Root/
1 | /* |
2 | * (c) 2003-2012 Advanced Micro Devices, Inc. |
3 | * Your use of this code is subject to the terms and conditions of the |
4 | * GNU general public license version 2. See "COPYING" or |
5 | * http://www.gnu.org/licenses/gpl.html |
6 | * |
7 | * Maintainer: |
8 | * Andreas Herrmann <andreas.herrmann3@amd.com> |
9 | * |
10 | * Based on the powernow-k7.c module written by Dave Jones. |
11 | * (C) 2003 Dave Jones on behalf of SuSE Labs |
12 | * (C) 2004 Dominik Brodowski <linux@brodo.de> |
13 | * (C) 2004 Pavel Machek <pavel@ucw.cz> |
14 | * Licensed under the terms of the GNU GPL License version 2. |
15 | * Based upon datasheets & sample CPUs kindly provided by AMD. |
16 | * |
17 | * Valuable input gratefully received from Dave Jones, Pavel Machek, |
18 | * Dominik Brodowski, Jacob Shin, and others. |
19 | * Originally developed by Paul Devriendt. |
20 | * |
21 | * Processor information obtained from Chapter 9 (Power and Thermal |
22 | * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for |
23 | * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x |
24 | * Power Management" in BKDGs for newer AMD CPU families. |
25 | * |
26 | * Tables for specific CPUs can be inferred from AMD's processor |
27 | * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf) |
28 | */ |
29 | |
30 | #include <linux/kernel.h> |
31 | #include <linux/smp.h> |
32 | #include <linux/module.h> |
33 | #include <linux/init.h> |
34 | #include <linux/cpufreq.h> |
35 | #include <linux/slab.h> |
36 | #include <linux/string.h> |
37 | #include <linux/cpumask.h> |
38 | #include <linux/io.h> |
39 | #include <linux/delay.h> |
40 | |
41 | #include <asm/msr.h> |
42 | #include <asm/cpu_device_id.h> |
43 | |
44 | #include <linux/acpi.h> |
45 | #include <linux/mutex.h> |
46 | #include <acpi/processor.h> |
47 | |
48 | #define PFX "powernow-k8: " |
49 | #define VERSION "version 2.20.00" |
50 | #include "powernow-k8.h" |
51 | #include "mperf.h" |
52 | |
53 | /* serialize freq changes */ |
54 | static DEFINE_MUTEX(fidvid_mutex); |
55 | |
56 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); |
57 | |
58 | static int cpu_family = CPU_OPTERON; |
59 | |
60 | /* array to map SW pstate number to acpi state */ |
61 | static u32 ps_to_as[8]; |
62 | |
63 | /* core performance boost */ |
64 | static bool cpb_capable, cpb_enabled; |
65 | static struct msr __percpu *msrs; |
66 | |
67 | static struct cpufreq_driver cpufreq_amd64_driver; |
68 | |
69 | #ifndef CONFIG_SMP |
70 | static inline const struct cpumask *cpu_core_mask(int cpu) |
71 | { |
72 | return cpumask_of(0); |
73 | } |
74 | #endif |
75 | |
76 | /* Return a frequency in MHz, given an input fid */ |
77 | static u32 find_freq_from_fid(u32 fid) |
78 | { |
79 | return 800 + (fid * 100); |
80 | } |
81 | |
82 | /* Return a frequency in KHz, given an input fid */ |
83 | static u32 find_khz_freq_from_fid(u32 fid) |
84 | { |
85 | return 1000 * find_freq_from_fid(fid); |
86 | } |
87 | |
88 | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, |
89 | u32 pstate) |
90 | { |
91 | return data[ps_to_as[pstate]].frequency; |
92 | } |
93 | |
94 | /* Return the vco fid for an input fid |
95 | * |
96 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids |
97 | * only from corresponding high fids. This returns "high" fid corresponding to |
98 | * "low" one. |
99 | */ |
100 | static u32 convert_fid_to_vco_fid(u32 fid) |
101 | { |
102 | if (fid < HI_FID_TABLE_BOTTOM) |
103 | return 8 + (2 * fid); |
104 | else |
105 | return fid; |
106 | } |
107 | |
108 | /* |
109 | * Return 1 if the pending bit is set. Unless we just instructed the processor |
110 | * to transition to a new state, seeing this bit set is really bad news. |
111 | */ |
112 | static int pending_bit_stuck(void) |
113 | { |
114 | u32 lo, hi; |
115 | |
116 | if (cpu_family == CPU_HW_PSTATE) |
117 | return 0; |
118 | |
119 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
120 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; |
121 | } |
122 | |
123 | /* |
124 | * Update the global current fid / vid values from the status msr. |
125 | * Returns 1 on error. |
126 | */ |
127 | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) |
128 | { |
129 | u32 lo, hi; |
130 | u32 i = 0; |
131 | |
132 | if (cpu_family == CPU_HW_PSTATE) { |
133 | rdmsr(MSR_PSTATE_STATUS, lo, hi); |
134 | i = lo & HW_PSTATE_MASK; |
135 | data->currpstate = i; |
136 | |
137 | /* |
138 | * a workaround for family 11h erratum 311 might cause |
139 | * an "out-of-range Pstate if the core is in Pstate-0 |
140 | */ |
141 | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) |
142 | data->currpstate = HW_PSTATE_0; |
143 | |
144 | return 0; |
145 | } |
146 | do { |
147 | if (i++ > 10000) { |
148 | pr_debug("detected change pending stuck\n"); |
149 | return 1; |
150 | } |
151 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
152 | } while (lo & MSR_S_LO_CHANGE_PENDING); |
153 | |
154 | data->currvid = hi & MSR_S_HI_CURRENT_VID; |
155 | data->currfid = lo & MSR_S_LO_CURRENT_FID; |
156 | |
157 | return 0; |
158 | } |
159 | |
160 | /* the isochronous relief time */ |
161 | static void count_off_irt(struct powernow_k8_data *data) |
162 | { |
163 | udelay((1 << data->irt) * 10); |
164 | return; |
165 | } |
166 | |
167 | /* the voltage stabilization time */ |
168 | static void count_off_vst(struct powernow_k8_data *data) |
169 | { |
170 | udelay(data->vstable * VST_UNITS_20US); |
171 | return; |
172 | } |
173 | |
174 | /* need to init the control msr to a safe value (for each cpu) */ |
175 | static void fidvid_msr_init(void) |
176 | { |
177 | u32 lo, hi; |
178 | u8 fid, vid; |
179 | |
180 | rdmsr(MSR_FIDVID_STATUS, lo, hi); |
181 | vid = hi & MSR_S_HI_CURRENT_VID; |
182 | fid = lo & MSR_S_LO_CURRENT_FID; |
183 | lo = fid | (vid << MSR_C_LO_VID_SHIFT); |
184 | hi = MSR_C_HI_STP_GNT_BENIGN; |
185 | pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); |
186 | wrmsr(MSR_FIDVID_CTL, lo, hi); |
187 | } |
188 | |
189 | /* write the new fid value along with the other control fields to the msr */ |
190 | static int write_new_fid(struct powernow_k8_data *data, u32 fid) |
191 | { |
192 | u32 lo; |
193 | u32 savevid = data->currvid; |
194 | u32 i = 0; |
195 | |
196 | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { |
197 | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); |
198 | return 1; |
199 | } |
200 | |
201 | lo = fid; |
202 | lo |= (data->currvid << MSR_C_LO_VID_SHIFT); |
203 | lo |= MSR_C_LO_INIT_FID_VID; |
204 | |
