Root/
1 | /* |
2 | * acpi-cpufreq.c - ACPI Processor P-States Driver |
3 | * |
4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
6 | * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> |
7 | * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> |
8 | * |
9 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
10 | * |
11 | * This program is free software; you can redistribute it and/or modify |
12 | * it under the terms of the GNU General Public License as published by |
13 | * the Free Software Foundation; either version 2 of the License, or (at |
14 | * your option) any later version. |
15 | * |
16 | * This program is distributed in the hope that it will be useful, but |
17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
19 | * General Public License for more details. |
20 | * |
21 | * You should have received a copy of the GNU General Public License along |
22 | * with this program; if not, write to the Free Software Foundation, Inc., |
23 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
24 | * |
25 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
26 | */ |
27 | |
28 | #include <linux/kernel.h> |
29 | #include <linux/module.h> |
30 | #include <linux/init.h> |
31 | #include <linux/smp.h> |
32 | #include <linux/sched.h> |
33 | #include <linux/cpufreq.h> |
34 | #include <linux/compiler.h> |
35 | #include <linux/dmi.h> |
36 | #include <linux/slab.h> |
37 | |
38 | #include <linux/acpi.h> |
39 | #include <linux/io.h> |
40 | #include <linux/delay.h> |
41 | #include <linux/uaccess.h> |
42 | |
43 | #include <acpi/processor.h> |
44 | |
45 | #include <asm/msr.h> |
46 | #include <asm/processor.h> |
47 | #include <asm/cpufeature.h> |
48 | #include "mperf.h" |
49 | |
50 | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); |
51 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); |
52 | MODULE_LICENSE("GPL"); |
53 | |
54 | enum { |
55 | UNDEFINED_CAPABLE = 0, |
56 | SYSTEM_INTEL_MSR_CAPABLE, |
57 | SYSTEM_IO_CAPABLE, |
58 | }; |
59 | |
60 | #define INTEL_MSR_RANGE (0xffff) |
61 | |
62 | struct acpi_cpufreq_data { |
63 | struct acpi_processor_performance *acpi_data; |
64 | struct cpufreq_frequency_table *freq_table; |
65 | unsigned int resume; |
66 | unsigned int cpu_feature; |
67 | }; |
68 | |
69 | static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data); |
70 | |
71 | /* acpi_perf_data is a pointer to percpu data. */ |
72 | static struct acpi_processor_performance __percpu *acpi_perf_data; |
73 | |
74 | static struct cpufreq_driver acpi_cpufreq_driver; |
75 | |
76 | static unsigned int acpi_pstate_strict; |
77 | |
78 | static int check_est_cpu(unsigned int cpuid) |
79 | { |
80 | struct cpuinfo_x86 *cpu = &cpu_data(cpuid); |
81 | |
82 | return cpu_has(cpu, X86_FEATURE_EST); |
83 | } |
84 | |
85 | static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) |
86 | { |
87 | struct acpi_processor_performance *perf; |
88 | int i; |
89 | |
90 | perf = data->acpi_data; |
91 | |
92 | for (i = 0; i < perf->state_count; i++) { |
93 | if (value == perf->states[i].status) |
94 | return data->freq_table[i].frequency; |
95 | } |
96 | return 0; |
97 | } |
98 | |
99 | static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) |
100 | { |
101 | int i; |
102 | struct acpi_processor_performance *perf; |
103 | |
104 | msr &= INTEL_MSR_RANGE; |
105 | perf = data->acpi_data; |
106 | |
107 | for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { |
108 | if (msr == perf->states[data->freq_table[i].index].status) |
