Root/
1 | /* |
2 | * Intel IXP4xx NPE-C crypto driver |
3 | * |
4 | * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com> |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify it |
7 | * under the terms of version 2 of the GNU General Public License |
8 | * as published by the Free Software Foundation. |
9 | * |
10 | */ |
11 | |
12 | #include <linux/platform_device.h> |
13 | #include <linux/dma-mapping.h> |
14 | #include <linux/dmapool.h> |
15 | #include <linux/crypto.h> |
16 | #include <linux/kernel.h> |
17 | #include <linux/rtnetlink.h> |
18 | #include <linux/interrupt.h> |
19 | #include <linux/spinlock.h> |
20 | #include <linux/gfp.h> |
21 | #include <linux/module.h> |
22 | |
23 | #include <crypto/ctr.h> |
24 | #include <crypto/des.h> |
25 | #include <crypto/aes.h> |
26 | #include <crypto/sha.h> |
27 | #include <crypto/algapi.h> |
28 | #include <crypto/aead.h> |
29 | #include <crypto/authenc.h> |
30 | #include <crypto/scatterwalk.h> |
31 | |
32 | #include <mach/npe.h> |
33 | #include <mach/qmgr.h> |
34 | |
35 | #define MAX_KEYLEN 32 |
36 | |
37 | /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ |
38 | #define NPE_CTX_LEN 80 |
39 | #define AES_BLOCK128 16 |
40 | |
41 | #define NPE_OP_HASH_VERIFY 0x01 |
42 | #define NPE_OP_CCM_ENABLE 0x04 |
43 | #define NPE_OP_CRYPT_ENABLE 0x08 |
44 | #define NPE_OP_HASH_ENABLE 0x10 |
45 | #define NPE_OP_NOT_IN_PLACE 0x20 |
46 | #define NPE_OP_HMAC_DISABLE 0x40 |
47 | #define NPE_OP_CRYPT_ENCRYPT 0x80 |
48 | |
49 | #define NPE_OP_CCM_GEN_MIC 0xcc |
50 | #define NPE_OP_HASH_GEN_ICV 0x50 |
51 | #define NPE_OP_ENC_GEN_KEY 0xc9 |
52 | |
53 | #define MOD_ECB 0x0000 |
54 | #define MOD_CTR 0x1000 |
55 | #define MOD_CBC_ENC 0x2000 |
56 | #define MOD_CBC_DEC 0x3000 |
57 | #define MOD_CCM_ENC 0x4000 |
58 | #define MOD_CCM_DEC 0x5000 |
59 | |
60 | #define KEYLEN_128 4 |
61 | #define KEYLEN_192 6 |
62 | #define KEYLEN_256 8 |
63 | |
64 | #define CIPH_DECR 0x0000 |
65 | #define CIPH_ENCR 0x0400 |
66 | |
67 | #define MOD_DES 0x0000 |
68 | #define MOD_TDEA2 0x0100 |
69 | #define MOD_3DES 0x0200 |
70 | #define MOD_AES 0x0800 |
71 | #define MOD_AES128 (0x0800 | KEYLEN_128) |
72 | #define MOD_AES192 (0x0900 | KEYLEN_192) |
73 | #define MOD_AES256 (0x0a00 | KEYLEN_256) |
74 | |
75 | #define MAX_IVLEN 16 |
76 | #define NPE_ID 2 /* NPE C */ |
77 | #define NPE_QLEN 16 |
78 | /* Space for registering when the first |
79 | * NPE_QLEN crypt_ctl are busy */ |
80 | #define NPE_QLEN_TOTAL 64 |
81 | |
82 | #define SEND_QID 29 |
83 | #define RECV_QID 30 |
84 | |
85 | #define CTL_FLAG_UNUSED 0x0000 |
86 | #define CTL_FLAG_USED 0x1000 |
87 | #define CTL_FLAG_PERFORM_ABLK 0x0001 |
88 | #define CTL_FLAG_GEN_ICV 0x0002 |
89 | #define CTL_FLAG_GEN_REVAES 0x0004 |
90 | #define CTL_FLAG_PERFORM_AEAD 0x0008 |
91 | #define CTL_FLAG_MASK 0x000f |
92 | |
93 | #define HMAC_IPAD_VALUE 0x36 |
94 | #define HMAC_OPAD_VALUE 0x5C |
95 | #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE |
96 | |
97 | #define MD5_DIGEST_SIZE 16 |
98 | |
99 | struct buffer_desc { |
100 | u32 phys_next; |
101 | #ifdef __ARMEB__ |
102 | u16 buf_len; |
103 | u16 pkt_len; |
104 | #else |
105 | u16 pkt_len; |
106 | u16 buf_len; |
107 | #endif |
108 | u32 phys_addr; |
109 | u32 __reserved[4]; |
110 | struct buffer_desc *next; |
111 | enum dma_data_direction dir; |
112 | }; |
113 | |
114 | struct crypt_ctl { |
115 | #ifdef __ARMEB__ |
116 | u8 mode; /* NPE_OP_* operation mode */ |
117 | u8 init_len; |
118 | u16 reserved; |
119 | #else |
120 | u16 reserved; |
121 | u8 init_len; |
122 | u8 mode; /* NPE_OP_* operation mode */ |
123 | #endif |
124 | u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */ |
125 | u32 icv_rev_aes; /* icv or rev aes */ |
126 | u32 src_buf; |
127 | u32 dst_buf; |
128 | #ifdef __ARMEB__ |
129 | u16 auth_offs; /* Authentication start offset */ |
130 | u16 auth_len; /* Authentication data length */ |
131 | u16 crypt_offs; /* Cryption start offset */ |
132 | u16 crypt_len; /* Cryption data length */ |
133 | #else |
134 | u16 auth_len; /* Authentication data length */ |
135 | u16 auth_offs; /* Authentication start offset */ |
136 | u16 crypt_len; /* Cryption data length */ |
137 | u16 crypt_offs; /* Cryption start offset */ |
138 | #endif |
139 | u32 aadAddr; /* Additional Auth Data Addr for CCM mode */ |
140 | u32 crypto_ctx; /* NPE Crypto Param structure address */ |
141 | |
142 | /* Used by Host: 4*4 bytes*/ |
143 | unsigned ctl_flags; |
144 | union { |
145 | struct ablkcipher_request *ablk_req; |
146 | struct aead_request *aead_req; |
147 | struct crypto_tfm *tfm; |
148 | } data; |
149 | struct buffer_desc *regist_buf; |
150 | u8 *regist_ptr; |
151 | }; |
152 | |
153 | struct ablk_ctx { |
154 | struct buffer_desc *src; |
155 | struct buffer_desc *dst; |
156 | }; |
157 | |
158 | struct aead_ctx { |
159 | struct buffer_desc *buffer; |
160 | struct scatterlist ivlist; |
161 | /* used when the hmac is not on one sg entry */ |
162 | u8 *hmac_virt; |
163 | int encrypt; |
164 | }; |
165 | |
166 | struct ix_hash_algo { |
167 | u32 cfgword; |
168 | unsigned char *icv; |
169 | }; |
170 | |
171 | struct ix_sa_dir { |
172 | unsigned char *npe_ctx; |
173 | dma_addr_t npe_ctx_phys; |
174 | int npe_ctx_idx; |
175 | u8 npe_mode; |
176 | }; |
177 | |
178 | struct ixp_ctx { |
179 | struct ix_sa_dir encrypt; |
180 | struct ix_sa_dir decrypt; |
181 | int authkey_len; |
182 | u8 authkey[MAX_KEYLEN]; |
183 | int enckey_len; |
184 | u8 enckey[MAX_KEYLEN]; |
185 | u8 salt[MAX_IVLEN]; |
186 | u8 nonce[CTR_RFC3686_NONCE_SIZE]; |
187 | unsigned salted; |
188 | atomic_t configuring; |
189 | struct completion completion; |
190 | }; |
191 | |
192 | struct ixp_alg { |
193 | struct crypto_alg crypto; |
194 | const struct ix_hash_algo *hash; |
195 | u32 cfg_enc; |
196 | u32 cfg_dec; |
197 | |
198 | int registered; |
199 | }; |
200 | |
201 | static const struct ix_hash_algo hash_alg_md5 = { |
202 | .cfgword = 0xAA010004, |
203 | .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF" |
204 | "\xFE\xDC\xBA\x98\x76\x54\x32\x10", |
205 | }; |
206 | static const struct ix_hash_algo hash_alg_sha1 = { |
