Root/drivers/cpufreq/acpi-cpufreq.c

1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36#include <linux/slab.h>
37
38#include <linux/acpi.h>
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
43#include <acpi/processor.h>
44
45#include <asm/msr.h>
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
48#include "mperf.h"
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
54enum {
55    UNDEFINED_CAPABLE = 0,
56    SYSTEM_INTEL_MSR_CAPABLE,
57    SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
61
62struct acpi_cpufreq_data {
63    struct acpi_processor_performance *acpi_data;
64    struct cpufreq_frequency_table *freq_table;
65    unsigned int resume;
66    unsigned int cpu_feature;
67};
68
69static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
70
71/* acpi_perf_data is a pointer to percpu data. */
72static struct acpi_processor_performance __percpu *acpi_perf_data;
73
74static struct cpufreq_driver acpi_cpufreq_driver;
75
76static unsigned int acpi_pstate_strict;
77
78static int check_est_cpu(unsigned int cpuid)
79{
80    struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
81
82    return cpu_has(cpu, X86_FEATURE_EST);
83}
84
85static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
86{
87    struct acpi_processor_performance *perf;
88    int i;
89
90    perf = data->acpi_data;
91
92    for (i = 0; i < perf->state_count; i++) {
93        if (value == perf->states[i].status)
94            return data->freq_table[i].frequency;
95    }
96    return 0;
97}
98
99static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100{
101    int i;
102    struct acpi_processor_performance *perf;
103
104    msr &= INTEL_MSR_RANGE;
105    perf = data->acpi_data;
106
107    for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108        if (msr == perf->states[data->freq_table[i].index].status)
109            return data->freq_table[i].frequency;
110    }
111    return data->freq_table[0].frequency;
112}
113
114static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115{
116    switch (data->cpu_feature) {
117    case SYSTEM_INTEL_MSR_CAPABLE:
118        return extract_msr(val, data);
119    case SYSTEM_IO_CAPABLE:
120        return extract_io(val, data);
121    default:
122        return 0;
123    }
124}
125
126struct msr_addr {
127    u32 reg;
128};
129
130struct io_addr {
131    u16 port;
132    u8 bit_width;
133};
134
135struct drv_cmd {
136    unsigned int type;
137    const struct cpumask *mask;
138    union {
139        struct msr_addr msr;
140        struct io_addr io;
141    } addr;
142    u32 val;
143};
144
145/* Called via smp_call_function_single(), on the target CPU */
146static void do_drv_read(void *_cmd)
147{
148    struct drv_cmd *cmd = _cmd;
149    u32 h;
150
151    switch (cmd->type) {
152    case SYSTEM_INTEL_MSR_CAPABLE:
153        rdmsr(cmd->addr.msr.reg, cmd->val, h);
154        break;
155    case SYSTEM_IO_CAPABLE:
156        acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157                &cmd->val,
158                (u32)cmd->addr.io.bit_width);
159        break;
160    default:
161        break;
162    }
163}
164
165/* Called via smp_call_function_many(), on the target CPUs */
166static void do_drv_write(void *_cmd)
167{
168    struct drv_cmd *cmd = _cmd;
169    u32 lo, hi;
170
171    switch (cmd->type) {
172    case SYSTEM_INTEL_MSR_CAPABLE:
173        rdmsr(cmd->addr.msr.reg, lo, hi);
174        lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175        wrmsr(cmd->addr.msr.reg, lo, hi);
176        break;
177    case SYSTEM_IO_CAPABLE:
178        acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179                cmd->val,
180                (u32)cmd->addr.io.bit_width);
181        break;
182    default:
183        break;
184    }
185}
186
187static void drv_read(struct drv_cmd *cmd)
188{
189    int err;
190    cmd->val = 0;
191
192    err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193    WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
194}
195
196static void drv_write(struct drv_cmd *cmd)
197{
198    int this_cpu;
199
200    this_cpu = get_cpu();
201    if (cpumask_test_cpu(this_cpu, cmd->mask))
