Root/
1 | /* |
2 | * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License as published by the Free |
6 | * Software Foundation; either version 2 of the License, or (at your option) |
7 | * any later version. |
8 | * |
9 | * This program is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
12 | * more details. |
13 | * |
14 | * You should have received a copy of the GNU General Public License along with |
15 | * this program; if not, write to the Free Software Foundation, Inc., 59 |
16 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
17 | * |
18 | * The full GNU General Public License is included in this distribution in the |
19 | * file called COPYING. |
20 | */ |
21 | |
22 | /* |
23 | * This code implements the DMA subsystem. It provides a HW-neutral interface |
24 | * for other kernel code to use asynchronous memory copy capabilities, |
25 | * if present, and allows different HW DMA drivers to register as providing |
26 | * this capability. |
27 | * |
28 | * Due to the fact we are accelerating what is already a relatively fast |
29 | * operation, the code goes to great lengths to avoid additional overhead, |
30 | * such as locking. |
31 | * |
32 | * LOCKING: |
33 | * |
34 | * The subsystem keeps a global list of dma_device structs it is protected by a |
35 | * mutex, dma_list_mutex. |
36 | * |
37 | * A subsystem can get access to a channel by calling dmaengine_get() followed |
38 | * by dma_find_channel(), or if it has need for an exclusive channel it can call |
39 | * dma_request_channel(). Once a channel is allocated a reference is taken |
40 | * against its corresponding driver to disable removal. |
41 | * |
42 | * Each device has a channels list, which runs unlocked but is never modified |
43 | * once the device is registered, it's just setup by the driver. |
44 | * |
45 | * See Documentation/dmaengine.txt for more details |
46 | */ |
47 | |
48 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
49 | |
50 | #include <linux/dma-mapping.h> |
51 | #include <linux/init.h> |
52 | #include <linux/module.h> |
53 | #include <linux/mm.h> |
54 | #include <linux/device.h> |
55 | #include <linux/dmaengine.h> |
56 | #include <linux/hardirq.h> |
57 | #include <linux/spinlock.h> |
58 | #include <linux/percpu.h> |
59 | #include <linux/rcupdate.h> |
60 | #include <linux/mutex.h> |
61 | #include <linux/jiffies.h> |
62 | #include <linux/rculist.h> |
63 | #include <linux/idr.h> |
64 | #include <linux/slab.h> |
65 | |
66 | static DEFINE_MUTEX(dma_list_mutex); |
67 | static DEFINE_IDR(dma_idr); |
68 | static LIST_HEAD(dma_device_list); |
69 | static long dmaengine_ref_count; |
70 | |
71 | /* --- sysfs implementation --- */ |
72 | |
73 | /** |
74 | * dev_to_dma_chan - convert a device pointer to the its sysfs container object |
75 | * @dev - device node |
76 | * |
77 | * Must be called under dma_list_mutex |
78 | */ |
79 | static struct dma_chan *dev_to_dma_chan(struct device *dev) |
80 | { |
81 | struct dma_chan_dev *chan_dev; |
82 | |
83 | chan_dev = container_of(dev, typeof(*chan_dev), device); |
84 | return chan_dev->chan; |
85 | } |
86 | |
87 | static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf) |
88 | { |
89 | struct dma_chan *chan; |
90 | unsigned long count = 0; |
91 | int i; |
92 | int err; |
93 | |
94 | mutex_lock(&dma_list_mutex); |
95 | chan = dev_to_dma_chan(dev); |
96 | if (chan) { |
97 | for_each_possible_cpu(i) |
98 | count += per_cpu_ptr(chan->local, i)->memcpy_count; |
99 | err = sprintf(buf, "%lu\n", count); |
100 | } else |
101 | err = -ENODEV; |
102 | mutex_unlock(&dma_list_mutex); |
103 | |
104 | return err; |
105 | } |
106 | |
107 | static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr, |
108 | char *buf) |
109 | { |
110 | struct dma_chan *chan; |
111 | unsigned long count = 0; |
112 | int i; |
113 | int err; |
114 | |
115 | mutex_lock(&dma_list_mutex); |
116 | chan = dev_to_dma_chan(dev); |
117 | if (chan) { |
118 | for_each_possible_cpu(i) |
119 | count += per_cpu_ptr(chan->local, i)->bytes_transferred; |
120 | err = sprintf(buf, "%lu\n", count); |
121 | } else |
122 | err = -ENODEV; |
123 | mutex_unlock(&dma_list_mutex); |
124 | |
125 | return err; |
126 | } |
127 | |
128 | static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf) |
129 | { |
130 | struct dma_chan *chan; |
131 | int err; |
132 | |
133 | mutex_lock(&dma_list_mutex); |
134 | chan = dev_to_dma_chan(dev); |
135 | if (chan) |
136 | err = sprintf(buf, "%d\n", chan->client_count); |
137 | else |