207 | .cfgword = 0x00000005, |
208 | .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" |
209 | "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", |
210 | }; |
211 | |
212 | static struct npe *npe_c; |
213 | static struct dma_pool *buffer_pool = NULL; |
214 | static struct dma_pool *ctx_pool = NULL; |
215 | |
216 | static struct crypt_ctl *crypt_virt = NULL; |
217 | static dma_addr_t crypt_phys; |
218 | |
219 | static int support_aes = 1; |
220 | |
221 | static void dev_release(struct device *dev) |
222 | { |
223 | return; |
224 | } |
225 | |
226 | #define DRIVER_NAME "ixp4xx_crypto" |
227 | static struct platform_device pseudo_dev = { |
228 | .name = DRIVER_NAME, |
229 | .id = 0, |
230 | .num_resources = 0, |
231 | .dev = { |
232 | .coherent_dma_mask = DMA_BIT_MASK(32), |
233 | .release = dev_release, |
234 | } |
235 | }; |
236 | |
237 | static struct device *dev = &pseudo_dev.dev; |
238 | |
239 | static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) |
240 | { |
241 | return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); |
242 | } |
243 | |
244 | static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) |
245 | { |
246 | return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); |
247 | } |
248 | |
249 | static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) |
250 | { |
251 | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc; |
252 | } |
253 | |
254 | static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) |
255 | { |
256 | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec; |
257 | } |
258 | |
259 | static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) |
260 | { |
261 | return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash; |
262 | } |
263 | |
264 | static int setup_crypt_desc(void) |
265 | { |
266 | BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64); |
267 | crypt_virt = dma_alloc_coherent(dev, |
268 | NPE_QLEN * sizeof(struct crypt_ctl), |
269 | &crypt_phys, GFP_ATOMIC); |
270 | if (!crypt_virt) |
271 | return -ENOMEM; |
272 | memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl)); |
273 | return 0; |
274 | } |
275 | |
276 | static spinlock_t desc_lock; |
277 | static struct crypt_ctl *get_crypt_desc(void) |
278 | { |
279 | int i; |
280 | static int idx = 0; |
281 | unsigned long flags; |
282 | |
283 | spin_lock_irqsave(&desc_lock, flags); |
284 | |
285 | if (unlikely(!crypt_virt)) |
286 | setup_crypt_desc(); |
287 | if (unlikely(!crypt_virt)) { |
288 | spin_unlock_irqrestore(&desc_lock, flags); |
289 | return NULL; |
290 | } |
291 | i = idx; |
292 | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { |
293 | if (++idx >= NPE_QLEN) |
294 | idx = 0; |
295 | crypt_virt[i].ctl_flags = CTL_FLAG_USED; |
296 | spin_unlock_irqrestore(&desc_lock, flags); |
297 | return crypt_virt +i; |
298 | } else { |
299 | spin_unlock_irqrestore(&desc_lock, flags); |
300 | return NULL; |
301 | } |
302 | } |
303 | |
304 | static spinlock_t emerg_lock; |
305 | static struct crypt_ctl *get_crypt_desc_emerg(void) |
306 | { |
307 | int i; |
308 | static int idx = NPE_QLEN; |
309 | struct crypt_ctl *desc; |
310 | unsigned long flags; |
311 | |
312 | desc = get_crypt_desc(); |
313 | if (desc) |
314 | return desc; |
315 | if (unlikely(!crypt_virt)) |
316 | return NULL; |
317 | |
318 | spin_lock_irqsave(&emerg_lock, flags); |
319 | i = idx; |
320 | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { |
321 | if (++idx >= NPE_QLEN_TOTAL) |
322 | idx = NPE_QLEN; |
323 | crypt_virt[i].ctl_flags = CTL_FLAG_USED; |
324 | spin_unlock_irqrestore(&emerg_lock, flags); |
325 | return crypt_virt +i; |
326 | } else { |
327 | spin_unlock_irqrestore(&emerg_lock, flags); |
328 | return NULL; |
329 | } |
330 | } |
331 | |
332 | static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys) |
333 | { |
334 | while (buf) { |
335 | struct buffer_desc *buf1; |
336 | u32 phys1; |
337 | |
338 | buf1 = buf->next; |
339 | phys1 = buf->phys_next; |
340 | dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir); |
341 | dma_pool_free(buffer_pool, buf, phys); |
342 | buf = buf1; |
343 | phys = phys1; |
344 | } |
345 | } |
346 | |
347 | static struct tasklet_struct crypto_done_tasklet; |
348 | |
349 | static void finish_scattered_hmac(struct crypt_ctl *crypt) |
350 | { |
351 | struct aead_request *req = crypt->data.aead_req; |
352 | struct aead_ctx *req_ctx = aead_request_ctx(req); |
353 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
354 | int authsize = crypto_aead_authsize(tfm); |
355 | int decryptlen = req->cryptlen - authsize; |
356 | |
357 | if (req_ctx->encrypt) { |
358 | scatterwalk_map_and_copy(req_ctx->hmac_virt, |
359 | req->src, decryptlen, authsize, 1); |
360 | } |
361 | dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); |
362 | } |
363 | |
364 | static void one_packet(dma_addr_t phys) |
365 | { |
366 | struct crypt_ctl *crypt; |
367 | struct ixp_ctx *ctx; |
368 | int failed; |
369 | |
370 | failed = phys & 0x1 ? -EBADMSG : 0; |
371 | phys &= ~0x3; |
372 | crypt = crypt_phys2virt(phys); |
373 | |
374 | switch (crypt->ctl_flags & CTL_FLAG_MASK) { |
375 | case CTL_FLAG_PERFORM_AEAD: { |
376 | struct aead_request *req = crypt->data.aead_req; |
377 | struct aead_ctx *req_ctx = aead_request_ctx(req); |
378 | |
379 | free_buf_chain(dev, req_ctx->buffer, crypt->src_buf); |
380 | if (req_ctx->hmac_virt) { |
381 | finish_scattered_hmac(crypt); |
382 | } |
383 | req->base.complete(&req->base, failed); |
384 | break; |
385 | } |
386 | case CTL_FLAG_PERFORM_ABLK: { |
387 | struct ablkcipher_request *req = crypt->data.ablk_req; |
388 | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); |
389 | |
390 | if (req_ctx->dst) { |
391 | free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); |
392 | } |
393 | free_buf_chain(dev, req_ctx->src, crypt->src_buf); |
394 | req->base.complete(&req->base, failed); |
395 | break; |
396 | } |
397 | case CTL_FLAG_GEN_ICV: |
398 | ctx = crypto_tfm_ctx(crypt->data.tfm); |
399 | dma_pool_free(ctx_pool, crypt->regist_ptr, |
400 | crypt->regist_buf->phys_addr); |
