Root/
1 | /* |
2 | * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify |
5 | * it under the terms of the GNU General Public License as published by |
6 | * the Free Software Foundation; either version 2 of the License, or |
7 | * (at your option) any later version. |
8 | * |
9 | * This program is distributed in the hope that it will be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 | * GNU General Public License for more details. |
13 | * |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write to the Free Software |
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
17 | */ |
18 | #include <crypto/aead.h> |
19 | #include <crypto/aes.h> |
20 | #include <crypto/algapi.h> |
21 | #include <crypto/authenc.h> |
22 | #include <crypto/des.h> |
23 | #include <crypto/md5.h> |
24 | #include <crypto/sha.h> |
25 | #include <crypto/internal/skcipher.h> |
26 | #include <linux/clk.h> |
27 | #include <linux/crypto.h> |
28 | #include <linux/delay.h> |
29 | #include <linux/dma-mapping.h> |
30 | #include <linux/dmapool.h> |
31 | #include <linux/err.h> |
32 | #include <linux/init.h> |
33 | #include <linux/interrupt.h> |
34 | #include <linux/io.h> |
35 | #include <linux/list.h> |
36 | #include <linux/module.h> |
37 | #include <linux/of.h> |
38 | #include <linux/platform_device.h> |
39 | #include <linux/pm.h> |
40 | #include <linux/rtnetlink.h> |
41 | #include <linux/scatterlist.h> |
42 | #include <linux/sched.h> |
43 | #include <linux/slab.h> |
44 | #include <linux/timer.h> |
45 | |
46 | #include "picoxcell_crypto_regs.h" |
47 | |
48 | /* |
49 | * The threshold for the number of entries in the CMD FIFO available before |
50 | * the CMD0_CNT interrupt is raised. Increasing this value will reduce the |
51 | * number of interrupts raised to the CPU. |
52 | */ |
53 | #define CMD0_IRQ_THRESHOLD 1 |
54 | |
55 | /* |
56 | * The timeout period (in jiffies) for a PDU. When the the number of PDUs in |
57 | * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled. |
58 | * When there are packets in flight but lower than the threshold, we enable |
59 | * the timer and at expiry, attempt to remove any processed packets from the |
60 | * queue and if there are still packets left, schedule the timer again. |
61 | */ |
62 | #define PACKET_TIMEOUT 1 |
63 | |
64 | /* The priority to register each algorithm with. */ |
65 | #define SPACC_CRYPTO_ALG_PRIORITY 10000 |
66 | |
67 | #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16 |
68 | #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64 |
69 | #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64 |
70 | #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32 |
71 | #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32 |
72 | #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64 |
73 | #define SPACC_CRYPTO_L2_HASH_PG_SZ 64 |
74 | #define SPACC_CRYPTO_L2_MAX_CTXS 128 |
75 | #define SPACC_CRYPTO_L2_FIFO_SZ 128 |
76 | |
77 | #define MAX_DDT_LEN 16 |
78 | |
79 | /* DDT format. This must match the hardware DDT format exactly. */ |
80 | struct spacc_ddt { |
81 | dma_addr_t p; |
82 | u32 len; |
83 | }; |
84 | |
85 | /* |
86 | * Asynchronous crypto request structure. |
87 | * |
88 | * This structure defines a request that is either queued for processing or |
89 | * being processed. |
90 | */ |
91 | struct spacc_req { |
92 | struct list_head list; |
93 | struct spacc_engine *engine; |
94 | struct crypto_async_request *req; |
95 | int result; |
96 | bool is_encrypt; |
97 | unsigned ctx_id; |
98 | dma_addr_t src_addr, dst_addr; |
99 | struct spacc_ddt *src_ddt, *dst_ddt; |
100 | void (*complete)(struct spacc_req *req); |
101 | |
102 | /* AEAD specific bits. */ |
103 | u8 *giv; |
104 | size_t giv_len; |
105 | dma_addr_t giv_pa; |
106 | }; |
107 | |
108 | struct spacc_engine { |
109 | void __iomem *regs; |
110 | struct list_head pending; |
111 | int next_ctx; |
112 | spinlock_t hw_lock; |
113 | int in_flight; |
114 | struct list_head completed; |
115 | struct list_head in_progress; |
116 | struct tasklet_struct complete; |
117 | unsigned long fifo_sz; |
118 | void __iomem *cipher_ctx_base; |
119 | void __iomem *hash_key_base; |
120 | struct spacc_alg *algs; |
121 | unsigned num_algs; |
122 | struct list_head registered_algs; |
123 | size_t cipher_pg_sz; |
124 | size_t hash_pg_sz; |
125 | const char *name; |
126 | struct clk *clk; |
127 | struct device *dev; |
128 | unsigned max_ctxs; |
129 | struct timer_list packet_timeout; |
130 | unsigned stat_irq_thresh; |
131 | struct dma_pool *req_pool; |
132 | }; |
133 | |
134 | /* Algorithm type mask. */ |
135 | #define SPACC_CRYPTO_ALG_MASK 0x7 |
136 | |
137 | /* SPACC definition of a crypto algorithm. */ |
138 | struct spacc_alg { |
139 | unsigned long ctrl_default; |
140 | unsigned long type; |
141 | struct crypto_alg alg; |
142 | struct spacc_engine *engine; |
143 | struct list_head entry; |
144 | int key_offs; |
145 | int iv_offs; |
146 | }; |
147 | |
148 | /* Generic context structure for any algorithm type. */ |
149 | struct spacc_generic_ctx { |
150 | struct spacc_engine *engine; |
151 | int flags; |
152 | int key_offs; |
153 | int iv_offs; |
154 | }; |
155 | |
156 | /* Block cipher context. */ |
157 | struct spacc_ablk_ctx { |
158 | struct spacc_generic_ctx generic; |
159 | u8 key[AES_MAX_KEY_SIZE]; |
160 | u8 key_len; |
161 | /* |
162 | * The fallback cipher. If the operation can't be done in hardware, |
163 | * fallback to a software version. |
164 | */ |
165 | struct crypto_ablkcipher *sw_cipher; |
166 | }; |
167 | |
168 | /* AEAD cipher context. */ |
169 | struct spacc_aead_ctx { |
170 | struct spacc_generic_ctx generic; |
171 | u8 cipher_key[AES_MAX_KEY_SIZE]; |
172 | u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ]; |
173 | u8 cipher_key_len; |
174 | u8 hash_key_len; |
175 | struct crypto_aead *sw_cipher; |
176 | size_t auth_size; |
177 | u8 salt[AES_BLOCK_SIZE]; |
178 | }; |
179 | |
180 | static int spacc_ablk_submit(struct spacc_req *req); |
181 | |
182 | static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg) |
183 | { |
184 | return alg ? container_of(alg, struct spacc_alg, alg) : NULL; |
185 | } |
186 | |
187 | static inline int spacc_fifo_cmd_full(struct spacc_engine *engine) |
188 | { |
189 | u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET); |
190 | |
191 | return fifo_stat & SPA_FIFO_CMD_FULL; |
192 | } |
193 | |
194 | /* |
195 | * Given a cipher context, and a context number, get the base address of the |
196 | * context page. |
197 | * |
198 | * Returns the address of the context page where the key/context may |
199 | * be written. |
200 | */ |
201 | static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx, |
202 | unsigned indx, |
203 | bool is_cipher_ctx) |
204 | { |
205 | return is_cipher_ctx ? ctx->engine->cipher_ctx_base + |
206 | (indx * ctx->engine->cipher_pg_sz) : |
207 | ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz); |
208 | } |
209 | |
210 | /* The context pages can only be written with 32-bit accesses. */ |
211 | static inline void memcpy_toio32(u32 __iomem *dst, const void *src, |
212 | unsigned count) |
213 | { |
214 | const u32 *src32 = (const u32 *) src; |
215 | |
216 | while (count--) |
217 | writel(*src32++, dst++); |
218 | } |
219 | |
220 | static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx, |
221 | void __iomem *page_addr, const u8 *key, |
222 | size_t key_len, const u8 *iv, size_t iv_len) |
223 | { |
224 | void __iomem *key_ptr = page_addr + ctx->key_offs; |
225 | void __iomem *iv_ptr = page_addr + ctx->iv_offs; |
226 | |
227 | memcpy_toio32(key_ptr, key, key_len / 4); |
228 | memcpy_toio32(iv_ptr, iv, iv_len / 4); |
229 | } |
230 | |
231 | /* |
232 | * Load a context into the engines context memory. |
233 | * |
234 | * Returns the index of the context page where the context was loaded. |
235 | */ |
236 | static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx, |
237 | const u8 *ciph_key, size_t ciph_len, |
238 | const u8 *iv, size_t ivlen, const u8 *hash_key, |
239 | size_t hash_len) |
240 | { |
241 | unsigned indx = ctx->engine->next_ctx++; |
242 | void __iomem *ciph_page_addr, *hash_page_addr; |
243 | |
244 | ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1); |
245 | hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0); |
246 | |
247 | ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1; |
248 | spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv, |
