Root/drivers/clocksource/tcb_clksrc.c

1#include <linux/init.h>
2#include <linux/clocksource.h>
3#include <linux/clockchips.h>
4#include <linux/interrupt.h>
5#include <linux/irq.h>
6
7#include <linux/clk.h>
8#include <linux/err.h>
9#include <linux/ioport.h>
10#include <linux/io.h>
11#include <linux/platform_device.h>
12#include <linux/atmel_tc.h>
13
14
15/*
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
18 *
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 * - Some chips support 32 bit counter. A single channel is used for
23 * this 32 bit free-running counter. the second channel is not used.
24 *
25 * - The third channel may be used to provide a 16-bit clockevent
26 * source, used in either periodic or oneshot mode. This runs
27 * at 32 KiHZ, and can handle delays of up to two seconds.
28 *
29 * A boot clocksource and clockevent source are also currently needed,
30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31 * this code can be used when init_timers() is called, well before most
32 * devices are set up. (Some low end AT91 parts, which can run uClinux,
33 * have only the timers in one TC block... they currently don't support
34 * the tclib code, because of that initialization issue.)
35 *
36 * REVISIT behavior during system suspend states... we should disable
37 * all clocks and save the power. Easily done for clockevent devices,
38 * but clocksources won't necessarily get the needed notifications.
39 * For deeper system sleep states, this will be mandatory...
40 */
41
42static void __iomem *tcaddr;
43
44static cycle_t tc_get_cycles(struct clocksource *cs)
45{
46    unsigned long flags;
47    u32 lower, upper;
48
49    raw_local_irq_save(flags);
50    do {
51        upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52        lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53    } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54
55    raw_local_irq_restore(flags);
56    return (upper << 16) | lower;
57}
58
59static cycle_t tc_get_cycles32(struct clocksource *cs)
60{
61    return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62}
63
64static struct clocksource clksrc = {
65    .name = "tcb_clksrc",
66    .rating = 200,
67    .read = tc_get_cycles,
68    .mask = CLOCKSOURCE_MASK(32),
69    .flags = CLOCK_SOURCE_IS_CONTINUOUS,
70};
71
72#ifdef CONFIG_GENERIC_CLOCKEVENTS
73
74struct tc_clkevt_device {
75    struct clock_event_device clkevt;
76    struct clk *clk;
77    void __iomem *regs;
78};
79
80static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81{
82    return container_of(clkevt, struct tc_clkevt_device, clkevt);
83}
84
85/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86 * because using one of the divided clocks would usually mean the
87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88 *
89 * A divided clock could be good for high resolution timers, since
90 * 30.5 usec resolution can seem "low".
91 */
92static u32 timer_clock;
93
94static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
95{
96    struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97    void __iomem *regs = tcd->regs;
98
99    if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100            || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101        __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102        __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103        clk_disable(tcd->clk);
104    }
105
106    switch (m) {
107
108    /* By not making the gentime core emulate periodic mode on top
109     * of oneshot, we get lower overhead and improved accuracy.
110     */
111    case CLOCK_EVT_MODE_PERIODIC:
112        clk_enable(tcd->clk);
113
114        /* slow clock, count up to RC, then irq and restart */
115        __raw_writel(timer_clock
116                | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117                regs + ATMEL_TC_REG(2, CMR));
118        __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
119
120        /* Enable clock and interrupts on RC compare */
121        __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122
123        /* go go gadget! */
124        __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125                regs + ATMEL_TC_REG(2, CCR));
126        break;
127
128    case CLOCK_EVT_MODE_ONESHOT:
129        clk_enable(tcd->clk);
130
131        /* slow clock, count up to RC, then irq and stop */
132        __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133                | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134                regs + ATMEL_TC_REG(2, CMR));
135        __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
136
137        /* set_next_event() configures and starts the timer */
138        break;
139
140    default:
141        break;
142    }
143}
144
145static int tc_next_event(unsigned long delta, struct clock_event_device *d)
146{
147    __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
148
149    /* go go gadget! */
150    __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151            tcaddr + ATMEL_TC_REG(2, CCR));
152    return 0;
153}
154
155static struct tc_clkevt_device clkevt = {
156    .clkevt = {
157        .name = "tc_clkevt",
158        .features = CLOCK_EVT_FEAT_PERIODIC
159                    | CLOCK_EVT_FEAT_ONESHOT,
160        .shift = 32,
161        /* Should be lower than at91rm9200's system timer */
162        .rating = 125,
163        .set_next_event = tc_next_event,
164        .set_mode = tc_mode,
165    },
166};
167