205 | pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", |
206 | fid, lo, data->plllock * PLL_LOCK_CONVERSION); |
207 | |
208 | do { |
209 | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); |
210 | if (i++ > 100) { |
211 | printk(KERN_ERR PFX |
212 | "Hardware error - pending bit very stuck - " |
213 | "no further pstate changes possible\n"); |
214 | return 1; |
215 | } |
216 | } while (query_current_values_with_pending_wait(data)); |
217 | |
218 | count_off_irt(data); |
219 | |
220 | if (savevid != data->currvid) { |
221 | printk(KERN_ERR PFX |
222 | "vid change on fid trans, old 0x%x, new 0x%x\n", |
223 | savevid, data->currvid); |
224 | return 1; |
225 | } |
226 | |
227 | if (fid != data->currfid) { |
228 | printk(KERN_ERR PFX |
229 | "fid trans failed, fid 0x%x, curr 0x%x\n", fid, |
230 | data->currfid); |
231 | return 1; |
232 | } |
233 | |
234 | return 0; |
235 | } |
236 | |
237 | /* Write a new vid to the hardware */ |
238 | static int write_new_vid(struct powernow_k8_data *data, u32 vid) |
239 | { |
240 | u32 lo; |
241 | u32 savefid = data->currfid; |
242 | int i = 0; |
243 | |
244 | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { |
245 | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); |
246 | return 1; |
247 | } |
248 | |
249 | lo = data->currfid; |
250 | lo |= (vid << MSR_C_LO_VID_SHIFT); |
251 | lo |= MSR_C_LO_INIT_FID_VID; |
252 | |
253 | pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", |
254 | vid, lo, STOP_GRANT_5NS); |
255 | |
256 | do { |
257 | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); |
258 | if (i++ > 100) { |
259 | printk(KERN_ERR PFX "internal error - pending bit " |
260 | "very stuck - no further pstate " |
261 | "changes possible\n"); |
262 | return 1; |
263 | } |
264 | } while (query_current_values_with_pending_wait(data)); |
265 | |
266 | if (savefid != data->currfid) { |
267 | printk(KERN_ERR PFX "fid changed on vid trans, old " |
268 | "0x%x new 0x%x\n", |
269 | savefid, data->currfid); |
270 | return 1; |
271 | } |
272 | |
273 | if (vid != data->currvid) { |
274 | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " |
275 | "curr 0x%x\n", |
276 | vid, data->currvid); |
277 | return 1; |
278 | } |
279 | |
280 | return 0; |
281 | } |
282 | |
283 | /* |
284 | * Reduce the vid by the max of step or reqvid. |
285 | * Decreasing vid codes represent increasing voltages: |
286 | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. |
287 | */ |
288 | static int decrease_vid_code_by_step(struct powernow_k8_data *data, |
289 | u32 reqvid, u32 step) |
290 | { |
291 | if ((data->currvid - reqvid) > step) |
292 | reqvid = data->currvid - step; |
293 | |
294 | if (write_new_vid(data, reqvid)) |
295 | return 1; |
296 | |
297 | count_off_vst(data); |
298 | |
299 | return 0; |
300 | } |
301 | |
302 | /* Change hardware pstate by single MSR write */ |
303 | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) |
304 | { |
305 | wrmsr(MSR_PSTATE_CTRL, pstate, 0); |
306 | data->currpstate = pstate; |
307 | return 0; |
308 | } |
309 | |
310 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ |
311 | static int transition_fid_vid(struct powernow_k8_data *data, |
312 | u32 reqfid, u32 reqvid) |
313 | { |
314 | if (core_voltage_pre_transition(data, reqvid, reqfid)) |
315 | return 1; |
316 | |
317 | if (core_frequency_transition(data, reqfid)) |
318 | return 1; |
319 | |
320 | if (core_voltage_post_transition(data, reqvid)) |
321 | return 1; |
322 | |
323 | if (query_current_values_with_pending_wait(data)) |
324 | return 1; |
325 | |
326 | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { |
327 | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " |
328 | "curr 0x%x 0x%x\n", |
329 | smp_processor_id(), |
330 | reqfid, reqvid, data->currfid, data->currvid); |
331 | return 1; |
332 | } |
333 | |
334 | pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", |
335 | smp_processor_id(), data->currfid, data->currvid); |
336 | |
337 | return 0; |
338 | } |
339 | |
340 | /* Phase 1 - core voltage transition ... setup voltage */ |
341 | static int core_voltage_pre_transition(struct powernow_k8_data *data, |
342 | u32 reqvid, u32 reqfid) |
343 | { |
344 | u32 rvosteps = data->rvo; |
345 | u32 savefid = data->currfid; |
346 | u32 maxvid, lo, rvomult = 1; |
347 | |
348 | pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " |
349 | "reqvid 0x%x, rvo 0x%x\n", |
350 | smp_processor_id(), |
351 | data->currfid, data->currvid, reqvid, data->rvo); |
352 | |
353 | if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) |
354 | rvomult = 2; |
355 | rvosteps *= rvomult; |
356 | rdmsr(MSR_FIDVID_STATUS, lo, maxvid); |
357 | maxvid = 0x1f & (maxvid >> 16); |
358 | pr_debug("ph1 maxvid=0x%x\n", maxvid); |
359 | if (reqvid < maxvid) /* lower numbers are higher voltages */ |
360 | reqvid = maxvid; |
361 | |
362 | while (data->currvid > reqvid) { |
363 | pr_debug("ph1: curr 0x%x, req vid 0x%x\n", |
364 | data->currvid, reqvid); |
365 | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) |
366 | return 1; |
367 | } |
368 | |
369 | while ((rvosteps > 0) && |
370 | ((rvomult * data->rvo + data->currvid) > reqvid)) { |
371 | if (data->currvid == maxvid) { |
372 | rvosteps = 0; |
373 | } else { |
374 | pr_debug("ph1: changing vid for rvo, req 0x%x\n", |
375 | data->currvid - 1); |
376 | if (decrease_vid_code_by_step(data, data->currvid-1, 1)) |
377 | return 1; |
378 | rvosteps--; |
379 | } |
380 | } |
381 | |
382 | if (query_current_values_with_pending_wait(data)) |
383 | return 1; |
384 | |
385 | if (savefid != data->currfid) { |
386 | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", |
387 | data->currfid); |
388 | return 1; |
389 | } |
390 | |
391 | pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", |
392 | data->currfid, data->currvid); |
393 | |
394 | return 0; |
395 | } |
396 | |
397 | /* Phase 2 - core frequency transition */ |
398 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) |
399 | { |
400 | u32 vcoreqfid, vcocurrfid, vcofiddiff; |
401 | u32 fid_interval, savevid = data->currvid; |
402 | |
403 | if (data->currfid == reqfid) { |
404 | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", |
405 | data->currfid); |
406 | return 0; |
407 | } |
408 | |
409 | pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " |
410 | "reqfid 0x%x\n", |
411 | smp_processor_id(), |
412 | data->currfid, data->currvid, reqfid); |
413 | |
414 | vcoreqfid = convert_fid_to_vco_fid(reqfid); |
415 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