249 | ivlen); |
250 | writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) | |
251 | (1 << SPA_KEY_SZ_CIPHER_OFFSET), |
252 | ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); |
253 | |
254 | if (hash_key) { |
255 | memcpy_toio32(hash_page_addr, hash_key, hash_len / 4); |
256 | writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET), |
257 | ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); |
258 | } |
259 | |
260 | return indx; |
261 | } |
262 | |
263 | /* Count the number of scatterlist entries in a scatterlist. */ |
264 | static int sg_count(struct scatterlist *sg_list, int nbytes) |
265 | { |
266 | struct scatterlist *sg = sg_list; |
267 | int sg_nents = 0; |
268 | |
269 | while (nbytes > 0) { |
270 | ++sg_nents; |
271 | nbytes -= sg->length; |
272 | sg = sg_next(sg); |
273 | } |
274 | |
275 | return sg_nents; |
276 | } |
277 | |
278 | static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len) |
279 | { |
280 | ddt->p = phys; |
281 | ddt->len = len; |
282 | } |
283 | |
284 | /* |
285 | * Take a crypto request and scatterlists for the data and turn them into DDTs |
286 | * for passing to the crypto engines. This also DMA maps the data so that the |
287 | * crypto engines can DMA to/from them. |
288 | */ |
289 | static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine, |
290 | struct scatterlist *payload, |
291 | unsigned nbytes, |
292 | enum dma_data_direction dir, |
293 | dma_addr_t *ddt_phys) |
294 | { |
295 | unsigned nents, mapped_ents; |
296 | struct scatterlist *cur; |
297 | struct spacc_ddt *ddt; |
298 | int i; |
299 | |
300 | nents = sg_count(payload, nbytes); |
301 | mapped_ents = dma_map_sg(engine->dev, payload, nents, dir); |
302 | |
303 | if (mapped_ents + 1 > MAX_DDT_LEN) |
304 | goto out; |
305 | |
306 | ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys); |
307 | if (!ddt) |
308 | goto out; |
309 | |
310 | for_each_sg(payload, cur, mapped_ents, i) |
311 | ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur)); |
312 | ddt_set(&ddt[mapped_ents], 0, 0); |
313 | |
314 | return ddt; |
315 | |
316 | out: |
317 | dma_unmap_sg(engine->dev, payload, nents, dir); |
318 | return NULL; |
319 | } |
320 | |
321 | static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv) |
322 | { |
323 | struct aead_request *areq = container_of(req->req, struct aead_request, |
324 | base); |
325 | struct spacc_engine *engine = req->engine; |
326 | struct spacc_ddt *src_ddt, *dst_ddt; |
327 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq)); |
328 | unsigned nents = sg_count(areq->src, areq->cryptlen); |
329 | dma_addr_t iv_addr; |
330 | struct scatterlist *cur; |
331 | int i, dst_ents, src_ents, assoc_ents; |
332 | u8 *iv = giv ? giv : areq->iv; |
333 | |
334 | src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr); |
335 | if (!src_ddt) |
336 | return -ENOMEM; |
337 | |
338 | dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr); |
339 | if (!dst_ddt) { |
340 | dma_pool_free(engine->req_pool, src_ddt, req->src_addr); |
341 | return -ENOMEM; |
342 | } |
343 | |
344 | req->src_ddt = src_ddt; |
345 | req->dst_ddt = dst_ddt; |
346 | |
347 | assoc_ents = dma_map_sg(engine->dev, areq->assoc, |
348 | sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); |
349 | if (areq->src != areq->dst) { |
350 | src_ents = dma_map_sg(engine->dev, areq->src, nents, |
351 | DMA_TO_DEVICE); |
352 | dst_ents = dma_map_sg(engine->dev, areq->dst, nents, |
353 | DMA_FROM_DEVICE); |
354 | } else { |
355 | src_ents = dma_map_sg(engine->dev, areq->src, nents, |
356 | DMA_BIDIRECTIONAL); |
357 | dst_ents = 0; |
358 | } |
359 | |
360 | /* |
361 | * Map the IV/GIV. For the GIV it needs to be bidirectional as it is |
362 | * formed by the crypto block and sent as the ESP IV for IPSEC. |
363 | */ |
364 | iv_addr = dma_map_single(engine->dev, iv, ivsize, |
365 | giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
366 | req->giv_pa = iv_addr; |
367 | |
368 | /* |
369 | * Map the associated data. For decryption we don't copy the |
370 | * associated data. |
371 | */ |
372 | for_each_sg(areq->assoc, cur, assoc_ents, i) { |
373 | ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); |
374 | if (req->is_encrypt) |
375 | ddt_set(dst_ddt++, sg_dma_address(cur), |
376 | sg_dma_len(cur)); |
377 | } |
378 | ddt_set(src_ddt++, iv_addr, ivsize); |
379 | |
380 | if (giv || req->is_encrypt) |
381 | ddt_set(dst_ddt++, iv_addr, ivsize); |
382 | |
383 | /* |
384 | * Now map in the payload for the source and destination and terminate |
385 | * with the NULL pointers. |
386 | */ |
387 | for_each_sg(areq->src, cur, src_ents, i) { |
388 | ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); |
389 | if (areq->src == areq->dst) |
390 | ddt_set(dst_ddt++, sg_dma_address(cur), |
391 | sg_dma_len(cur)); |
392 | } |
393 | |
394 | for_each_sg(areq->dst, cur, dst_ents, i) |
395 | ddt_set(dst_ddt++, sg_dma_address(cur), |
396 | sg_dma_len(cur)); |
397 | |
398 | ddt_set(src_ddt, 0, 0); |
399 | ddt_set(dst_ddt, 0, 0); |
400 | |
401 | return 0; |
402 | } |
403 | |
404 | static void spacc_aead_free_ddts(struct spacc_req *req) |
405 | { |
406 | struct aead_request *areq = container_of(req->req, struct aead_request, |
407 | base); |
408 | struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg); |
409 | struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm); |
410 | struct spacc_engine *engine = aead_ctx->generic.engine; |
411 | unsigned ivsize = alg->alg.cra_aead.ivsize; |
412 | unsigned nents = sg_count(areq->src, areq->cryptlen); |
413 | |
414 | if (areq->src != areq->dst) { |
415 | dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE); |
416 | dma_unmap_sg(engine->dev, areq->dst, |
417 | sg_count(areq->dst, areq->cryptlen), |
418 | DMA_FROM_DEVICE); |
419 | } else |
420 | dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL); |
421 | |
422 | dma_unmap_sg(engine->dev, areq->assoc, |
423 | sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); |
424 | |
425 | dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL); |
426 | |
427 | dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr); |
428 | dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr); |
429 | } |
430 | |
431 | static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt, |
432 | dma_addr_t ddt_addr, struct scatterlist *payload, |
433 | unsigned nbytes, enum dma_data_direction dir) |
434 | { |
435 | unsigned nents = sg_count(payload, nbytes); |
436 | |
437 | dma_unmap_sg(req->engine->dev, payload, nents, dir); |
438 | dma_pool_free(req->engine->req_pool, ddt, ddt_addr); |
439 | } |
440 | |
441 | /* |
442 | * Set key for a DES operation in an AEAD cipher. This also performs weak key |
443 | * checking if required. |
444 | */ |
445 | static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key, |
446 | unsigned int len) |
447 | { |
448 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
449 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
450 | u32 tmp[DES_EXPKEY_WORDS]; |
451 | |
452 | if (unlikely(!des_ekey(tmp, key)) && |
453 | (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) { |
454 | tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
455 | return -EINVAL; |
456 | } |
457 | |
458 | memcpy(ctx->cipher_key, key, len); |
459 | ctx->cipher_key_len = len; |
460 | |
461 | return 0; |
462 | } |
463 | |
464 | /* Set the key for the AES block cipher component of the AEAD transform. */ |
465 | static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key, |
466 | unsigned int len) |
467 | { |
468 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
469 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
470 | |
471 | /* |
472 | * IPSec engine only supports 128 and 256 bit AES keys. If we get a |
473 | * request for any other size (192 bits) then we need to do a software |
474 | * fallback. |
475 | */ |
476 | if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) { |
477 | /* |
478 | * Set the fallback transform to use the same request flags as |
479 | * the hardware transform. |
480 | */ |
481 | ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
482 | ctx->sw_cipher->base.crt_flags |= |
483 | tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
484 | return crypto_aead_setkey(ctx->sw_cipher, key, len); |
485 | } |
486 | |
487 | memcpy(ctx->cipher_key, key, len); |
488 | ctx->cipher_key_len = len; |
489 | |