138 | err = -ENODEV; |
139 | mutex_unlock(&dma_list_mutex); |
140 | |
141 | return err; |
142 | } |
143 | |
144 | static struct device_attribute dma_attrs[] = { |
145 | __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), |
146 | __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), |
147 | __ATTR(in_use, S_IRUGO, show_in_use, NULL), |
148 | __ATTR_NULL |
149 | }; |
150 | |
151 | static void chan_dev_release(struct device *dev) |
152 | { |
153 | struct dma_chan_dev *chan_dev; |
154 | |
155 | chan_dev = container_of(dev, typeof(*chan_dev), device); |
156 | if (atomic_dec_and_test(chan_dev->idr_ref)) { |
157 | mutex_lock(&dma_list_mutex); |
158 | idr_remove(&dma_idr, chan_dev->dev_id); |
159 | mutex_unlock(&dma_list_mutex); |
160 | kfree(chan_dev->idr_ref); |
161 | } |
162 | kfree(chan_dev); |
163 | } |
164 | |
165 | static struct class dma_devclass = { |
166 | .name = "dma", |
167 | .dev_attrs = dma_attrs, |
168 | .dev_release = chan_dev_release, |
169 | }; |
170 | |
171 | /* --- client and device registration --- */ |
172 | |
173 | #define dma_device_satisfies_mask(device, mask) \ |
174 | __dma_device_satisfies_mask((device), &(mask)) |
175 | static int |
176 | __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want) |
177 | { |
178 | dma_cap_mask_t has; |
179 | |
180 | bitmap_and(has.bits, want->bits, device->cap_mask.bits, |
181 | DMA_TX_TYPE_END); |
182 | return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); |
183 | } |
184 | |
185 | static struct module *dma_chan_to_owner(struct dma_chan *chan) |
186 | { |
187 | return chan->device->dev->driver->owner; |
188 | } |
189 | |
190 | /** |
191 | * balance_ref_count - catch up the channel reference count |
192 | * @chan - channel to balance ->client_count versus dmaengine_ref_count |
193 | * |
194 | * balance_ref_count must be called under dma_list_mutex |
195 | */ |
196 | static void balance_ref_count(struct dma_chan *chan) |
197 | { |
198 | struct module *owner = dma_chan_to_owner(chan); |
199 | |
200 | while (chan->client_count < dmaengine_ref_count) { |
201 | __module_get(owner); |
202 | chan->client_count++; |
203 | } |
204 | } |
205 | |
206 | /** |
207 | * dma_chan_get - try to grab a dma channel's parent driver module |
208 | * @chan - channel to grab |
209 | * |
210 | * Must be called under dma_list_mutex |
211 | */ |
212 | static int dma_chan_get(struct dma_chan *chan) |
213 | { |
214 | int err = -ENODEV; |
215 | struct module *owner = dma_chan_to_owner(chan); |
216 | |
217 | if (chan->client_count) { |
218 | __module_get(owner); |
219 | err = 0; |
220 | } else if (try_module_get(owner)) |
221 | err = 0; |
222 | |
223 | if (err == 0) |
224 | chan->client_count++; |
225 | |
226 | /* allocate upon first client reference */ |
227 | if (chan->client_count == 1 && err == 0) { |
228 | int desc_cnt = chan->device->device_alloc_chan_resources(chan); |
229 | |
230 | if (desc_cnt < 0) { |
231 | err = desc_cnt; |
232 | chan->client_count = 0; |
233 | module_put(owner); |
234 | } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) |
235 | balance_ref_count(chan); |
236 | } |
237 | |
238 | return err; |
239 | } |
240 | |
241 | /** |
242 | * dma_chan_put - drop a reference to a dma channel's parent driver module |
243 | * @chan - channel to release |
244 | * |
245 | * Must be called under dma_list_mutex |
246 | */ |
247 | static void dma_chan_put(struct dma_chan *chan) |
248 | { |
249 | if (!chan->client_count) |
250 | return; /* this channel failed alloc_chan_resources */ |
251 | chan->client_count--; |
252 | module_put(dma_chan_to_owner(chan)); |
253 | if (chan->client_count == 0) |
254 | chan->device->device_free_chan_resources(chan); |
255 | } |
256 | |
257 | enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) |
258 | { |
259 | enum dma_status status; |
260 | unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); |
261 | |
262 | dma_async_issue_pending(chan); |
263 | do { |
264 | status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); |
265 | if (time_after_eq(jiffies, dma_sync_wait_timeout)) { |
266 | pr_err("%s: timeout!\n", __func__); |
267 | return DMA_ERROR; |
268 | } |
269 | } while (status == DMA_IN_PROGRESS); |
270 | |
271 | return status; |
272 | } |
273 | EXPORT_SYMBOL(dma_sync_wait); |
274 | |
275 | /** |
276 | * dma_cap_mask_all - enable iteration over all operation types |
277 | */ |
278 | static dma_cap_mask_t dma_cap_mask_all; |
279 | |
280 | /** |
281 | * dma_chan_tbl_ent - tracks channel allocations per core/operation |
