Root/
1 | /* |
2 | * Freescale MPC85xx, MPC83xx DMA Engine support |
3 | * |
4 | * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. |
5 | * |
6 | * Author: |
7 | * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 |
8 | * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 |
9 | * |
10 | * Description: |
11 | * DMA engine driver for Freescale MPC8540 DMA controller, which is |
12 | * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. |
13 | * The support for MPC8349 DMA controller is also added. |
14 | * |
15 | * This driver instructs the DMA controller to issue the PCI Read Multiple |
16 | * command for PCI read operations, instead of using the default PCI Read Line |
17 | * command. Please be aware that this setting may result in read pre-fetching |
18 | * on some platforms. |
19 | * |
20 | * This is free software; you can redistribute it and/or modify |
21 | * it under the terms of the GNU General Public License as published by |
22 | * the Free Software Foundation; either version 2 of the License, or |
23 | * (at your option) any later version. |
24 | * |
25 | */ |
26 | |
27 | #include <linux/init.h> |
28 | #include <linux/module.h> |
29 | #include <linux/pci.h> |
30 | #include <linux/slab.h> |
31 | #include <linux/interrupt.h> |
32 | #include <linux/dmaengine.h> |
33 | #include <linux/delay.h> |
34 | #include <linux/dma-mapping.h> |
35 | #include <linux/dmapool.h> |
36 | #include <linux/of_platform.h> |
37 | |
38 | #include "dmaengine.h" |
39 | #include "fsldma.h" |
40 | |
41 | #define chan_dbg(chan, fmt, arg...) \ |
42 | dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) |
43 | #define chan_err(chan, fmt, arg...) \ |
44 | dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) |
45 | |
46 | static const char msg_ld_oom[] = "No free memory for link descriptor"; |
47 | |
48 | /* |
49 | * Register Helpers |
50 | */ |
51 | |
52 | static void set_sr(struct fsldma_chan *chan, u32 val) |
53 | { |
54 | DMA_OUT(chan, &chan->regs->sr, val, 32); |
55 | } |
56 | |
57 | static u32 get_sr(struct fsldma_chan *chan) |
58 | { |
59 | return DMA_IN(chan, &chan->regs->sr, 32); |
60 | } |
61 | |
62 | static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) |
63 | { |
64 | DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); |
65 | } |
66 | |
67 | static dma_addr_t get_cdar(struct fsldma_chan *chan) |
68 | { |
69 | return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; |
70 | } |
71 | |
72 | static u32 get_bcr(struct fsldma_chan *chan) |
73 | { |
74 | return DMA_IN(chan, &chan->regs->bcr, 32); |
75 | } |
76 | |
77 | /* |
78 | * Descriptor Helpers |
79 | */ |
80 | |
81 | static void set_desc_cnt(struct fsldma_chan *chan, |
82 | struct fsl_dma_ld_hw *hw, u32 count) |
83 | { |
84 | hw->count = CPU_TO_DMA(chan, count, 32); |
85 | } |
86 | |
87 | static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc) |
88 | { |
89 | return DMA_TO_CPU(chan, desc->hw.count, 32); |
90 | } |
91 | |
92 | static void set_desc_src(struct fsldma_chan *chan, |
93 | struct fsl_dma_ld_hw *hw, dma_addr_t src) |
94 | { |
95 | u64 snoop_bits; |
96 | |
97 | snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) |
98 | ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; |
99 | hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); |
100 | } |
101 | |
102 | static dma_addr_t get_desc_src(struct fsldma_chan *chan, |
103 | struct fsl_desc_sw *desc) |
104 | { |
105 | u64 snoop_bits; |
106 | |
107 | snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) |
108 | ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; |
109 | return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits; |
110 | } |
111 | |
112 | static void set_desc_dst(struct fsldma_chan *chan, |
113 | struct fsl_dma_ld_hw *hw, dma_addr_t dst) |
114 | { |
115 | u64 snoop_bits; |
116 | |
117 | snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) |
118 | ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; |
119 | hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); |
120 | } |
121 | |
122 | static dma_addr_t get_desc_dst(struct fsldma_chan *chan, |
123 | struct fsl_desc_sw *desc) |
124 | { |
125 | u64 snoop_bits; |
126 | |
127 | snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) |
128 | ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; |
129 | return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits; |
130 | } |
131 | |
132 | static void set_desc_next(struct fsldma_chan *chan, |
133 | struct fsl_dma_ld_hw *hw, dma_addr_t next) |
134 | { |
135 | u64 snoop_bits; |
136 | |
137 | snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) |
138 | ? FSL_DMA_SNEN : 0; |
139 | hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); |
140 | } |
141 | |
142 | static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) |
143 | { |
144 | u64 snoop_bits; |
145 | |
146 | snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) |
147 | ? FSL_DMA_SNEN : 0; |
148 | |
149 | desc->hw.next_ln_addr = CPU_TO_DMA(chan, |
150 | DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL |
151 | | snoop_bits, 64); |
152 | } |
153 | |
154 | /* |
155 | * DMA Engine Hardware Control Helpers |
156 | */ |
157 | |
158 | static void dma_init(struct fsldma_chan *chan) |
159 | { |
160 | /* Reset the channel */ |
161 | DMA_OUT(chan, &chan->regs->mr, 0, 32); |
162 | |
163 | switch (chan->feature & FSL_DMA_IP_MASK) { |
164 | case FSL_DMA_IP_85XX: |
165 | /* Set the channel to below modes: |
166 | * EIE - Error interrupt enable |
167 | * EOLNIE - End of links interrupt enable |
168 | * BWC - Bandwidth sharing among channels |
169 | */ |
170 | DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC |
171 | | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32); |
172 | break; |
173 | case FSL_DMA_IP_83XX: |
174 | /* Set the channel to below modes: |
175 | * EOTIE - End-of-transfer interrupt enable |
176 | * PRC_RM - PCI read multiple |
177 | */ |
178 | DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE |
179 | | FSL_DMA_MR_PRC_RM, 32); |
180 | break; |
181 | } |
182 | } |
183 | |
184 | static int dma_is_idle(struct fsldma_chan *chan) |
185 | { |
186 | u32 sr = get_sr(chan); |
187 | return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); |
188 | } |
189 | |
190 | /* |
191 | * Start the DMA controller |
192 | * |
193 | * Preconditions: |
194 | * - the CDAR register must point to the start descriptor |
195 | * - the MRn[CS] bit must be cleared |
196 | */ |
197 | static void dma_start(struct fsldma_chan *chan) |
198 | { |
199 | u32 mode; |
200 | |
201 | mode = DMA_IN(chan, &chan->regs->mr, 32); |
202 | |
203 | if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { |
204 | DMA_OUT(chan, &chan->regs->bcr, 0, 32); |
205 | mode |= FSL_DMA_MR_EMP_EN; |
206 | } else { |
207 | mode &= ~FSL_DMA_MR_EMP_EN; |
208 | } |
209 | |
210 | if (chan->feature & FSL_DMA_CHAN_START_EXT) { |
211 | mode |= FSL_DMA_MR_EMS_EN; |
212 | } else { |
213 | mode &= ~FSL_DMA_MR_EMS_EN; |
214 | mode |= FSL_DMA_MR_CS; |
215 | } |
216 | |
217 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
218 | } |
219 | |
220 | static void dma_halt(struct fsldma_chan *chan) |
221 | { |
222 | u32 mode; |
223 | int i; |
224 | |
225 | /* read the mode register */ |
226 | mode = DMA_IN(chan, &chan->regs->mr, 32); |
227 | |
228 | /* |
229 | * The 85xx controller supports channel abort, which will stop |
230 | * the current transfer. On 83xx, this bit is the transfer error |
231 | * mask bit, which should not be changed. |
232 | */ |
233 | if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { |
234 | mode |= FSL_DMA_MR_CA; |
235 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
236 | |
237 | mode &= ~FSL_DMA_MR_CA; |
238 | } |
239 | |
240 | /* stop the DMA controller */ |
241 | mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); |
242 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
243 | |
244 | /* wait for the DMA controller to become idle */ |
245 | for (i = 0; i < 100; i++) { |
246 | if (dma_is_idle(chan)) |
247 | return; |
248 | |
249 | udelay(10); |
250 | } |
251 | |
252 | if (!dma_is_idle(chan)) |
253 | chan_err(chan, "DMA halt timeout!\n"); |
254 | } |
255 | |
256 | /** |
257 | * fsl_chan_set_src_loop_size - Set source address hold transfer size |
258 | * @chan : Freescale DMA channel |
259 | * @size : Address loop size, 0 for disable loop |
260 | * |
261 | * The set source address hold transfer size. The source |
262 | * address hold or loop transfer size is when the DMA transfer |
263 | * data from source address (SA), if the loop size is 4, the DMA will |
264 | * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, |
265 | * SA + 1 ... and so on. |
266 | */ |
267 | static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) |
268 | { |
269 | u32 mode; |
270 | |
271 | mode = DMA_IN(chan, &chan->regs->mr, 32); |
272 | |
273 | switch (size) { |
274 | case 0: |
275 | mode &= ~FSL_DMA_MR_SAHE; |
276 | break; |
277 | case 1: |
278 | case 2: |
279 | case 4: |
280 | case 8: |
281 | mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); |
282 | break; |
283 | } |
284 | |
285 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
286 | } |
287 | |
288 | /** |
289 | * fsl_chan_set_dst_loop_size - Set destination address hold transfer size |
290 | * @chan : Freescale DMA channel |
291 | * @size : Address loop size, 0 for disable loop |
292 | * |
293 | * The set destination address hold transfer size. The destination |
294 | * address hold or loop transfer size is when the DMA transfer |
295 | * data to destination address (TA), if the loop size is 4, the DMA will |
296 | * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, |
297 | * TA + 1 ... and so on. |
298 | */ |
299 | static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) |
300 | { |
301 | u32 mode; |
302 | |
303 | mode = DMA_IN(chan, &chan->regs->mr, 32); |
304 | |
305 | switch (size) { |
306 | case 0: |
307 | mode &= ~FSL_DMA_MR_DAHE; |
308 | break; |
309 | case 1: |
310 | case 2: |
311 | case 4: |
312 | case 8: |
313 | mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); |
314 | break; |
315 | } |
316 | |
317 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
318 | } |
319 | |
320 | /** |
321 | * fsl_chan_set_request_count - Set DMA Request Count for external control |
322 | * @chan : Freescale DMA channel |
323 | * @size : Number of bytes to transfer in a single request |
324 | * |
325 | * The Freescale DMA channel can be controlled by the external signal DREQ#. |
326 | * The DMA request count is how many bytes are allowed to transfer before |
327 | * pausing the channel, after which a new assertion of DREQ# resumes channel |
328 | * operation. |
329 | * |
330 | * A size of 0 disables external pause control. The maximum size is 1024. |
331 | */ |
332 | static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) |
333 | { |
334 | u32 mode; |
335 | |
336 | BUG_ON(size > 1024); |
337 | |
338 | mode = DMA_IN(chan, &chan->regs->mr, 32); |
339 | mode |= (__ilog2(size) << 24) & 0x0f000000; |
340 | |
341 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
342 | } |
343 | |
344 | /** |
345 | * fsl_chan_toggle_ext_pause - Toggle channel external pause status |
346 | * @chan : Freescale DMA channel |
347 | * @enable : 0 is disabled, 1 is enabled. |
348 | * |
349 | * The Freescale DMA channel can be controlled by the external signal DREQ#. |
350 | * The DMA Request Count feature should be used in addition to this feature |
351 | * to set the number of bytes to transfer before pausing the channel. |
352 | */ |
353 | static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) |
354 | { |
355 | if (enable) |
356 | chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; |
357 | else |
358 | chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; |
359 | } |
360 | |
361 | /** |
362 | * fsl_chan_toggle_ext_start - Toggle channel external start status |
363 | * @chan : Freescale DMA channel |