490 | return 0; |
491 | } |
492 | |
493 | static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key, |
494 | unsigned int keylen) |
495 | { |
496 | struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); |
497 | struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); |
498 | struct rtattr *rta = (void *)key; |
499 | struct crypto_authenc_key_param *param; |
500 | unsigned int authkeylen, enckeylen; |
501 | int err = -EINVAL; |
502 | |
503 | if (!RTA_OK(rta, keylen)) |
504 | goto badkey; |
505 | |
506 | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
507 | goto badkey; |
508 | |
509 | if (RTA_PAYLOAD(rta) < sizeof(*param)) |
510 | goto badkey; |
511 | |
512 | param = RTA_DATA(rta); |
513 | enckeylen = be32_to_cpu(param->enckeylen); |
514 | |
515 | key += RTA_ALIGN(rta->rta_len); |
516 | keylen -= RTA_ALIGN(rta->rta_len); |
517 | |
518 | if (keylen < enckeylen) |
519 | goto badkey; |
520 | |
521 | authkeylen = keylen - enckeylen; |
522 | |
523 | if (enckeylen > AES_MAX_KEY_SIZE) |
524 | goto badkey; |
525 | |
526 | if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
527 | SPA_CTRL_CIPH_ALG_AES) |
528 | err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen); |
529 | else |
530 | err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen); |
531 | |
532 | if (err) |
533 | goto badkey; |
534 | |
535 | memcpy(ctx->hash_ctx, key, authkeylen); |
536 | ctx->hash_key_len = authkeylen; |
537 | |
538 | return 0; |
539 | |
540 | badkey: |
541 | crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
542 | return -EINVAL; |
543 | } |
544 | |
545 | static int spacc_aead_setauthsize(struct crypto_aead *tfm, |
546 | unsigned int authsize) |
547 | { |
548 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); |
549 | |
550 | ctx->auth_size = authsize; |
551 | |
552 | return 0; |
553 | } |
554 | |
555 | /* |
556 | * Check if an AEAD request requires a fallback operation. Some requests can't |
557 | * be completed in hardware because the hardware may not support certain key |
558 | * sizes. In these cases we need to complete the request in software. |
559 | */ |
560 | static int spacc_aead_need_fallback(struct spacc_req *req) |
561 | { |
562 | struct aead_request *aead_req; |
563 | struct crypto_tfm *tfm = req->req->tfm; |
564 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
565 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
566 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
567 | |
568 | aead_req = container_of(req->req, struct aead_request, base); |
569 | /* |
570 | * If we have a non-supported key-length, then we need to do a |
571 | * software fallback. |
572 | */ |
573 | if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
574 | SPA_CTRL_CIPH_ALG_AES && |
575 | ctx->cipher_key_len != AES_KEYSIZE_128 && |
576 | ctx->cipher_key_len != AES_KEYSIZE_256) |
577 | return 1; |
578 | |
579 | return 0; |
580 | } |
581 | |
582 | static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type, |
583 | bool is_encrypt) |
584 | { |
585 | struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req)); |
586 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm); |
587 | int err; |
588 | |
589 | if (ctx->sw_cipher) { |
590 | /* |
591 | * Change the request to use the software fallback transform, |
592 | * and once the ciphering has completed, put the old transform |
593 | * back into the request. |
594 | */ |
595 | aead_request_set_tfm(req, ctx->sw_cipher); |
596 | err = is_encrypt ? crypto_aead_encrypt(req) : |
597 | crypto_aead_decrypt(req); |
598 | aead_request_set_tfm(req, __crypto_aead_cast(old_tfm)); |
599 | } else |
600 | err = -EINVAL; |
601 | |
602 | return err; |
603 | } |
604 | |
605 | static void spacc_aead_complete(struct spacc_req *req) |
606 | { |
607 | spacc_aead_free_ddts(req); |
608 | req->req->complete(req->req, req->result); |
609 | } |
610 | |
611 | static int spacc_aead_submit(struct spacc_req *req) |
612 | { |
613 | struct crypto_tfm *tfm = req->req->tfm; |
614 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
615 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
616 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
617 | struct spacc_engine *engine = ctx->generic.engine; |
618 | u32 ctrl, proc_len, assoc_len; |
619 | struct aead_request *aead_req = |
620 | container_of(req->req, struct aead_request, base); |
621 | |
622 | req->result = -EINPROGRESS; |
623 | req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key, |
624 | ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize, |
625 | ctx->hash_ctx, ctx->hash_key_len); |
626 | |
627 | /* Set the source and destination DDT pointers. */ |
628 | writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); |
629 | writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); |
630 | writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); |
631 | |
632 | assoc_len = aead_req->assoclen; |
633 | proc_len = aead_req->cryptlen + assoc_len; |
634 | |
635 | /* |
636 | * If we aren't generating an IV, then we need to include the IV in the |
637 | * associated data so that it is included in the hash. |
638 | */ |
639 | if (!req->giv) { |
640 | assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); |
641 | proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); |
642 | } else |
643 | proc_len += req->giv_len; |
644 | |
645 | /* |
646 | * If we are decrypting, we need to take the length of the ICV out of |
647 | * the processing length. |
648 | */ |
649 | if (!req->is_encrypt) |
650 | proc_len -= ctx->auth_size; |
651 | |
652 | writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET); |
653 | writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET); |
654 | writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET); |
655 | writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); |
656 | writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); |
657 | |
658 | ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | |
659 | (1 << SPA_CTRL_ICV_APPEND); |
660 | if (req->is_encrypt) |
661 | ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY); |
662 | else |
663 | ctrl |= (1 << SPA_CTRL_KEY_EXP); |
664 | |
665 | mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
666 | |
667 | writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); |
668 | |
669 | return -EINPROGRESS; |
670 | } |
671 | |
672 | static int spacc_req_submit(struct spacc_req *req); |
673 | |
674 | static void spacc_push(struct spacc_engine *engine) |
675 | { |
676 | struct spacc_req *req; |
677 | |
678 | while (!list_empty(&engine->pending) && |
679 | engine->in_flight + 1 <= engine->fifo_sz) { |
680 | |
681 | ++engine->in_flight; |
682 | req = list_first_entry(&engine->pending, struct spacc_req, |
683 | list); |
684 | list_move_tail(&req->list, &engine->in_progress); |
685 | |
686 | req->result = spacc_req_submit(req); |
687 | } |
688 | } |
689 | |
690 | /* |
691 | * Setup an AEAD request for processing. This will configure the engine, load |
692 | * the context and then start the packet processing. |
693 | * |
694 | * @giv Pointer to destination address for a generated IV. If the |
695 | * request does not need to generate an IV then this should be set to NULL. |
696 | */ |
697 | static int spacc_aead_setup(struct aead_request *req, u8 *giv, |
698 | unsigned alg_type, bool is_encrypt) |
699 | { |
700 | struct crypto_alg *alg = req->base.tfm->__crt_alg; |
701 | struct spacc_engine *engine = to_spacc_alg(alg)->engine; |
702 | struct spacc_req *dev_req = aead_request_ctx(req); |
703 | int err = -EINPROGRESS; |
704 | unsigned long flags; |
705 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
706 | |
707 | dev_req->giv = giv; |
708 | dev_req->giv_len = ivsize; |
709 | dev_req->req = &req->base; |
710 | dev_req->is_encrypt = is_encrypt; |
711 | dev_req->result = -EBUSY; |
712 | dev_req->engine = engine; |
713 | dev_req->complete = spacc_aead_complete; |
714 | |
715 | if (unlikely(spacc_aead_need_fallback(dev_req))) |
716 | return spacc_aead_do_fallback(req, alg_type, is_encrypt); |
717 | |
718 | spacc_aead_make_ddts(dev_req, dev_req->giv); |
719 | |
720 | err = -EINPROGRESS; |
721 | spin_lock_irqsave(&engine->hw_lock, flags); |
722 | if (unlikely(spacc_fifo_cmd_full(engine)) || |
723 | engine->in_flight + 1 > engine->fifo_sz) { |
724 | if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { |
725 | err = -EBUSY; |