401 | dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); |
402 | if (atomic_dec_and_test(&ctx->configuring)) |
403 | complete(&ctx->completion); |
404 | break; |
405 | case CTL_FLAG_GEN_REVAES: |
406 | ctx = crypto_tfm_ctx(crypt->data.tfm); |
407 | *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); |
408 | if (atomic_dec_and_test(&ctx->configuring)) |
409 | complete(&ctx->completion); |
410 | break; |
411 | default: |
412 | BUG(); |
413 | } |
414 | crypt->ctl_flags = CTL_FLAG_UNUSED; |
415 | } |
416 | |
417 | static void irqhandler(void *_unused) |
418 | { |
419 | tasklet_schedule(&crypto_done_tasklet); |
420 | } |
421 | |
422 | static void crypto_done_action(unsigned long arg) |
423 | { |
424 | int i; |
425 | |
426 | for(i=0; i<4; i++) { |
427 | dma_addr_t phys = qmgr_get_entry(RECV_QID); |
428 | if (!phys) |
429 | return; |
430 | one_packet(phys); |
431 | } |
432 | tasklet_schedule(&crypto_done_tasklet); |
433 | } |
434 | |
435 | static int init_ixp_crypto(void) |
436 | { |
437 | int ret = -ENODEV; |
438 | u32 msg[2] = { 0, 0 }; |
439 | |
440 | if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH | |
441 | IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) { |
442 | printk(KERN_ERR "ixp_crypto: No HW crypto available\n"); |
443 | return ret; |
444 | } |
445 | npe_c = npe_request(NPE_ID); |
446 | if (!npe_c) |
447 | return ret; |
448 | |
449 | if (!npe_running(npe_c)) { |
450 | ret = npe_load_firmware(npe_c, npe_name(npe_c), dev); |
451 | if (ret) { |
452 | return ret; |
453 | } |
454 | if (npe_recv_message(npe_c, msg, "STATUS_MSG")) |
455 | goto npe_error; |
456 | } else { |
457 | if (npe_send_message(npe_c, msg, "STATUS_MSG")) |
458 | goto npe_error; |
459 | |
460 | if (npe_recv_message(npe_c, msg, "STATUS_MSG")) |
461 | goto npe_error; |
462 | } |
463 | |
464 | switch ((msg[1]>>16) & 0xff) { |
465 | case 3: |
466 | printk(KERN_WARNING "Firmware of %s lacks AES support\n", |
467 | npe_name(npe_c)); |
468 | support_aes = 0; |
469 | break; |
470 | case 4: |
471 | case 5: |
472 | support_aes = 1; |
473 | break; |
474 | default: |
475 | printk(KERN_ERR "Firmware of %s lacks crypto support\n", |
476 | npe_name(npe_c)); |
477 | return -ENODEV; |
478 | } |
479 | /* buffer_pool will also be used to sometimes store the hmac, |
480 | * so assure it is large enough |
481 | */ |
482 | BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); |
483 | buffer_pool = dma_pool_create("buffer", dev, |
484 | sizeof(struct buffer_desc), 32, 0); |
485 | ret = -ENOMEM; |
486 | if (!buffer_pool) { |
487 | goto err; |
488 | } |
489 | ctx_pool = dma_pool_create("context", dev, |
490 | NPE_CTX_LEN, 16, 0); |
491 | if (!ctx_pool) { |
492 | goto err; |
493 | } |
494 | ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0, |
495 | "ixp_crypto:out", NULL); |
496 | if (ret) |
497 | goto err; |
498 | ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0, |
499 | "ixp_crypto:in", NULL); |
500 | if (ret) { |
501 | qmgr_release_queue(SEND_QID); |
502 | goto err; |
503 | } |
504 | qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); |
505 | tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); |
506 | |
507 | qmgr_enable_irq(RECV_QID); |
508 | return 0; |
509 | |
510 | npe_error: |
511 | printk(KERN_ERR "%s not responding\n", npe_name(npe_c)); |
512 | ret = -EIO; |
513 | err: |
514 | if (ctx_pool) |
515 | dma_pool_destroy(ctx_pool); |
516 | if (buffer_pool) |
517 | dma_pool_destroy(buffer_pool); |
518 | npe_release(npe_c); |
519 | return ret; |
520 | } |
521 | |
522 | static void release_ixp_crypto(void) |
523 | { |
524 | qmgr_disable_irq(RECV_QID); |
525 | tasklet_kill(&crypto_done_tasklet); |
526 | |
527 | qmgr_release_queue(SEND_QID); |
528 | qmgr_release_queue(RECV_QID); |
529 | |
530 | dma_pool_destroy(ctx_pool); |
531 | dma_pool_destroy(buffer_pool); |
532 | |
533 | npe_release(npe_c); |
534 | |
535 | if (crypt_virt) { |
536 | dma_free_coherent(dev, |
537 | NPE_QLEN_TOTAL * sizeof( struct crypt_ctl), |
538 | crypt_virt, crypt_phys); |
539 | } |
540 | return; |
541 | } |
542 | |
543 | static void reset_sa_dir(struct ix_sa_dir *dir) |
544 | { |
545 | memset(dir->npe_ctx, 0, NPE_CTX_LEN); |
546 | dir->npe_ctx_idx = 0; |
547 | dir->npe_mode = 0; |
548 | } |
549 | |
550 | static int init_sa_dir(struct ix_sa_dir *dir) |
551 | { |
552 | dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); |
553 | if (!dir->npe_ctx) { |
554 | return -ENOMEM; |
555 | } |
556 | reset_sa_dir(dir); |
557 | return 0; |
558 | } |
559 | |
560 | static void free_sa_dir(struct ix_sa_dir *dir) |
561 | { |
562 | memset(dir->npe_ctx, 0, NPE_CTX_LEN); |
563 | dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); |
564 | } |
565 | |
566 | static int init_tfm(struct crypto_tfm *tfm) |
567 | { |
568 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
569 | int ret; |
570 | |
571 | atomic_set(&ctx->configuring, 0); |
572 | ret = init_sa_dir(&ctx->encrypt); |
573 | if (ret) |
574 | return ret; |
575 | ret = init_sa_dir(&ctx->decrypt); |
576 | if (ret) { |
577 | free_sa_dir(&ctx->encrypt); |
578 | } |
579 | return ret; |
580 | } |
581 | |
582 | static int init_tfm_ablk(struct crypto_tfm *tfm) |
583 | { |
584 | tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx); |
585 | return init_tfm(tfm); |
586 | } |
587 | |
588 | static int init_tfm_aead(struct crypto_tfm *tfm) |
589 | { |
590 | tfm->crt_aead.reqsize = sizeof(struct aead_ctx); |
591 | return init_tfm(tfm); |
592 | } |
593 | |
594 | static void exit_tfm(struct crypto_tfm *tfm) |
595 | { |
596 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
597 | free_sa_dir(&ctx->encrypt); |
598 | free_sa_dir(&ctx->decrypt); |
599 | } |
600 | |
601 | static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, |
602 | int init_len, u32 ctx_addr, const u8 *key, int key_len) |
603 | { |
604 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
605 | struct crypt_ctl *crypt; |
606 | struct buffer_desc *buf; |
607 | int i; |
608 | u8 *pad; |
609 | u32 pad_phys, buf_phys; |
610 | |
611 | BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); |