364 | * @enable : 0 is disabled, 1 is enabled. |
365 | * |
366 | * If enable the external start, the channel can be started by an |
367 | * external DMA start pin. So the dma_start() does not start the |
368 | * transfer immediately. The DMA channel will wait for the |
369 | * control pin asserted. |
370 | */ |
371 | static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) |
372 | { |
373 | if (enable) |
374 | chan->feature |= FSL_DMA_CHAN_START_EXT; |
375 | else |
376 | chan->feature &= ~FSL_DMA_CHAN_START_EXT; |
377 | } |
378 | |
379 | static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) |
380 | { |
381 | struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); |
382 | |
383 | if (list_empty(&chan->ld_pending)) |
384 | goto out_splice; |
385 | |
386 | /* |
387 | * Add the hardware descriptor to the chain of hardware descriptors |
388 | * that already exists in memory. |
389 | * |
390 | * This will un-set the EOL bit of the existing transaction, and the |
391 | * last link in this transaction will become the EOL descriptor. |
392 | */ |
393 | set_desc_next(chan, &tail->hw, desc->async_tx.phys); |
394 | |
395 | /* |
396 | * Add the software descriptor and all children to the list |
397 | * of pending transactions |
398 | */ |
399 | out_splice: |
400 | list_splice_tail_init(&desc->tx_list, &chan->ld_pending); |
401 | } |
402 | |
403 | static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
404 | { |
405 | struct fsldma_chan *chan = to_fsl_chan(tx->chan); |
406 | struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); |
407 | struct fsl_desc_sw *child; |
408 | unsigned long flags; |
409 | dma_cookie_t cookie; |
410 | |
411 | spin_lock_irqsave(&chan->desc_lock, flags); |
412 | |
413 | /* |
414 | * assign cookies to all of the software descriptors |
415 | * that make up this transaction |
416 | */ |
417 | list_for_each_entry(child, &desc->tx_list, node) { |
418 | cookie = dma_cookie_assign(&child->async_tx); |
419 | } |
420 | |
421 | /* put this transaction onto the tail of the pending queue */ |
422 | append_ld_queue(chan, desc); |
423 | |
424 | spin_unlock_irqrestore(&chan->desc_lock, flags); |
425 | |
426 | return cookie; |
427 | } |
428 | |
429 | /** |
430 | * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. |
431 | * @chan : Freescale DMA channel |
432 | * |
433 | * Return - The descriptor allocated. NULL for failed. |
434 | */ |
435 | static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) |
436 | { |
437 | struct fsl_desc_sw *desc; |
438 | dma_addr_t pdesc; |
439 | |
440 | desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); |
441 | if (!desc) { |
442 | chan_dbg(chan, "out of memory for link descriptor\n"); |
443 | return NULL; |
444 | } |
445 | |
446 | memset(desc, 0, sizeof(*desc)); |
447 | INIT_LIST_HEAD(&desc->tx_list); |
448 | dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); |
449 | desc->async_tx.tx_submit = fsl_dma_tx_submit; |
450 | desc->async_tx.phys = pdesc; |
451 | |
452 | #ifdef FSL_DMA_LD_DEBUG |
453 | chan_dbg(chan, "LD %p allocated\n", desc); |
454 | #endif |
455 | |
456 | return desc; |
457 | } |
458 | |
459 | /** |
460 | * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. |
461 | * @chan : Freescale DMA channel |
462 | * |
463 | * This function will create a dma pool for descriptor allocation. |
464 | * |
465 | * Return - The number of descriptors allocated. |
466 | */ |
467 | static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) |
468 | { |
469 | struct fsldma_chan *chan = to_fsl_chan(dchan); |
470 | |
471 | /* Has this channel already been allocated? */ |
472 | if (chan->desc_pool) |
473 | return 1; |
474 | |
475 | /* |
476 | * We need the descriptor to be aligned to 32bytes |
477 | * for meeting FSL DMA specification requirement. |
478 | */ |
479 | chan->desc_pool = dma_pool_create(chan->name, chan->dev, |
480 | sizeof(struct fsl_desc_sw), |
481 | __alignof__(struct fsl_desc_sw), 0); |
482 | if (!chan->desc_pool) { |
483 | chan_err(chan, "unable to allocate descriptor pool\n"); |
484 | return -ENOMEM; |
485 | } |
486 | |
487 | /* there is at least one descriptor free to be allocated */ |
488 | return 1; |
489 | } |
490 | |
491 | /** |
492 | * fsldma_free_desc_list - Free all descriptors in a queue |
493 | * @chan: Freescae DMA channel |
494 | * @list: the list to free |
495 | * |
496 | * LOCKING: must hold chan->desc_lock |
497 | */ |
498 | static void fsldma_free_desc_list(struct fsldma_chan *chan, |
499 | struct list_head *list) |
500 | { |
501 | struct fsl_desc_sw *desc, *_desc; |
502 | |
503 | list_for_each_entry_safe(desc, _desc, list, node) { |
504 | list_del(&desc->node); |
505 | #ifdef FSL_DMA_LD_DEBUG |
506 | chan_dbg(chan, "LD %p free\n", desc); |
507 | #endif |
508 | dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); |
509 | } |
510 | } |
511 | |
512 | static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, |
513 | struct list_head *list) |
514 | { |
515 | struct fsl_desc_sw *desc, *_desc; |
516 | |
517 | list_for_each_entry_safe_reverse(desc, _desc, list, node) { |
518 | list_del(&desc->node); |
519 | #ifdef FSL_DMA_LD_DEBUG |
520 | chan_dbg(chan, "LD %p free\n", desc); |
521 | #endif |
522 | dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); |
523 | } |
524 | } |
525 | |
526 | /** |
527 | * fsl_dma_free_chan_resources - Free all resources of the channel. |
528 | * @chan : Freescale DMA channel |
529 | */ |
530 | static void fsl_dma_free_chan_resources(struct dma_chan *dchan) |
531 | { |
532 | struct fsldma_chan *chan = to_fsl_chan(dchan); |
533 | unsigned long flags; |
534 | |
535 | chan_dbg(chan, "free all channel resources\n"); |
536 | spin_lock_irqsave(&chan->desc_lock, flags); |
537 | fsldma_free_desc_list(chan, &chan->ld_pending); |
538 | fsldma_free_desc_list(chan, &chan->ld_running); |
539 | spin_unlock_irqrestore(&chan->desc_lock, flags); |
540 | |
541 | dma_pool_destroy(chan->desc_pool); |
542 | chan->desc_pool = NULL; |
543 | } |
544 | |