726 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
727 | goto out_free_ddts; |
728 | } |
729 | list_add_tail(&dev_req->list, &engine->pending); |
730 | } else { |
731 | list_add_tail(&dev_req->list, &engine->pending); |
732 | spacc_push(engine); |
733 | } |
734 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
735 | |
736 | goto out; |
737 | |
738 | out_free_ddts: |
739 | spacc_aead_free_ddts(dev_req); |
740 | out: |
741 | return err; |
742 | } |
743 | |
744 | static int spacc_aead_encrypt(struct aead_request *req) |
745 | { |
746 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
747 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
748 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
749 | |
750 | return spacc_aead_setup(req, NULL, alg->type, 1); |
751 | } |
752 | |
753 | static int spacc_aead_givencrypt(struct aead_givcrypt_request *req) |
754 | { |
755 | struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); |
756 | struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); |
757 | size_t ivsize = crypto_aead_ivsize(tfm); |
758 | struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); |
759 | unsigned len; |
760 | __be64 seq; |
761 | |
762 | memcpy(req->areq.iv, ctx->salt, ivsize); |
763 | len = ivsize; |
764 | if (ivsize > sizeof(u64)) { |
765 | memset(req->giv, 0, ivsize - sizeof(u64)); |
766 | len = sizeof(u64); |
767 | } |
768 | seq = cpu_to_be64(req->seq); |
769 | memcpy(req->giv + ivsize - len, &seq, len); |
770 | |
771 | return spacc_aead_setup(&req->areq, req->giv, alg->type, 1); |
772 | } |
773 | |
774 | static int spacc_aead_decrypt(struct aead_request *req) |
775 | { |
776 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
777 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
778 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
779 | |
780 | return spacc_aead_setup(req, NULL, alg->type, 0); |
781 | } |
782 | |
783 | /* |
784 | * Initialise a new AEAD context. This is responsible for allocating the |
785 | * fallback cipher and initialising the context. |
786 | */ |
787 | static int spacc_aead_cra_init(struct crypto_tfm *tfm) |
788 | { |
789 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
790 | struct crypto_alg *alg = tfm->__crt_alg; |
791 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
792 | struct spacc_engine *engine = spacc_alg->engine; |
793 | |
794 | ctx->generic.flags = spacc_alg->type; |
795 | ctx->generic.engine = engine; |
796 | ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0, |
797 | CRYPTO_ALG_ASYNC | |
798 | CRYPTO_ALG_NEED_FALLBACK); |
799 | if (IS_ERR(ctx->sw_cipher)) { |
800 | dev_warn(engine->dev, "failed to allocate fallback for %s\n", |
801 | alg->cra_name); |
802 | ctx->sw_cipher = NULL; |
803 | } |
804 | ctx->generic.key_offs = spacc_alg->key_offs; |
805 | ctx->generic.iv_offs = spacc_alg->iv_offs; |
806 | |
807 | get_random_bytes(ctx->salt, sizeof(ctx->salt)); |
808 | |
809 | tfm->crt_aead.reqsize = sizeof(struct spacc_req); |
810 | |
811 | return 0; |
812 | } |
813 | |
814 | /* |
815 | * Destructor for an AEAD context. This is called when the transform is freed |
816 | * and must free the fallback cipher. |
817 | */ |
818 | static void spacc_aead_cra_exit(struct crypto_tfm *tfm) |
819 | { |
820 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
821 | |
822 | if (ctx->sw_cipher) |
823 | crypto_free_aead(ctx->sw_cipher); |
824 | ctx->sw_cipher = NULL; |
825 | } |
826 | |
827 | /* |
828 | * Set the DES key for a block cipher transform. This also performs weak key |
829 | * checking if the transform has requested it. |
830 | */ |
831 | static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
832 | unsigned int len) |
833 | { |
834 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
835 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
836 | u32 tmp[DES_EXPKEY_WORDS]; |
837 | |
838 | if (len > DES3_EDE_KEY_SIZE) { |
839 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
840 | return -EINVAL; |
841 | } |
842 | |
843 | if (unlikely(!des_ekey(tmp, key)) && |
844 | (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) { |
845 | tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
846 | return -EINVAL; |
847 | } |
848 | |
849 | memcpy(ctx->key, key, len); |
850 | ctx->key_len = len; |
851 | |
852 | return 0; |
853 | } |
854 | |
855 | /* |
856 | * Set the key for an AES block cipher. Some key lengths are not supported in |
857 | * hardware so this must also check whether a fallback is needed. |
858 | */ |
859 | static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
860 | unsigned int len) |
861 | { |
862 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
863 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
864 | int err = 0; |
865 | |
866 | if (len > AES_MAX_KEY_SIZE) { |
867 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
868 | return -EINVAL; |
869 | } |
870 | |
871 | /* |
872 | * IPSec engine only supports 128 and 256 bit AES keys. If we get a |
873 | * request for any other size (192 bits) then we need to do a software |
874 | * fallback. |
875 | */ |
876 | if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 && |
877 | ctx->sw_cipher) { |
878 | /* |
879 | * Set the fallback transform to use the same request flags as |
880 | * the hardware transform. |
881 | */ |
882 | ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
883 | ctx->sw_cipher->base.crt_flags |= |
884 | cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK; |
885 | |
886 | err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len); |
887 | if (err) |
888 | goto sw_setkey_failed; |
889 | } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 && |
890 | !ctx->sw_cipher) |
891 | err = -EINVAL; |
892 | |
893 | memcpy(ctx->key, key, len); |
894 | ctx->key_len = len; |
895 | |
896 | sw_setkey_failed: |
897 | if (err && ctx->sw_cipher) { |
898 | tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
899 | tfm->crt_flags |= |
900 | ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK; |
901 | } |
902 | |
903 | return err; |
904 | } |
905 | |
906 | static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher, |
907 | const u8 *key, unsigned int len) |
908 | { |
909 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
910 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
911 | int err = 0; |
912 | |
913 | if (len > AES_MAX_KEY_SIZE) { |
914 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
915 | err = -EINVAL; |
916 | goto out; |
917 | } |
918 | |
919 | memcpy(ctx->key, key, len); |
920 | ctx->key_len = len; |
921 | |
922 | out: |
923 | return err; |
924 | } |
925 | |
926 | static int spacc_ablk_need_fallback(struct spacc_req *req) |
927 | { |
928 | struct spacc_ablk_ctx *ctx; |
929 | struct crypto_tfm *tfm = req->req->tfm; |
930 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
931 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
932 | |
933 | ctx = crypto_tfm_ctx(tfm); |
934 | |
935 | return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
936 | SPA_CTRL_CIPH_ALG_AES && |
937 | ctx->key_len != AES_KEYSIZE_128 && |
938 | ctx->key_len != AES_KEYSIZE_256; |
939 | } |
940 | |
941 | static void spacc_ablk_complete(struct spacc_req *req) |
942 | { |
943 | struct ablkcipher_request *ablk_req = |
944 | container_of(req->req, struct ablkcipher_request, base); |
945 | |
946 | if (ablk_req->src != ablk_req->dst) { |
947 | spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src, |
948 | ablk_req->nbytes, DMA_TO_DEVICE); |
949 | spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, |
950 | ablk_req->nbytes, DMA_FROM_DEVICE); |
951 | } else |
952 | spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, |
953 | ablk_req->nbytes, DMA_BIDIRECTIONAL); |
954 | |
955 | req->req->complete(req->req, req->result); |
956 | } |
957 | |
958 | static int spacc_ablk_submit(struct spacc_req *req) |
959 | { |
960 | struct crypto_tfm *tfm = req->req->tfm; |
961 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
962 | struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req); |
963 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
964 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
965 | struct spacc_engine *engine = ctx->generic.engine; |
966 | u32 ctrl; |
967 | |
968 | req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key, |
969 | ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize, |
970 | NULL, 0); |
971 | |