416 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
417 | : vcoreqfid - vcocurrfid; |
418 | |
419 | if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) |
420 | vcofiddiff = 0; |
421 | |
422 | while (vcofiddiff > 2) { |
423 | (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); |
424 | |
425 | if (reqfid > data->currfid) { |
426 | if (data->currfid > LO_FID_TABLE_TOP) { |
427 | if (write_new_fid(data, |
428 | data->currfid + fid_interval)) |
429 | return 1; |
430 | } else { |
431 | if (write_new_fid |
432 | (data, |
433 | 2 + convert_fid_to_vco_fid(data->currfid))) |
434 | return 1; |
435 | } |
436 | } else { |
437 | if (write_new_fid(data, data->currfid - fid_interval)) |
438 | return 1; |
439 | } |
440 | |
441 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
442 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
443 | : vcoreqfid - vcocurrfid; |
444 | } |
445 | |
446 | if (write_new_fid(data, reqfid)) |
447 | return 1; |
448 | |
449 | if (query_current_values_with_pending_wait(data)) |
450 | return 1; |
451 | |
452 | if (data->currfid != reqfid) { |
453 | printk(KERN_ERR PFX |
454 | "ph2: mismatch, failed fid transition, " |
455 | "curr 0x%x, req 0x%x\n", |
456 | data->currfid, reqfid); |
457 | return 1; |
458 | } |
459 | |
460 | if (savevid != data->currvid) { |
461 | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", |
462 | savevid, data->currvid); |
463 | return 1; |
464 | } |
465 | |
466 | pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", |
467 | data->currfid, data->currvid); |
468 | |
469 | return 0; |
470 | } |
471 | |
472 | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ |
473 | static int core_voltage_post_transition(struct powernow_k8_data *data, |
474 | u32 reqvid) |
475 | { |
476 | u32 savefid = data->currfid; |
477 | u32 savereqvid = reqvid; |
478 | |
479 | pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", |
480 | smp_processor_id(), |
481 | data->currfid, data->currvid); |
482 | |
483 | if (reqvid != data->currvid) { |
484 | if (write_new_vid(data, reqvid)) |
485 | return 1; |
486 | |
487 | if (savefid != data->currfid) { |
488 | printk(KERN_ERR PFX |
489 | "ph3: bad fid change, save 0x%x, curr 0x%x\n", |
490 | savefid, data->currfid); |
491 | return 1; |
492 | } |
493 | |
494 | if (data->currvid != reqvid) { |
495 | printk(KERN_ERR PFX |
496 | "ph3: failed vid transition\n, " |
497 | "req 0x%x, curr 0x%x", |
498 | reqvid, data->currvid); |
499 | return 1; |
500 | } |
501 | } |
502 | |
503 | if (query_current_values_with_pending_wait(data)) |
504 | return 1; |
505 | |
506 | if (savereqvid != data->currvid) { |
507 | pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); |
508 | return 1; |
509 | } |
510 | |
511 | if (savefid != data->currfid) { |
512 | pr_debug("ph3 failed, currfid changed 0x%x\n", |
513 | data->currfid); |
514 | return 1; |
515 | } |
516 | |
517 | pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", |
518 | data->currfid, data->currvid); |
519 | |
520 | return 0; |
521 | } |
522 | |
523 | static const struct x86_cpu_id powernow_k8_ids[] = { |
524 | /* IO based frequency switching */ |
525 | { X86_VENDOR_AMD, 0xf }, |
526 | /* MSR based frequency switching supported */ |
527 | X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE), |
528 | {} |
529 | }; |
530 | MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); |
531 | |
532 | static void check_supported_cpu(void *_rc) |
533 | { |
534 | u32 eax, ebx, ecx, edx; |
535 | int *rc = _rc; |
536 | |
537 | *rc = -ENODEV; |
538 | |
539 | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
540 | |
541 | if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { |
542 | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || |
543 | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { |
544 | printk(KERN_INFO PFX |
545 | "Processor cpuid %x not supported\n", eax); |
546 | return; |
547 | } |
548 | |
549 | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); |
550 | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { |
551 | printk(KERN_INFO PFX |
552 | "No frequency change capabilities detected\n"); |
553 | return; |
554 | } |
555 | |
556 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
557 | if ((edx & P_STATE_TRANSITION_CAPABLE) |
558 | != P_STATE_TRANSITION_CAPABLE) { |
559 | printk(KERN_INFO PFX |
560 | "Power state transitions not supported\n"); |
561 | return; |
562 | } |
563 | } else { /* must be a HW Pstate capable processor */ |
564 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
565 | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) |
566 | cpu_family = CPU_HW_PSTATE; |
567 | else |
568 | return; |
569 | } |
570 | |
571 | *rc = 0; |
572 | } |
573 | |
574 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, |
575 | u8 maxvid) |
576 | { |
577 | unsigned int j; |
578 | u8 lastfid = 0xff; |
579 | |
580 | for (j = 0; j < data->numps; j++) { |
581 | if (pst[j].vid > LEAST_VID) { |
582 | printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", |
583 | j, pst[j].vid); |
584 | return -EINVAL; |
585 | } |
586 | if (pst[j].vid < data->rvo) { |
587 | /* vid + rvo >= 0 */ |
588 | printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" |
589 | " %d\n", j); |
590 | return -ENODEV; |
591 | } |
592 | if (pst[j].vid < maxvid + data->rvo) { |
593 | /* vid + rvo >= maxvid */ |
594 | printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" |
595 | " %d\n", j); |
596 | return -ENODEV; |
597 | } |
598 | if (pst[j].fid > MAX_FID) { |
599 | printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" |
600 | " %d\n", j); |
601 | return -ENODEV; |
602 | } |
603 | if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { |
604 | /* Only first fid is allowed to be in "low" range */ |
605 | printk(KERN_ERR FW_BUG PFX "two low fids - %d : " |
606 | "0x%x\n", j, pst[j].fid); |
607 | return -EINVAL; |
608 | } |
609 | if (pst[j].fid < lastfid) |
610 | lastfid = pst[j].fid; |
611 | } |
612 | if (lastfid & 1) { |
613 | printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); |
614 | return -EINVAL; |
615 | } |
616 | if (lastfid > LO_FID_TABLE_TOP) |
617 | printk(KERN_INFO FW_BUG PFX |
618 | "first fid not from lo freq table\n"); |
619 | |
620 | return 0; |
621 | } |
622 | |
623 | static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, |
624 | unsigned int entry) |
625 | { |
626 | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; |
627 | } |
628 | |
629 | static void print_basics(struct powernow_k8_data *data) |
630 | { |
631 | int j; |
