Root/drivers/cpufreq/cpufreq_ondemand.c

1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/cpufreq.h>
17#include <linux/cpu.h>
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
20#include <linux/mutex.h>
21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
24#include <linux/sched.h>
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
33#define DEF_SAMPLING_DOWN_FACTOR (1)
34#define MAX_SAMPLING_DOWN_FACTOR (100000)
35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36#define MICRO_FREQUENCY_UP_THRESHOLD (95)
37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38#define MIN_FREQUENCY_UP_THRESHOLD (11)
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
41/*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
51#define MIN_SAMPLING_RATE_RATIO (2)
52
53static unsigned int min_sampling_rate;
54
55#define LATENCY_MULTIPLIER (1000)
56#define MIN_LATENCY_MULTIPLIER (100)
57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
58
59static void do_dbs_timer(struct work_struct *work);
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61                unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67       .name = "ondemand",
68       .governor = cpufreq_governor_dbs,
69       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70       .owner = THIS_MODULE,
71};
72
73/* Sampling types */
74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76struct cpu_dbs_info_s {
77    cputime64_t prev_cpu_idle;
78    cputime64_t prev_cpu_iowait;
79    cputime64_t prev_cpu_wall;
80    cputime64_t prev_cpu_nice;
81    struct cpufreq_policy *cur_policy;
82    struct delayed_work work;
83    struct cpufreq_frequency_table *freq_table;
84    unsigned int freq_lo;
85    unsigned int freq_lo_jiffies;
86    unsigned int freq_hi_jiffies;
87    unsigned int rate_mult;
88    int cpu;
89    unsigned int sample_type:1;
90    /*
91     * percpu mutex that serializes governor limit change with
92     * do_dbs_timer invocation. We do not want do_dbs_timer to run
93     * when user is changing the governor or limits.
94     */
95    struct mutex timer_mutex;
96};
97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
101/*
102 * dbs_mutex protects dbs_enable in governor start/stop.
103 */
104static DEFINE_MUTEX(dbs_mutex);
105
106static struct dbs_tuners {
107    unsigned int sampling_rate;
108    unsigned int up_threshold;
109    unsigned int down_differential;
110    unsigned int ignore_nice;
111    unsigned int sampling_down_factor;
112    unsigned int powersave_bias;
113    unsigned int io_is_busy;
114} dbs_tuners_ins = {
115    .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116    .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117    .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118    .ignore_nice = 0,
119    .powersave_bias = 0,
120};
121
122static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123{
124    u64 idle_time;
125    u64 cur_wall_time;
126    u64 busy_time;
127
128    cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
129
130    busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131    busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
132    busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133    busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134    busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135    busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
136
137    idle_time = cur_wall_time - busy_time;
138    if (wall)
139        *wall = jiffies_to_usecs(cur_wall_time);
140
141    return jiffies_to_usecs(idle_time);
142}
143
144static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145{
146    u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
147
148    if (idle_time == -1ULL)
149        return get_cpu_idle_time_jiffy(cpu, wall);
150    else
151        idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153    return idle_time;
154}
155
156static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157{
158    u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160    if (iowait_time == -1ULL)