282 | * @chan - associated channel for this entry |
283 | */ |
284 | struct dma_chan_tbl_ent { |
285 | struct dma_chan *chan; |
286 | }; |
287 | |
288 | /** |
289 | * channel_table - percpu lookup table for memory-to-memory offload providers |
290 | */ |
291 | static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; |
292 | |
293 | static int __init dma_channel_table_init(void) |
294 | { |
295 | enum dma_transaction_type cap; |
296 | int err = 0; |
297 | |
298 | bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); |
299 | |
300 | /* 'interrupt', 'private', and 'slave' are channel capabilities, |
301 | * but are not associated with an operation so they do not need |
302 | * an entry in the channel_table |
303 | */ |
304 | clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); |
305 | clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); |
306 | clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); |
307 | |
308 | for_each_dma_cap_mask(cap, dma_cap_mask_all) { |
309 | channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); |
310 | if (!channel_table[cap]) { |
311 | err = -ENOMEM; |
312 | break; |
313 | } |
314 | } |
315 | |
316 | if (err) { |
317 | pr_err("initialization failure\n"); |
318 | for_each_dma_cap_mask(cap, dma_cap_mask_all) |
319 | if (channel_table[cap]) |
320 | free_percpu(channel_table[cap]); |
321 | } |
322 | |
323 | return err; |
324 | } |
325 | arch_initcall(dma_channel_table_init); |
326 | |
327 | /** |
328 | * dma_find_channel - find a channel to carry out the operation |
329 | * @tx_type: transaction type |
330 | */ |
331 | struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) |
332 | { |
333 | return this_cpu_read(channel_table[tx_type]->chan); |
334 | } |
335 | EXPORT_SYMBOL(dma_find_channel); |
336 | |
337 | /* |
338 | * net_dma_find_channel - find a channel for net_dma |
339 | * net_dma has alignment requirements |
340 | */ |
341 | struct dma_chan *net_dma_find_channel(void) |
342 | { |
343 | struct dma_chan *chan = dma_find_channel(DMA_MEMCPY); |
344 | if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1)) |
345 | return NULL; |
346 | |
347 | return chan; |
348 | } |
349 | EXPORT_SYMBOL(net_dma_find_channel); |
350 | |
351 | /** |
352 | * dma_issue_pending_all - flush all pending operations across all channels |
353 | */ |
354 | void dma_issue_pending_all(void) |
355 | { |
356 | struct dma_device *device; |
357 | struct dma_chan *chan; |
358 | |
359 | rcu_read_lock(); |
360 | list_for_each_entry_rcu(device, &dma_device_list, global_node) { |
361 | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
362 | continue; |
363 | list_for_each_entry(chan, &device->channels, device_node) |
364 | if (chan->client_count) |
365 | device->device_issue_pending(chan); |
366 | } |
367 | rcu_read_unlock(); |
368 | } |
369 | EXPORT_SYMBOL(dma_issue_pending_all); |
370 | |
371 | /** |
372 | * nth_chan - returns the nth channel of the given capability |
373 | * @cap: capability to match |
374 | * @n: nth channel desired |
375 | * |
376 | * Defaults to returning the channel with the desired capability and the |
377 | * lowest reference count when 'n' cannot be satisfied. Must be called |
378 | * under dma_list_mutex. |
379 | */ |
380 | static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n) |
381 | { |
382 | struct dma_device *device; |
383 | struct dma_chan *chan; |
384 | struct dma_chan *ret = NULL; |
385 | struct dma_chan *min = NULL; |
386 | |
387 | list_for_each_entry(device, &dma_device_list, global_node) { |
388 | if (!dma_has_cap(cap, device->cap_mask) || |
389 | dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
390 | continue; |
391 | list_for_each_entry(chan, &device->channels, device_node) { |
392 | if (!chan->client_count) |
393 | continue; |
394 | if (!min) |
395 | min = chan; |
396 | else if (chan->table_count < min->table_count) |
397 | min = chan; |
398 | |
399 | if (n-- == 0) { |
400 | ret = chan; |
401 | break; /* done */ |
402 | } |
403 | } |
404 | if (ret) |
405 | break; /* done */ |
406 | } |
407 | |
408 | if (!ret) |
409 | ret = min; |
410 | |
411 | if (ret) |
412 | ret->table_count++; |
413 | |
414 | return ret; |
415 | } |
416 | |
417 | /** |
418 | * dma_channel_rebalance - redistribute the available channels |
419 | * |
420 | * Optimize for cpu isolation (each cpu gets a dedicated channel for an |
421 | * operation type) in the SMP case, and operation isolation (avoid |
422 | * multi-tasking channels) in the non-SMP case. Must be called under |