612 | pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); |
613 | if (!pad) |
614 | return -ENOMEM; |
615 | buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); |
616 | if (!buf) { |
617 | dma_pool_free(ctx_pool, pad, pad_phys); |
618 | return -ENOMEM; |
619 | } |
620 | crypt = get_crypt_desc_emerg(); |
621 | if (!crypt) { |
622 | dma_pool_free(ctx_pool, pad, pad_phys); |
623 | dma_pool_free(buffer_pool, buf, buf_phys); |
624 | return -EAGAIN; |
625 | } |
626 | |
627 | memcpy(pad, key, key_len); |
628 | memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); |
629 | for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) { |
630 | pad[i] ^= xpad; |
631 | } |
632 | |
633 | crypt->data.tfm = tfm; |
634 | crypt->regist_ptr = pad; |
635 | crypt->regist_buf = buf; |
636 | |
637 | crypt->auth_offs = 0; |
638 | crypt->auth_len = HMAC_PAD_BLOCKLEN; |
639 | crypt->crypto_ctx = ctx_addr; |
640 | crypt->src_buf = buf_phys; |
641 | crypt->icv_rev_aes = target; |
642 | crypt->mode = NPE_OP_HASH_GEN_ICV; |
643 | crypt->init_len = init_len; |
644 | crypt->ctl_flags |= CTL_FLAG_GEN_ICV; |
645 | |
646 | buf->next = 0; |
647 | buf->buf_len = HMAC_PAD_BLOCKLEN; |
648 | buf->pkt_len = 0; |
649 | buf->phys_addr = pad_phys; |
650 | |
651 | atomic_inc(&ctx->configuring); |
652 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
653 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
654 | return 0; |
655 | } |
656 | |
657 | static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize, |
658 | const u8 *key, int key_len, unsigned digest_len) |
659 | { |
660 | u32 itarget, otarget, npe_ctx_addr; |
661 | unsigned char *cinfo; |
662 | int init_len, ret = 0; |
663 | u32 cfgword; |
664 | struct ix_sa_dir *dir; |
665 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
666 | const struct ix_hash_algo *algo; |
667 | |
668 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
669 | cinfo = dir->npe_ctx + dir->npe_ctx_idx; |
670 | algo = ix_hash(tfm); |
671 | |
672 | /* write cfg word to cryptinfo */ |
673 | cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */ |
674 | #ifndef __ARMEB__ |
675 | cfgword ^= 0xAA000000; /* change the "byte swap" flags */ |
676 | #endif |
677 | *(u32*)cinfo = cpu_to_be32(cfgword); |
678 | cinfo += sizeof(cfgword); |
679 | |
680 | /* write ICV to cryptinfo */ |
681 | memcpy(cinfo, algo->icv, digest_len); |
682 | cinfo += digest_len; |
683 | |
684 | itarget = dir->npe_ctx_phys + dir->npe_ctx_idx |
685 | + sizeof(algo->cfgword); |
686 | otarget = itarget + digest_len; |
687 | init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); |
688 | npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; |
689 | |
690 | dir->npe_ctx_idx += init_len; |
691 | dir->npe_mode |= NPE_OP_HASH_ENABLE; |
692 | |
693 | if (!encrypt) |
694 | dir->npe_mode |= NPE_OP_HASH_VERIFY; |
695 | |
696 | ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, |
697 | init_len, npe_ctx_addr, key, key_len); |
698 | if (ret) |
699 | return ret; |
700 | return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, |
701 | init_len, npe_ctx_addr, key, key_len); |
702 | } |
703 | |
704 | static int gen_rev_aes_key(struct crypto_tfm *tfm) |
705 | { |
706 | struct crypt_ctl *crypt; |
707 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
708 | struct ix_sa_dir *dir = &ctx->decrypt; |
709 | |
710 | crypt = get_crypt_desc_emerg(); |
711 | if (!crypt) { |
712 | return -EAGAIN; |
713 | } |
714 | *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); |
715 | |
716 | crypt->data.tfm = tfm; |
717 | crypt->crypt_offs = 0; |
718 | crypt->crypt_len = AES_BLOCK128; |
719 | crypt->src_buf = 0; |
720 | crypt->crypto_ctx = dir->npe_ctx_phys; |
721 | crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); |
722 | crypt->mode = NPE_OP_ENC_GEN_KEY; |
723 | crypt->init_len = dir->npe_ctx_idx; |
724 | crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; |
725 | |
726 | atomic_inc(&ctx->configuring); |
727 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
728 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
729 | return 0; |
730 | } |
731 | |
732 | static int setup_cipher(struct crypto_tfm *tfm, int encrypt, |
733 | const u8 *key, int key_len) |
734 | { |
735 | u8 *cinfo; |
736 | u32 cipher_cfg; |
737 | u32 keylen_cfg = 0; |
738 | struct ix_sa_dir *dir; |
739 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
740 | u32 *flags = &tfm->crt_flags; |
741 | |
742 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
743 | cinfo = dir->npe_ctx; |
744 | |
745 | if (encrypt) { |
746 | cipher_cfg = cipher_cfg_enc(tfm); |
747 | dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; |
748 | } else { |
749 | cipher_cfg = cipher_cfg_dec(tfm); |
750 | } |
751 | if (cipher_cfg & MOD_AES) { |
752 | switch (key_len) { |
753 | case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break; |
754 | case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break; |
755 | case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break; |
756 | default: |
757 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
758 | return -EINVAL; |
759 | } |
760 | cipher_cfg |= keylen_cfg; |
761 | } else if (cipher_cfg & MOD_3DES) { |
762 | const u32 *K = (const u32 *)key; |
763 | if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || |
764 | !((K[2] ^ K[4]) | (K[3] ^ K[5])))) |
765 | { |
766 | *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; |
767 | return -EINVAL; |
768 | } |
769 | } else { |
770 | u32 tmp[DES_EXPKEY_WORDS]; |
771 | if (des_ekey(tmp, key) == 0) { |
772 | *flags |= CRYPTO_TFM_RES_WEAK_KEY; |
773 | } |
774 | } |
775 | /* write cfg word to cryptinfo */ |
776 | *(u32*)cinfo = cpu_to_be32(cipher_cfg); |
777 | cinfo += sizeof(cipher_cfg); |
778 | |
779 | /* write cipher key to cryptinfo */ |
780 | memcpy(cinfo, key, key_len); |
781 | /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ |
782 | if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { |
783 | memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len); |
784 | key_len = DES3_EDE_KEY_SIZE; |
785 | } |