161        return 0;
162
163    return iowait_time;
164}
165
166/*
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 */
171static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172                      unsigned int freq_next,
173                      unsigned int relation)
174{
175    unsigned int freq_req, freq_reduc, freq_avg;
176    unsigned int freq_hi, freq_lo;
177    unsigned int index = 0;
178    unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179    struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180                           policy->cpu);
181
182    if (!dbs_info->freq_table) {
183        dbs_info->freq_lo = 0;
184        dbs_info->freq_lo_jiffies = 0;
185        return freq_next;
186    }
187
188    cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189            relation, &index);
190    freq_req = dbs_info->freq_table[index].frequency;
191    freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192    freq_avg = freq_req - freq_reduc;
193
194    /* Find freq bounds for freq_avg in freq_table */
195    index = 0;
196    cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197            CPUFREQ_RELATION_H, &index);
198    freq_lo = dbs_info->freq_table[index].frequency;
199    index = 0;
200    cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201            CPUFREQ_RELATION_L, &index);
202    freq_hi = dbs_info->freq_table[index].frequency;
203
204    /* Find out how long we have to be in hi and lo freqs */
205    if (freq_hi == freq_lo) {
206        dbs_info->freq_lo = 0;
207        dbs_info->freq_lo_jiffies = 0;
208        return freq_lo;
209    }
210    jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211    jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212    jiffies_hi += ((freq_hi - freq_lo) / 2);
213    jiffies_hi /= (freq_hi - freq_lo);
214    jiffies_lo = jiffies_total - jiffies_hi;
215    dbs_info->freq_lo = freq_lo;
216    dbs_info->freq_lo_jiffies = jiffies_lo;
217    dbs_info->freq_hi_jiffies = jiffies_hi;
218    return freq_hi;
219}
220
221static void ondemand_powersave_bias_init_cpu(int cpu)
222{
223    struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224    dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225    dbs_info->freq_lo = 0;
226}
227
228static void ondemand_powersave_bias_init(void)
229{
230    int i;
231    for_each_online_cpu(i) {
232        ondemand_powersave_bias_init_cpu(i);
233    }
234}
235
236/************************** sysfs interface ************************/
237
238static ssize_t show_sampling_rate_min(struct kobject *kobj,
239                      struct attribute *attr, char *buf)
240{
241    return sprintf(buf, "%u\n", min_sampling_rate);
242}
243
244define_one_global_ro(sampling_rate_min);
245
246/* cpufreq_ondemand Governor Tunables */
247#define show_one(file_name, object) \
248static ssize_t show_##file_name \
249(struct kobject *kobj, struct attribute *attr, char *buf) \
250{ \
251    return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
252}
253show_one(sampling_rate, sampling_rate);
254show_one(io_is_busy, io_is_busy);
255show_one(up_threshold, up_threshold);
256show_one(sampling_down_factor, sampling_down_factor);
257show_one(ignore_nice_load, ignore_nice);
258show_one(powersave_bias, powersave_bias);
259
260/**
261 * update_sampling_rate - update sampling rate effective immediately if needed.
262 * @new_rate: new sampling rate
263 *
264 * If new rate is smaller than the old, simply updaing
265 * dbs_tuners_int.sampling_rate might not be appropriate. For example,
266 * if the original sampling_rate was 1 second and the requested new sampling
267 * rate is 10 ms because the user needs immediate reaction from ondemand
268 * governor, but not sure if higher frequency will be required or not,
269 * then, the governor may change the sampling rate too late; up to 1 second
270 * later. Thus, if we are reducing the sampling rate, we need to make the
271 * new value effective immediately.