545 | static struct dma_async_tx_descriptor * |
546 | fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags) |
547 | { |
548 | struct fsldma_chan *chan; |
549 | struct fsl_desc_sw *new; |
550 | |
551 | if (!dchan) |
552 | return NULL; |
553 | |
554 | chan = to_fsl_chan(dchan); |
555 | |
556 | new = fsl_dma_alloc_descriptor(chan); |
557 | if (!new) { |
558 | chan_err(chan, "%s\n", msg_ld_oom); |
559 | return NULL; |
560 | } |
561 | |
562 | new->async_tx.cookie = -EBUSY; |
563 | new->async_tx.flags = flags; |
564 | |
565 | /* Insert the link descriptor to the LD ring */ |
566 | list_add_tail(&new->node, &new->tx_list); |
567 | |
568 | /* Set End-of-link to the last link descriptor of new list */ |
569 | set_ld_eol(chan, new); |
570 | |
571 | return &new->async_tx; |
572 | } |
573 | |
574 | static struct dma_async_tx_descriptor * |
575 | fsl_dma_prep_memcpy(struct dma_chan *dchan, |
576 | dma_addr_t dma_dst, dma_addr_t dma_src, |
577 | size_t len, unsigned long flags) |
578 | { |
579 | struct fsldma_chan *chan; |
580 | struct fsl_desc_sw *first = NULL, *prev = NULL, *new; |
581 | size_t copy; |
582 | |
583 | if (!dchan) |
584 | return NULL; |
585 | |
586 | if (!len) |
587 | return NULL; |
588 | |
589 | chan = to_fsl_chan(dchan); |
590 | |
591 | do { |
592 | |
593 | /* Allocate the link descriptor from DMA pool */ |
594 | new = fsl_dma_alloc_descriptor(chan); |
595 | if (!new) { |
596 | chan_err(chan, "%s\n", msg_ld_oom); |
597 | goto fail; |
598 | } |
599 | |
600 | copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); |
601 | |
602 | set_desc_cnt(chan, &new->hw, copy); |
603 | set_desc_src(chan, &new->hw, dma_src); |
604 | set_desc_dst(chan, &new->hw, dma_dst); |
605 | |
606 | if (!first) |
607 | first = new; |
608 | else |
609 | set_desc_next(chan, &prev->hw, new->async_tx.phys); |
610 | |
611 | new->async_tx.cookie = 0; |
612 | async_tx_ack(&new->async_tx); |
613 | |
614 | prev = new; |
615 | len -= copy; |
616 | dma_src += copy; |
617 | dma_dst += copy; |
618 | |
619 | /* Insert the link descriptor to the LD ring */ |
620 | list_add_tail(&new->node, &first->tx_list); |
621 | } while (len); |
622 | |
623 | new->async_tx.flags = flags; /* client is in control of this ack */ |
624 | new->async_tx.cookie = -EBUSY; |
625 | |
626 | /* Set End-of-link to the last link descriptor of new list */ |
627 | set_ld_eol(chan, new); |
628 | |
629 | return &first->async_tx; |
630 | |
631 | fail: |
632 | if (!first) |
633 | return NULL; |
634 | |
635 | fsldma_free_desc_list_reverse(chan, &first->tx_list); |
636 | return NULL; |
637 | } |
638 | |
639 | static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan, |
640 | struct scatterlist *dst_sg, unsigned int dst_nents, |
641 | struct scatterlist *src_sg, unsigned int src_nents, |
642 | unsigned long flags) |
643 | { |
644 | struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; |
645 | struct fsldma_chan *chan = to_fsl_chan(dchan); |
646 | size_t dst_avail, src_avail; |
647 | dma_addr_t dst, src; |
648 | size_t len; |
649 | |
650 | /* basic sanity checks */ |
651 | if (dst_nents == 0 || src_nents == 0) |
652 | return NULL; |
653 | |
654 | if (dst_sg == NULL || src_sg == NULL) |
655 | return NULL; |
656 | |
657 | /* |
658 | * TODO: should we check that both scatterlists have the same |
659 | * TODO: number of bytes in total? Is that really an error? |
660 | */ |
661 | |
662 | /* get prepared for the loop */ |
663 | dst_avail = sg_dma_len(dst_sg); |
664 | src_avail = sg_dma_len(src_sg); |
665 | |
666 | /* run until we are out of scatterlist entries */ |
667 | while (true) { |
668 | |
669 | /* create the largest transaction possible */ |
670 | len = min_t(size_t, src_avail, dst_avail); |
671 | len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT); |
672 | if (len == 0) |
673 | goto fetch; |
674 | |
675 | dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; |
676 | src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; |
677 | |
678 | /* allocate and populate the descriptor */ |
679 | new = fsl_dma_alloc_descriptor(chan); |
680 | if (!new) { |
681 | chan_err(chan, "%s\n", msg_ld_oom); |
682 | goto fail; |
683 | } |
684 | |
685 | set_desc_cnt(chan, &new->hw, len); |
686 | set_desc_src(chan, &new->hw, src); |
687 | set_desc_dst(chan, &new->hw, dst); |
688 | |
689 | if (!first) |
690 | first = new; |
691 | else |
692 | set_desc_next(chan, &prev->hw, new->async_tx.phys); |
693 | |
694 | new->async_tx.cookie = 0; |
695 | async_tx_ack(&new->async_tx); |
696 | prev = new; |
697 | |
698 | /* Insert the link descriptor to the LD ring */ |
699 | list_add_tail(&new->node, &first->tx_list); |
700 | |
701 | /* update metadata */ |
702 | dst_avail -= len; |
703 | src_avail -= len; |
704 | |
705 | fetch: |
706 | /* fetch the next dst scatterlist entry */ |
707 | if (dst_avail == 0) { |
708 | |
709 | /* no more entries: we're done */ |
710 | if (dst_nents == 0) |
711 | break; |
712 | |
713 | /* fetch the next entry: if there are no more: done */ |
714 | dst_sg = sg_next(dst_sg); |
715 | if (dst_sg == NULL) |
716 | break; |
717 | |
718 | dst_nents--; |
719 | dst_avail = sg_dma_len(dst_sg); |
720 | } |
721 | |
722 | /* fetch the next src scatterlist entry */ |
723 | if (src_avail == 0) { |
724 | |
725 | /* no more entries: we're done */ |
726 | if (src_nents == 0) |
727 | break; |
728 | |
729 | /* fetch the next entry: if there are no more: done */ |
730 | src_sg = sg_next(src_sg); |
731 | if (src_sg == NULL) |
732 | break; |
733 | |
734 | src_nents--; |
735 | src_avail = sg_dma_len(src_sg); |
736 | } |
737 | } |
738 | |
739 | new->async_tx.flags = flags; /* client is in control of this ack */ |
740 | new->async_tx.cookie = -EBUSY; |
741 | |
742 | /* Set End-of-link to the last link descriptor of new list */ |
743 | set_ld_eol(chan, new); |
744 | |
745 | return &first->async_tx; |
746 | |
747 | fail: |
748 | if (!first) |
749 | return NULL; |
750 | |
751 | fsldma_free_desc_list_reverse(chan, &first->tx_list); |