786 | dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; |
787 | dir->npe_mode |= NPE_OP_CRYPT_ENABLE; |
788 | if ((cipher_cfg & MOD_AES) && !encrypt) { |
789 | return gen_rev_aes_key(tfm); |
790 | } |
791 | return 0; |
792 | } |
793 | |
794 | static struct buffer_desc *chainup_buffers(struct device *dev, |
795 | struct scatterlist *sg, unsigned nbytes, |
796 | struct buffer_desc *buf, gfp_t flags, |
797 | enum dma_data_direction dir) |
798 | { |
799 | for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) { |
800 | unsigned len = min(nbytes, sg->length); |
801 | struct buffer_desc *next_buf; |
802 | u32 next_buf_phys; |
803 | void *ptr; |
804 | |
805 | nbytes -= len; |
806 | ptr = page_address(sg_page(sg)) + sg->offset; |
807 | next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); |
808 | if (!next_buf) { |
809 | buf = NULL; |
810 | break; |
811 | } |
812 | sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir); |
813 | buf->next = next_buf; |
814 | buf->phys_next = next_buf_phys; |
815 | buf = next_buf; |
816 | |
817 | buf->phys_addr = sg_dma_address(sg); |
818 | buf->buf_len = len; |
819 | buf->dir = dir; |
820 | } |
821 | buf->next = NULL; |
822 | buf->phys_next = 0; |
823 | return buf; |
824 | } |
825 | |
826 | static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
827 | unsigned int key_len) |
828 | { |
829 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
830 | u32 *flags = &tfm->base.crt_flags; |
831 | int ret; |
832 | |
833 | init_completion(&ctx->completion); |
834 | atomic_inc(&ctx->configuring); |
835 | |
836 | reset_sa_dir(&ctx->encrypt); |
837 | reset_sa_dir(&ctx->decrypt); |
838 | |
839 | ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; |
840 | ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; |
841 | |
842 | ret = setup_cipher(&tfm->base, 0, key, key_len); |
843 | if (ret) |
844 | goto out; |
845 | ret = setup_cipher(&tfm->base, 1, key, key_len); |
846 | if (ret) |
847 | goto out; |
848 | |
849 | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { |
850 | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { |
851 | ret = -EINVAL; |
852 | } else { |
853 | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; |
854 | } |
855 | } |
856 | out: |
857 | if (!atomic_dec_and_test(&ctx->configuring)) |
858 | wait_for_completion(&ctx->completion); |
859 | return ret; |
860 | } |
861 | |
862 | static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
863 | unsigned int key_len) |
864 | { |
865 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
866 | |
867 | /* the nonce is stored in bytes at end of key */ |
868 | if (key_len < CTR_RFC3686_NONCE_SIZE) |
869 | return -EINVAL; |
870 | |
871 | memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), |
872 | CTR_RFC3686_NONCE_SIZE); |
873 | |
874 | key_len -= CTR_RFC3686_NONCE_SIZE; |
875 | return ablk_setkey(tfm, key, key_len); |
876 | } |
877 | |
878 | static int ablk_perform(struct ablkcipher_request *req, int encrypt) |
879 | { |
880 | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
881 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
882 | unsigned ivsize = crypto_ablkcipher_ivsize(tfm); |
883 | struct ix_sa_dir *dir; |
884 | struct crypt_ctl *crypt; |
885 | unsigned int nbytes = req->nbytes; |
886 | enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; |
887 | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); |
888 | struct buffer_desc src_hook; |
889 | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
890 | GFP_KERNEL : GFP_ATOMIC; |
891 | |
892 | if (qmgr_stat_full(SEND_QID)) |
893 | return -EAGAIN; |
894 | if (atomic_read(&ctx->configuring)) |
895 | return -EAGAIN; |
896 | |
897 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
898 | |
899 | crypt = get_crypt_desc(); |
900 | if (!crypt) |
901 | return -ENOMEM; |
902 | |
903 | crypt->data.ablk_req = req; |
904 | crypt->crypto_ctx = dir->npe_ctx_phys; |
905 | crypt->mode = dir->npe_mode; |
906 | crypt->init_len = dir->npe_ctx_idx; |
907 | |
908 | crypt->crypt_offs = 0; |
909 | crypt->crypt_len = nbytes; |
910 | |
911 | BUG_ON(ivsize && !req->info); |
912 | memcpy(crypt->iv, req->info, ivsize); |
913 | if (req->src != req->dst) { |
914 | struct buffer_desc dst_hook; |
915 | crypt->mode |= NPE_OP_NOT_IN_PLACE; |
916 | /* This was never tested by Intel |
917 | * for more than one dst buffer, I think. */ |
918 | BUG_ON(req->dst->length < nbytes); |
919 | req_ctx->dst = NULL; |
920 | if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook, |
921 | flags, DMA_FROM_DEVICE)) |
922 | goto free_buf_dest; |
923 | src_direction = DMA_TO_DEVICE; |
924 | req_ctx->dst = dst_hook.next; |
925 | crypt->dst_buf = dst_hook.phys_next; |
926 | } else { |
927 | req_ctx->dst = NULL; |
928 | } |
929 | req_ctx->src = NULL; |
930 | if (!chainup_buffers(dev, req->src, nbytes, &src_hook, |
931 | flags, src_direction)) |
932 | goto free_buf_src; |
933 | |
934 | req_ctx->src = src_hook.next; |
935 | crypt->src_buf = src_hook.phys_next; |
936 | crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; |
937 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
938 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
939 | return -EINPROGRESS; |
940 | |
941 | free_buf_src: |
942 | free_buf_chain(dev, req_ctx->src, crypt->src_buf); |
943 | free_buf_dest: |
944 | if (req->src != req->dst) { |
945 | free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); |
946 | } |
947 | crypt->ctl_flags = CTL_FLAG_UNUSED; |
948 | return -ENOMEM; |
949 | } |
950 | |
951 | static int ablk_encrypt(struct ablkcipher_request *req) |
952 | { |
953 | return ablk_perform(req, 1); |
954 | } |
955 | |
956 | static int ablk_decrypt(struct ablkcipher_request *req) |
957 | { |
958 | return ablk_perform(req, 0); |
959 | } |
960 | |
961 | static int ablk_rfc3686_crypt(struct ablkcipher_request *req) |
962 | { |
963 | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
964 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
965 | u8 iv[CTR_RFC3686_BLOCK_SIZE]; |
966 | u8 *info = req->info; |
967 | int ret; |
968 | |