272 */
273static void update_sampling_rate(unsigned int new_rate)
274{
275    int cpu;
276
277    dbs_tuners_ins.sampling_rate = new_rate
278                     = max(new_rate, min_sampling_rate);
279
280    for_each_online_cpu(cpu) {
281        struct cpufreq_policy *policy;
282        struct cpu_dbs_info_s *dbs_info;
283        unsigned long next_sampling, appointed_at;
284
285        policy = cpufreq_cpu_get(cpu);
286        if (!policy)
287            continue;
288        dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
289        cpufreq_cpu_put(policy);
290
291        mutex_lock(&dbs_info->timer_mutex);
292
293        if (!delayed_work_pending(&dbs_info->work)) {
294            mutex_unlock(&dbs_info->timer_mutex);
295            continue;
296        }
297
298        next_sampling = jiffies + usecs_to_jiffies(new_rate);
299        appointed_at = dbs_info->work.timer.expires;
300
301
302        if (time_before(next_sampling, appointed_at)) {
303
304            mutex_unlock(&dbs_info->timer_mutex);
305            cancel_delayed_work_sync(&dbs_info->work);
306            mutex_lock(&dbs_info->timer_mutex);
307
308            schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
309                         usecs_to_jiffies(new_rate));
310
311        }
312        mutex_unlock(&dbs_info->timer_mutex);
313    }
314}
315
316static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
317                   const char *buf, size_t count)
318{
319    unsigned int input;
320    int ret;
321    ret = sscanf(buf, "%u", &input);
322    if (ret != 1)
323        return -EINVAL;
324    update_sampling_rate(input);
325    return count;
326}
327
328static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
329                   const char *buf, size_t count)
330{
331    unsigned int input;
332    int ret;
333
334    ret = sscanf(buf, "%u", &input);
335    if (ret != 1)
336        return -EINVAL;
337    dbs_tuners_ins.io_is_busy = !!input;
338    return count;
339}
340
341static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
342                  const char *buf, size_t count)
343{
344    unsigned int input;
345    int ret;
346    ret = sscanf(buf, "%u", &input);
347
348    if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
349            input < MIN_FREQUENCY_UP_THRESHOLD) {
350        return -EINVAL;
351    }
352    dbs_tuners_ins.up_threshold = input;
353    return count;
354}
355
356static ssize_t store_sampling_down_factor(struct kobject *a,
357            struct attribute *b, const char *buf, size_t count)
358{
359    unsigned int input, j;
360    int ret;
361    ret = sscanf(buf, "%u", &input);
362
363    if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
364        return -EINVAL;
365    dbs_tuners_ins.sampling_down_factor = input;
366
367    /* Reset down sampling multiplier in case it was active */
368    for_each_online_cpu(j) {
369        struct cpu_dbs_info_s *dbs_info;
370        dbs_info = &per_cpu(od_cpu_dbs_info, j);
371        dbs_info->rate_mult = 1;
372    }
373    return count;
374}
375
376static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
377                      const char *buf, size_t count)
378{
379    unsigned int input;
380    int ret;
381
382    unsigned int j;
383
384    ret = sscanf(buf, "%u", &input);
385    if (ret != 1)
386        return -EINVAL;
387
388    if (input > 1)
389        input = 1;
390
391    if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
392        return count;
393    }
394    dbs_tuners_ins.ignore_nice = input;
395
396    /* we need to re-evaluate prev_cpu_idle */
397    for_each_online_cpu(j) {
398        struct cpu_dbs_info_s *dbs_info;
399        dbs_info = &per_cpu(od_cpu_dbs_info, j);
400        dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
401                        &dbs_info->prev_cpu_wall);
402        if (dbs_tuners_ins.ignore_nice)
403            dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
404
405    }
406    return count;
407}
408
409static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410                    const char *buf, size_t count)
411{
412    unsigned int input;
413    int ret;
414    ret = sscanf(buf, "%u", &input);
415
416    if (ret != 1)
417        return -EINVAL;
418
419    if (input > 1000)
420        input = 1000;
421
422    dbs_tuners_ins.powersave_bias = input;
423    ondemand_powersave_bias_init();
424    return count;
425}
426
427define_one_global_rw(sampling_rate);
428define_one_global_rw(io_is_busy);
429define_one_global_rw(up_threshold);
430define_one_global_rw(sampling_down_factor);
431define_one_global_rw(ignore_nice_load);
432define_one_global_rw(powersave_bias);
433
434static struct attribute *dbs_attributes[] = {
435    &sampling_rate_min.attr,
436    &sampling_rate.attr,
437    &up_threshold.attr,
438    &sampling_down_factor.attr,
439    &ignore_nice_load.attr,
440    &powersave_bias.attr,
441    &io_is_busy.attr,
442    NULL
443};
444
445static struct attribute_group dbs_attr_group = {
446    .attrs = dbs_attributes,
447    .name = "ondemand",
448};
449
450/************************** sysfs end ************************/
451
452static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
453{
454    if (dbs_tuners_ins.powersave_bias)
455        freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
456    else if (p->cur == p->max)
457        return;
458
459    __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
460            CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
461}
462
463static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
464{
465    unsigned int max_load_freq;
466
467    struct cpufreq_policy *policy;
468    unsigned int j;
469
470    this_dbs_info->freq_lo = 0;
471    policy = this_dbs_info->cur_policy;
472
473    /*
474     * Every sampling_rate, we check, if current idle time is less
475     * than 20% (default), then we try to increase frequency
476     * Every sampling_rate, we look for a the lowest
477     * frequency which can sustain the load while keeping idle time over
478     * 30%. If such a frequency exist, we try to decrease to this frequency.