423 | * dma_list_mutex. |
424 | */ |
425 | static void dma_channel_rebalance(void) |
426 | { |
427 | struct dma_chan *chan; |
428 | struct dma_device *device; |
429 | int cpu; |
430 | int cap; |
431 | int n; |
432 | |
433 | /* undo the last distribution */ |
434 | for_each_dma_cap_mask(cap, dma_cap_mask_all) |
435 | for_each_possible_cpu(cpu) |
436 | per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; |
437 | |
438 | list_for_each_entry(device, &dma_device_list, global_node) { |
439 | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
440 | continue; |
441 | list_for_each_entry(chan, &device->channels, device_node) |
442 | chan->table_count = 0; |
443 | } |
444 | |
445 | /* don't populate the channel_table if no clients are available */ |
446 | if (!dmaengine_ref_count) |
447 | return; |
448 | |
449 | /* redistribute available channels */ |
450 | n = 0; |
451 | for_each_dma_cap_mask(cap, dma_cap_mask_all) |
452 | for_each_online_cpu(cpu) { |
453 | if (num_possible_cpus() > 1) |
454 | chan = nth_chan(cap, n++); |
455 | else |
456 | chan = nth_chan(cap, -1); |
457 | |
458 | per_cpu_ptr(channel_table[cap], cpu)->chan = chan; |
459 | } |
460 | } |
461 | |
462 | static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev, |
463 | dma_filter_fn fn, void *fn_param) |
464 | { |
465 | struct dma_chan *chan; |
466 | |
467 | if (!__dma_device_satisfies_mask(dev, mask)) { |
468 | pr_debug("%s: wrong capabilities\n", __func__); |
469 | return NULL; |
470 | } |
471 | /* devices with multiple channels need special handling as we need to |
472 | * ensure that all channels are either private or public. |
473 | */ |
474 | if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) |
475 | list_for_each_entry(chan, &dev->channels, device_node) { |
476 | /* some channels are already publicly allocated */ |
477 | if (chan->client_count) |
478 | return NULL; |
479 | } |
480 | |
481 | list_for_each_entry(chan, &dev->channels, device_node) { |
482 | if (chan->client_count) { |
483 | pr_debug("%s: %s busy\n", |
484 | __func__, dma_chan_name(chan)); |
485 | continue; |
486 | } |
487 | if (fn && !fn(chan, fn_param)) { |
488 | pr_debug("%s: %s filter said false\n", |
489 | __func__, dma_chan_name(chan)); |
490 | continue; |
491 | } |
492 | return chan; |
493 | } |
494 | |
495 | return NULL; |
496 | } |
497 | |
498 | /** |
499 | * dma_request_channel - try to allocate an exclusive channel |
500 | * @mask: capabilities that the channel must satisfy |
501 | * @fn: optional callback to disposition available channels |
502 | * @fn_param: opaque parameter to pass to dma_filter_fn |
503 | */ |
504 | struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param) |
505 | { |
506 | struct dma_device *device, *_d; |
507 | struct dma_chan *chan = NULL; |
508 | int err; |
509 | |
510 | /* Find a channel */ |
511 | mutex_lock(&dma_list_mutex); |
512 | list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
513 | chan = private_candidate(mask, device, fn, fn_param); |
514 | if (chan) { |
515 | /* Found a suitable channel, try to grab, prep, and |
516 | * return it. We first set DMA_PRIVATE to disable |
517 | * balance_ref_count as this channel will not be |
518 | * published in the general-purpose allocator |
519 | */ |
520 | dma_cap_set(DMA_PRIVATE, device->cap_mask); |
521 | device->privatecnt++; |
522 | err = dma_chan_get(chan); |
523 | |
524 | if (err == -ENODEV) { |
525 | pr_debug("%s: %s module removed\n", |
526 | __func__, dma_chan_name(chan)); |
527 | list_del_rcu(&device->global_node); |
528 | } else if (err) |
529 | pr_debug("%s: failed to get %s: (%d)\n", |
530 | __func__, dma_chan_name(chan), err); |
531 | else |
532 | break; |
533 | if (--device->privatecnt == 0) |
534 | dma_cap_clear(DMA_PRIVATE, device->cap_mask); |
535 | chan = NULL; |
536 | } |
537 | } |
538 | mutex_unlock(&dma_list_mutex); |
539 | |
540 | pr_debug("%s: %s (%s)\n", |
541 | __func__, |
542 | chan ? "success" : "fail", |
543 | chan ? dma_chan_name(chan) : NULL); |
544 | |
545 | return chan; |
546 | } |
547 | EXPORT_SYMBOL_GPL(__dma_request_channel); |
548 | |
549 | void dma_release_channel(struct dma_chan *chan) |
550 | { |
551 | mutex_lock(&dma_list_mutex); |
552 | WARN_ONCE(chan->client_count != 1, |
553 | "chan reference count %d != 1\n", chan->client_count); |
554 | dma_chan_put(chan); |
555 | /* drop PRIVATE cap enabled by __dma_request_channel() */ |
556 | if (--chan->device->privatecnt == 0) |