969 | /* set up counter block */ |
970 | memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); |
971 | memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); |
972 | |
973 | /* initialize counter portion of counter block */ |
974 | *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = |
975 | cpu_to_be32(1); |
976 | |
977 | req->info = iv; |
978 | ret = ablk_perform(req, 1); |
979 | req->info = info; |
980 | return ret; |
981 | } |
982 | |
983 | static int hmac_inconsistent(struct scatterlist *sg, unsigned start, |
984 | unsigned int nbytes) |
985 | { |
986 | int offset = 0; |
987 | |
988 | if (!nbytes) |
989 | return 0; |
990 | |
991 | for (;;) { |
992 | if (start < offset + sg->length) |
993 | break; |
994 | |
995 | offset += sg->length; |
996 | sg = scatterwalk_sg_next(sg); |
997 | } |
998 | return (start + nbytes > offset + sg->length); |
999 | } |
1000 | |
1001 | static int aead_perform(struct aead_request *req, int encrypt, |
1002 | int cryptoffset, int eff_cryptlen, u8 *iv) |
1003 | { |
1004 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
1005 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
1006 | unsigned ivsize = crypto_aead_ivsize(tfm); |
1007 | unsigned authsize = crypto_aead_authsize(tfm); |
1008 | struct ix_sa_dir *dir; |
1009 | struct crypt_ctl *crypt; |
1010 | unsigned int cryptlen; |
1011 | struct buffer_desc *buf, src_hook; |
1012 | struct aead_ctx *req_ctx = aead_request_ctx(req); |
1013 | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
1014 | GFP_KERNEL : GFP_ATOMIC; |
1015 | |
1016 | if (qmgr_stat_full(SEND_QID)) |
1017 | return -EAGAIN; |
1018 | if (atomic_read(&ctx->configuring)) |
1019 | return -EAGAIN; |
1020 | |
1021 | if (encrypt) { |
1022 | dir = &ctx->encrypt; |
1023 | cryptlen = req->cryptlen; |
1024 | } else { |
1025 | dir = &ctx->decrypt; |
1026 | /* req->cryptlen includes the authsize when decrypting */ |
1027 | cryptlen = req->cryptlen -authsize; |
1028 | eff_cryptlen -= authsize; |
1029 | } |
1030 | crypt = get_crypt_desc(); |
1031 | if (!crypt) |
1032 | return -ENOMEM; |
1033 | |
1034 | crypt->data.aead_req = req; |
1035 | crypt->crypto_ctx = dir->npe_ctx_phys; |
1036 | crypt->mode = dir->npe_mode; |
1037 | crypt->init_len = dir->npe_ctx_idx; |
1038 | |
1039 | crypt->crypt_offs = cryptoffset; |
1040 | crypt->crypt_len = eff_cryptlen; |
1041 | |
1042 | crypt->auth_offs = 0; |
1043 | crypt->auth_len = req->assoclen + ivsize + cryptlen; |
1044 | BUG_ON(ivsize && !req->iv); |
1045 | memcpy(crypt->iv, req->iv, ivsize); |
1046 | |
1047 | if (req->src != req->dst) { |
1048 | BUG(); /* -ENOTSUP because of my laziness */ |
1049 | } |
1050 | |
1051 | /* ASSOC data */ |
1052 | buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook, |
1053 | flags, DMA_TO_DEVICE); |
1054 | req_ctx->buffer = src_hook.next; |
1055 | crypt->src_buf = src_hook.phys_next; |
1056 | if (!buf) |
1057 | goto out; |
1058 | /* IV */ |
1059 | sg_init_table(&req_ctx->ivlist, 1); |
1060 | sg_set_buf(&req_ctx->ivlist, iv, ivsize); |
1061 | buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags, |
1062 | DMA_BIDIRECTIONAL); |
1063 | if (!buf) |
1064 | goto free_chain; |
1065 | if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) { |
1066 | /* The 12 hmac bytes are scattered, |
1067 | * we need to copy them into a safe buffer */ |
1068 | req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, |
1069 | &crypt->icv_rev_aes); |
1070 | if (unlikely(!req_ctx->hmac_virt)) |
1071 | goto free_chain; |
1072 | if (!encrypt) { |
1073 | scatterwalk_map_and_copy(req_ctx->hmac_virt, |
1074 | req->src, cryptlen, authsize, 0); |
1075 | } |
1076 | req_ctx->encrypt = encrypt; |
1077 | } else { |
1078 | req_ctx->hmac_virt = NULL; |
1079 | } |
1080 | /* Crypt */ |
1081 | buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags, |
1082 | DMA_BIDIRECTIONAL); |
1083 | if (!buf) |
1084 | goto free_hmac_virt; |
1085 | if (!req_ctx->hmac_virt) { |
1086 | crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; |
1087 | } |
1088 | |
1089 | crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; |
1090 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
1091 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
1092 | return -EINPROGRESS; |
1093 | free_hmac_virt: |
1094 | if (req_ctx->hmac_virt) { |
1095 | dma_pool_free(buffer_pool, req_ctx->hmac_virt, |
1096 | crypt->icv_rev_aes); |
1097 | } |
1098 | free_chain: |
1099 | free_buf_chain(dev, req_ctx->buffer, crypt->src_buf); |
1100 | out: |
1101 | crypt->ctl_flags = CTL_FLAG_UNUSED; |
1102 | return -ENOMEM; |
1103 | } |
1104 | |
1105 | static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) |
1106 | { |
1107 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
1108 | u32 *flags = &tfm->base.crt_flags; |
1109 | unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize; |
1110 | int ret; |
1111 | |
1112 | if (!ctx->enckey_len && !ctx->authkey_len) |
1113 | return 0; |
1114 | init_completion(&ctx->completion); |
1115 | atomic_inc(&ctx->configuring); |
1116 | |
1117 | reset_sa_dir(&ctx->encrypt); |
1118 | reset_sa_dir(&ctx->decrypt); |
1119 | |
1120 | ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); |
1121 | if (ret) |
1122 | goto out; |
1123 | ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); |
1124 | if (ret) |
1125 | goto out; |
1126 | ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, |
1127 | ctx->authkey_len, digest_len); |
1128 | if (ret) |
1129 | goto out; |
1130 | ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey, |
1131 | ctx->authkey_len, digest_len); |
1132 | if (ret) |
1133 | goto out; |
1134 | |
1135 | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { |
1136 | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { |
1137 | ret = -EINVAL; |
1138 | goto out; |
1139 | } else { |
1140 | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; |
1141 | } |
1142 | } |
1143 | out: |
1144 | if (!atomic_dec_and_test(&ctx->configuring)) |
1145 | wait_for_completion(&ctx->completion); |
1146 | return ret; |
1147 | } |
1148 | |
1149 | static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