479     *
480     * Any frequency increase takes it to the maximum frequency.
481     * Frequency reduction happens at minimum steps of
482     * 5% (default) of current frequency
483     */
484
485    /* Get Absolute Load - in terms of freq */
486    max_load_freq = 0;
487
488    for_each_cpu(j, policy->cpus) {
489        struct cpu_dbs_info_s *j_dbs_info;
490        cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
491        unsigned int idle_time, wall_time, iowait_time;
492        unsigned int load, load_freq;
493        int freq_avg;
494
495        j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
496
497        cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
498        cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
499
500        wall_time = (unsigned int)
501            (cur_wall_time - j_dbs_info->prev_cpu_wall);
502        j_dbs_info->prev_cpu_wall = cur_wall_time;
503
504        idle_time = (unsigned int)
505            (cur_idle_time - j_dbs_info->prev_cpu_idle);
506        j_dbs_info->prev_cpu_idle = cur_idle_time;
507
508        iowait_time = (unsigned int)
509            (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
510        j_dbs_info->prev_cpu_iowait = cur_iowait_time;
511
512        if (dbs_tuners_ins.ignore_nice) {
513            u64 cur_nice;
514            unsigned long cur_nice_jiffies;
515
516            cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
517                     j_dbs_info->prev_cpu_nice;
518            /*
519             * Assumption: nice time between sampling periods will
520             * be less than 2^32 jiffies for 32 bit sys
521             */
522            cur_nice_jiffies = (unsigned long)
523                    cputime64_to_jiffies64(cur_nice);
524
525            j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
526            idle_time += jiffies_to_usecs(cur_nice_jiffies);
527        }
528
529        /*
530         * For the purpose of ondemand, waiting for disk IO is an
531         * indication that you're performance critical, and not that
532         * the system is actually idle. So subtract the iowait time
533         * from the cpu idle time.
534         */
535
536        if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
537            idle_time -= iowait_time;
538
539        if (unlikely(!wall_time || wall_time < idle_time))
540            continue;
541
542        load = 100 * (wall_time - idle_time) / wall_time;
543
544        freq_avg = __cpufreq_driver_getavg(policy, j);
545        if (freq_avg <= 0)
546            freq_avg = policy->cur;
547
548        load_freq = load * freq_avg;
549        if (load_freq > max_load_freq)
550            max_load_freq = load_freq;
551    }
552
553    /* Check for frequency increase */
554    if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
555        /* If switching to max speed, apply sampling_down_factor */
556        if (policy->cur < policy->max)
557            this_dbs_info->rate_mult =
558                dbs_tuners_ins.sampling_down_factor;
559        dbs_freq_increase(policy, policy->max);
560        return;
561    }
562
563    /* Check for frequency decrease */
564    /* if we cannot reduce the frequency anymore, break out early */
565    if (policy->cur == policy->min)
566        return;
567
568    /*
569     * The optimal frequency is the frequency that is the lowest that
570     * can support the current CPU usage without triggering the up
571     * policy. To be safe, we focus 10 points under the threshold.