632 | for (j = 0; j < data->numps; j++) { |
633 | if (data->powernow_table[j].frequency != |
634 | CPUFREQ_ENTRY_INVALID) { |
635 | if (cpu_family == CPU_HW_PSTATE) { |
636 | printk(KERN_INFO PFX |
637 | " %d : pstate %d (%d MHz)\n", j, |
638 | data->powernow_table[j].index, |
639 | data->powernow_table[j].frequency/1000); |
640 | } else { |
641 | printk(KERN_INFO PFX |
642 | "fid 0x%x (%d MHz), vid 0x%x\n", |
643 | data->powernow_table[j].index & 0xff, |
644 | data->powernow_table[j].frequency/1000, |
645 | data->powernow_table[j].index >> 8); |
646 | } |
647 | } |
648 | } |
649 | if (data->batps) |
650 | printk(KERN_INFO PFX "Only %d pstates on battery\n", |
651 | data->batps); |
652 | } |
653 | |
654 | static u32 freq_from_fid_did(u32 fid, u32 did) |
655 | { |
656 | u32 mhz = 0; |
657 | |
658 | if (boot_cpu_data.x86 == 0x10) |
659 | mhz = (100 * (fid + 0x10)) >> did; |
660 | else if (boot_cpu_data.x86 == 0x11) |
661 | mhz = (100 * (fid + 8)) >> did; |
662 | else |
663 | BUG(); |
664 | |
665 | return mhz * 1000; |
666 | } |
667 | |
668 | static int fill_powernow_table(struct powernow_k8_data *data, |
669 | struct pst_s *pst, u8 maxvid) |
670 | { |
671 | struct cpufreq_frequency_table *powernow_table; |
672 | unsigned int j; |
673 | |
674 | if (data->batps) { |
675 | /* use ACPI support to get full speed on mains power */ |
676 | printk(KERN_WARNING PFX |
677 | "Only %d pstates usable (use ACPI driver for full " |
678 | "range\n", data->batps); |
679 | data->numps = data->batps; |
680 | } |
681 | |
682 | for (j = 1; j < data->numps; j++) { |
683 | if (pst[j-1].fid >= pst[j].fid) { |
684 | printk(KERN_ERR PFX "PST out of sequence\n"); |
685 | return -EINVAL; |
686 | } |
687 | } |
688 | |
689 | if (data->numps < 2) { |
690 | printk(KERN_ERR PFX "no p states to transition\n"); |
691 | return -ENODEV; |
692 | } |
693 | |
694 | if (check_pst_table(data, pst, maxvid)) |
695 | return -EINVAL; |
696 | |
697 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
698 | * (data->numps + 1)), GFP_KERNEL); |
699 | if (!powernow_table) { |
700 | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); |
701 | return -ENOMEM; |
702 | } |
703 | |
704 | for (j = 0; j < data->numps; j++) { |
705 | int freq; |
706 | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ |
707 | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ |
708 | freq = find_khz_freq_from_fid(pst[j].fid); |
709 | powernow_table[j].frequency = freq; |
710 | } |
711 | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; |
712 | powernow_table[data->numps].index = 0; |
713 | |
714 | if (query_current_values_with_pending_wait(data)) { |
715 | kfree(powernow_table); |
716 | return -EIO; |
717 | } |
718 | |
719 | pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); |
720 | data->powernow_table = powernow_table; |
721 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
722 | print_basics(data); |
723 | |
724 | for (j = 0; j < data->numps; j++) |
725 | if ((pst[j].fid == data->currfid) && |
726 | (pst[j].vid == data->currvid)) |
727 | return 0; |
728 | |
729 | pr_debug("currfid/vid do not match PST, ignoring\n"); |
730 | return 0; |
731 | } |
732 | |
733 | /* Find and validate the PSB/PST table in BIOS. */ |
734 | static int find_psb_table(struct powernow_k8_data *data) |
735 | { |
736 | struct psb_s *psb; |
737 | unsigned int i; |
738 | u32 mvs; |
739 | u8 maxvid; |
740 | u32 cpst = 0; |
741 | u32 thiscpuid; |
742 | |
743 | for (i = 0xc0000; i < 0xffff0; i += 0x10) { |
744 | /* Scan BIOS looking for the signature. */ |
745 | /* It can not be at ffff0 - it is too big. */ |
746 | |
747 | psb = phys_to_virt(i); |
748 | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) |
749 | continue; |
750 | |
751 | pr_debug("found PSB header at 0x%p\n", psb); |
752 | |
753 | pr_debug("table vers: 0x%x\n", psb->tableversion); |
754 | if (psb->tableversion != PSB_VERSION_1_4) { |
755 | printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); |
756 | return -ENODEV; |
757 | } |
758 | |
759 | pr_debug("flags: 0x%x\n", psb->flags1); |
760 | if (psb->flags1) { |
761 | printk(KERN_ERR FW_BUG PFX "unknown flags\n"); |
762 | return -ENODEV; |
763 | } |
764 | |
765 | data->vstable = psb->vstable; |
766 | pr_debug("voltage stabilization time: %d(*20us)\n", |
767 | data->vstable); |
768 | |
769 | pr_debug("flags2: 0x%x\n", psb->flags2); |
770 | data->rvo = psb->flags2 & 3; |
771 | data->irt = ((psb->flags2) >> 2) & 3; |
772 | mvs = ((psb->flags2) >> 4) & 3; |
773 | data->vidmvs = 1 << mvs; |
774 | data->batps = ((psb->flags2) >> 6) & 3; |
775 | |
776 | pr_debug("ramp voltage offset: %d\n", data->rvo); |
777 | pr_debug("isochronous relief time: %d\n", data->irt); |
778 | pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); |
779 | |
780 | pr_debug("numpst: 0x%x\n", psb->num_tables); |
781 | cpst = psb->num_tables; |
782 | if ((psb->cpuid == 0x00000fc0) || |
783 | (psb->cpuid == 0x00000fe0)) { |
784 | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
785 | if ((thiscpuid == 0x00000fc0) || |
786 | (thiscpuid == 0x00000fe0)) |
787 | cpst = 1; |
788 | } |
789 | if (cpst != 1) { |
790 | printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); |
791 | return -ENODEV; |
792 | } |
793 | |
794 | data->plllock = psb->plllocktime; |
795 | pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); |
796 | pr_debug("maxfid: 0x%x\n", psb->maxfid); |
797 | pr_debug("maxvid: 0x%x\n", psb->maxvid); |
798 | maxvid = psb->maxvid; |
799 | |
800 | data->numps = psb->numps; |
801 | pr_debug("numpstates: 0x%x\n", data->numps); |
802 | return fill_powernow_table(data, |
803 | (struct pst_s *)(psb+1), maxvid); |
804 | } |
805 | /* |
806 | * If you see this message, complain to BIOS manufacturer. If |
807 | * he tells you "we do not support Linux" or some similar |
808 | * nonsense, remember that Windows 2000 uses the same legacy |
809 | * mechanism that the old Linux PSB driver uses. Tell them it |
810 | * is broken with Windows 2000. |
811 | * |
812 | * The reference to the AMD documentation is chapter 9 in the |
813 | * BIOS and Kernel Developer's Guide, which is available on |
814 | * www.amd.com |
815 | */ |
816 | printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); |
817 | printk(KERN_ERR PFX "Make sure that your BIOS is up to date" |
818 | " and Cool'N'Quiet support is enabled in BIOS setup\n"); |
819 | return -ENODEV; |
820 | } |
821 | |
822 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, |
823 | unsigned int index) |
824 | { |
825 | u64 control; |
826 | |