557 | dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); |
558 | mutex_unlock(&dma_list_mutex); |
559 | } |
560 | EXPORT_SYMBOL_GPL(dma_release_channel); |
561 | |
562 | /** |
563 | * dmaengine_get - register interest in dma_channels |
564 | */ |
565 | void dmaengine_get(void) |
566 | { |
567 | struct dma_device *device, *_d; |
568 | struct dma_chan *chan; |
569 | int err; |
570 | |
571 | mutex_lock(&dma_list_mutex); |
572 | dmaengine_ref_count++; |
573 | |
574 | /* try to grab channels */ |
575 | list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
576 | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
577 | continue; |
578 | list_for_each_entry(chan, &device->channels, device_node) { |
579 | err = dma_chan_get(chan); |
580 | if (err == -ENODEV) { |
581 | /* module removed before we could use it */ |
582 | list_del_rcu(&device->global_node); |
583 | break; |
584 | } else if (err) |
585 | pr_err("%s: failed to get %s: (%d)\n", |
586 | __func__, dma_chan_name(chan), err); |
587 | } |
588 | } |
589 | |
590 | /* if this is the first reference and there were channels |
591 | * waiting we need to rebalance to get those channels |
592 | * incorporated into the channel table |
593 | */ |
594 | if (dmaengine_ref_count == 1) |
595 | dma_channel_rebalance(); |
596 | mutex_unlock(&dma_list_mutex); |
597 | } |
598 | EXPORT_SYMBOL(dmaengine_get); |
599 | |
600 | /** |
601 | * dmaengine_put - let dma drivers be removed when ref_count == 0 |
602 | */ |
603 | void dmaengine_put(void) |
604 | { |
605 | struct dma_device *device; |
606 | struct dma_chan *chan; |
607 | |
608 | mutex_lock(&dma_list_mutex); |
609 | dmaengine_ref_count--; |
610 | BUG_ON(dmaengine_ref_count < 0); |
611 | /* drop channel references */ |
612 | list_for_each_entry(device, &dma_device_list, global_node) { |
613 | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
614 | continue; |
615 | list_for_each_entry(chan, &device->channels, device_node) |
616 | dma_chan_put(chan); |
617 | } |
618 | mutex_unlock(&dma_list_mutex); |
619 | } |
620 | EXPORT_SYMBOL(dmaengine_put); |
621 | |
622 | static bool device_has_all_tx_types(struct dma_device *device) |
623 | { |
624 | /* A device that satisfies this test has channels that will never cause |
625 | * an async_tx channel switch event as all possible operation types can |
626 | * be handled. |
627 | */ |
628 | #ifdef CONFIG_ASYNC_TX_DMA |
629 | if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) |
630 | return false; |
631 | #endif |
632 | |
633 | #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE) |
634 | if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) |
635 | return false; |
636 | #endif |
637 | |
638 | #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE) |
639 | if (!dma_has_cap(DMA_MEMSET, device->cap_mask)) |
640 | return false; |
641 | #endif |
642 | |
643 | #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE) |
644 | if (!dma_has_cap(DMA_XOR, device->cap_mask)) |
645 | return false; |
646 | |
647 | #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA |
648 | if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) |
649 | return false; |
650 | #endif |
651 | #endif |
652 | |
653 | #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE) |
654 | if (!dma_has_cap(DMA_PQ, device->cap_mask)) |
655 | return false; |
656 | |
657 | #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA |
658 | if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) |
659 | return false; |
660 | #endif |
661 | #endif |
662 | |
663 | return true; |
664 | } |
665 | |
666 | static int get_dma_id(struct dma_device *device) |
667 | { |
668 | int rc; |
669 | |
670 | idr_retry: |
671 | if (!idr_pre_get(&dma_idr, GFP_KERNEL)) |
672 | return -ENOMEM; |
673 | mutex_lock(&dma_list_mutex); |
674 | rc = idr_get_new(&dma_idr, NULL, &device->dev_id); |
675 | mutex_unlock(&dma_list_mutex); |
676 | if (rc == -EAGAIN) |
677 | goto idr_retry; |
678 | else if (rc != 0) |
679 | return rc; |
680 | |
681 | return 0; |
682 | } |
683 | |
684 | /** |
685 | * dma_async_device_register - registers DMA devices found |
686 | * @device: &dma_device |
687 | */ |
688 | int dma_async_device_register(struct dma_device *device) |
689 | { |
690 | int chancnt = 0, rc; |
691 | struct dma_chan* chan; |
692 | atomic_t *idr_ref; |
693 | |
694 | if (!device) |
695 | return -ENODEV; |
696 | |
697 | /* validate device routines */ |
698 | BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && |
699 | !device->device_prep_dma_memcpy); |