972 | writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); |
973 | writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); |
974 | writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); |
975 | |
976 | writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET); |
977 | writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); |
978 | writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); |
979 | writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET); |
980 | |
981 | ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | |
982 | (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) : |
983 | (1 << SPA_CTRL_KEY_EXP)); |
984 | |
985 | mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
986 | |
987 | writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); |
988 | |
989 | return -EINPROGRESS; |
990 | } |
991 | |
992 | static int spacc_ablk_do_fallback(struct ablkcipher_request *req, |
993 | unsigned alg_type, bool is_encrypt) |
994 | { |
995 | struct crypto_tfm *old_tfm = |
996 | crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); |
997 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm); |
998 | int err; |
999 | |
1000 | if (!ctx->sw_cipher) |
1001 | return -EINVAL; |
1002 | |
1003 | /* |
1004 | * Change the request to use the software fallback transform, and once |
1005 | * the ciphering has completed, put the old transform back into the |
1006 | * request. |
1007 | */ |
1008 | ablkcipher_request_set_tfm(req, ctx->sw_cipher); |
1009 | err = is_encrypt ? crypto_ablkcipher_encrypt(req) : |
1010 | crypto_ablkcipher_decrypt(req); |
1011 | ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm)); |
1012 | |
1013 | return err; |
1014 | } |
1015 | |
1016 | static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type, |
1017 | bool is_encrypt) |
1018 | { |
1019 | struct crypto_alg *alg = req->base.tfm->__crt_alg; |
1020 | struct spacc_engine *engine = to_spacc_alg(alg)->engine; |
1021 | struct spacc_req *dev_req = ablkcipher_request_ctx(req); |
1022 | unsigned long flags; |
1023 | int err = -ENOMEM; |
1024 | |
1025 | dev_req->req = &req->base; |
1026 | dev_req->is_encrypt = is_encrypt; |
1027 | dev_req->engine = engine; |
1028 | dev_req->complete = spacc_ablk_complete; |
1029 | dev_req->result = -EINPROGRESS; |
1030 | |
1031 | if (unlikely(spacc_ablk_need_fallback(dev_req))) |
1032 | return spacc_ablk_do_fallback(req, alg_type, is_encrypt); |
1033 | |
1034 | /* |
1035 | * Create the DDT's for the engine. If we share the same source and |
1036 | * destination then we can optimize by reusing the DDT's. |
1037 | */ |
1038 | if (req->src != req->dst) { |
1039 | dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src, |
1040 | req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr); |
1041 | if (!dev_req->src_ddt) |
1042 | goto out; |
1043 | |
1044 | dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, |
1045 | req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr); |
1046 | if (!dev_req->dst_ddt) |
1047 | goto out_free_src; |
1048 | } else { |
1049 | dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, |
1050 | req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr); |
1051 | if (!dev_req->dst_ddt) |
1052 | goto out; |
1053 | |
1054 | dev_req->src_ddt = NULL; |
1055 | dev_req->src_addr = dev_req->dst_addr; |
1056 | } |
1057 | |
1058 | err = -EINPROGRESS; |
1059 | spin_lock_irqsave(&engine->hw_lock, flags); |
1060 | /* |
1061 | * Check if the engine will accept the operation now. If it won't then |
1062 | * we either stick it on the end of a pending list if we can backlog, |
1063 | * or bailout with an error if not. |
1064 | */ |
1065 | if (unlikely(spacc_fifo_cmd_full(engine)) || |
1066 | engine->in_flight + 1 > engine->fifo_sz) { |
1067 | if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { |
1068 | err = -EBUSY; |
1069 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
1070 | goto out_free_ddts; |
1071 | } |
1072 | list_add_tail(&dev_req->list, &engine->pending); |
1073 | } else { |
1074 | list_add_tail(&dev_req->list, &engine->pending); |
1075 | spacc_push(engine); |
1076 | } |
1077 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
1078 | |
1079 | goto out; |
1080 | |
1081 | out_free_ddts: |
1082 | spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst, |
1083 | req->nbytes, req->src == req->dst ? |
1084 | DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); |
1085 | out_free_src: |
1086 | if (req->src != req->dst) |
1087 | spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr, |
1088 | req->src, req->nbytes, DMA_TO_DEVICE); |
1089 | out: |
1090 | return err; |
1091 | } |
1092 | |
1093 | static int spacc_ablk_cra_init(struct crypto_tfm *tfm) |
1094 | { |
1095 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
1096 | struct crypto_alg *alg = tfm->__crt_alg; |
1097 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
1098 | struct spacc_engine *engine = spacc_alg->engine; |
1099 | |
1100 | ctx->generic.flags = spacc_alg->type; |
1101 | ctx->generic.engine = engine; |
1102 | if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
1103 | ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0, |
1104 | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); |
1105 | if (IS_ERR(ctx->sw_cipher)) { |
1106 | dev_warn(engine->dev, "failed to allocate fallback for %s\n", |
1107 | alg->cra_name); |
1108 | ctx->sw_cipher = NULL; |
1109 | } |
1110 | } |
1111 | ctx->generic.key_offs = spacc_alg->key_offs; |
1112 | ctx->generic.iv_offs = spacc_alg->iv_offs; |
1113 | |
1114 | tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req); |
1115 | |
1116 | return 0; |
1117 | } |
1118 | |
1119 | static void spacc_ablk_cra_exit(struct crypto_tfm *tfm) |
1120 | { |
1121 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
1122 | |
1123 | if (ctx->sw_cipher) |
1124 | crypto_free_ablkcipher(ctx->sw_cipher); |
1125 | ctx->sw_cipher = NULL; |
1126 | } |
1127 | |
1128 | static int spacc_ablk_encrypt(struct ablkcipher_request *req) |
1129 | { |
1130 | struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); |
1131 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
1132 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
1133 | |
1134 | return spacc_ablk_setup(req, alg->type, 1); |
1135 | } |
1136 | |
1137 | static int spacc_ablk_decrypt(struct ablkcipher_request *req) |
1138 | { |
1139 | struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); |
1140 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
1141 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
1142 | |
1143 | return spacc_ablk_setup(req, alg->type, 0); |
1144 | } |
1145 | |
1146 | static inline int spacc_fifo_stat_empty(struct spacc_engine *engine) |
1147 | { |
1148 | return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) & |
1149 | SPA_FIFO_STAT_EMPTY; |
1150 | } |
1151 | |
1152 | static void spacc_process_done(struct spacc_engine *engine) |
1153 | { |
1154 | struct spacc_req *req; |
1155 | unsigned long flags; |
1156 | |
1157 | spin_lock_irqsave(&engine->hw_lock, flags); |
1158 | |
1159 | while (!spacc_fifo_stat_empty(engine)) { |
1160 | req = list_first_entry(&engine->in_progress, struct spacc_req, |
1161 | list); |
1162 | list_move_tail(&req->list, &engine->completed); |
1163 | --engine->in_flight; |
1164 | |
1165 | /* POP the status register. */ |
1166 | writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET); |
1167 | req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) & |
1168 | SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET; |
1169 | |
1170 | /* |
1171 | * Convert the SPAcc error status into the standard POSIX error |
1172 | * codes. |
1173 | */ |
1174 | if (unlikely(req->result)) { |
1175 | switch (req->result) { |
1176 | case SPA_STATUS_ICV_FAIL: |
1177 | req->result = -EBADMSG; |
1178 | break; |
1179 | |
1180 | case SPA_STATUS_MEMORY_ERROR: |
1181 | dev_warn(engine->dev, |
1182 | "memory error triggered\n"); |
1183 | req->result = -EFAULT; |
1184 | break; |
1185 | |
1186 | case SPA_STATUS_BLOCK_ERROR: |
1187 | dev_warn(engine->dev, |
1188 | "block error triggered\n"); |
1189 | req->result = -EIO; |
1190 | break; |
1191 | } |
1192 | } |
1193 | } |
1194 | |
1195 | tasklet_schedule(&engine->complete); |
1196 | |
1197 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
1198 | } |
1199 | |
1200 | static irqreturn_t spacc_spacc_irq(int irq, void *dev) |
1201 | { |