827 | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) |
828 | return; |
829 | |
830 | control = data->acpi_data.states[index].control; |
831 | data->irt = (control >> IRT_SHIFT) & IRT_MASK; |
832 | data->rvo = (control >> RVO_SHIFT) & RVO_MASK; |
833 | data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; |
834 | data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; |
835 | data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); |
836 | data->vstable = (control >> VST_SHIFT) & VST_MASK; |
837 | } |
838 | |
839 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) |
840 | { |
841 | struct cpufreq_frequency_table *powernow_table; |
842 | int ret_val = -ENODEV; |
843 | u64 control, status; |
844 | |
845 | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { |
846 | pr_debug("register performance failed: bad ACPI data\n"); |
847 | return -EIO; |
848 | } |
849 | |
850 | /* verify the data contained in the ACPI structures */ |
851 | if (data->acpi_data.state_count <= 1) { |
852 | pr_debug("No ACPI P-States\n"); |
853 | goto err_out; |
854 | } |
855 | |
856 | control = data->acpi_data.control_register.space_id; |
857 | status = data->acpi_data.status_register.space_id; |
858 | |
859 | if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || |
860 | (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { |
861 | pr_debug("Invalid control/status registers (%llx - %llx)\n", |
862 | control, status); |
863 | goto err_out; |
864 | } |
865 | |
866 | /* fill in data->powernow_table */ |
867 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
868 | * (data->acpi_data.state_count + 1)), GFP_KERNEL); |
869 | if (!powernow_table) { |
870 | pr_debug("powernow_table memory alloc failure\n"); |
871 | goto err_out; |
872 | } |
873 | |
874 | /* fill in data */ |
875 | data->numps = data->acpi_data.state_count; |
876 | powernow_k8_acpi_pst_values(data, 0); |
877 | |
878 | if (cpu_family == CPU_HW_PSTATE) |
879 | ret_val = fill_powernow_table_pstate(data, powernow_table); |
880 | else |
881 | ret_val = fill_powernow_table_fidvid(data, powernow_table); |
882 | if (ret_val) |
883 | goto err_out_mem; |
884 | |
885 | powernow_table[data->acpi_data.state_count].frequency = |
886 | CPUFREQ_TABLE_END; |
887 | powernow_table[data->acpi_data.state_count].index = 0; |
888 | data->powernow_table = powernow_table; |
889 | |
890 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
891 | print_basics(data); |
892 | |
893 | /* notify BIOS that we exist */ |
894 | acpi_processor_notify_smm(THIS_MODULE); |
895 | |
896 | if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { |
897 | printk(KERN_ERR PFX |
898 | "unable to alloc powernow_k8_data cpumask\n"); |
899 | ret_val = -ENOMEM; |
900 | goto err_out_mem; |
901 | } |
902 | |
903 | return 0; |
904 | |
905 | err_out_mem: |
906 | kfree(powernow_table); |
907 | |
908 | err_out: |
909 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); |
910 | |
911 | /* data->acpi_data.state_count informs us at ->exit() |
912 | * whether ACPI was used */ |
913 | data->acpi_data.state_count = 0; |
914 | |
915 | return ret_val; |
916 | } |
917 | |
918 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, |
919 | struct cpufreq_frequency_table *powernow_table) |
920 | { |
921 | int i; |
922 | u32 hi = 0, lo = 0; |
923 | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); |
924 | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; |
925 | |
926 | for (i = 0; i < data->acpi_data.state_count; i++) { |
927 | u32 index; |
928 | |
929 | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; |
930 | if (index > data->max_hw_pstate) { |
931 | printk(KERN_ERR PFX "invalid pstate %d - " |
932 | "bad value %d.\n", i, index); |
933 | printk(KERN_ERR PFX "Please report to BIOS " |
934 | "manufacturer\n"); |
935 | invalidate_entry(powernow_table, i); |
936 | continue; |
937 | } |
938 | |
939 | ps_to_as[index] = i; |
940 | |
941 | /* Frequency may be rounded for these */ |
942 | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) |
943 | || boot_cpu_data.x86 == 0x11) { |
944 | |
945 | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); |
946 | if (!(hi & HW_PSTATE_VALID_MASK)) { |
947 | pr_debug("invalid pstate %d, ignoring\n", index); |
948 | invalidate_entry(powernow_table, i); |
949 | continue; |
950 | } |
951 | |
952 | powernow_table[i].frequency = |
953 | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); |
954 | } else |
955 | powernow_table[i].frequency = |
956 | data->acpi_data.states[i].core_frequency * 1000; |
957 | |
958 | powernow_table[i].index = index; |
959 | } |
960 | return 0; |
961 | } |
962 | |
963 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, |
964 | struct cpufreq_frequency_table *powernow_table) |
965 | { |
966 | int i; |
967 | |
968 | for (i = 0; i < data->acpi_data.state_count; i++) { |
969 | u32 fid; |
970 | u32 vid; |
971 | u32 freq, index; |
972 | u64 status, control; |
973 | |
974 | if (data->exttype) { |
975 | status = data->acpi_data.states[i].status; |
976 | fid = status & EXT_FID_MASK; |
977 | vid = (status >> VID_SHIFT) & EXT_VID_MASK; |
978 | } else { |
979 | control = data->acpi_data.states[i].control; |
980 | fid = control & FID_MASK; |
981 | vid = (control >> VID_SHIFT) & VID_MASK; |
982 | } |
983 | |
984 | pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); |
985 | |
986 | index = fid | (vid<<8); |
987 | powernow_table[i].index = index; |
988 | |
989 | freq = find_khz_freq_from_fid(fid); |
990 | powernow_table[i].frequency = freq; |
991 | |
992 | /* verify frequency is OK */ |
993 | if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { |
994 | pr_debug("invalid freq %u kHz, ignoring\n", freq); |
995 | invalidate_entry(powernow_table, i); |
996 | continue; |
997 | } |
998 | |
999 | /* verify voltage is OK - |
1000 | * BIOSs are using "off" to indicate invalid */ |
1001 | if (vid == VID_OFF) { |
1002 | pr_debug("invalid vid %u, ignoring\n", vid); |
1003 | invalidate_entry(powernow_table, i); |
1004 | continue; |
1005 | } |
1006 | |
1007 | if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { |
1008 | printk(KERN_INFO PFX "invalid freq entries " |
1009 | "%u kHz vs. %u kHz\n", freq, |
1010 | (unsigned int) |
1011 | (data->acpi_data.states[i].core_frequency |
1012 | * 1000)); |
1013 | invalidate_entry(powernow_table, i); |
1014 | continue; |
1015 | } |
1016 | } |
1017 | return 0; |
1018 | } |
1019 | |
1020 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) |
1021 | { |
1022 | if (data->acpi_data.state_count) |