109 | return data->freq_table[i].frequency; |
110 | } |
111 | return data->freq_table[0].frequency; |
112 | } |
113 | |
114 | static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) |
115 | { |
116 | switch (data->cpu_feature) { |
117 | case SYSTEM_INTEL_MSR_CAPABLE: |
118 | return extract_msr(val, data); |
119 | case SYSTEM_IO_CAPABLE: |
120 | return extract_io(val, data); |
121 | default: |
122 | return 0; |
123 | } |
124 | } |
125 | |
126 | struct msr_addr { |
127 | u32 reg; |
128 | }; |
129 | |
130 | struct io_addr { |
131 | u16 port; |
132 | u8 bit_width; |
133 | }; |
134 | |
135 | struct drv_cmd { |
136 | unsigned int type; |
137 | const struct cpumask *mask; |
138 | union { |
139 | struct msr_addr msr; |
140 | struct io_addr io; |
141 | } addr; |
142 | u32 val; |
143 | }; |
144 | |
145 | /* Called via smp_call_function_single(), on the target CPU */ |
146 | static void do_drv_read(void *_cmd) |
147 | { |
148 | struct drv_cmd *cmd = _cmd; |
149 | u32 h; |
150 | |
151 | switch (cmd->type) { |
152 | case SYSTEM_INTEL_MSR_CAPABLE: |
153 | rdmsr(cmd->addr.msr.reg, cmd->val, h); |
154 | break; |
155 | case SYSTEM_IO_CAPABLE: |
156 | acpi_os_read_port((acpi_io_address)cmd->addr.io.port, |
157 | &cmd->val, |
158 | (u32)cmd->addr.io.bit_width); |
159 | break; |
160 | default: |
161 | break; |
162 | } |
163 | } |
164 | |
165 | /* Called via smp_call_function_many(), on the target CPUs */ |
166 | static void do_drv_write(void *_cmd) |
167 | { |
168 | struct drv_cmd *cmd = _cmd; |
169 | u32 lo, hi; |
170 | |
171 | switch (cmd->type) { |
172 | case SYSTEM_INTEL_MSR_CAPABLE: |
173 | rdmsr(cmd->addr.msr.reg, lo, hi); |
174 | lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); |
175 | wrmsr(cmd->addr.msr.reg, lo, hi); |
176 | break; |
177 | case SYSTEM_IO_CAPABLE: |
178 | acpi_os_write_port((acpi_io_address)cmd->addr.io.port, |
179 | cmd->val, |
180 | (u32)cmd->addr.io.bit_width); |
181 | break; |
182 | default: |
183 | break; |
184 | } |
185 | } |
186 | |
187 | static void drv_read(struct drv_cmd *cmd) |
188 | { |
189 | int err; |
190 | cmd->val = 0; |
191 | |
192 | err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1); |
193 | WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ |
194 | } |
195 | |
196 | static void drv_write(struct drv_cmd *cmd) |
197 | { |
198 | int this_cpu; |
199 | |
200 | this_cpu = get_cpu(); |
201 | if (cpumask_test_cpu(this_cpu, cmd->mask)) |
202 | do_drv_write(cmd); |
203 | smp_call_function_many(cmd->mask, do_drv_write, cmd, 1); |
204 | put_cpu(); |
205 | } |
206 | |
207 | static u32 get_cur_val(const struct cpumask *mask) |
208 | { |
209 | struct acpi_processor_performance *perf; |
210 | struct drv_cmd cmd; |
211 | |
212 | if (unlikely(cpumask_empty(mask))) |
213 | return 0; |
214 | |
215 | switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) { |
216 | case SYSTEM_INTEL_MSR_CAPABLE: |
217 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; |
218 | cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; |
219 | break; |
220 | case SYSTEM_IO_CAPABLE: |
221 | cmd.type = SYSTEM_IO_CAPABLE; |
222 | perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data; |
223 | cmd.addr.io.port = perf->control_register.address; |
224 | cmd.addr.io.bit_width = perf->control_register.bit_width; |
225 | break; |
226 | default: |
227 | return 0; |
228 | } |
229 | |
230 | cmd.mask = mask; |
231 | drv_read(&cmd); |
232 | |
233 | pr_debug("get_cur_val = %u\n", cmd.val); |