752 | return NULL; |
753 | } |
754 | |
755 | /** |
756 | * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction |
757 | * @chan: DMA channel |
758 | * @sgl: scatterlist to transfer to/from |
759 | * @sg_len: number of entries in @scatterlist |
760 | * @direction: DMA direction |
761 | * @flags: DMAEngine flags |
762 | * @context: transaction context (ignored) |
763 | * |
764 | * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the |
765 | * DMA_SLAVE API, this gets the device-specific information from the |
766 | * chan->private variable. |
767 | */ |
768 | static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( |
769 | struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, |
770 | enum dma_transfer_direction direction, unsigned long flags, |
771 | void *context) |
772 | { |
773 | /* |
774 | * This operation is not supported on the Freescale DMA controller |
775 | * |
776 | * However, we need to provide the function pointer to allow the |
777 | * device_control() method to work. |
778 | */ |
779 | return NULL; |
780 | } |
781 | |
782 | static int fsl_dma_device_control(struct dma_chan *dchan, |
783 | enum dma_ctrl_cmd cmd, unsigned long arg) |
784 | { |
785 | struct dma_slave_config *config; |
786 | struct fsldma_chan *chan; |
787 | unsigned long flags; |
788 | int size; |
789 | |
790 | if (!dchan) |
791 | return -EINVAL; |
792 | |
793 | chan = to_fsl_chan(dchan); |
794 | |
795 | switch (cmd) { |
796 | case DMA_TERMINATE_ALL: |
797 | spin_lock_irqsave(&chan->desc_lock, flags); |
798 | |
799 | /* Halt the DMA engine */ |
800 | dma_halt(chan); |
801 | |
802 | /* Remove and free all of the descriptors in the LD queue */ |
803 | fsldma_free_desc_list(chan, &chan->ld_pending); |
804 | fsldma_free_desc_list(chan, &chan->ld_running); |
805 | chan->idle = true; |
806 | |
807 | spin_unlock_irqrestore(&chan->desc_lock, flags); |
808 | return 0; |
809 | |
810 | case DMA_SLAVE_CONFIG: |
811 | config = (struct dma_slave_config *)arg; |
812 | |
813 | /* make sure the channel supports setting burst size */ |
814 | if (!chan->set_request_count) |
815 | return -ENXIO; |
816 | |
817 | /* we set the controller burst size depending on direction */ |
818 | if (config->direction == DMA_MEM_TO_DEV) |
819 | size = config->dst_addr_width * config->dst_maxburst; |
820 | else |
821 | size = config->src_addr_width * config->src_maxburst; |
822 | |
823 | chan->set_request_count(chan, size); |
824 | return 0; |
825 | |
826 | case FSLDMA_EXTERNAL_START: |
827 | |
828 | /* make sure the channel supports external start */ |
829 | if (!chan->toggle_ext_start) |
830 | return -ENXIO; |
831 | |
832 | chan->toggle_ext_start(chan, arg); |
833 | return 0; |
834 | |
835 | default: |
836 | return -ENXIO; |
837 | } |
838 | |
839 | return 0; |
840 | } |
841 | |
842 | /** |
843 | * fsldma_cleanup_descriptor - cleanup and free a single link descriptor |
844 | * @chan: Freescale DMA channel |
845 | * @desc: descriptor to cleanup and free |
846 | * |
847 | * This function is used on a descriptor which has been executed by the DMA |
848 | * controller. It will run any callbacks, submit any dependencies, and then |
849 | * free the descriptor. |
850 | */ |
851 | static void fsldma_cleanup_descriptor(struct fsldma_chan *chan, |
852 | struct fsl_desc_sw *desc) |
853 | { |
854 | struct dma_async_tx_descriptor *txd = &desc->async_tx; |
855 | struct device *dev = chan->common.device->dev; |
856 | dma_addr_t src = get_desc_src(chan, desc); |
857 | dma_addr_t dst = get_desc_dst(chan, desc); |
858 | u32 len = get_desc_cnt(chan, desc); |
859 | |
860 | /* Run the link descriptor callback function */ |
861 | if (txd->callback) { |
862 | #ifdef FSL_DMA_LD_DEBUG |
863 | chan_dbg(chan, "LD %p callback\n", desc); |
864 | #endif |
865 | txd->callback(txd->callback_param); |
866 | } |
867 | |
868 | /* Run any dependencies */ |
869 | dma_run_dependencies(txd); |
870 | |
871 | /* Unmap the dst buffer, if requested */ |
872 | if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) { |
873 | if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE) |
874 | dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE); |
875 | else |
876 | dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE); |
877 | } |
878 | |
879 | /* Unmap the src buffer, if requested */ |
880 | if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
881 | if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE) |
882 | dma_unmap_single(dev, src, len, DMA_TO_DEVICE); |
883 | else |
884 | dma_unmap_page(dev, src, len, DMA_TO_DEVICE); |
885 | } |
886 | |
887 | #ifdef FSL_DMA_LD_DEBUG |
888 | chan_dbg(chan, "LD %p free\n", desc); |
889 | #endif |
890 | dma_pool_free(chan->desc_pool, desc, txd->phys); |
891 | } |
892 | |
893 | /** |
894 | * fsl_chan_xfer_ld_queue - transfer any pending transactions |
895 | * @chan : Freescale DMA channel |
896 | * |
897 | * HARDWARE STATE: idle |
898 | * LOCKING: must hold chan->desc_lock |
899 | */ |
900 | static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) |
901 | { |
902 | struct fsl_desc_sw *desc; |
903 | |
904 | /* |
905 | * If the list of pending descriptors is empty, then we |
906 | * don't need to do any work at all |
907 | */ |
908 | if (list_empty(&chan->ld_pending)) { |
909 | chan_dbg(chan, "no pending LDs\n"); |
910 | return; |
911 | } |
912 | |
913 | /* |
914 | * The DMA controller is not idle, which means that the interrupt |
915 | * handler will start any queued transactions when it runs after |
916 | * this transaction finishes |
917 | */ |
918 | if (!chan->idle) { |
919 | chan_dbg(chan, "DMA controller still busy\n"); |
920 | return; |
921 | } |
922 | |
923 | /* |
924 | * If there are some link descriptors which have not been |
925 | * transferred, we need to start the controller |
926 | */ |
927 | |
928 | /* |
929 | * Move all elements from the queue of pending transactions |
930 | * onto the list of running transactions |
931 | */ |
932 | chan_dbg(chan, "idle, starting controller\n"); |