1023 | acpi_processor_unregister_performance(&data->acpi_data, |
1024 | data->cpu); |
1025 | free_cpumask_var(data->acpi_data.shared_cpu_map); |
1026 | } |
1027 | |
1028 | static int get_transition_latency(struct powernow_k8_data *data) |
1029 | { |
1030 | int max_latency = 0; |
1031 | int i; |
1032 | for (i = 0; i < data->acpi_data.state_count; i++) { |
1033 | int cur_latency = data->acpi_data.states[i].transition_latency |
1034 | + data->acpi_data.states[i].bus_master_latency; |
1035 | if (cur_latency > max_latency) |
1036 | max_latency = cur_latency; |
1037 | } |
1038 | if (max_latency == 0) { |
1039 | /* |
1040 | * Fam 11h and later may return 0 as transition latency. This |
1041 | * is intended and means "very fast". While cpufreq core and |
1042 | * governors currently can handle that gracefully, better set it |
1043 | * to 1 to avoid problems in the future. |
1044 | */ |
1045 | if (boot_cpu_data.x86 < 0x11) |
1046 | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " |
1047 | "latency\n"); |
1048 | max_latency = 1; |
1049 | } |
1050 | /* value in usecs, needs to be in nanoseconds */ |
1051 | return 1000 * max_latency; |
1052 | } |
1053 | |
1054 | /* Take a frequency, and issue the fid/vid transition command */ |
1055 | static int transition_frequency_fidvid(struct powernow_k8_data *data, |
1056 | unsigned int index) |
1057 | { |
1058 | u32 fid = 0; |
1059 | u32 vid = 0; |
1060 | int res, i; |
1061 | struct cpufreq_freqs freqs; |
1062 | |
1063 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
1064 | |
1065 | /* fid/vid correctness check for k8 */ |
1066 | /* fid are the lower 8 bits of the index we stored into |
1067 | * the cpufreq frequency table in find_psb_table, vid |
1068 | * are the upper 8 bits. |
1069 | */ |
1070 | fid = data->powernow_table[index].index & 0xFF; |
1071 | vid = (data->powernow_table[index].index & 0xFF00) >> 8; |
1072 | |
1073 | pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); |
1074 | |
1075 | if (query_current_values_with_pending_wait(data)) |
1076 | return 1; |
1077 | |
1078 | if ((data->currvid == vid) && (data->currfid == fid)) { |
1079 | pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", |
1080 | fid, vid); |
1081 | return 0; |
1082 | } |
1083 | |
1084 | pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", |
1085 | smp_processor_id(), fid, vid); |
1086 | freqs.old = find_khz_freq_from_fid(data->currfid); |
1087 | freqs.new = find_khz_freq_from_fid(fid); |
1088 | |
1089 | for_each_cpu(i, data->available_cores) { |
1090 | freqs.cpu = i; |
1091 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
1092 | } |
1093 | |
1094 | res = transition_fid_vid(data, fid, vid); |
1095 | if (res) |
1096 | return res; |
1097 | |
1098 | freqs.new = find_khz_freq_from_fid(data->currfid); |
1099 | |
1100 | for_each_cpu(i, data->available_cores) { |
1101 | freqs.cpu = i; |
1102 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
1103 | } |
1104 | return res; |
1105 | } |
1106 | |
1107 | /* Take a frequency, and issue the hardware pstate transition command */ |
1108 | static int transition_frequency_pstate(struct powernow_k8_data *data, |
1109 | unsigned int index) |
1110 | { |
1111 | u32 pstate = 0; |
1112 | int res, i; |
1113 | struct cpufreq_freqs freqs; |
1114 | |
1115 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
1116 | |
1117 | /* get MSR index for hardware pstate transition */ |
1118 | pstate = index & HW_PSTATE_MASK; |
1119 | if (pstate > data->max_hw_pstate) |
1120 | return -EINVAL; |
1121 | |
1122 | freqs.old = find_khz_freq_from_pstate(data->powernow_table, |
1123 | data->currpstate); |
1124 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); |
1125 | |
1126 | for_each_cpu(i, data->available_cores) { |
1127 | freqs.cpu = i; |
1128 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
1129 | } |
1130 | |
1131 | res = transition_pstate(data, pstate); |
1132 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); |
1133 | |
1134 | for_each_cpu(i, data->available_cores) { |
1135 | freqs.cpu = i; |
1136 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
1137 | } |
1138 | return res; |
1139 | } |
1140 | |
1141 | struct powernowk8_target_arg { |
1142 | struct cpufreq_policy *pol; |
1143 | unsigned targfreq; |
1144 | unsigned relation; |
1145 | }; |
1146 | |
1147 | static long powernowk8_target_fn(void *arg) |
1148 | { |
1149 | struct powernowk8_target_arg *pta = arg; |
1150 | struct cpufreq_policy *pol = pta->pol; |
1151 | unsigned targfreq = pta->targfreq; |
1152 | unsigned relation = pta->relation; |
1153 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
1154 | u32 checkfid; |
1155 | u32 checkvid; |
1156 | unsigned int newstate; |
1157 | int ret; |
1158 | |
1159 | if (!data) |
1160 | return -EINVAL; |
1161 | |
1162 | checkfid = data->currfid; |
1163 | checkvid = data->currvid; |
1164 | |
1165 | if (pending_bit_stuck()) { |
1166 | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); |
1167 | return -EIO; |
1168 | } |
1169 | |
1170 | pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", |
1171 | pol->cpu, targfreq, pol->min, pol->max, relation); |
1172 | |
1173 | if (query_current_values_with_pending_wait(data)) |
1174 | return -EIO; |
1175 | |
1176 | if (cpu_family != CPU_HW_PSTATE) { |
1177 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", |
1178 | data->currfid, data->currvid); |
1179 | |
1180 | if ((checkvid != data->currvid) || |
1181 | (checkfid != data->currfid)) { |
1182 | printk(KERN_INFO PFX |
1183 | "error - out of sync, fix 0x%x 0x%x, " |
1184 | "vid 0x%x 0x%x\n", |
1185 | checkfid, data->currfid, |
1186 | checkvid, data->currvid); |
1187 | } |
1188 | } |
1189 | |
1190 | if (cpufreq_frequency_table_target(pol, data->powernow_table, |
1191 | targfreq, relation, &newstate)) |
1192 | return -EIO; |
1193 | |
1194 | mutex_lock(&fidvid_mutex); |
1195 | |
1196 | powernow_k8_acpi_pst_values(data, newstate); |
1197 | |
1198 | if (cpu_family == CPU_HW_PSTATE) |
1199 | ret = transition_frequency_pstate(data, |
1200 | data->powernow_table[newstate].index); |
1201 | else |
1202 | ret = transition_frequency_fidvid(data, newstate); |
1203 | if (ret) { |
1204 | printk(KERN_ERR PFX "transition frequency failed\n"); |
1205 | mutex_unlock(&fidvid_mutex); |
1206 | return 1; |
1207 | } |
1208 | mutex_unlock(&fidvid_mutex); |
1209 | |
1210 | if (cpu_family == CPU_HW_PSTATE) |
1211 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, |
1212 | data->powernow_table[newstate].index); |
1213 | else |