234 | |
235 | return cmd.val; |
236 | } |
237 | |
238 | static unsigned int get_cur_freq_on_cpu(unsigned int cpu) |
239 | { |
240 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu); |
241 | unsigned int freq; |
242 | unsigned int cached_freq; |
243 | |
244 | pr_debug("get_cur_freq_on_cpu (%d)\n", cpu); |
245 | |
246 | if (unlikely(data == NULL || |
247 | data->acpi_data == NULL || data->freq_table == NULL)) { |
248 | return 0; |
249 | } |
250 | |
251 | cached_freq = data->freq_table[data->acpi_data->state].frequency; |
252 | freq = extract_freq(get_cur_val(cpumask_of(cpu)), data); |
253 | if (freq != cached_freq) { |
254 | /* |
255 | * The dreaded BIOS frequency change behind our back. |
256 | * Force set the frequency on next target call. |
257 | */ |
258 | data->resume = 1; |
259 | } |
260 | |
261 | pr_debug("cur freq = %u\n", freq); |
262 | |
263 | return freq; |
264 | } |
265 | |
266 | static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq, |
267 | struct acpi_cpufreq_data *data) |
268 | { |
269 | unsigned int cur_freq; |
270 | unsigned int i; |
271 | |
272 | for (i = 0; i < 100; i++) { |
273 | cur_freq = extract_freq(get_cur_val(mask), data); |
274 | if (cur_freq == freq) |
275 | return 1; |
276 | udelay(10); |
277 | } |
278 | return 0; |
279 | } |
280 | |
281 | static int acpi_cpufreq_target(struct cpufreq_policy *policy, |
282 | unsigned int target_freq, unsigned int relation) |
283 | { |
284 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
285 | struct acpi_processor_performance *perf; |
286 | struct cpufreq_freqs freqs; |
287 | struct drv_cmd cmd; |
288 | unsigned int next_state = 0; /* Index into freq_table */ |
289 | unsigned int next_perf_state = 0; /* Index into perf table */ |
290 | unsigned int i; |
291 | int result = 0; |
292 | |
293 | pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); |
294 | |
295 | if (unlikely(data == NULL || |
296 | data->acpi_data == NULL || data->freq_table == NULL)) { |
297 | return -ENODEV; |
298 | } |
299 | |
300 | perf = data->acpi_data; |
301 | result = cpufreq_frequency_table_target(policy, |
302 | data->freq_table, |
303 | target_freq, |
304 | relation, &next_state); |
305 | if (unlikely(result)) { |
306 | result = -ENODEV; |
307 | goto out; |
308 | } |
309 | |
310 | next_perf_state = data->freq_table[next_state].index; |
311 | if (perf->state == next_perf_state) { |
312 | if (unlikely(data->resume)) { |
313 | pr_debug("Called after resume, resetting to P%d\n", |
314 | next_perf_state); |
315 | data->resume = 0; |
316 | } else { |
317 | pr_debug("Already at target state (P%d)\n", |
318 | next_perf_state); |
319 | goto out; |
320 | } |
321 | } |
322 | |
323 | switch (data->cpu_feature) { |
324 | case SYSTEM_INTEL_MSR_CAPABLE: |
325 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; |
326 | cmd.addr.msr.reg = MSR_IA32_PERF_CTL; |
327 | cmd.val = (u32) perf->states[next_perf_state].control; |
328 | break; |
329 | case SYSTEM_IO_CAPABLE: |
330 | cmd.type = SYSTEM_IO_CAPABLE; |
331 | cmd.addr.io.port = perf->control_register.address; |
332 | cmd.addr.io.bit_width = perf->control_register.bit_width; |
333 | cmd.val = (u32) perf->states[next_perf_state].control; |
334 | break; |
335 | default: |
336 | result = -ENODEV; |
337 | goto out; |
338 | } |
339 | |
340 | /* cpufreq holds the hotplug lock, so we are safe from here on */ |
341 | if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) |
342 | cmd.mask = policy->cpus; |
343 | else |