1202 | struct spacc_engine *engine = (struct spacc_engine *)dev; |
1203 | u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET); |
1204 | |
1205 | writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET); |
1206 | spacc_process_done(engine); |
1207 | |
1208 | return IRQ_HANDLED; |
1209 | } |
1210 | |
1211 | static void spacc_packet_timeout(unsigned long data) |
1212 | { |
1213 | struct spacc_engine *engine = (struct spacc_engine *)data; |
1214 | |
1215 | spacc_process_done(engine); |
1216 | } |
1217 | |
1218 | static int spacc_req_submit(struct spacc_req *req) |
1219 | { |
1220 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
1221 | |
1222 | if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags)) |
1223 | return spacc_aead_submit(req); |
1224 | else |
1225 | return spacc_ablk_submit(req); |
1226 | } |
1227 | |
1228 | static void spacc_spacc_complete(unsigned long data) |
1229 | { |
1230 | struct spacc_engine *engine = (struct spacc_engine *)data; |
1231 | struct spacc_req *req, *tmp; |
1232 | unsigned long flags; |
1233 | LIST_HEAD(completed); |
1234 | |
1235 | spin_lock_irqsave(&engine->hw_lock, flags); |
1236 | |
1237 | list_splice_init(&engine->completed, &completed); |
1238 | spacc_push(engine); |
1239 | if (engine->in_flight) |
1240 | mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
1241 | |
1242 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
1243 | |
1244 | list_for_each_entry_safe(req, tmp, &completed, list) { |
1245 | list_del(&req->list); |
1246 | req->complete(req); |
1247 | } |
1248 | } |
1249 | |
1250 | #ifdef CONFIG_PM |
1251 | static int spacc_suspend(struct device *dev) |
1252 | { |
1253 | struct platform_device *pdev = to_platform_device(dev); |
1254 | struct spacc_engine *engine = platform_get_drvdata(pdev); |
1255 | |
1256 | /* |
1257 | * We only support standby mode. All we have to do is gate the clock to |
1258 | * the spacc. The hardware will preserve state until we turn it back |
1259 | * on again. |
1260 | */ |
1261 | clk_disable(engine->clk); |
1262 | |
1263 | return 0; |
1264 | } |
1265 | |
1266 | static int spacc_resume(struct device *dev) |
1267 | { |
1268 | struct platform_device *pdev = to_platform_device(dev); |
1269 | struct spacc_engine *engine = platform_get_drvdata(pdev); |
1270 | |
1271 | return clk_enable(engine->clk); |
1272 | } |
1273 | |
1274 | static const struct dev_pm_ops spacc_pm_ops = { |
1275 | .suspend = spacc_suspend, |
1276 | .resume = spacc_resume, |
1277 | }; |
1278 | #endif /* CONFIG_PM */ |
1279 | |
1280 | static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev) |
1281 | { |
1282 | return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL; |
1283 | } |
1284 | |
1285 | static ssize_t spacc_stat_irq_thresh_show(struct device *dev, |
1286 | struct device_attribute *attr, |
1287 | char *buf) |
1288 | { |
1289 | struct spacc_engine *engine = spacc_dev_to_engine(dev); |
1290 | |
1291 | return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh); |
1292 | } |
1293 | |
1294 | static ssize_t spacc_stat_irq_thresh_store(struct device *dev, |
1295 | struct device_attribute *attr, |
1296 | const char *buf, size_t len) |
1297 | { |
1298 | struct spacc_engine *engine = spacc_dev_to_engine(dev); |
1299 | unsigned long thresh; |
1300 | |
1301 | if (strict_strtoul(buf, 0, &thresh)) |
1302 | return -EINVAL; |
1303 | |
1304 | thresh = clamp(thresh, 1UL, engine->fifo_sz - 1); |
1305 | |
1306 | engine->stat_irq_thresh = thresh; |
1307 | writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, |
1308 | engine->regs + SPA_IRQ_CTRL_REG_OFFSET); |
1309 | |
1310 | return len; |
1311 | } |
1312 | static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show, |
1313 | spacc_stat_irq_thresh_store); |
1314 | |
1315 | static struct spacc_alg ipsec_engine_algs[] = { |
1316 | { |
1317 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC, |
1318 | .key_offs = 0, |
1319 | .iv_offs = AES_MAX_KEY_SIZE, |
1320 | .alg = { |
1321 | .cra_name = "cbc(aes)", |
1322 | .cra_driver_name = "cbc-aes-picoxcell", |
1323 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1324 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1325 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
1326 | CRYPTO_ALG_ASYNC | |
1327 | CRYPTO_ALG_NEED_FALLBACK, |
1328 | .cra_blocksize = AES_BLOCK_SIZE, |
1329 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1330 | .cra_type = &crypto_ablkcipher_type, |
1331 | .cra_module = THIS_MODULE, |
1332 | .cra_ablkcipher = { |
1333 | .setkey = spacc_aes_setkey, |
1334 | .encrypt = spacc_ablk_encrypt, |
1335 | .decrypt = spacc_ablk_decrypt, |
1336 | .min_keysize = AES_MIN_KEY_SIZE, |
1337 | .max_keysize = AES_MAX_KEY_SIZE, |
1338 | .ivsize = AES_BLOCK_SIZE, |
1339 | }, |
1340 | .cra_init = spacc_ablk_cra_init, |
1341 | .cra_exit = spacc_ablk_cra_exit, |
1342 | }, |
1343 | }, |
1344 | { |
1345 | .key_offs = 0, |
1346 | .iv_offs = AES_MAX_KEY_SIZE, |
1347 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB, |
1348 | .alg = { |
1349 | .cra_name = "ecb(aes)", |
1350 | .cra_driver_name = "ecb-aes-picoxcell", |
1351 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1352 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1353 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
1354 | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
1355 | .cra_blocksize = AES_BLOCK_SIZE, |
1356 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1357 | .cra_type = &crypto_ablkcipher_type, |
1358 | .cra_module = THIS_MODULE, |
1359 | .cra_ablkcipher = { |
1360 | .setkey = spacc_aes_setkey, |
1361 | .encrypt = spacc_ablk_encrypt, |
1362 | .decrypt = spacc_ablk_decrypt, |
1363 | .min_keysize = AES_MIN_KEY_SIZE, |
1364 | .max_keysize = AES_MAX_KEY_SIZE, |
1365 | }, |
1366 | .cra_init = spacc_ablk_cra_init, |
1367 | .cra_exit = spacc_ablk_cra_exit, |
1368 | }, |
1369 | }, |
1370 | { |
1371 | .key_offs = DES_BLOCK_SIZE, |
1372 | .iv_offs = 0, |
1373 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, |
1374 | .alg = { |
1375 | .cra_name = "cbc(des)", |
1376 | .cra_driver_name = "cbc-des-picoxcell", |
1377 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1378 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1379 | CRYPTO_ALG_ASYNC | |
1380 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1381 | .cra_blocksize = DES_BLOCK_SIZE, |
1382 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1383 | .cra_type = &crypto_ablkcipher_type, |
1384 | .cra_module = THIS_MODULE, |
1385 | .cra_ablkcipher = { |
1386 | .setkey = spacc_des_setkey, |
1387 | .encrypt = spacc_ablk_encrypt, |
1388 | .decrypt = spacc_ablk_decrypt, |
1389 | .min_keysize = DES_KEY_SIZE, |
1390 | .max_keysize = DES_KEY_SIZE, |
1391 | .ivsize = DES_BLOCK_SIZE, |
1392 | }, |
1393 | .cra_init = spacc_ablk_cra_init, |
1394 | .cra_exit = spacc_ablk_cra_exit, |
1395 | }, |
1396 | }, |
1397 | { |
1398 | .key_offs = DES_BLOCK_SIZE, |
1399 | .iv_offs = 0, |
1400 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, |
1401 | .alg = { |
1402 | .cra_name = "ecb(des)", |
1403 | .cra_driver_name = "ecb-des-picoxcell", |
1404 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1405 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1406 | CRYPTO_ALG_ASYNC | |
1407 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1408 | .cra_blocksize = DES_BLOCK_SIZE, |
1409 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1410 | .cra_type = &crypto_ablkcipher_type, |
1411 | .cra_module = THIS_MODULE, |
1412 | .cra_ablkcipher = { |
1413 | .setkey = spacc_des_setkey, |
1414 | .encrypt = spacc_ablk_encrypt, |
1415 | .decrypt = spacc_ablk_decrypt, |
1416 | .min_keysize = DES_KEY_SIZE, |
1417 | .max_keysize = DES_KEY_SIZE, |
1418 | }, |
1419 | .cra_init = spacc_ablk_cra_init, |
1420 | .cra_exit = spacc_ablk_cra_exit, |
1421 | }, |
1422 | }, |
1423 | { |
1424 | .key_offs = DES_BLOCK_SIZE, |
1425 | .iv_offs = 0, |
1426 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, |
1427 | .alg = { |
1428 | .cra_name = "cbc(des3_ede)", |
1429 | .cra_driver_name = "cbc-des3-ede-picoxcell", |
1430 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1431 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1432 | CRYPTO_ALG_ASYNC | |
1433 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1434 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1435 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1436 | .cra_type = &crypto_ablkcipher_type, |