933 | desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); |
934 | list_splice_tail_init(&chan->ld_pending, &chan->ld_running); |
935 | |
936 | /* |
937 | * The 85xx DMA controller doesn't clear the channel start bit |
938 | * automatically at the end of a transfer. Therefore we must clear |
939 | * it in software before starting the transfer. |
940 | */ |
941 | if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { |
942 | u32 mode; |
943 | |
944 | mode = DMA_IN(chan, &chan->regs->mr, 32); |
945 | mode &= ~FSL_DMA_MR_CS; |
946 | DMA_OUT(chan, &chan->regs->mr, mode, 32); |
947 | } |
948 | |
949 | /* |
950 | * Program the descriptor's address into the DMA controller, |
951 | * then start the DMA transaction |
952 | */ |
953 | set_cdar(chan, desc->async_tx.phys); |
954 | get_cdar(chan); |
955 | |
956 | dma_start(chan); |
957 | chan->idle = false; |
958 | } |
959 | |
960 | /** |
961 | * fsl_dma_memcpy_issue_pending - Issue the DMA start command |
962 | * @chan : Freescale DMA channel |
963 | */ |
964 | static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) |
965 | { |
966 | struct fsldma_chan *chan = to_fsl_chan(dchan); |
967 | unsigned long flags; |
968 | |
969 | spin_lock_irqsave(&chan->desc_lock, flags); |
970 | fsl_chan_xfer_ld_queue(chan); |
971 | spin_unlock_irqrestore(&chan->desc_lock, flags); |
972 | } |
973 | |
974 | /** |
975 | * fsl_tx_status - Determine the DMA status |
976 | * @chan : Freescale DMA channel |
977 | */ |
978 | static enum dma_status fsl_tx_status(struct dma_chan *dchan, |
979 | dma_cookie_t cookie, |
980 | struct dma_tx_state *txstate) |
981 | { |
982 | struct fsldma_chan *chan = to_fsl_chan(dchan); |
983 | enum dma_status ret; |
984 | unsigned long flags; |
985 | |
986 | spin_lock_irqsave(&chan->desc_lock, flags); |
987 | ret = dma_cookie_status(dchan, cookie, txstate); |
988 | spin_unlock_irqrestore(&chan->desc_lock, flags); |
989 | |
990 | return ret; |
991 | } |
992 | |
993 | /*----------------------------------------------------------------------------*/ |
994 | /* Interrupt Handling */ |
995 | /*----------------------------------------------------------------------------*/ |
996 | |
997 | static irqreturn_t fsldma_chan_irq(int irq, void *data) |
998 | { |
999 | struct fsldma_chan *chan = data; |
1000 | u32 stat; |
1001 | |
1002 | /* save and clear the status register */ |
1003 | stat = get_sr(chan); |
1004 | set_sr(chan, stat); |
1005 | chan_dbg(chan, "irq: stat = 0x%x\n", stat); |
1006 | |
1007 | /* check that this was really our device */ |
1008 | stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); |
1009 | if (!stat) |
1010 | return IRQ_NONE; |
1011 | |
1012 | if (stat & FSL_DMA_SR_TE) |
1013 | chan_err(chan, "Transfer Error!\n"); |
1014 | |
1015 | /* |
1016 | * Programming Error |
1017 | * The DMA_INTERRUPT async_tx is a NULL transfer, which will |
1018 | * triger a PE interrupt. |
1019 | */ |
1020 | if (stat & FSL_DMA_SR_PE) { |
1021 | chan_dbg(chan, "irq: Programming Error INT\n"); |
1022 | stat &= ~FSL_DMA_SR_PE; |
1023 | if (get_bcr(chan) != 0) |
1024 | chan_err(chan, "Programming Error!\n"); |
1025 | } |
1026 | |
1027 | /* |
1028 | * For MPC8349, EOCDI event need to update cookie |
1029 | * and start the next transfer if it exist. |
1030 | */ |
1031 | if (stat & FSL_DMA_SR_EOCDI) { |
1032 | chan_dbg(chan, "irq: End-of-Chain link INT\n"); |
1033 | stat &= ~FSL_DMA_SR_EOCDI; |
1034 | } |
1035 | |
1036 | /* |
1037 | * If it current transfer is the end-of-transfer, |
1038 | * we should clear the Channel Start bit for |
1039 | * prepare next transfer. |
1040 | */ |
1041 | if (stat & FSL_DMA_SR_EOLNI) { |
1042 | chan_dbg(chan, "irq: End-of-link INT\n"); |
1043 | stat &= ~FSL_DMA_SR_EOLNI; |
1044 | } |
1045 | |
1046 | /* check that the DMA controller is really idle */ |
1047 | if (!dma_is_idle(chan)) |
1048 | chan_err(chan, "irq: controller not idle!\n"); |
1049 | |
1050 | /* check that we handled all of the bits */ |
1051 | if (stat) |
1052 | chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); |
1053 | |
1054 | /* |
1055 | * Schedule the tasklet to handle all cleanup of the current |
1056 | * transaction. It will start a new transaction if there is |
1057 | * one pending. |
1058 | */ |
1059 | tasklet_schedule(&chan->tasklet); |
1060 | chan_dbg(chan, "irq: Exit\n"); |
1061 | return IRQ_HANDLED; |
1062 | } |
1063 | |
1064 | static void dma_do_tasklet(unsigned long data) |
1065 | { |
1066 | struct fsldma_chan *chan = (struct fsldma_chan *)data; |
1067 | struct fsl_desc_sw *desc, *_desc; |
1068 | LIST_HEAD(ld_cleanup); |
1069 | unsigned long flags; |
1070 | |
1071 | chan_dbg(chan, "tasklet entry\n"); |
1072 | |
1073 | spin_lock_irqsave(&chan->desc_lock, flags); |
1074 | |
1075 | /* update the cookie if we have some descriptors to cleanup */ |
1076 | if (!list_empty(&chan->ld_running)) { |
1077 | dma_cookie_t cookie; |
1078 | |
1079 | desc = to_fsl_desc(chan->ld_running.prev); |
1080 | cookie = desc->async_tx.cookie; |
1081 | dma_cookie_complete(&desc->async_tx); |
1082 | |
1083 | chan_dbg(chan, "completed_cookie=%d\n", cookie); |
1084 | } |
1085 | |
1086 | /* |
1087 | * move the descriptors to a temporary list so we can drop the lock |
1088 | * during the entire cleanup operation |
1089 | */ |
1090 | list_splice_tail_init(&chan->ld_running, &ld_cleanup); |
1091 | |
1092 | /* the hardware is now idle and ready for more */ |
1093 | chan->idle = true; |
1094 | |
1095 | /* |
1096 | * Start any pending transactions automatically |
1097 | * |
1098 | * In the ideal case, we keep the DMA controller busy while we go |
1099 | * ahead and free the descriptors below. |
1100 | */ |
1101 | fsl_chan_xfer_ld_queue(chan); |
1102 | spin_unlock_irqrestore(&chan->desc_lock, flags); |
1103 | |
1104 | /* Run the callback for each descriptor, in order */ |
1105 | list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) { |
1106 | |
1107 | /* Remove from the list of transactions */ |
1108 | list_del(&desc->node); |