344 | cmd.mask = cpumask_of(policy->cpu); |
345 | |
346 | freqs.old = perf->states[perf->state].core_frequency * 1000; |
347 | freqs.new = data->freq_table[next_state].frequency; |
348 | for_each_cpu(i, policy->cpus) { |
349 | freqs.cpu = i; |
350 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
351 | } |
352 | |
353 | drv_write(&cmd); |
354 | |
355 | if (acpi_pstate_strict) { |
356 | if (!check_freqs(cmd.mask, freqs.new, data)) { |
357 | pr_debug("acpi_cpufreq_target failed (%d)\n", |
358 | policy->cpu); |
359 | result = -EAGAIN; |
360 | goto out; |
361 | } |
362 | } |
363 | |
364 | for_each_cpu(i, policy->cpus) { |
365 | freqs.cpu = i; |
366 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
367 | } |
368 | perf->state = next_perf_state; |
369 | |
370 | out: |
371 | return result; |
372 | } |
373 | |
374 | static int acpi_cpufreq_verify(struct cpufreq_policy *policy) |
375 | { |
376 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
377 | |
378 | pr_debug("acpi_cpufreq_verify\n"); |
379 | |
380 | return cpufreq_frequency_table_verify(policy, data->freq_table); |
381 | } |
382 | |
383 | static unsigned long |
384 | acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) |
385 | { |
386 | struct acpi_processor_performance *perf = data->acpi_data; |
387 | |
388 | if (cpu_khz) { |
389 | /* search the closest match to cpu_khz */ |
390 | unsigned int i; |
391 | unsigned long freq; |
392 | unsigned long freqn = perf->states[0].core_frequency * 1000; |
393 | |
394 | for (i = 0; i < (perf->state_count-1); i++) { |
395 | freq = freqn; |
396 | freqn = perf->states[i+1].core_frequency * 1000; |
397 | if ((2 * cpu_khz) > (freqn + freq)) { |
398 | perf->state = i; |
399 | return freq; |
400 | } |
401 | } |
402 | perf->state = perf->state_count-1; |
403 | return freqn; |
404 | } else { |
405 | /* assume CPU is at P0... */ |
406 | perf->state = 0; |
407 | return perf->states[0].core_frequency * 1000; |
408 | } |
409 | } |
410 | |
411 | static void free_acpi_perf_data(void) |
412 | { |
413 | unsigned int i; |
414 | |
415 | /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ |
416 | for_each_possible_cpu(i) |
417 | free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) |
418 | ->shared_cpu_map); |
419 | free_percpu(acpi_perf_data); |
420 | } |
421 | |
422 | /* |
423 | * acpi_cpufreq_early_init - initialize ACPI P-States library |
424 | * |
425 | * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) |
426 | * in order to determine correct frequency and voltage pairings. We can |
427 | * do _PDC and _PSD and find out the processor dependency for the |
428 | * actual init that will happen later... |
429 | */ |
430 | static int __init acpi_cpufreq_early_init(void) |
431 | { |
432 | unsigned int i; |
433 | pr_debug("acpi_cpufreq_early_init\n"); |
434 | |
435 | acpi_perf_data = alloc_percpu(struct acpi_processor_performance); |
436 | if (!acpi_perf_data) { |
437 | pr_debug("Memory allocation error for acpi_perf_data.\n"); |
438 | return -ENOMEM; |
439 | } |
440 | for_each_possible_cpu(i) { |
441 | if (!zalloc_cpumask_var_node( |
442 | &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, |
443 | GFP_KERNEL, cpu_to_node(i))) { |
444 | |
445 | /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ |
446 | free_acpi_perf_data(); |
447 | return -ENOMEM; |
448 | } |
449 | } |
450 | |
451 | /* Do initialization in ACPI core */ |
452 | acpi_processor_preregister_performance(acpi_perf_data); |
453 | return 0; |
454 | } |
455 | |