1150 | { |
1151 | int max = crypto_aead_alg(tfm)->maxauthsize >> 2; |
1152 | |
1153 | if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3)) |
1154 | return -EINVAL; |
1155 | return aead_setup(tfm, authsize); |
1156 | } |
1157 | |
1158 | static int aead_setkey(struct crypto_aead *tfm, const u8 *key, |
1159 | unsigned int keylen) |
1160 | { |
1161 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
1162 | struct rtattr *rta = (struct rtattr *)key; |
1163 | struct crypto_authenc_key_param *param; |
1164 | |
1165 | if (!RTA_OK(rta, keylen)) |
1166 | goto badkey; |
1167 | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
1168 | goto badkey; |
1169 | if (RTA_PAYLOAD(rta) < sizeof(*param)) |
1170 | goto badkey; |
1171 | |
1172 | param = RTA_DATA(rta); |
1173 | ctx->enckey_len = be32_to_cpu(param->enckeylen); |
1174 | |
1175 | key += RTA_ALIGN(rta->rta_len); |
1176 | keylen -= RTA_ALIGN(rta->rta_len); |
1177 | |
1178 | if (keylen < ctx->enckey_len) |
1179 | goto badkey; |
1180 | |
1181 | ctx->authkey_len = keylen - ctx->enckey_len; |
1182 | memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len); |
1183 | memcpy(ctx->authkey, key, ctx->authkey_len); |
1184 | |
1185 | return aead_setup(tfm, crypto_aead_authsize(tfm)); |
1186 | badkey: |
1187 | ctx->enckey_len = 0; |
1188 | crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
1189 | return -EINVAL; |
1190 | } |
1191 | |
1192 | static int aead_encrypt(struct aead_request *req) |
1193 | { |
1194 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
1195 | return aead_perform(req, 1, req->assoclen + ivsize, |
1196 | req->cryptlen, req->iv); |
1197 | } |
1198 | |
1199 | static int aead_decrypt(struct aead_request *req) |
1200 | { |
1201 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
1202 | return aead_perform(req, 0, req->assoclen + ivsize, |
1203 | req->cryptlen, req->iv); |
1204 | } |
1205 | |
1206 | static int aead_givencrypt(struct aead_givcrypt_request *req) |
1207 | { |
1208 | struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); |
1209 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
1210 | unsigned len, ivsize = crypto_aead_ivsize(tfm); |
1211 | __be64 seq; |
1212 | |
1213 | /* copied from eseqiv.c */ |
1214 | if (!ctx->salted) { |
1215 | get_random_bytes(ctx->salt, ivsize); |
1216 | ctx->salted = 1; |
1217 | } |
1218 | memcpy(req->areq.iv, ctx->salt, ivsize); |
1219 | len = ivsize; |
1220 | if (ivsize > sizeof(u64)) { |
1221 | memset(req->giv, 0, ivsize - sizeof(u64)); |
1222 | len = sizeof(u64); |
1223 | } |
1224 | seq = cpu_to_be64(req->seq); |
1225 | memcpy(req->giv + ivsize - len, &seq, len); |
1226 | return aead_perform(&req->areq, 1, req->areq.assoclen, |
1227 | req->areq.cryptlen +ivsize, req->giv); |
1228 | } |
1229 | |
1230 | static struct ixp_alg ixp4xx_algos[] = { |
1231 | { |
1232 | .crypto = { |
1233 | .cra_name = "cbc(des)", |
1234 | .cra_blocksize = DES_BLOCK_SIZE, |
1235 | .cra_u = { .ablkcipher = { |
1236 | .min_keysize = DES_KEY_SIZE, |
1237 | .max_keysize = DES_KEY_SIZE, |
1238 | .ivsize = DES_BLOCK_SIZE, |
1239 | .geniv = "eseqiv", |
1240 | } |
1241 | } |
1242 | }, |
1243 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
1244 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
1245 | |
1246 | }, { |
1247 | .crypto = { |
1248 | .cra_name = "ecb(des)", |
1249 | .cra_blocksize = DES_BLOCK_SIZE, |
1250 | .cra_u = { .ablkcipher = { |
1251 | .min_keysize = DES_KEY_SIZE, |
1252 | .max_keysize = DES_KEY_SIZE, |
1253 | } |
1254 | } |
1255 | }, |
1256 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, |
1257 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, |
1258 | }, { |
1259 | .crypto = { |
1260 | .cra_name = "cbc(des3_ede)", |
1261 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1262 | .cra_u = { .ablkcipher = { |
1263 | .min_keysize = DES3_EDE_KEY_SIZE, |
1264 | .max_keysize = DES3_EDE_KEY_SIZE, |
1265 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1266 | .geniv = "eseqiv", |
1267 | } |
1268 | } |
1269 | }, |
1270 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
1271 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
1272 | }, { |
1273 | .crypto = { |
1274 | .cra_name = "ecb(des3_ede)", |
1275 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1276 | .cra_u = { .ablkcipher = { |
1277 | .min_keysize = DES3_EDE_KEY_SIZE, |
1278 | .max_keysize = DES3_EDE_KEY_SIZE, |
1279 | } |
1280 | } |
1281 | }, |
1282 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, |
1283 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, |
1284 | }, { |
1285 | .crypto = { |
1286 | .cra_name = "cbc(aes)", |
1287 | .cra_blocksize = AES_BLOCK_SIZE, |
1288 | .cra_u = { .ablkcipher = { |
1289 | .min_keysize = AES_MIN_KEY_SIZE, |
1290 | .max_keysize = AES_MAX_KEY_SIZE, |
1291 | .ivsize = AES_BLOCK_SIZE, |
1292 | .geniv = "eseqiv", |
1293 | } |
1294 | } |
1295 | }, |
1296 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
1297 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
1298 | }, { |
1299 | .crypto = { |
1300 | .cra_name = "ecb(aes)", |
1301 | .cra_blocksize = AES_BLOCK_SIZE, |
1302 | .cra_u = { .ablkcipher = { |
1303 | .min_keysize = AES_MIN_KEY_SIZE, |
1304 | .max_keysize = AES_MAX_KEY_SIZE, |
1305 | } |
1306 | } |
1307 | }, |
1308 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, |
1309 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, |
1310 | }, { |
1311 | .crypto = { |
1312 | .cra_name = "ctr(aes)", |
1313 | .cra_blocksize = AES_BLOCK_SIZE, |
1314 | .cra_u = { .ablkcipher = { |
1315 | .min_keysize = AES_MIN_KEY_SIZE, |
1316 | .max_keysize = AES_MAX_KEY_SIZE, |
1317 | .ivsize = AES_BLOCK_SIZE, |
1318 | .geniv = "eseqiv", |
1319 | } |
1320 | } |
1321 | }, |
1322 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, |
1323 | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, |
1324 | }, { |
1325 | .crypto = { |
1326 | .cra_name = "rfc3686(ctr(aes))", |
1327 | .cra_blocksize = AES_BLOCK_SIZE, |
1328 | .cra_u = { .ablkcipher = { |
1329 | .min_keysize = AES_MIN_KEY_SIZE, |
1330 | .max_keysize = AES_MAX_KEY_SIZE, |