700 | BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && |
701 | !device->device_prep_dma_xor); |
702 | BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) && |
703 | !device->device_prep_dma_xor_val); |
704 | BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) && |
705 | !device->device_prep_dma_pq); |
706 | BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) && |
707 | !device->device_prep_dma_pq_val); |
708 | BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && |
709 | !device->device_prep_dma_memset); |
710 | BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && |
711 | !device->device_prep_dma_interrupt); |
712 | BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) && |
713 | !device->device_prep_dma_sg); |
714 | BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) && |
715 | !device->device_prep_dma_cyclic); |
716 | BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && |
717 | !device->device_control); |
718 | BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && |
719 | !device->device_prep_interleaved_dma); |
720 | |
721 | BUG_ON(!device->device_alloc_chan_resources); |
722 | BUG_ON(!device->device_free_chan_resources); |
723 | BUG_ON(!device->device_tx_status); |
724 | BUG_ON(!device->device_issue_pending); |
725 | BUG_ON(!device->dev); |
726 | |
727 | /* note: this only matters in the |
728 | * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case |
729 | */ |
730 | if (device_has_all_tx_types(device)) |
731 | dma_cap_set(DMA_ASYNC_TX, device->cap_mask); |
732 | |
733 | idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); |
734 | if (!idr_ref) |
735 | return -ENOMEM; |
736 | rc = get_dma_id(device); |
737 | if (rc != 0) { |
738 | kfree(idr_ref); |
739 | return rc; |
740 | } |
741 | |
742 | atomic_set(idr_ref, 0); |
743 | |
744 | /* represent channels in sysfs. Probably want devs too */ |
745 | list_for_each_entry(chan, &device->channels, device_node) { |
746 | rc = -ENOMEM; |
747 | chan->local = alloc_percpu(typeof(*chan->local)); |
748 | if (chan->local == NULL) |
749 | goto err_out; |
750 | chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); |
751 | if (chan->dev == NULL) { |
752 | free_percpu(chan->local); |
753 | chan->local = NULL; |
754 | goto err_out; |
755 | } |
756 | |
757 | chan->chan_id = chancnt++; |
758 | chan->dev->device.class = &dma_devclass; |
759 | chan->dev->device.parent = device->dev; |
760 | chan->dev->chan = chan; |
761 | chan->dev->idr_ref = idr_ref; |
762 | chan->dev->dev_id = device->dev_id; |
763 | atomic_inc(idr_ref); |
764 | dev_set_name(&chan->dev->device, "dma%dchan%d", |
765 | device->dev_id, chan->chan_id); |
766 | |
767 | rc = device_register(&chan->dev->device); |
768 | if (rc) { |
769 | free_percpu(chan->local); |
770 | chan->local = NULL; |
771 | kfree(chan->dev); |
772 | atomic_dec(idr_ref); |
773 | goto err_out; |
774 | } |
775 | chan->client_count = 0; |
776 | } |
777 | device->chancnt = chancnt; |
778 | |
779 | mutex_lock(&dma_list_mutex); |
780 | /* take references on public channels */ |
781 | if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
782 | list_for_each_entry(chan, &device->channels, device_node) { |
783 | /* if clients are already waiting for channels we need |
784 | * to take references on their behalf |
785 | */ |
786 | if (dma_chan_get(chan) == -ENODEV) { |
787 | /* note we can only get here for the first |
788 | * channel as the remaining channels are |
789 | * guaranteed to get a reference |
790 | */ |
791 | rc = -ENODEV; |
792 | mutex_unlock(&dma_list_mutex); |
793 | goto err_out; |
794 | } |
795 | } |
796 | list_add_tail_rcu(&device->global_node, &dma_device_list); |
797 | if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
798 | device->privatecnt++; /* Always private */ |
799 | dma_channel_rebalance(); |
800 | mutex_unlock(&dma_list_mutex); |
801 | |
802 | return 0; |
803 | |
804 | err_out: |
805 | /* if we never registered a channel just release the idr */ |
806 | if (atomic_read(idr_ref) == 0) { |
807 | mutex_lock(&dma_list_mutex); |
808 | idr_remove(&dma_idr, device->dev_id); |
809 | mutex_unlock(&dma_list_mutex); |
810 | kfree(idr_ref); |
811 | return rc; |
812 | } |
813 | |
814 | list_for_each_entry(chan, &device->channels, device_node) { |
815 | if (chan->local == NULL) |
816 | continue; |
817 | mutex_lock(&dma_list_mutex); |
818 | chan->dev->chan = NULL; |
819 | mutex_unlock(&dma_list_mutex); |
820 | device_unregister(&chan->dev->device); |
821 | free_percpu(chan->local); |
822 | } |
