 | * Program the next event in oneshot mode |
145 | * |
146 | * Delta is given in PIT ticks |
147 | */ |
148 | static int pit_next_event(unsigned long delta, struct clock_event_device *evt) |
149 | { |
150 | raw_spin_lock(&i8253_lock); |
151 | outb_p(delta & 0xff , PIT_CH0); /* LSB */ |
152 | outb_p(delta >> 8 , PIT_CH0); /* MSB */ |
153 | raw_spin_unlock(&i8253_lock); |
154 | |
155 | return 0; |
156 | } |
157 | |
158 | /* |
159 | * On UP the PIT can serve all of the possible timer functions. On SMP systems |
160 | * it can be solely used for the global tick. |
161 | */ |
162 | struct clock_event_device i8253_clockevent = { |
163 | .name = "pit", |
164 | .features = CLOCK_EVT_FEAT_PERIODIC, |
165 | .set_mode = init_pit_timer, |
166 | .set_next_event = pit_next_event, |
167 | }; |
168 | |
169 | /* |
170 | * Initialize the conversion factor and the min/max deltas of the clock event |
171 | * structure and register the clock event source with the framework. |
172 | */ |
173 | void __init clockevent_i8253_init(bool oneshot) |
174 | { |
175 | if (oneshot) |
176 | i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; |
177 | /* |
178 | * Start pit with the boot cpu mask. x86 might make it global |
179 | * when it is used as broadcast device later. |
180 | */ |
181 | i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); |
182 | |
183 | clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, |
184 | 0xF, 0x7FFF); |
185 | } |
186 | #endif |
187 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9