1331 | .ivsize = AES_BLOCK_SIZE, |
1332 | .geniv = "eseqiv", |
1333 | .setkey = ablk_rfc3686_setkey, |
1334 | .encrypt = ablk_rfc3686_crypt, |
1335 | .decrypt = ablk_rfc3686_crypt } |
1336 | } |
1337 | }, |
1338 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, |
1339 | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, |
1340 | }, { |
1341 | .crypto = { |
1342 | .cra_name = "authenc(hmac(md5),cbc(des))", |
1343 | .cra_blocksize = DES_BLOCK_SIZE, |
1344 | .cra_u = { .aead = { |
1345 | .ivsize = DES_BLOCK_SIZE, |
1346 | .maxauthsize = MD5_DIGEST_SIZE, |
1347 | } |
1348 | } |
1349 | }, |
1350 | .hash = &hash_alg_md5, |
1351 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
1352 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
1353 | }, { |
1354 | .crypto = { |
1355 | .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
1356 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1357 | .cra_u = { .aead = { |
1358 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1359 | .maxauthsize = MD5_DIGEST_SIZE, |
1360 | } |
1361 | } |
1362 | }, |
1363 | .hash = &hash_alg_md5, |
1364 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
1365 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
1366 | }, { |
1367 | .crypto = { |
1368 | .cra_name = "authenc(hmac(sha1),cbc(des))", |
1369 | .cra_blocksize = DES_BLOCK_SIZE, |
1370 | .cra_u = { .aead = { |
1371 | .ivsize = DES_BLOCK_SIZE, |
1372 | .maxauthsize = SHA1_DIGEST_SIZE, |
1373 | } |
1374 | } |
1375 | }, |
1376 | .hash = &hash_alg_sha1, |
1377 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
1378 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
1379 | }, { |
1380 | .crypto = { |
1381 | .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
1382 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1383 | .cra_u = { .aead = { |
1384 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1385 | .maxauthsize = SHA1_DIGEST_SIZE, |
1386 | } |
1387 | } |
1388 | }, |
1389 | .hash = &hash_alg_sha1, |
1390 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
1391 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
1392 | }, { |
1393 | .crypto = { |
1394 | .cra_name = "authenc(hmac(md5),cbc(aes))", |
1395 | .cra_blocksize = AES_BLOCK_SIZE, |
1396 | .cra_u = { .aead = { |
1397 | .ivsize = AES_BLOCK_SIZE, |
1398 | .maxauthsize = MD5_DIGEST_SIZE, |
1399 | } |
1400 | } |
1401 | }, |
1402 | .hash = &hash_alg_md5, |
1403 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
1404 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
1405 | }, { |
1406 | .crypto = { |
1407 | .cra_name = "authenc(hmac(sha1),cbc(aes))", |
1408 | .cra_blocksize = AES_BLOCK_SIZE, |
1409 | .cra_u = { .aead = { |
1410 | .ivsize = AES_BLOCK_SIZE, |
1411 | .maxauthsize = SHA1_DIGEST_SIZE, |
1412 | } |
1413 | } |
1414 | }, |
1415 | .hash = &hash_alg_sha1, |
1416 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
1417 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
1418 | } }; |
1419 | |
1420 | #define IXP_POSTFIX "-ixp4xx" |
1421 | static int __init ixp_module_init(void) |
1422 | { |
1423 | int num = ARRAY_SIZE(ixp4xx_algos); |
1424 | int i,err ; |
1425 | |
1426 | if (platform_device_register(&pseudo_dev)) |
1427 | return -ENODEV; |
1428 | |
1429 | spin_lock_init(&desc_lock); |
1430 | spin_lock_init(&emerg_lock); |
1431 | |
1432 | err = init_ixp_crypto(); |
1433 | if (err) { |
1434 | platform_device_unregister(&pseudo_dev); |
1435 | return err; |
1436 | } |
1437 | for (i=0; i< num; i++) { |
1438 | struct crypto_alg *cra = &ixp4xx_algos[i].crypto; |
1439 | |
1440 | if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME, |
1441 | "%s"IXP_POSTFIX, cra->cra_name) >= |
1442 | CRYPTO_MAX_ALG_NAME) |
1443 | { |
1444 | continue; |
1445 | } |
1446 | if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) { |
1447 | continue; |
1448 | } |
1449 | if (!ixp4xx_algos[i].hash) { |
1450 | /* block ciphers */ |
1451 | cra->cra_type = &crypto_ablkcipher_type; |
1452 | cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1453 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
1454 | CRYPTO_ALG_ASYNC; |
1455 | if (!cra->cra_ablkcipher.setkey) |
1456 | cra->cra_ablkcipher.setkey = ablk_setkey; |
1457 | if (!cra->cra_ablkcipher.encrypt) |
1458 | cra->cra_ablkcipher.encrypt = ablk_encrypt; |
1459 | if (!cra->cra_ablkcipher.decrypt) |
1460 | cra->cra_ablkcipher.decrypt = ablk_decrypt; |
1461 | cra->cra_init = init_tfm_ablk; |
1462 | } else { |
1463 | /* authenc */ |
1464 | cra->cra_type = &crypto_aead_type; |
1465 | cra->cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1466 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
1467 | CRYPTO_ALG_ASYNC; |
1468 | cra->cra_aead.setkey = aead_setkey; |
1469 | cra->cra_aead.setauthsize = aead_setauthsize; |
1470 | cra->cra_aead.encrypt = aead_encrypt; |
1471 | cra->cra_aead.decrypt = aead_decrypt; |
1472 | cra->cra_aead.givencrypt = aead_givencrypt; |
1473 | cra->cra_init = init_tfm_aead; |
1474 | } |
1475 | cra->cra_ctxsize = sizeof(struct ixp_ctx); |
1476 | cra->cra_module = THIS_MODULE; |
1477 | cra->cra_alignmask = 3; |
1478 | cra->cra_priority = 300; |
1479 | cra->cra_exit = exit_tfm; |
1480 | if (crypto_register_alg(cra)) |
1481 | printk(KERN_ERR "Failed to register '%s'\n", |
1482 | cra->cra_name); |
1483 | else |
1484 | ixp4xx_algos[i].registered = 1; |
1485 | } |
1486 | return 0; |
1487 | } |
1488 | |
1489 | static void __exit ixp_module_exit(void) |
1490 | { |
1491 | int num = ARRAY_SIZE(ixp4xx_algos); |
1492 | int i; |
1493 | |
1494 | for (i=0; i< num; i++) { |
1495 | if (ixp4xx_algos[i].registered) |
1496 | crypto_unregister_alg(&ixp4xx_algos[i].crypto); |
1497 | } |
1498 | release_ixp_crypto(); |
1499 | platform_device_unregister(&pseudo_dev); |
1500 | } |
1501 | |
1502 | module_init(ixp_module_init); |
1503 | module_exit(ixp_module_exit); |
1504 | |
1505 | MODULE_LICENSE("GPL"); |
1506 | MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>"); |
1507 | MODULE_DESCRIPTION("IXP4xx hardware crypto"); |
1508 | |
1509 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9