1437 | .cra_module = THIS_MODULE, |
1438 | .cra_ablkcipher = { |
1439 | .setkey = spacc_des_setkey, |
1440 | .encrypt = spacc_ablk_encrypt, |
1441 | .decrypt = spacc_ablk_decrypt, |
1442 | .min_keysize = DES3_EDE_KEY_SIZE, |
1443 | .max_keysize = DES3_EDE_KEY_SIZE, |
1444 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1445 | }, |
1446 | .cra_init = spacc_ablk_cra_init, |
1447 | .cra_exit = spacc_ablk_cra_exit, |
1448 | }, |
1449 | }, |
1450 | { |
1451 | .key_offs = DES_BLOCK_SIZE, |
1452 | .iv_offs = 0, |
1453 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, |
1454 | .alg = { |
1455 | .cra_name = "ecb(des3_ede)", |
1456 | .cra_driver_name = "ecb-des3-ede-picoxcell", |
1457 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1458 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
1459 | CRYPTO_ALG_ASYNC | |
1460 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1461 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1462 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1463 | .cra_type = &crypto_ablkcipher_type, |
1464 | .cra_module = THIS_MODULE, |
1465 | .cra_ablkcipher = { |
1466 | .setkey = spacc_des_setkey, |
1467 | .encrypt = spacc_ablk_encrypt, |
1468 | .decrypt = spacc_ablk_decrypt, |
1469 | .min_keysize = DES3_EDE_KEY_SIZE, |
1470 | .max_keysize = DES3_EDE_KEY_SIZE, |
1471 | }, |
1472 | .cra_init = spacc_ablk_cra_init, |
1473 | .cra_exit = spacc_ablk_cra_exit, |
1474 | }, |
1475 | }, |
1476 | { |
1477 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
1478 | SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, |
1479 | .key_offs = 0, |
1480 | .iv_offs = AES_MAX_KEY_SIZE, |
1481 | .alg = { |
1482 | .cra_name = "authenc(hmac(sha1),cbc(aes))", |
1483 | .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell", |
1484 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1485 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1486 | CRYPTO_ALG_ASYNC | |
1487 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1488 | .cra_blocksize = AES_BLOCK_SIZE, |
1489 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
1490 | .cra_type = &crypto_aead_type, |
1491 | .cra_module = THIS_MODULE, |
1492 | .cra_aead = { |
1493 | .setkey = spacc_aead_setkey, |
1494 | .setauthsize = spacc_aead_setauthsize, |
1495 | .encrypt = spacc_aead_encrypt, |
1496 | .decrypt = spacc_aead_decrypt, |
1497 | .givencrypt = spacc_aead_givencrypt, |
1498 | .ivsize = AES_BLOCK_SIZE, |
1499 | .maxauthsize = SHA1_DIGEST_SIZE, |
1500 | }, |
1501 | .cra_init = spacc_aead_cra_init, |
1502 | .cra_exit = spacc_aead_cra_exit, |
1503 | }, |
1504 | }, |
1505 | { |
1506 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
1507 | SPA_CTRL_HASH_ALG_SHA256 | |
1508 | SPA_CTRL_HASH_MODE_HMAC, |
1509 | .key_offs = 0, |
1510 | .iv_offs = AES_MAX_KEY_SIZE, |
1511 | .alg = { |
1512 | .cra_name = "authenc(hmac(sha256),cbc(aes))", |
1513 | .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell", |
1514 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1515 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1516 | CRYPTO_ALG_ASYNC | |
1517 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1518 | .cra_blocksize = AES_BLOCK_SIZE, |
1519 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
1520 | .cra_type = &crypto_aead_type, |
1521 | .cra_module = THIS_MODULE, |
1522 | .cra_aead = { |
1523 | .setkey = spacc_aead_setkey, |
1524 | .setauthsize = spacc_aead_setauthsize, |
1525 | .encrypt = spacc_aead_encrypt, |
1526 | .decrypt = spacc_aead_decrypt, |
1527 | .givencrypt = spacc_aead_givencrypt, |
1528 | .ivsize = AES_BLOCK_SIZE, |
1529 | .maxauthsize = SHA256_DIGEST_SIZE, |
1530 | }, |
1531 | .cra_init = spacc_aead_cra_init, |
1532 | .cra_exit = spacc_aead_cra_exit, |
1533 | }, |
1534 | }, |
1535 | { |
1536 | .key_offs = 0, |
1537 | .iv_offs = AES_MAX_KEY_SIZE, |
1538 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
1539 | SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, |
1540 | .alg = { |
1541 | .cra_name = "authenc(hmac(md5),cbc(aes))", |
1542 | .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell", |
1543 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1544 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1545 | CRYPTO_ALG_ASYNC | |
1546 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1547 | .cra_blocksize = AES_BLOCK_SIZE, |
1548 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
1549 | .cra_type = &crypto_aead_type, |
1550 | .cra_module = THIS_MODULE, |
1551 | .cra_aead = { |
1552 | .setkey = spacc_aead_setkey, |
1553 | .setauthsize = spacc_aead_setauthsize, |
1554 | .encrypt = spacc_aead_encrypt, |
1555 | .decrypt = spacc_aead_decrypt, |
1556 | .givencrypt = spacc_aead_givencrypt, |
1557 | .ivsize = AES_BLOCK_SIZE, |
1558 | .maxauthsize = MD5_DIGEST_SIZE, |
1559 | }, |
1560 | .cra_init = spacc_aead_cra_init, |
1561 | .cra_exit = spacc_aead_cra_exit, |
1562 | }, |
1563 | }, |
1564 | { |
1565 | .key_offs = DES_BLOCK_SIZE, |
1566 | .iv_offs = 0, |
1567 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | |
1568 | SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, |
1569 | .alg = { |
1570 | .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
1571 | .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell", |
1572 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1573 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1574 | CRYPTO_ALG_ASYNC | |
1575 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1576 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1577 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
1578 | .cra_type = &crypto_aead_type, |
1579 | .cra_module = THIS_MODULE, |
1580 | .cra_aead = { |
1581 | .setkey = spacc_aead_setkey, |
1582 | .setauthsize = spacc_aead_setauthsize, |
1583 | .encrypt = spacc_aead_encrypt, |
1584 | .decrypt = spacc_aead_decrypt, |
1585 | .givencrypt = spacc_aead_givencrypt, |
1586 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1587 | .maxauthsize = SHA1_DIGEST_SIZE, |
1588 | }, |
1589 | .cra_init = spacc_aead_cra_init, |
1590 | .cra_exit = spacc_aead_cra_exit, |
1591 | }, |
1592 | }, |
1593 | { |
1594 | .key_offs = DES_BLOCK_SIZE, |
1595 | .iv_offs = 0, |
1596 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
1597 | SPA_CTRL_HASH_ALG_SHA256 | |
1598 | SPA_CTRL_HASH_MODE_HMAC, |
1599 | .alg = { |
1600 | .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", |
1601 | .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell", |
1602 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1603 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1604 | CRYPTO_ALG_ASYNC | |
1605 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1606 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1607 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
1608 | .cra_type = &crypto_aead_type, |
1609 | .cra_module = THIS_MODULE, |
1610 | .cra_aead = { |
1611 | .setkey = spacc_aead_setkey, |
1612 | .setauthsize = spacc_aead_setauthsize, |
1613 | .encrypt = spacc_aead_encrypt, |
1614 | .decrypt = spacc_aead_decrypt, |
1615 | .givencrypt = spacc_aead_givencrypt, |
1616 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1617 | .maxauthsize = SHA256_DIGEST_SIZE, |
1618 | }, |
1619 | .cra_init = spacc_aead_cra_init, |
1620 | .cra_exit = spacc_aead_cra_exit, |
1621 | }, |
1622 | }, |
1623 | { |
1624 | .key_offs = DES_BLOCK_SIZE, |
1625 | .iv_offs = 0, |
1626 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | |
1627 | SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, |
1628 | .alg = { |
1629 | .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
1630 | .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell", |
1631 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1632 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
1633 | CRYPTO_ALG_ASYNC | |
1634 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1635 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
1636 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
1637 | .cra_type = &crypto_aead_type, |
1638 | .cra_module = THIS_MODULE, |
1639 | .cra_aead = { |
1640 | .setkey = spacc_aead_setkey, |
1641 | .setauthsize = spacc_aead_setauthsize, |
1642 | .encrypt = spacc_aead_encrypt, |
1643 | .decrypt = spacc_aead_decrypt, |
1644 | .givencrypt = spacc_aead_givencrypt, |
1645 | .ivsize = DES3_EDE_BLOCK_SIZE, |
1646 | .maxauthsize = MD5_DIGEST_SIZE, |
1647 | }, |