456 | #ifdef CONFIG_SMP |
457 | /* |
458 | * Some BIOSes do SW_ANY coordination internally, either set it up in hw |
459 | * or do it in BIOS firmware and won't inform about it to OS. If not |
460 | * detected, this has a side effect of making CPU run at a different speed |
461 | * than OS intended it to run at. Detect it and handle it cleanly. |
462 | */ |
463 | static int bios_with_sw_any_bug; |
464 | |
465 | static int sw_any_bug_found(const struct dmi_system_id *d) |
466 | { |
467 | bios_with_sw_any_bug = 1; |
468 | return 0; |
469 | } |
470 | |
471 | static const struct dmi_system_id sw_any_bug_dmi_table[] = { |
472 | { |
473 | .callback = sw_any_bug_found, |
474 | .ident = "Supermicro Server X6DLP", |
475 | .matches = { |
476 | DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), |
477 | DMI_MATCH(DMI_BIOS_VERSION, "080010"), |
478 | DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), |
479 | }, |
480 | }, |
481 | { } |
482 | }; |
483 | |
484 | static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) |
485 | { |
486 | /* Intel Xeon Processor 7100 Series Specification Update |
487 | * http://www.intel.com/Assets/PDF/specupdate/314554.pdf |
488 | * AL30: A Machine Check Exception (MCE) Occurring during an |
489 | * Enhanced Intel SpeedStep Technology Ratio Change May Cause |
490 | * Both Processor Cores to Lock Up. */ |
491 | if (c->x86_vendor == X86_VENDOR_INTEL) { |
492 | if ((c->x86 == 15) && |
493 | (c->x86_model == 6) && |
494 | (c->x86_mask == 8)) { |
495 | printk(KERN_INFO "acpi-cpufreq: Intel(R) " |
496 | "Xeon(R) 7100 Errata AL30, processors may " |
497 | "lock up on frequency changes: disabling " |
498 | "acpi-cpufreq.\n"); |
499 | return -ENODEV; |
500 | } |
501 | } |
502 | return 0; |
503 | } |
504 | #endif |
505 | |
506 | static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) |
507 | { |
508 | unsigned int i; |
509 | unsigned int valid_states = 0; |
510 | unsigned int cpu = policy->cpu; |
511 | struct acpi_cpufreq_data *data; |
512 | unsigned int result = 0; |
513 | struct cpuinfo_x86 *c = &cpu_data(policy->cpu); |
514 | struct acpi_processor_performance *perf; |
515 | #ifdef CONFIG_SMP |
516 | static int blacklisted; |
517 | #endif |
518 | |
519 | pr_debug("acpi_cpufreq_cpu_init\n"); |
520 | |
521 | #ifdef CONFIG_SMP |
522 | if (blacklisted) |
523 | return blacklisted; |
524 | blacklisted = acpi_cpufreq_blacklist(c); |
525 | if (blacklisted) |
526 | return blacklisted; |
527 | #endif |
528 | |
529 | data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); |
530 | if (!data) |
531 | return -ENOMEM; |
532 | |
533 | data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu); |
534 | per_cpu(acfreq_data, cpu) = data; |
535 | |
536 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) |
537 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
538 | |
539 | result = acpi_processor_register_performance(data->acpi_data, cpu); |
540 | if (result) |
541 | goto err_free; |
542 | |
543 | perf = data->acpi_data; |
544 | policy->shared_type = perf->shared_type; |
545 | |
546 | /* |
547 | * Will let policy->cpus know about dependency only when software |
548 | * coordination is required. |
549 | */ |
550 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || |
551 | policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { |
552 | cpumask_copy(policy->cpus, perf->shared_cpu_map); |
553 | } |
554 | cpumask_copy(policy->related_cpus, perf->shared_cpu_map); |
555 | |
556 | #ifdef CONFIG_SMP |