1109 | |
1110 | /* Run all cleanup for this descriptor */ |
1111 | fsldma_cleanup_descriptor(chan, desc); |
1112 | } |
1113 | |
1114 | chan_dbg(chan, "tasklet exit\n"); |
1115 | } |
1116 | |
1117 | static irqreturn_t fsldma_ctrl_irq(int irq, void *data) |
1118 | { |
1119 | struct fsldma_device *fdev = data; |
1120 | struct fsldma_chan *chan; |
1121 | unsigned int handled = 0; |
1122 | u32 gsr, mask; |
1123 | int i; |
1124 | |
1125 | gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) |
1126 | : in_le32(fdev->regs); |
1127 | mask = 0xff000000; |
1128 | dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); |
1129 | |
1130 | for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { |
1131 | chan = fdev->chan[i]; |
1132 | if (!chan) |
1133 | continue; |
1134 | |
1135 | if (gsr & mask) { |
1136 | dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); |
1137 | fsldma_chan_irq(irq, chan); |
1138 | handled++; |
1139 | } |
1140 | |
1141 | gsr &= ~mask; |
1142 | mask >>= 8; |
1143 | } |
1144 | |
1145 | return IRQ_RETVAL(handled); |
1146 | } |
1147 | |
1148 | static void fsldma_free_irqs(struct fsldma_device *fdev) |
1149 | { |
1150 | struct fsldma_chan *chan; |
1151 | int i; |
1152 | |
1153 | if (fdev->irq != NO_IRQ) { |
1154 | dev_dbg(fdev->dev, "free per-controller IRQ\n"); |
1155 | free_irq(fdev->irq, fdev); |
1156 | return; |
1157 | } |
1158 | |
1159 | for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { |
1160 | chan = fdev->chan[i]; |
1161 | if (chan && chan->irq != NO_IRQ) { |
1162 | chan_dbg(chan, "free per-channel IRQ\n"); |
1163 | free_irq(chan->irq, chan); |
1164 | } |
1165 | } |
1166 | } |
1167 | |
1168 | static int fsldma_request_irqs(struct fsldma_device *fdev) |
1169 | { |
1170 | struct fsldma_chan *chan; |
1171 | int ret; |
1172 | int i; |
1173 | |
1174 | /* if we have a per-controller IRQ, use that */ |
1175 | if (fdev->irq != NO_IRQ) { |
1176 | dev_dbg(fdev->dev, "request per-controller IRQ\n"); |
1177 | ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, |
1178 | "fsldma-controller", fdev); |
1179 | return ret; |
1180 | } |
1181 | |
1182 | /* no per-controller IRQ, use the per-channel IRQs */ |
1183 | for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { |
1184 | chan = fdev->chan[i]; |
1185 | if (!chan) |
1186 | continue; |
1187 | |
1188 | if (chan->irq == NO_IRQ) { |
1189 | chan_err(chan, "interrupts property missing in device tree\n"); |
1190 | ret = -ENODEV; |
1191 | goto out_unwind; |
1192 | } |
1193 | |
1194 | chan_dbg(chan, "request per-channel IRQ\n"); |
1195 | ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, |
1196 | "fsldma-chan", chan); |
1197 | if (ret) { |
1198 | chan_err(chan, "unable to request per-channel IRQ\n"); |
1199 | goto out_unwind; |
1200 | } |
1201 | } |
1202 | |
1203 | return 0; |
1204 | |
1205 | out_unwind: |
1206 | for (/* none */; i >= 0; i--) { |
1207 | chan = fdev->chan[i]; |
1208 | if (!chan) |
1209 | continue; |
1210 | |
1211 | if (chan->irq == NO_IRQ) |
1212 | continue; |
1213 | |
1214 | free_irq(chan->irq, chan); |
1215 | } |
1216 | |
1217 | return ret; |
1218 | } |
1219 | |
1220 | /*----------------------------------------------------------------------------*/ |
1221 | /* OpenFirmware Subsystem */ |
1222 | /*----------------------------------------------------------------------------*/ |
1223 | |
1224 | static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev, |
1225 | struct device_node *node, u32 feature, const char *compatible) |
1226 | { |
1227 | struct fsldma_chan *chan; |
1228 | struct resource res; |
1229 | int err; |
1230 | |
1231 | /* alloc channel */ |
1232 | chan = kzalloc(sizeof(*chan), GFP_KERNEL); |
1233 | if (!chan) { |
1234 | dev_err(fdev->dev, "no free memory for DMA channels!\n"); |
1235 | err = -ENOMEM; |
1236 | goto out_return; |
1237 | } |
1238 | |
1239 | /* ioremap registers for use */ |
1240 | chan->regs = of_iomap(node, 0); |
1241 | if (!chan->regs) { |
1242 | dev_err(fdev->dev, "unable to ioremap registers\n"); |
1243 | err = -ENOMEM; |
1244 | goto out_free_chan; |
1245 | } |
1246 | |
1247 | err = of_address_to_resource(node, 0, &res); |
1248 | if (err) { |
1249 | dev_err(fdev->dev, "unable to find 'reg' property\n"); |
1250 | goto out_iounmap_regs; |
1251 | } |
1252 | |
1253 | chan->feature = feature; |
1254 | if (!fdev->feature) |
1255 | fdev->feature = chan->feature; |
1256 | |
1257 | /* |
1258 | * If the DMA device's feature is different than the feature |
1259 | * of its channels, report the bug |
1260 | */ |
1261 | WARN_ON(fdev->feature != chan->feature); |
1262 | |
1263 | chan->dev = fdev->dev; |
1264 | chan->id = ((res.start - 0x100) & 0xfff) >> 7; |
1265 | if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { |
1266 | dev_err(fdev->dev, "too many channels for device\n"); |
1267 | err = -EINVAL; |
1268 | goto out_iounmap_regs; |
1269 | } |
1270 | |
1271 | fdev->chan[chan->id] = chan; |
1272 | tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); |
1273 | snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); |
1274 | |
1275 | /* Initialize the channel */ |
1276 | dma_init(chan); |
1277 | |
1278 | /* Clear cdar registers */ |
1279 | set_cdar(chan, 0); |
1280 | |
1281 | switch (chan->feature & FSL_DMA_IP_MASK) { |
1282 | case FSL_DMA_IP_85XX: |
1283 | chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; |
1284 | case FSL_DMA_IP_83XX: |
1285 | chan->toggle_ext_start = fsl_chan_toggle_ext_start; |
1286 | chan->set_src_loop_size = fsl_chan_set_src_loop_size; |
1287 | chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; |
1288 | chan->set_request_count = fsl_chan_set_request_count; |
1289 | } |
1290 | |
1291 | spin_lock_init(&chan->desc_lock); |
1292 | INIT_LIST_HEAD(&chan->ld_pending); |
1293 | INIT_LIST_HEAD(&chan->ld_running); |
1294 | chan->idle = true; |
1295 | |
1296 | chan->common.device = &fdev->common; |
1297 | dma_cookie_init(&chan->common); |
1298 | |
1299 | /* find the IRQ line, if it exists in the device tree */ |