572     */
573    if (max_load_freq <
574        (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
575         policy->cur) {
576        unsigned int freq_next;
577        freq_next = max_load_freq /
578                (dbs_tuners_ins.up_threshold -
579                 dbs_tuners_ins.down_differential);
580
581        /* No longer fully busy, reset rate_mult */
582        this_dbs_info->rate_mult = 1;
583
584        if (freq_next < policy->min)
585            freq_next = policy->min;
586
587        if (!dbs_tuners_ins.powersave_bias) {
588            __cpufreq_driver_target(policy, freq_next,
589                    CPUFREQ_RELATION_L);
590        } else {
591            int freq = powersave_bias_target(policy, freq_next,
592                    CPUFREQ_RELATION_L);
593            __cpufreq_driver_target(policy, freq,
594                CPUFREQ_RELATION_L);
595        }
596    }
597}
598
599static void do_dbs_timer(struct work_struct *work)
600{
601    struct cpu_dbs_info_s *dbs_info =
602        container_of(work, struct cpu_dbs_info_s, work.work);
603    unsigned int cpu = dbs_info->cpu;
604    int sample_type = dbs_info->sample_type;
605
606    int delay;
607
608    mutex_lock(&dbs_info->timer_mutex);
609
610    /* Common NORMAL_SAMPLE setup */
611    dbs_info->sample_type = DBS_NORMAL_SAMPLE;
612    if (!dbs_tuners_ins.powersave_bias ||
613        sample_type == DBS_NORMAL_SAMPLE) {
614        dbs_check_cpu(dbs_info);
615        if (dbs_info->freq_lo) {
616            /* Setup timer for SUB_SAMPLE */
617            dbs_info->sample_type = DBS_SUB_SAMPLE;
618            delay = dbs_info->freq_hi_jiffies;
619        } else {
620            /* We want all CPUs to do sampling nearly on
621             * same jiffy
622             */
623            delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
624                * dbs_info->rate_mult);
625
626            if (num_online_cpus() > 1)
627                delay -= jiffies % delay;
628        }
629    } else {
630        __cpufreq_driver_target(dbs_info->cur_policy,
631            dbs_info->freq_lo, CPUFREQ_RELATION_H);
632        delay = dbs_info->freq_lo_jiffies;
633    }
634    schedule_delayed_work_on(cpu, &dbs_info->work, delay);
635    mutex_unlock(&dbs_info->timer_mutex);
636}
637
638static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
639{
640    /* We want all CPUs to do sampling nearly on same jiffy */
641    int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
642
643    if (num_online_cpus() > 1)
644        delay -= jiffies % delay;
645
646    dbs_info->sample_type = DBS_NORMAL_SAMPLE;
647    INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
648    schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
649}
650
651static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
652{
653    cancel_delayed_work_sync(&dbs_info->work);
654}
655
656/*
657 * Not all CPUs want IO time to be accounted as busy; this dependson how
658 * efficient idling at a higher frequency/voltage is.
659 * Pavel Machek says this is not so for various generations of AMD and old
660 * Intel systems.
661 * Mike Chan (androidlcom) calis this is also not true for ARM.
662 * Because of this, whitelist specific known (series) of CPUs by default, and
663 * leave all others up to the user.
664 */
665static int should_io_be_busy(void)
666{
667#if defined(CONFIG_X86)
668    /*
669     * For Intel, Core 2 (model 15) andl later have an efficient idle.