557 | dmi_check_system(sw_any_bug_dmi_table); |
558 | if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) { |
559 | policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
560 | cpumask_copy(policy->cpus, cpu_core_mask(cpu)); |
561 | } |
562 | #endif |
563 | |
564 | /* capability check */ |
565 | if (perf->state_count <= 1) { |
566 | pr_debug("No P-States\n"); |
567 | result = -ENODEV; |
568 | goto err_unreg; |
569 | } |
570 | |
571 | if (perf->control_register.space_id != perf->status_register.space_id) { |
572 | result = -ENODEV; |
573 | goto err_unreg; |
574 | } |
575 | |
576 | switch (perf->control_register.space_id) { |
577 | case ACPI_ADR_SPACE_SYSTEM_IO: |
578 | pr_debug("SYSTEM IO addr space\n"); |
579 | data->cpu_feature = SYSTEM_IO_CAPABLE; |
580 | break; |
581 | case ACPI_ADR_SPACE_FIXED_HARDWARE: |
582 | pr_debug("HARDWARE addr space\n"); |
583 | if (!check_est_cpu(cpu)) { |
584 | result = -ENODEV; |
585 | goto err_unreg; |
586 | } |
587 | data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; |
588 | break; |
589 | default: |
590 | pr_debug("Unknown addr space %d\n", |
591 | (u32) (perf->control_register.space_id)); |
592 | result = -ENODEV; |
593 | goto err_unreg; |
594 | } |
595 | |
596 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * |
597 | (perf->state_count+1), GFP_KERNEL); |
598 | if (!data->freq_table) { |
599 | result = -ENOMEM; |
600 | goto err_unreg; |
601 | } |
602 | |
603 | /* detect transition latency */ |
604 | policy->cpuinfo.transition_latency = 0; |
605 | for (i = 0; i < perf->state_count; i++) { |
606 | if ((perf->states[i].transition_latency * 1000) > |
607 | policy->cpuinfo.transition_latency) |
608 | policy->cpuinfo.transition_latency = |
609 | perf->states[i].transition_latency * 1000; |
610 | } |
611 | |
612 | /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ |
613 | if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && |
614 | policy->cpuinfo.transition_latency > 20 * 1000) { |
615 | policy->cpuinfo.transition_latency = 20 * 1000; |
616 | printk_once(KERN_INFO |
617 | "P-state transition latency capped at 20 uS\n"); |
618 | } |
619 | |
620 | /* table init */ |
621 | for (i = 0; i < perf->state_count; i++) { |
622 | if (i > 0 && perf->states[i].core_frequency >= |
623 | data->freq_table[valid_states-1].frequency / 1000) |
624 | continue; |
625 | |
626 | data->freq_table[valid_states].index = i; |
627 | data->freq_table[valid_states].frequency = |
628 | perf->states[i].core_frequency * 1000; |
629 | valid_states++; |
630 | } |
631 | data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; |
632 | perf->state = 0; |
633 | |
634 | result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); |
635 | if (result) |
636 | goto err_freqfree; |
637 | |
638 | if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) |
639 | printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n"); |
640 | |
641 | switch (perf->control_register.space_id) { |
642 | case ACPI_ADR_SPACE_SYSTEM_IO: |
643 | /* Current speed is unknown and not detectable by IO port */ |
644 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
645 | break; |
646 | case ACPI_ADR_SPACE_FIXED_HARDWARE: |
647 | acpi_cpufreq_driver.get = get_cur_freq_on_cpu; |
648 | policy->cur = get_cur_freq_on_cpu(cpu); |
649 | break; |
650 | default: |
651 | break; |
652 | } |
653 | |
654 | /* notify BIOS that we exist */ |
655 | acpi_processor_notify_smm(THIS_MODULE); |
656 | |