1300 | chan->irq = irq_of_parse_and_map(node, 0); |
1301 | |
1302 | /* Add the channel to DMA device channel list */ |
1303 | list_add_tail(&chan->common.device_node, &fdev->common.channels); |
1304 | fdev->common.chancnt++; |
1305 | |
1306 | dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, |
1307 | chan->irq != NO_IRQ ? chan->irq : fdev->irq); |
1308 | |
1309 | return 0; |
1310 | |
1311 | out_iounmap_regs: |
1312 | iounmap(chan->regs); |
1313 | out_free_chan: |
1314 | kfree(chan); |
1315 | out_return: |
1316 | return err; |
1317 | } |
1318 | |
1319 | static void fsl_dma_chan_remove(struct fsldma_chan *chan) |
1320 | { |
1321 | irq_dispose_mapping(chan->irq); |
1322 | list_del(&chan->common.device_node); |
1323 | iounmap(chan->regs); |
1324 | kfree(chan); |
1325 | } |
1326 | |
1327 | static int __devinit fsldma_of_probe(struct platform_device *op) |
1328 | { |
1329 | struct fsldma_device *fdev; |
1330 | struct device_node *child; |
1331 | int err; |
1332 | |
1333 | fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); |
1334 | if (!fdev) { |
1335 | dev_err(&op->dev, "No enough memory for 'priv'\n"); |
1336 | err = -ENOMEM; |
1337 | goto out_return; |
1338 | } |
1339 | |
1340 | fdev->dev = &op->dev; |
1341 | INIT_LIST_HEAD(&fdev->common.channels); |
1342 | |
1343 | /* ioremap the registers for use */ |
1344 | fdev->regs = of_iomap(op->dev.of_node, 0); |
1345 | if (!fdev->regs) { |
1346 | dev_err(&op->dev, "unable to ioremap registers\n"); |
1347 | err = -ENOMEM; |
1348 | goto out_free_fdev; |
1349 | } |
1350 | |
1351 | /* map the channel IRQ if it exists, but don't hookup the handler yet */ |
1352 | fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); |
1353 | |
1354 | dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); |
1355 | dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); |
1356 | dma_cap_set(DMA_SG, fdev->common.cap_mask); |
1357 | dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); |
1358 | fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; |
1359 | fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; |
1360 | fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; |
1361 | fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; |
1362 | fdev->common.device_prep_dma_sg = fsl_dma_prep_sg; |
1363 | fdev->common.device_tx_status = fsl_tx_status; |
1364 | fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; |
1365 | fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; |
1366 | fdev->common.device_control = fsl_dma_device_control; |
1367 | fdev->common.dev = &op->dev; |
1368 | |
1369 | dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); |
1370 | |
1371 | dev_set_drvdata(&op->dev, fdev); |
1372 | |
1373 | /* |
1374 | * We cannot use of_platform_bus_probe() because there is no |
1375 | * of_platform_bus_remove(). Instead, we manually instantiate every DMA |
1376 | * channel object. |
1377 | */ |
1378 | for_each_child_of_node(op->dev.of_node, child) { |
1379 | if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { |
1380 | fsl_dma_chan_probe(fdev, child, |
1381 | FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, |
1382 | "fsl,eloplus-dma-channel"); |
1383 | } |
1384 | |
1385 | if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { |
1386 | fsl_dma_chan_probe(fdev, child, |
1387 | FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, |
1388 | "fsl,elo-dma-channel"); |
1389 | } |
1390 | } |
1391 | |
1392 | /* |
1393 | * Hookup the IRQ handler(s) |
1394 | * |
1395 | * If we have a per-controller interrupt, we prefer that to the |
1396 | * per-channel interrupts to reduce the number of shared interrupt |
1397 | * handlers on the same IRQ line |
1398 | */ |
1399 | err = fsldma_request_irqs(fdev); |
1400 | if (err) { |
1401 | dev_err(fdev->dev, "unable to request IRQs\n"); |
1402 | goto out_free_fdev; |
1403 | } |
1404 | |
1405 | dma_async_device_register(&fdev->common); |
1406 | return 0; |
1407 | |
1408 | out_free_fdev: |
1409 | irq_dispose_mapping(fdev->irq); |
1410 | kfree(fdev); |
1411 | out_return: |
1412 | return err; |
1413 | } |
1414 | |
1415 | static int fsldma_of_remove(struct platform_device *op) |
1416 | { |
1417 | struct fsldma_device *fdev; |
1418 | unsigned int i; |
1419 | |
1420 | fdev = dev_get_drvdata(&op->dev); |
1421 | dma_async_device_unregister(&fdev->common); |
1422 | |
1423 | fsldma_free_irqs(fdev); |
1424 | |
1425 | for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { |
1426 | if (fdev->chan[i]) |
1427 | fsl_dma_chan_remove(fdev->chan[i]); |
1428 | } |
1429 | |
1430 | iounmap(fdev->regs); |
1431 | dev_set_drvdata(&op->dev, NULL); |
1432 | kfree(fdev); |
1433 | |
1434 | return 0; |
1435 | } |
1436 | |
1437 | static const struct of_device_id fsldma_of_ids[] = { |
1438 | { .compatible = "fsl,eloplus-dma", }, |
1439 | { .compatible = "fsl,elo-dma", }, |
1440 | {} |
1441 | }; |
1442 | |
1443 | static struct platform_driver fsldma_of_driver = { |
1444 | .driver = { |
1445 | .name = "fsl-elo-dma", |
1446 | .owner = THIS_MODULE, |
1447 | .of_match_table = fsldma_of_ids, |
1448 | }, |
1449 | .probe = fsldma_of_probe, |
1450 | .remove = fsldma_of_remove, |
1451 | }; |
1452 | |
1453 | /*----------------------------------------------------------------------------*/ |
1454 | /* Module Init / Exit */ |
1455 | /*----------------------------------------------------------------------------*/ |
1456 | |
1457 | static __init int fsldma_init(void) |
1458 | { |
1459 | pr_info("Freescale Elo / Elo Plus DMA driver\n"); |
1460 | return platform_driver_register(&fsldma_of_driver); |
1461 | } |
1462 | |
1463 | static void __exit fsldma_exit(void) |
1464 | { |
1465 | platform_driver_unregister(&fsldma_of_driver); |
1466 | } |
1467 | |
1468 | subsys_initcall(fsldma_init); |
1469 | module_exit(fsldma_exit); |
1470 | |
1471 | MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver"); |
1472 | MODULE_LICENSE("GPL"); |
1473 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9