1214 | pol->cur = find_khz_freq_from_fid(data->currfid); |
1215 | |
1216 | return 0; |
1217 | } |
1218 | |
1219 | /* Driver entry point to switch to the target frequency */ |
1220 | static int powernowk8_target(struct cpufreq_policy *pol, |
1221 | unsigned targfreq, unsigned relation) |
1222 | { |
1223 | struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq, |
1224 | .relation = relation }; |
1225 | |
1226 | /* |
1227 | * Must run on @pol->cpu. cpufreq core is responsible for ensuring |
1228 | * that we're bound to the current CPU and pol->cpu stays online. |
1229 | */ |
1230 | if (smp_processor_id() == pol->cpu) |
1231 | return powernowk8_target_fn(&pta); |
1232 | else |
1233 | return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta); |
1234 | } |
1235 | |
1236 | /* Driver entry point to verify the policy and range of frequencies */ |
1237 | static int powernowk8_verify(struct cpufreq_policy *pol) |
1238 | { |
1239 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
1240 | |
1241 | if (!data) |
1242 | return -EINVAL; |
1243 | |
1244 | return cpufreq_frequency_table_verify(pol, data->powernow_table); |
1245 | } |
1246 | |
1247 | struct init_on_cpu { |
1248 | struct powernow_k8_data *data; |
1249 | int rc; |
1250 | }; |
1251 | |
1252 | static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) |
1253 | { |
1254 | struct init_on_cpu *init_on_cpu = _init_on_cpu; |
1255 | |
1256 | if (pending_bit_stuck()) { |
1257 | printk(KERN_ERR PFX "failing init, change pending bit set\n"); |
1258 | init_on_cpu->rc = -ENODEV; |
1259 | return; |
1260 | } |
1261 | |
1262 | if (query_current_values_with_pending_wait(init_on_cpu->data)) { |
1263 | init_on_cpu->rc = -ENODEV; |
1264 | return; |
1265 | } |
1266 | |
1267 | if (cpu_family == CPU_OPTERON) |
1268 | fidvid_msr_init(); |
1269 | |
1270 | init_on_cpu->rc = 0; |
1271 | } |
1272 | |
1273 | /* per CPU init entry point to the driver */ |
1274 | static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) |
1275 | { |
1276 | static const char ACPI_PSS_BIOS_BUG_MSG[] = |
1277 | KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n" |
1278 | FW_BUG PFX "Try again with latest BIOS.\n"; |
1279 | struct powernow_k8_data *data; |
1280 | struct init_on_cpu init_on_cpu; |
1281 | int rc; |
1282 | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); |
1283 | |
1284 | if (!cpu_online(pol->cpu)) |
1285 | return -ENODEV; |
1286 | |
1287 | smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); |
1288 | if (rc) |
1289 | return -ENODEV; |
1290 | |
1291 | data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); |
1292 | if (!data) { |
1293 | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); |
1294 | return -ENOMEM; |
1295 | } |
1296 | |
1297 | data->cpu = pol->cpu; |
1298 | data->currpstate = HW_PSTATE_INVALID; |
1299 | |
1300 | if (powernow_k8_cpu_init_acpi(data)) { |
1301 | /* |
1302 | * Use the PSB BIOS structure. This is only available on |
1303 | * an UP version, and is deprecated by AMD. |
1304 | */ |
1305 | if (num_online_cpus() != 1) { |
1306 | printk_once(ACPI_PSS_BIOS_BUG_MSG); |
1307 | goto err_out; |
1308 | } |
1309 | if (pol->cpu != 0) { |
1310 | printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " |
1311 | "CPU other than CPU0. Complain to your BIOS " |
1312 | "vendor.\n"); |
1313 | goto err_out; |
1314 | } |
1315 | rc = find_psb_table(data); |
1316 | if (rc) |
1317 | goto err_out; |
1318 | |
1319 | /* Take a crude guess here. |
1320 | * That guess was in microseconds, so multiply with 1000 */ |
1321 | pol->cpuinfo.transition_latency = ( |
1322 | ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + |
1323 | ((1 << data->irt) * 30)) * 1000; |
1324 | } else /* ACPI _PSS objects available */ |
1325 | pol->cpuinfo.transition_latency = get_transition_latency(data); |
1326 | |
1327 | /* only run on specific CPU from here on */ |
1328 | init_on_cpu.data = data; |
1329 | smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, |
1330 | &init_on_cpu, 1); |
1331 | rc = init_on_cpu.rc; |
1332 | if (rc != 0) |
1333 | goto err_out_exit_acpi; |
1334 | |
1335 | if (cpu_family == CPU_HW_PSTATE) |
1336 | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); |
1337 | else |
1338 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); |
1339 | data->available_cores = pol->cpus; |
1340 | |
1341 | if (cpu_family == CPU_HW_PSTATE) |
1342 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, |
1343 | data->currpstate); |
1344 | else |
1345 | pol->cur = find_khz_freq_from_fid(data->currfid); |
1346 | pr_debug("policy current frequency %d kHz\n", pol->cur); |
1347 | |
1348 | /* min/max the cpu is capable of */ |
1349 | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { |
1350 | printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); |
1351 | powernow_k8_cpu_exit_acpi(data); |
1352 | kfree(data->powernow_table); |
1353 | kfree(data); |
1354 | return -EINVAL; |
1355 | } |
1356 | |
1357 | /* Check for APERF/MPERF support in hardware */ |
1358 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) |
1359 | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; |
1360 | |
1361 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); |
1362 | |
1363 | if (cpu_family == CPU_HW_PSTATE) |
1364 | pr_debug("cpu_init done, current pstate 0x%x\n", |
1365 | data->currpstate); |
1366 | else |
1367 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", |
1368 | data->currfid, data->currvid); |
1369 | |
1370 | per_cpu(powernow_data, pol->cpu) = data; |
1371 | |
1372 | return 0; |
1373 | |
1374 | err_out_exit_acpi: |
1375 | powernow_k8_cpu_exit_acpi(data); |
1376 | |
1377 | err_out: |
1378 | kfree(data); |
1379 | return -ENODEV; |
1380 | } |
1381 | |
1382 | static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) |
1383 | { |
1384 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
1385 | |
1386 | if (!data) |
1387 | return -EINVAL; |
1388 | |
1389 | powernow_k8_cpu_exit_acpi(data); |
1390 | |
1391 | cpufreq_frequency_table_put_attr(pol->cpu); |
1392 | |
1393 | kfree(data->powernow_table); |
1394 | kfree(data); |
1395 | per_cpu(powernow_data, pol->cpu) = NULL; |
1396 | |
1397 | return 0; |
1398 | } |
1399 | |
1400 | static void query_values_on_cpu(void *_err) |
1401 | { |
1402 | int *err = _err; |
1403 | struct powernow_k8_data *data = __this_cpu_read(powernow_data); |
1404 | |
1405 | *err = query_current_values_with_pending_wait(data); |
1406 | } |
1407 | |
1408 | static unsigned int powernowk8_get(unsigned int cpu) |
1409 | { |
1410 | struct powernow_k8_data *data = per_cpu(powernow_data, cpu); |