823 | return rc; |
824 | } |
825 | EXPORT_SYMBOL(dma_async_device_register); |
826 | |
827 | /** |
828 | * dma_async_device_unregister - unregister a DMA device |
829 | * @device: &dma_device |
830 | * |
831 | * This routine is called by dma driver exit routines, dmaengine holds module |
832 | * references to prevent it being called while channels are in use. |
833 | */ |
834 | void dma_async_device_unregister(struct dma_device *device) |
835 | { |
836 | struct dma_chan *chan; |
837 | |
838 | mutex_lock(&dma_list_mutex); |
839 | list_del_rcu(&device->global_node); |
840 | dma_channel_rebalance(); |
841 | mutex_unlock(&dma_list_mutex); |
842 | |
843 | list_for_each_entry(chan, &device->channels, device_node) { |
844 | WARN_ONCE(chan->client_count, |
845 | "%s called while %d clients hold a reference\n", |
846 | __func__, chan->client_count); |
847 | mutex_lock(&dma_list_mutex); |
848 | chan->dev->chan = NULL; |
849 | mutex_unlock(&dma_list_mutex); |
850 | device_unregister(&chan->dev->device); |
851 | free_percpu(chan->local); |
852 | } |
853 | } |
854 | EXPORT_SYMBOL(dma_async_device_unregister); |
855 | |
856 | /** |
857 | * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses |
858 | * @chan: DMA channel to offload copy to |
859 | * @dest: destination address (virtual) |
860 | * @src: source address (virtual) |
861 | * @len: length |
862 | * |
863 | * Both @dest and @src must be mappable to a bus address according to the |
864 | * DMA mapping API rules for streaming mappings. |
865 | * Both @dest and @src must stay memory resident (kernel memory or locked |
866 | * user space pages). |
867 | */ |
868 | dma_cookie_t |
869 | dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, |
870 | void *src, size_t len) |
871 | { |
872 | struct dma_device *dev = chan->device; |
873 | struct dma_async_tx_descriptor *tx; |
874 | dma_addr_t dma_dest, dma_src; |
875 | dma_cookie_t cookie; |
876 | unsigned long flags; |
877 | |
878 | dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); |
879 | dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); |
880 | flags = DMA_CTRL_ACK | |
881 | DMA_COMPL_SRC_UNMAP_SINGLE | |
882 | DMA_COMPL_DEST_UNMAP_SINGLE; |
883 | tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags); |
884 | |
885 | if (!tx) { |
886 | dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); |
887 | dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
888 | return -ENOMEM; |
889 | } |
890 | |
891 | tx->callback = NULL; |
892 | cookie = tx->tx_submit(tx); |
893 | |
894 | preempt_disable(); |
895 | __this_cpu_add(chan->local->bytes_transferred, len); |
896 | __this_cpu_inc(chan->local->memcpy_count); |
897 | preempt_enable(); |
898 | |
899 | return cookie; |
900 | } |
901 | EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); |
902 | |
903 | /** |
904 | * dma_async_memcpy_buf_to_pg - offloaded copy from address to page |
905 | * @chan: DMA channel to offload copy to |
906 | * @page: destination page |
907 | * @offset: offset in page to copy to |
908 | * @kdata: source address (virtual) |
909 | * @len: length |
910 | * |
911 | * Both @page/@offset and @kdata must be mappable to a bus address according |
912 | * to the DMA mapping API rules for streaming mappings. |
913 | * Both @page/@offset and @kdata must stay memory resident (kernel memory or |
914 | * locked user space pages) |
915 | */ |
916 | dma_cookie_t |
917 | dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, |
918 | unsigned int offset, void *kdata, size_t len) |
919 | { |
920 | struct dma_device *dev = chan->device; |
921 | struct dma_async_tx_descriptor *tx; |
922 | dma_addr_t dma_dest, dma_src; |
923 | dma_cookie_t cookie; |
924 | unsigned long flags; |
925 | |
926 | dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); |
927 | dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); |
928 | flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE; |
929 | tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags); |
930 | |
931 | if (!tx) { |
932 | dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); |
933 | dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
934 | return -ENOMEM; |
935 | } |
936 | |
937 | tx->callback = NULL; |
938 | cookie = tx->tx_submit(tx); |
939 | |
940 | preempt_disable(); |
941 | __this_cpu_add(chan->local->bytes_transferred, len); |
942 | __this_cpu_inc(chan->local->memcpy_count); |
943 | preempt_enable(); |
944 | |
945 | return cookie; |
946 | } |
947 | EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); |