657 | /* Check for APERF/MPERF support in hardware */ |
658 | if (boot_cpu_has(X86_FEATURE_APERFMPERF)) |
659 | acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf; |
660 | |
661 | pr_debug("CPU%u - ACPI performance management activated.\n", cpu); |
662 | for (i = 0; i < perf->state_count; i++) |
663 | pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", |
664 | (i == perf->state ? '*' : ' '), i, |
665 | (u32) perf->states[i].core_frequency, |
666 | (u32) perf->states[i].power, |
667 | (u32) perf->states[i].transition_latency); |
668 | |
669 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); |
670 | |
671 | /* |
672 | * the first call to ->target() should result in us actually |
673 | * writing something to the appropriate registers. |
674 | */ |
675 | data->resume = 1; |
676 | |
677 | return result; |
678 | |
679 | err_freqfree: |
680 | kfree(data->freq_table); |
681 | err_unreg: |
682 | acpi_processor_unregister_performance(perf, cpu); |
683 | err_free: |
684 | kfree(data); |
685 | per_cpu(acfreq_data, cpu) = NULL; |
686 | |
687 | return result; |
688 | } |
689 | |
690 | static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
691 | { |
692 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
693 | |
694 | pr_debug("acpi_cpufreq_cpu_exit\n"); |
695 | |
696 | if (data) { |
697 | cpufreq_frequency_table_put_attr(policy->cpu); |
698 | per_cpu(acfreq_data, policy->cpu) = NULL; |
699 | acpi_processor_unregister_performance(data->acpi_data, |
700 | policy->cpu); |
701 | kfree(data->freq_table); |
702 | kfree(data); |
703 | } |
704 | |
705 | return 0; |
706 | } |
707 | |
708 | static int acpi_cpufreq_resume(struct cpufreq_policy *policy) |
709 | { |
710 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
711 | |
712 | pr_debug("acpi_cpufreq_resume\n"); |
713 | |
714 | data->resume = 1; |
715 | |
716 | return 0; |
717 | } |
718 | |
719 | static struct freq_attr *acpi_cpufreq_attr[] = { |
720 | &cpufreq_freq_attr_scaling_available_freqs, |
721 | NULL, |
722 | }; |
723 | |
724 | static struct cpufreq_driver acpi_cpufreq_driver = { |
725 | .verify = acpi_cpufreq_verify, |
726 | .target = acpi_cpufreq_target, |
727 | .bios_limit = acpi_processor_get_bios_limit, |
728 | .init = acpi_cpufreq_cpu_init, |
729 | .exit = acpi_cpufreq_cpu_exit, |
730 | .resume = acpi_cpufreq_resume, |
731 | .name = "acpi-cpufreq", |
732 | .owner = THIS_MODULE, |
733 | .attr = acpi_cpufreq_attr, |
734 | }; |
735 | |
736 | static int __init acpi_cpufreq_init(void) |
737 | { |
738 | int ret; |
739 | |
740 | if (acpi_disabled) |
741 | return 0; |
742 | |
743 | pr_debug("acpi_cpufreq_init\n"); |
744 | |
745 | ret = acpi_cpufreq_early_init(); |
746 | if (ret) |
747 | return ret; |
748 | |
749 | ret = cpufreq_register_driver(&acpi_cpufreq_driver); |
750 | if (ret) |
751 | free_acpi_perf_data(); |
752 | |
753 | return ret; |
754 | } |
755 | |
756 | static void __exit acpi_cpufreq_exit(void) |
757 | { |
758 | pr_debug("acpi_cpufreq_exit\n"); |
759 | |
760 | cpufreq_unregister_driver(&acpi_cpufreq_driver); |
761 | |
762 | free_acpi_perf_data(); |
763 | } |
764 | |
765 | module_param(acpi_pstate_strict, uint, 0644); |
766 | MODULE_PARM_DESC(acpi_pstate_strict, |
767 | "value 0 or non-zero. non-zero -> strict ACPI checks are " |
768 | "performed during frequency changes."); |
769 | |
770 | late_initcall(acpi_cpufreq_init); |
771 | module_exit(acpi_cpufreq_exit); |
772 | |
773 | MODULE_ALIAS("acpi"); |
774 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9