168static irqreturn_t ch2_irq(int irq, void *handle)
169{
170    struct tc_clkevt_device *dev = handle;
171    unsigned int sr;
172
173    sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
174    if (sr & ATMEL_TC_CPCS) {
175        dev->clkevt.event_handler(&dev->clkevt);
176        return IRQ_HANDLED;
177    }
178
179    return IRQ_NONE;
180}
181
182static struct irqaction tc_irqaction = {
183    .name = "tc_clkevt",
184    .flags = IRQF_TIMER | IRQF_DISABLED,
185    .handler = ch2_irq,
186};
187
188static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
189{
190    struct clk *t2_clk = tc->clk[2];
191    int irq = tc->irq[2];
192
193    clkevt.regs = tc->regs;
194    clkevt.clk = t2_clk;
195    tc_irqaction.dev_id = &clkevt;
196
197    timer_clock = clk32k_divisor_idx;
198
199    clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
200    clkevt.clkevt.max_delta_ns
201        = clockevent_delta2ns(0xffff, &clkevt.clkevt);
202    clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
203    clkevt.clkevt.cpumask = cpumask_of(0);
204
205    clockevents_register_device(&clkevt.clkevt);
206
207    setup_irq(irq, &tc_irqaction);
208}
209
210#else /* !CONFIG_GENERIC_CLOCKEVENTS */
211
212static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
213{
214    /* NOTHING */
215}
216
217#endif
218
219static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
220{
221    /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
222    __raw_writel(mck_divisor_idx /* likely divide-by-8 */
223            | ATMEL_TC_WAVE
224            | ATMEL_TC_WAVESEL_UP /* free-run */
225            | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
226            | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
227            tcaddr + ATMEL_TC_REG(0, CMR));
228    __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
229    __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
230    __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
231    __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
232
233    /* channel 1: waveform mode, input TIOA0 */
234    __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
235            | ATMEL_TC_WAVE
236            | ATMEL_TC_WAVESEL_UP, /* free-run */
237            tcaddr + ATMEL_TC_REG(1, CMR));
238    __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
239    __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
240
241    /* chain channel 0 to channel 1*/
242    __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
243    /* then reset all the timers */
244    __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
245}
246
247static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
248{
249    /* channel 0: waveform mode, input mclk/8 */
250    __raw_writel(mck_divisor_idx /* likely divide-by-8 */
251            | ATMEL_TC_WAVE
252            | ATMEL_TC_WAVESEL_UP, /* free-run */
253            tcaddr + ATMEL_TC_REG(0, CMR));
254    __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
255    __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
256
257    /* then reset all the timers */
258    __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
259}
260
261static int __init tcb_clksrc_init(void)
262{
263    static char bootinfo[] __initdata
264        = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
265
266    struct platform_device *pdev;
267    struct atmel_tc *tc;
268    struct clk *t0_clk;
269    u32 rate, divided_rate = 0;
270    int best_divisor_idx = -1;
271    int clk32k_divisor_idx = -1;
272    int i;
273
274    tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
275    if (!tc) {
276        pr_debug("can't alloc TC for clocksource\n");
277        return -ENODEV;
278    }
279    tcaddr = tc->regs;
280    pdev = tc->pdev;
281
282    t0_clk = tc->clk[0];
283    clk_enable(t0_clk);
284
285    /* How fast will we be counting? Pick something over 5 MHz. */
286    rate = (u32) clk_get_rate(t0_clk);
287    for (i = 0; i < 5; i++) {
288        unsigned divisor = atmel_tc_divisors[i];
289        unsigned tmp;
290
291        /* remember 32 KiHz clock for later */
292        if (!divisor) {
293            clk32k_divisor_idx = i;
294            continue;
295        }
296
297        tmp = rate / divisor;
298        pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
299        if (best_divisor_idx > 0) {
300            if (tmp < 5 * 1000 * 1000)
301                continue;
302        }
303        divided_rate = tmp;
304        best_divisor_idx = i;
305    }
306
307
308    printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
309            divided_rate / 1000000,
310            ((divided_rate + 500000) % 1000000) / 1000);
311
312    if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
313        /* use apropriate function to read 32 bit counter */
314        clksrc.read = tc_get_cycles32;
315        /* setup ony channel 0 */
316        tcb_setup_single_chan(tc, best_divisor_idx);
317    } else {
318        /* tclib will give us three clocks no matter what the
319         * underlying platform supports.
320         */
321        clk_enable(tc->clk[1]);
322        /* setup both channel 0 & 1 */
323        tcb_setup_dual_chan(tc, best_divisor_idx);
324    }
325
326    /* and away we go! */
327    clocksource_register_hz(&clksrc, divided_rate);
328
329    /* channel 2: periodic and oneshot timer support */
330    setup_clkevents(tc, clk32k_divisor_idx);
331
332    return 0;
333}
334arch_initcall(tcb_clksrc_init);
335

Archive Download this file



interactive