948 | |
949 | /** |
950 | * dma_async_memcpy_pg_to_pg - offloaded copy from page to page |
951 | * @chan: DMA channel to offload copy to |
952 | * @dest_pg: destination page |
953 | * @dest_off: offset in page to copy to |
954 | * @src_pg: source page |
955 | * @src_off: offset in page to copy from |
956 | * @len: length |
957 | * |
958 | * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus |
959 | * address according to the DMA mapping API rules for streaming mappings. |
960 | * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident |
961 | * (kernel memory or locked user space pages). |
962 | */ |
963 | dma_cookie_t |
964 | dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, |
965 | unsigned int dest_off, struct page *src_pg, unsigned int src_off, |
966 | size_t len) |
967 | { |
968 | struct dma_device *dev = chan->device; |
969 | struct dma_async_tx_descriptor *tx; |
970 | dma_addr_t dma_dest, dma_src; |
971 | dma_cookie_t cookie; |
972 | unsigned long flags; |
973 | |
974 | dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); |
975 | dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len, |
976 | DMA_FROM_DEVICE); |
977 | flags = DMA_CTRL_ACK; |
978 | tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags); |
979 | |
980 | if (!tx) { |
981 | dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE); |
982 | dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
983 | return -ENOMEM; |
984 | } |
985 | |
986 | tx->callback = NULL; |
987 | cookie = tx->tx_submit(tx); |
988 | |
989 | preempt_disable(); |
990 | __this_cpu_add(chan->local->bytes_transferred, len); |
991 | __this_cpu_inc(chan->local->memcpy_count); |
992 | preempt_enable(); |
993 | |
994 | return cookie; |
995 | } |
996 | EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); |
997 | |
998 | void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, |
999 | struct dma_chan *chan) |
1000 | { |
1001 | tx->chan = chan; |
1002 | #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
1003 | spin_lock_init(&tx->lock); |
1004 | #endif |
1005 | } |
1006 | EXPORT_SYMBOL(dma_async_tx_descriptor_init); |
1007 | |
1008 | /* dma_wait_for_async_tx - spin wait for a transaction to complete |
1009 | * @tx: in-flight transaction to wait on |
1010 | */ |
1011 | enum dma_status |
1012 | dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) |
1013 | { |
1014 | unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); |
1015 | |
1016 | if (!tx) |
1017 | return DMA_SUCCESS; |
1018 | |
1019 | while (tx->cookie == -EBUSY) { |
1020 | if (time_after_eq(jiffies, dma_sync_wait_timeout)) { |
1021 | pr_err("%s timeout waiting for descriptor submission\n", |
1022 | __func__); |
1023 | return DMA_ERROR; |
1024 | } |
1025 | cpu_relax(); |
1026 | } |
1027 | return dma_sync_wait(tx->chan, tx->cookie); |
1028 | } |
1029 | EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); |
1030 | |
1031 | /* dma_run_dependencies - helper routine for dma drivers to process |
1032 | * (start) dependent operations on their target channel |
1033 | * @tx: transaction with dependencies |
1034 | */ |
1035 | void dma_run_dependencies(struct dma_async_tx_descriptor *tx) |
1036 | { |
1037 | struct dma_async_tx_descriptor *dep = txd_next(tx); |
1038 | struct dma_async_tx_descriptor *dep_next; |
1039 | struct dma_chan *chan; |
1040 | |
1041 | if (!dep) |
1042 | return; |
1043 | |
1044 | /* we'll submit tx->next now, so clear the link */ |
1045 | txd_clear_next(tx); |
1046 | chan = dep->chan; |
1047 | |
1048 | /* keep submitting up until a channel switch is detected |
1049 | * in that case we will be called again as a result of |
1050 | * processing the interrupt from async_tx_channel_switch |
1051 | */ |
1052 | for (; dep; dep = dep_next) { |
1053 | txd_lock(dep); |
1054 | txd_clear_parent(dep); |
1055 | dep_next = txd_next(dep); |
1056 | if (dep_next && dep_next->chan == chan) |
1057 | txd_clear_next(dep); /* ->next will be submitted */ |
1058 | else |
1059 | dep_next = NULL; /* submit current dep and terminate */ |
1060 | txd_unlock(dep); |
1061 | |
1062 | dep->tx_submit(dep); |
1063 | } |
1064 | |
1065 | chan->device->device_issue_pending(chan); |
1066 | } |
1067 | EXPORT_SYMBOL_GPL(dma_run_dependencies); |
1068 | |
1069 | static int __init dma_bus_init(void) |
1070 | { |
1071 | return class_register(&dma_devclass); |
1072 | } |
1073 | arch_initcall(dma_bus_init); |
1074 | |
1075 | |
1076 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9