202        do_drv_write(cmd);
203    smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
204    put_cpu();
205}
206
207static u32 get_cur_val(const struct cpumask *mask)
208{
209    struct acpi_processor_performance *perf;
210    struct drv_cmd cmd;
211
212    if (unlikely(cpumask_empty(mask)))
213        return 0;
214
215    switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216    case SYSTEM_INTEL_MSR_CAPABLE:
217        cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218        cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219        break;
220    case SYSTEM_IO_CAPABLE:
221        cmd.type = SYSTEM_IO_CAPABLE;
222        perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223        cmd.addr.io.port = perf->control_register.address;
224        cmd.addr.io.bit_width = perf->control_register.bit_width;
225        break;
226    default:
227        return 0;
228    }
229
230    cmd.mask = mask;
231    drv_read(&cmd);
232
233    pr_debug("get_cur_val = %u\n", cmd.val);
234
235    return cmd.val;
236}
237
238static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239{
240    struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
241    unsigned int freq;
242    unsigned int cached_freq;
243
244    pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245
246    if (unlikely(data == NULL ||
247             data->acpi_data == NULL || data->freq_table == NULL)) {
248        return 0;
249    }
250
251    cached_freq = data->freq_table[data->acpi_data->state].frequency;
252    freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253    if (freq != cached_freq) {
254        /*
255         * The dreaded BIOS frequency change behind our back.
256         * Force set the frequency on next target call.
257         */
258        data->resume = 1;
259    }
260
261    pr_debug("cur freq = %u\n", freq);
262
263    return freq;
264}
265
266static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267                struct acpi_cpufreq_data *data)
268{
269    unsigned int cur_freq;
270    unsigned int i;
271
272    for (i = 0; i < 100; i++) {
273        cur_freq = extract_freq(get_cur_val(mask), data);
274        if (cur_freq == freq)
275            return 1;
276        udelay(10);
277    }
278    return 0;
279}
280
281static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282                   unsigned int target_freq, unsigned int relation)
283{
284    struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285    struct acpi_processor_performance *perf;
286    struct cpufreq_freqs freqs;
287    struct drv_cmd cmd;
288    unsigned int next_state = 0; /* Index into freq_table */
289    unsigned int next_perf_state = 0; /* Index into perf table */
290    unsigned int i;
291    int result = 0;
292
293    pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294
295    if (unlikely(data == NULL ||
296         data->acpi_data == NULL || data->freq_table == NULL)) {
297        return -ENODEV;
298    }
299
300    perf = data->acpi_data;
301    result = cpufreq_frequency_table_target(policy,
302                        data->freq_table,
303                        target_freq,
304                        relation, &next_state);
305    if (unlikely(result)) {
306        result = -ENODEV;
307        goto out;
308    }
309
310    next_perf_state = data->freq_table[next_state].index;
311    if (perf->state == next_perf_state) {
312        if (unlikely(data->resume)) {
313            pr_debug("Called after resume, resetting to P%d\n",
314                next_perf_state);
315            data->resume = 0;
316        } else {
317            pr_debug("Already at target state (P%d)\n",
318                next_perf_state);
319            goto out;
320        }
321    }
322
323    switch (data->cpu_feature) {
324    case SYSTEM_INTEL_MSR_CAPABLE:
325        cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326        cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327        cmd.val = (u32) perf->states[next_perf_state].control;
328        break;
329    case SYSTEM_IO_CAPABLE:
330        cmd.type = SYSTEM_IO_CAPABLE;
331        cmd.addr.io.port = perf->control_register.address;