1648 | .cra_init = spacc_aead_cra_init, |
1649 | .cra_exit = spacc_aead_cra_exit, |
1650 | }, |
1651 | }, |
1652 | }; |
1653 | |
1654 | static struct spacc_alg l2_engine_algs[] = { |
1655 | { |
1656 | .key_offs = 0, |
1657 | .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN, |
1658 | .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI | |
1659 | SPA_CTRL_CIPH_MODE_F8, |
1660 | .alg = { |
1661 | .cra_name = "f8(kasumi)", |
1662 | .cra_driver_name = "f8-kasumi-picoxcell", |
1663 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
1664 | .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | |
1665 | CRYPTO_ALG_ASYNC | |
1666 | CRYPTO_ALG_KERN_DRIVER_ONLY, |
1667 | .cra_blocksize = 8, |
1668 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
1669 | .cra_type = &crypto_ablkcipher_type, |
1670 | .cra_module = THIS_MODULE, |
1671 | .cra_ablkcipher = { |
1672 | .setkey = spacc_kasumi_f8_setkey, |
1673 | .encrypt = spacc_ablk_encrypt, |
1674 | .decrypt = spacc_ablk_decrypt, |
1675 | .min_keysize = 16, |
1676 | .max_keysize = 16, |
1677 | .ivsize = 8, |
1678 | }, |
1679 | .cra_init = spacc_ablk_cra_init, |
1680 | .cra_exit = spacc_ablk_cra_exit, |
1681 | }, |
1682 | }, |
1683 | }; |
1684 | |
1685 | #ifdef CONFIG_OF |
1686 | static const struct of_device_id spacc_of_id_table[] = { |
1687 | { .compatible = "picochip,spacc-ipsec" }, |
1688 | { .compatible = "picochip,spacc-l2" }, |
1689 | {} |
1690 | }; |
1691 | #else /* CONFIG_OF */ |
1692 | #define spacc_of_id_table NULL |
1693 | #endif /* CONFIG_OF */ |
1694 | |
1695 | static bool spacc_is_compatible(struct platform_device *pdev, |
1696 | const char *spacc_type) |
1697 | { |
1698 | const struct platform_device_id *platid = platform_get_device_id(pdev); |
1699 | |
1700 | if (platid && !strcmp(platid->name, spacc_type)) |
1701 | return true; |
1702 | |
1703 | #ifdef CONFIG_OF |
1704 | if (of_device_is_compatible(pdev->dev.of_node, spacc_type)) |
1705 | return true; |
1706 | #endif /* CONFIG_OF */ |
1707 | |
1708 | return false; |
1709 | } |
1710 | |
1711 | static int __devinit spacc_probe(struct platform_device *pdev) |
1712 | { |
1713 | int i, err, ret = -EINVAL; |
1714 | struct resource *mem, *irq; |
1715 | struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine), |
1716 | GFP_KERNEL); |
1717 | if (!engine) |
1718 | return -ENOMEM; |
1719 | |
1720 | if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) { |
1721 | engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS; |
1722 | engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ; |
1723 | engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ; |
1724 | engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ; |
1725 | engine->algs = ipsec_engine_algs; |
1726 | engine->num_algs = ARRAY_SIZE(ipsec_engine_algs); |
1727 | } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) { |
1728 | engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS; |
1729 | engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ; |
1730 | engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ; |
1731 | engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ; |
1732 | engine->algs = l2_engine_algs; |
1733 | engine->num_algs = ARRAY_SIZE(l2_engine_algs); |
1734 | } else { |
1735 | return -EINVAL; |
1736 | } |
1737 | |
1738 | engine->name = dev_name(&pdev->dev); |
1739 | |
1740 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
1741 | irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
1742 | if (!mem || !irq) { |
1743 | dev_err(&pdev->dev, "no memory/irq resource for engine\n"); |
1744 | return -ENXIO; |
1745 | } |
1746 | |
1747 | if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem), |
1748 | engine->name)) |
1749 | return -ENOMEM; |
1750 | |
1751 | engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem)); |
1752 | if (!engine->regs) { |
1753 | dev_err(&pdev->dev, "memory map failed\n"); |
1754 | return -ENOMEM; |
1755 | } |
1756 | |
1757 | if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0, |
1758 | engine->name, engine)) { |
1759 | dev_err(engine->dev, "failed to request IRQ\n"); |
1760 | return -EBUSY; |
1761 | } |
1762 | |
1763 | engine->dev = &pdev->dev; |
1764 | engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET; |
1765 | engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET; |
1766 | |
1767 | engine->req_pool = dmam_pool_create(engine->name, engine->dev, |
1768 | MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K); |
1769 | if (!engine->req_pool) |
1770 | return -ENOMEM; |
1771 | |
1772 | spin_lock_init(&engine->hw_lock); |
1773 | |
1774 | engine->clk = clk_get(&pdev->dev, "ref"); |
1775 | if (IS_ERR(engine->clk)) { |
1776 | dev_info(&pdev->dev, "clk unavailable\n"); |
1777 | device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
1778 | return PTR_ERR(engine->clk); |
1779 | } |
1780 | |
1781 | if (clk_enable(engine->clk)) { |
1782 | dev_info(&pdev->dev, "unable to enable clk\n"); |
1783 | clk_put(engine->clk); |
1784 | return -EIO; |
1785 | } |
1786 | |
1787 | err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
1788 | if (err) { |
1789 | clk_disable(engine->clk); |
1790 | clk_put(engine->clk); |
1791 | return err; |
1792 | } |
1793 | |
1794 | |
1795 | /* |
1796 | * Use an IRQ threshold of 50% as a default. This seems to be a |
1797 | * reasonable trade off of latency against throughput but can be |
1798 | * changed at runtime. |
1799 | */ |
1800 | engine->stat_irq_thresh = (engine->fifo_sz / 2); |
1801 | |
1802 | /* |
1803 | * Configure the interrupts. We only use the STAT_CNT interrupt as we |
1804 | * only submit a new packet for processing when we complete another in |
1805 | * the queue. This minimizes time spent in the interrupt handler. |
1806 | */ |
1807 | writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, |
1808 | engine->regs + SPA_IRQ_CTRL_REG_OFFSET); |
1809 | writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN, |
1810 | engine->regs + SPA_IRQ_EN_REG_OFFSET); |
1811 | |
1812 | setup_timer(&engine->packet_timeout, spacc_packet_timeout, |
1813 | (unsigned long)engine); |
1814 | |
1815 | INIT_LIST_HEAD(&engine->pending); |
1816 | INIT_LIST_HEAD(&engine->completed); |
1817 | INIT_LIST_HEAD(&engine->in_progress); |
1818 | engine->in_flight = 0; |
1819 | tasklet_init(&engine->complete, spacc_spacc_complete, |
1820 | (unsigned long)engine); |
1821 | |
1822 | platform_set_drvdata(pdev, engine); |
1823 | |
1824 | INIT_LIST_HEAD(&engine->registered_algs); |
1825 | for (i = 0; i < engine->num_algs; ++i) { |
1826 | engine->algs[i].engine = engine; |
1827 | err = crypto_register_alg(&engine->algs[i].alg); |
1828 | if (!err) { |
1829 | list_add_tail(&engine->algs[i].entry, |
1830 | &engine->registered_algs); |
1831 | ret = 0; |
1832 | } |
1833 | if (err) |
1834 | dev_err(engine->dev, "failed to register alg \"%s\"\n", |
1835 | engine->algs[i].alg.cra_name); |
1836 | else |
1837 | dev_dbg(engine->dev, "registered alg \"%s\"\n", |
1838 | engine->algs[i].alg.cra_name); |
1839 | } |
1840 | |
1841 | return ret; |
1842 | } |
1843 | |
1844 | static int __devexit spacc_remove(struct platform_device *pdev) |
1845 | { |
1846 | struct spacc_alg *alg, *next; |
1847 | struct spacc_engine *engine = platform_get_drvdata(pdev); |
1848 | |
1849 | del_timer_sync(&engine->packet_timeout); |
1850 | device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
1851 | |
1852 | list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) { |
1853 | list_del(&alg->entry); |
1854 | crypto_unregister_alg(&alg->alg); |
1855 | } |
1856 | |
1857 | clk_disable(engine->clk); |
1858 | clk_put(engine->clk); |
1859 | |
1860 | return 0; |
1861 | } |
1862 | |
1863 | static const struct platform_device_id spacc_id_table[] = { |
1864 | { "picochip,spacc-ipsec", }, |
1865 | { "picochip,spacc-l2", }, |
1866 | }; |
1867 | |
1868 | static struct platform_driver spacc_driver = { |
1869 | .probe = spacc_probe, |
1870 | .remove = __devexit_p(spacc_remove), |
1871 | .driver = { |
1872 | .name = "picochip,spacc", |
1873 | #ifdef CONFIG_PM |
1874 | .pm = &spacc_pm_ops, |
1875 | #endif /* CONFIG_PM */ |
1876 | .of_match_table = spacc_of_id_table, |
1877 | }, |
1878 | .id_table = spacc_id_table, |
1879 | }; |
1880 | |
1881 | module_platform_driver(spacc_driver); |
1882 | |
1883 | MODULE_LICENSE("GPL"); |
1884 | MODULE_AUTHOR("Jamie Iles"); |
1885 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9