670     */
671    if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
672        boot_cpu_data.x86 == 6 &&
673        boot_cpu_data.x86_model >= 15)
674        return 1;
675#endif
676    return 0;
677}
678
679static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
680                   unsigned int event)
681{
682    unsigned int cpu = policy->cpu;
683    struct cpu_dbs_info_s *this_dbs_info;
684    unsigned int j;
685    int rc;
686
687    this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
688
689    switch (event) {
690    case CPUFREQ_GOV_START:
691        if ((!cpu_online(cpu)) || (!policy->cur))
692            return -EINVAL;
693
694        mutex_lock(&dbs_mutex);
695
696        dbs_enable++;
697        for_each_cpu(j, policy->cpus) {
698            struct cpu_dbs_info_s *j_dbs_info;
699            j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
700            j_dbs_info->cur_policy = policy;
701
702            j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
703                        &j_dbs_info->prev_cpu_wall);
704            if (dbs_tuners_ins.ignore_nice)
705                j_dbs_info->prev_cpu_nice =
706                        kcpustat_cpu(j).cpustat[CPUTIME_NICE];
707        }
708        this_dbs_info->cpu = cpu;
709        this_dbs_info->rate_mult = 1;
710        ondemand_powersave_bias_init_cpu(cpu);
711        /*
712         * Start the timerschedule work, when this governor
713         * is used for first time
714         */
715        if (dbs_enable == 1) {
716            unsigned int latency;
717
718            rc = sysfs_create_group(cpufreq_global_kobject,
719                        &dbs_attr_group);
720            if (rc) {
721                mutex_unlock(&dbs_mutex);
722                return rc;
723            }
724
725            /* policy latency is in nS. Convert it to uS first */
726            latency = policy->cpuinfo.transition_latency / 1000;
727            if (latency == 0)
728                latency = 1;
729            /* Bring kernel and HW constraints together */
730            min_sampling_rate = max(min_sampling_rate,
731                    MIN_LATENCY_MULTIPLIER * latency);
732            dbs_tuners_ins.sampling_rate =
733                max(min_sampling_rate,
734                    latency * LATENCY_MULTIPLIER);
735            dbs_tuners_ins.io_is_busy = should_io_be_busy();
736        }
737        mutex_unlock(&dbs_mutex);
738
739        mutex_init(&this_dbs_info->timer_mutex);
740        dbs_timer_init(this_dbs_info);
741        break;
742
743    case CPUFREQ_GOV_STOP:
744        dbs_timer_exit(this_dbs_info);
745
746        mutex_lock(&dbs_mutex);
747        mutex_destroy(&this_dbs_info->timer_mutex);
748        dbs_enable--;
749        mutex_unlock(&dbs_mutex);
750        if (!dbs_enable)
751            sysfs_remove_group(cpufreq_global_kobject,
752                       &dbs_attr_group);
753
754        break;
755
756    case CPUFREQ_GOV_LIMITS:
757        mutex_lock(&this_dbs_info->timer_mutex);
758        if (policy->max < this_dbs_info->cur_policy->cur)
759            __cpufreq_driver_target(this_dbs_info->cur_policy,
760                policy->max, CPUFREQ_RELATION_H);
761        else if (policy->min > this_dbs_info->cur_policy->cur)
762            __cpufreq_driver_target(this_dbs_info->cur_policy,
763                policy->min, CPUFREQ_RELATION_L);
764        mutex_unlock(&this_dbs_info->timer_mutex);
765        break;
766    }
767    return 0;
768}
769
770static int __init cpufreq_gov_dbs_init(void)
771{
772    u64 idle_time;
773    int cpu = get_cpu();
774
775    idle_time = get_cpu_idle_time_us(cpu, NULL);
776    put_cpu();
777    if (idle_time != -1ULL) {
778        /* Idle micro accounting is supported. Use finer thresholds */
779        dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
780        dbs_tuners_ins.down_differential =
781                    MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
782        /*
783         * In nohz/micro accounting case we set the minimum frequency
784         * not depending on HZ, but fixed (very low). The deferred
785         * timer might skip some samples if idle/sleeping as needed.
786        */
787        min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
788    } else {
789        /* For correct statistics, we need 10 ticks for each measure */
790        min_sampling_rate =
791            MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
792    }
793
794    return cpufreq_register_governor(&cpufreq_gov_ondemand);
795}
796
797static void __exit cpufreq_gov_dbs_exit(void)
798{
799    cpufreq_unregister_governor(&cpufreq_gov_ondemand);
800}
801
802
803MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
804MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
805MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
806    "Low Latency Frequency Transition capable processors");
807MODULE_LICENSE("GPL");
808
809#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
810fs_initcall(cpufreq_gov_dbs_init);
811#else
812module_init(cpufreq_gov_dbs_init);
813#endif
814module_exit(cpufreq_gov_dbs_exit);
815

Archive Download this file



interactive