332        cmd.addr.io.bit_width = perf->control_register.bit_width;
333        cmd.val = (u32) perf->states[next_perf_state].control;
334        break;
335    default:
336        result = -ENODEV;
337        goto out;
338    }
339
340    /* cpufreq holds the hotplug lock, so we are safe from here on */
341    if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342        cmd.mask = policy->cpus;
343    else
344        cmd.mask = cpumask_of(policy->cpu);
345
346    freqs.old = perf->states[perf->state].core_frequency * 1000;
347    freqs.new = data->freq_table[next_state].frequency;
348    for_each_cpu(i, policy->cpus) {
349        freqs.cpu = i;
350        cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351    }
352
353    drv_write(&cmd);
354
355    if (acpi_pstate_strict) {
356        if (!check_freqs(cmd.mask, freqs.new, data)) {
357            pr_debug("acpi_cpufreq_target failed (%d)\n",
358                policy->cpu);
359            result = -EAGAIN;
360            goto out;
361        }
362    }
363
364    for_each_cpu(i, policy->cpus) {
365        freqs.cpu = i;
366        cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367    }
368    perf->state = next_perf_state;
369
370out:
371    return result;
372}
373
374static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
375{
376    struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
377
378    pr_debug("acpi_cpufreq_verify\n");
379
380    return cpufreq_frequency_table_verify(policy, data->freq_table);
381}
382
383static unsigned long
384acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385{
386    struct acpi_processor_performance *perf = data->acpi_data;
387
388    if (cpu_khz) {
389        /* search the closest match to cpu_khz */
390        unsigned int i;
391        unsigned long freq;
392        unsigned long freqn = perf->states[0].core_frequency * 1000;
393
394        for (i = 0; i < (perf->state_count-1); i++) {
395            freq = freqn;
396            freqn = perf->states[i+1].core_frequency * 1000;
397            if ((2 * cpu_khz) > (freqn + freq)) {
398                perf->state = i;
399                return freq;
400            }
401        }
402        perf->state = perf->state_count-1;
403        return freqn;
404    } else {
405        /* assume CPU is at P0... */
406        perf->state = 0;
407        return perf->states[0].core_frequency * 1000;
408    }
409}
410
411static void free_acpi_perf_data(void)
412{
413    unsigned int i;
414
415    /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416    for_each_possible_cpu(i)
417        free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418                 ->shared_cpu_map);
419    free_percpu(acpi_perf_data);
420}
421
422/*
423 * acpi_cpufreq_early_init - initialize ACPI P-States library
424 *
425 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426 * in order to determine correct frequency and voltage pairings. We can
427 * do _PDC and _PSD and find out the processor dependency for the
428 * actual init that will happen later...
429 */
430static int __init acpi_cpufreq_early_init(void)
431{
432    unsigned int i;
433    pr_debug("acpi_cpufreq_early_init\n");
434
435    acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436    if (!acpi_perf_data) {
437        pr_debug("Memory allocation error for acpi_perf_data.\n");
438        return -ENOMEM;
439    }
440    for_each_possible_cpu(i) {
441        if (!zalloc_cpumask_var_node(
442            &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443            GFP_KERNEL, cpu_to_node(i))) {
444
445            /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446            free_acpi_perf_data();
447            return -ENOMEM;
448        }
449    }
450
451    /* Do initialization in ACPI core */
452    acpi_processor_preregister_performance(acpi_perf_data);
453    return 0;
454}
455
456#ifdef CONFIG_SMP
457/*
458 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459 * or do it in BIOS firmware and won't inform about it to OS. If not
460 * detected, this has a side effect of making CPU run at a different speed
461 * than OS intended it to run at. Detect it and handle it cleanly.