1411 | unsigned int khz = 0; |
1412 | int err; |
1413 | |
1414 | if (!data) |
1415 | return 0; |
1416 | |
1417 | smp_call_function_single(cpu, query_values_on_cpu, &err, true); |
1418 | if (err) |
1419 | goto out; |
1420 | |
1421 | if (cpu_family == CPU_HW_PSTATE) |
1422 | khz = find_khz_freq_from_pstate(data->powernow_table, |
1423 | data->currpstate); |
1424 | else |
1425 | khz = find_khz_freq_from_fid(data->currfid); |
1426 | |
1427 | |
1428 | out: |
1429 | return khz; |
1430 | } |
1431 | |
1432 | static void _cpb_toggle_msrs(bool t) |
1433 | { |
1434 | int cpu; |
1435 | |
1436 | get_online_cpus(); |
1437 | |
1438 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
1439 | |
1440 | for_each_cpu(cpu, cpu_online_mask) { |
1441 | struct msr *reg = per_cpu_ptr(msrs, cpu); |
1442 | if (t) |
1443 | reg->l &= ~BIT(25); |
1444 | else |
1445 | reg->l |= BIT(25); |
1446 | } |
1447 | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
1448 | |
1449 | put_online_cpus(); |
1450 | } |
1451 | |
1452 | /* |
1453 | * Switch on/off core performance boosting. |
1454 | * |
1455 | * 0=disable |
1456 | * 1=enable. |
1457 | */ |
1458 | static void cpb_toggle(bool t) |
1459 | { |
1460 | if (!cpb_capable) |
1461 | return; |
1462 | |
1463 | if (t && !cpb_enabled) { |
1464 | cpb_enabled = true; |
1465 | _cpb_toggle_msrs(t); |
1466 | printk(KERN_INFO PFX "Core Boosting enabled.\n"); |
1467 | } else if (!t && cpb_enabled) { |
1468 | cpb_enabled = false; |
1469 | _cpb_toggle_msrs(t); |
1470 | printk(KERN_INFO PFX "Core Boosting disabled.\n"); |
1471 | } |
1472 | } |
1473 | |
1474 | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, |
1475 | size_t count) |
1476 | { |
1477 | int ret = -EINVAL; |
1478 | unsigned long val = 0; |
1479 | |
1480 | ret = strict_strtoul(buf, 10, &val); |
1481 | if (!ret && (val == 0 || val == 1) && cpb_capable) |
1482 | cpb_toggle(val); |
1483 | else |
1484 | return -EINVAL; |
1485 | |
1486 | return count; |
1487 | } |
1488 | |
1489 | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) |
1490 | { |
1491 | return sprintf(buf, "%u\n", cpb_enabled); |
1492 | } |
1493 | |
1494 | #define define_one_rw(_name) \ |
1495 | static struct freq_attr _name = \ |
1496 | __ATTR(_name, 0644, show_##_name, store_##_name) |
1497 | |
1498 | define_one_rw(cpb); |
1499 | |
1500 | static struct freq_attr *powernow_k8_attr[] = { |
1501 | &cpufreq_freq_attr_scaling_available_freqs, |
1502 | &cpb, |
1503 | NULL, |
1504 | }; |
1505 | |
1506 | static struct cpufreq_driver cpufreq_amd64_driver = { |
1507 | .verify = powernowk8_verify, |
1508 | .target = powernowk8_target, |
1509 | .bios_limit = acpi_processor_get_bios_limit, |
1510 | .init = powernowk8_cpu_init, |
1511 | .exit = __devexit_p(powernowk8_cpu_exit), |
1512 | .get = powernowk8_get, |
1513 | .name = "powernow-k8", |
1514 | .owner = THIS_MODULE, |
1515 | .attr = powernow_k8_attr, |
1516 | }; |
1517 | |
1518 | /* |
1519 | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu |
1520 | * cannot block the remaining ones from boosting. On the CPU_UP path we |
1521 | * simply keep the boost-disable flag in sync with the current global |
1522 | * state. |
1523 | */ |
1524 | static int cpb_notify(struct notifier_block *nb, unsigned long action, |
1525 | void *hcpu) |
1526 | { |
1527 | unsigned cpu = (long)hcpu; |
1528 | u32 lo, hi; |
1529 | |
1530 | switch (action) { |
1531 | case CPU_UP_PREPARE: |
1532 | case CPU_UP_PREPARE_FROZEN: |
1533 | |
1534 | if (!cpb_enabled) { |
1535 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); |
1536 | lo |= BIT(25); |
1537 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); |
1538 | } |
1539 | break; |
1540 | |
1541 | case CPU_DOWN_PREPARE: |
1542 | case CPU_DOWN_PREPARE_FROZEN: |
1543 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); |
1544 | lo &= ~BIT(25); |
1545 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); |
1546 | break; |
1547 | |
1548 | default: |
1549 | break; |
1550 | } |
1551 | |
1552 | return NOTIFY_OK; |
1553 | } |
1554 | |
1555 | static struct notifier_block cpb_nb = { |
1556 | .notifier_call = cpb_notify, |
1557 | }; |
1558 | |
1559 | /* driver entry point for init */ |
1560 | static int __cpuinit powernowk8_init(void) |
1561 | { |
1562 | unsigned int i, supported_cpus = 0, cpu; |
1563 | int rv; |
1564 | |
1565 | if (!x86_match_cpu(powernow_k8_ids)) |
1566 | return -ENODEV; |
1567 | |
1568 | for_each_online_cpu(i) { |
1569 | int rc; |
1570 | smp_call_function_single(i, check_supported_cpu, &rc, 1); |
1571 | if (rc == 0) |
1572 | supported_cpus++; |
1573 | } |
1574 | |
1575 | if (supported_cpus != num_online_cpus()) |
1576 | return -ENODEV; |
1577 | |
1578 | printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", |
1579 | num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); |
1580 | |
1581 | if (boot_cpu_has(X86_FEATURE_CPB)) { |
1582 | |
1583 | cpb_capable = true; |
1584 | |
1585 | msrs = msrs_alloc(); |
1586 | if (!msrs) { |
1587 | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); |
1588 | return -ENOMEM; |
1589 | } |
1590 | |
1591 | register_cpu_notifier(&cpb_nb); |
1592 | |
1593 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); |
1594 | |
1595 | for_each_cpu(cpu, cpu_online_mask) { |
1596 | struct msr *reg = per_cpu_ptr(msrs, cpu); |
1597 | cpb_enabled |= !(!!(reg->l & BIT(25))); |
1598 | } |
1599 | |
1600 | printk(KERN_INFO PFX "Core Performance Boosting: %s.\n", |
1601 | (cpb_enabled ? "on" : "off")); |
1602 | } |
1603 | |
1604 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); |
1605 | if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) { |
1606 | unregister_cpu_notifier(&cpb_nb); |
1607 | msrs_free(msrs); |
1608 | msrs = NULL; |
1609 | } |
1610 | return rv; |
1611 | } |
1612 | |
1613 | /* driver entry point for term */ |
1614 | static void __exit powernowk8_exit(void) |
1615 | { |
1616 | pr_debug("exit\n"); |
1617 | |
1618 | if (boot_cpu_has(X86_FEATURE_CPB)) { |
1619 | msrs_free(msrs); |
1620 | msrs = NULL; |
1621 | |
1622 | unregister_cpu_notifier(&cpb_nb); |
1623 | } |
1624 | |
1625 | cpufreq_unregister_driver(&cpufreq_amd64_driver); |
1626 | } |
1627 | |
1628 | MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " |
1629 | "Mark Langsdorf <mark.langsdorf@amd.com>"); |
1630 | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); |
1631 | MODULE_LICENSE("GPL"); |
1632 | |
1633 | late_initcall(powernowk8_init); |
1634 | module_exit(powernowk8_exit); |
1635 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9