462 */
463static int bios_with_sw_any_bug;
464
465static int sw_any_bug_found(const struct dmi_system_id *d)
466{
467    bios_with_sw_any_bug = 1;
468    return 0;
469}
470
471static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472    {
473        .callback = sw_any_bug_found,
474        .ident = "Supermicro Server X6DLP",
475        .matches = {
476            DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477            DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478            DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479        },
480    },
481    { }
482};
483
484static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485{
486    /* Intel Xeon Processor 7100 Series Specification Update
487     * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488     * AL30: A Machine Check Exception (MCE) Occurring during an
489     * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490     * Both Processor Cores to Lock Up. */
491    if (c->x86_vendor == X86_VENDOR_INTEL) {
492        if ((c->x86 == 15) &&
493            (c->x86_model == 6) &&
494            (c->x86_mask == 8)) {
495            printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496                "Xeon(R) 7100 Errata AL30, processors may "
497                "lock up on frequency changes: disabling "
498                "acpi-cpufreq.\n");
499            return -ENODEV;
500            }
501        }
502    return 0;
503}
504#endif
505
506static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507{
508    unsigned int i;
509    unsigned int valid_states = 0;
510    unsigned int cpu = policy->cpu;
511    struct acpi_cpufreq_data *data;
512    unsigned int result = 0;
513    struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514    struct acpi_processor_performance *perf;
515#ifdef CONFIG_SMP
516    static int blacklisted;
517#endif
518
519    pr_debug("acpi_cpufreq_cpu_init\n");
520
521#ifdef CONFIG_SMP
522    if (blacklisted)
523        return blacklisted;
524    blacklisted = acpi_cpufreq_blacklist(c);
525    if (blacklisted)
526        return blacklisted;
527#endif
528
529    data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530    if (!data)
531        return -ENOMEM;
532
533    data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534    per_cpu(acfreq_data, cpu) = data;
535
536    if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537        acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538
539    result = acpi_processor_register_performance(data->acpi_data, cpu);
540    if (result)
541        goto err_free;
542
543    perf = data->acpi_data;
544    policy->shared_type = perf->shared_type;
545
546    /*
547     * Will let policy->cpus know about dependency only when software
548     * coordination is required.
549     */
550    if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551        policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552        cpumask_copy(policy->cpus, perf->shared_cpu_map);
553    }
554    cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555
556#ifdef CONFIG_SMP
557    dmi_check_system(sw_any_bug_dmi_table);
558    if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559        policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560        cpumask_copy(policy->cpus, cpu_core_mask(cpu));
561    }
562#endif
563
564    /* capability check */
565    if (perf->state_count <= 1) {
566        pr_debug("No P-States\n");
567        result = -ENODEV;
568        goto err_unreg;
569    }
570
571    if (perf->control_register.space_id != perf->status_register.space_id) {
572        result = -ENODEV;
573        goto err_unreg;
574    }
575
576    switch (perf->control_register.space_id) {
577    case ACPI_ADR_SPACE_SYSTEM_IO:
578        pr_debug("SYSTEM IO addr space\n");
579        data->cpu_feature = SYSTEM_IO_CAPABLE;
580        break;
581    case ACPI_ADR_SPACE_FIXED_HARDWARE:
582        pr_debug("HARDWARE addr space\n");
583        if (!check_est_cpu(cpu)) {
584            result = -ENODEV;
585            goto err_unreg;
586        }
587        data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588        break;
589    default:
590        pr_debug("Unknown addr space %d\n",
591            (u32) (perf->control_register.space_id));
592        result = -ENODEV;
593        goto err_unreg;
594    }
595
596    data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597            (perf->state_count+1), GFP_KERNEL);
598    if (!data->freq_table) {
599        result = -ENOMEM;
600        goto err_unreg;
601    }
602
603    /* detect transition latency */
604    policy->cpuinfo.transition_latency = 0;
605    for (i = 0; i < perf->state_count; i++) {
606        if ((perf->states[i].transition_latency * 1000) >
607            policy->cpuinfo.transition_latency)
608            policy->cpuinfo.transition_latency =
609                perf->states[i].transition_latency * 1000;
610    }
611
612    /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613    if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614        policy->cpuinfo.transition_latency > 20 * 1000) {
615        policy->cpuinfo.transition_latency = 20 * 1000;
616        printk_once(KERN_INFO
617                "P-state transition latency capped at 20 uS\n");
618    }
619
620    /* table init */
621    for (i = 0; i < perf->state_count; i++) {
622        if (i > 0 && perf->states[i].core_frequency >=
623            data->freq_table[valid_states-1].frequency / 1000)
624            continue;
625
626        data->freq_table[valid_states].index = i;
627        data->freq_table[valid_states].frequency =
628            perf->states[i].core_frequency * 1000;
629        valid_states++;
630    }
631    data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632    perf->state = 0;
633
634    result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635    if (result)
636        goto err_freqfree;
637
638    if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639        printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
640
641    switch (perf->control_register.space_id) {
642    case ACPI_ADR_SPACE_SYSTEM_IO:
643        /* Current speed is unknown and not detectable by IO port */
644        policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645        break;
646    case ACPI_ADR_SPACE_FIXED_HARDWARE:
647        acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648        policy->cur = get_cur_freq_on_cpu(cpu);
649        break;
650    default:
651        break;
652    }
653
654    /* notify BIOS that we exist */
655    acpi_processor_notify_smm(THIS_MODULE);
656
657    /* Check for APERF/MPERF support in hardware */
658    if (boot_cpu_has(X86_FEATURE_APERFMPERF))
659        acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660
661    pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662    for (i = 0; i < perf->state_count; i++)
663        pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
664            (i == perf->state ? '*' : ' '), i,
665            (u32) perf->states[i].core_frequency,
666            (u32) perf->states[i].power,
667            (u32) perf->states[i].transition_latency);
668
669    cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670
671    /*
672     * the first call to ->target() should result in us actually
673     * writing something to the appropriate registers.
674     */
675    data->resume = 1;
676
677    return result;
678
679err_freqfree:
680    kfree(data->freq_table);
681err_unreg:
682    acpi_processor_unregister_performance(perf, cpu);
683err_free:
684    kfree(data);
685    per_cpu(acfreq_data, cpu) = NULL;
686
687    return result;
688}
689
690static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691{
692    struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693
694    pr_debug("acpi_cpufreq_cpu_exit\n");
695
696    if (data) {
697        cpufreq_frequency_table_put_attr(policy->cpu);
698        per_cpu(acfreq_data, policy->cpu) = NULL;
699        acpi_processor_unregister_performance(data->acpi_data,
700                              policy->cpu);
701        kfree(data->freq_table);
702        kfree(data);
703    }
704
705    return 0;
706}
707
708static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709{
710    struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711
712    pr_debug("acpi_cpufreq_resume\n");
713
714    data->resume = 1;
715
716    return 0;
717}
718
719static struct freq_attr *acpi_cpufreq_attr[] = {
720    &cpufreq_freq_attr_scaling_available_freqs,
721    NULL,
722};
723
724static struct cpufreq_driver acpi_cpufreq_driver = {
725    .verify = acpi_cpufreq_verify,
726    .target = acpi_cpufreq_target,
727    .bios_limit = acpi_processor_get_bios_limit,
728    .init = acpi_cpufreq_cpu_init,
729    .exit = acpi_cpufreq_cpu_exit,
730    .resume = acpi_cpufreq_resume,
731    .name = "acpi-cpufreq",
732    .owner = THIS_MODULE,
733    .attr = acpi_cpufreq_attr,
734};
735
736static int __init acpi_cpufreq_init(void)
737{
738    int ret;
739
740    if (acpi_disabled)
741        return 0;
742
743    pr_debug("acpi_cpufreq_init\n");
744
745    ret = acpi_cpufreq_early_init();
746    if (ret)
747        return ret;
748
749    ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750    if (ret)
751        free_acpi_perf_data();
752
753    return ret;
754}
755
756static void __exit acpi_cpufreq_exit(void)
757{
758    pr_debug("acpi_cpufreq_exit\n");
759
760    cpufreq_unregister_driver(&acpi_cpufreq_driver);
761
762    free_acpi_perf_data();
763}
764
765module_param(acpi_pstate_strict, uint, 0644);
766MODULE_PARM_DESC(acpi_pstate_strict,
767    "value 0 or non-zero. non-zero -> strict ACPI checks are "
768    "performed during frequency changes.");
769
770late_initcall(acpi_cpufreq_init);
771module_exit(acpi_cpufreq_exit);
772
773MODULE_ALIAS("acpi");
774

Archive Download this file



interactive