Root/drivers/dma/intel_mid_dma.c

1/*
2 * intel_mid_dma.c - Intel Langwell DMA Drivers
3 *
4 * Copyright (C) 2008-10 Intel Corp
5 * Author: Vinod Koul <vinod.koul@intel.com>
6 * The driver design is based on dw_dmac driver
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 *
25 */
26#include <linux/pci.h>
27#include <linux/interrupt.h>
28#include <linux/pm_runtime.h>
29#include <linux/intel_mid_dma.h>
30#include <linux/module.h>
31
32#include "dmaengine.h"
33
34#define MAX_CHAN 4 /*max ch across controllers*/
35#include "intel_mid_dma_regs.h"
36
37#define INTEL_MID_DMAC1_ID 0x0814
38#define INTEL_MID_DMAC2_ID 0x0813
39#define INTEL_MID_GP_DMAC2_ID 0x0827
40#define INTEL_MFLD_DMAC1_ID 0x0830
41#define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
42#define LNW_PERIPHRAL_MASK_SIZE 0x10
43#define LNW_PERIPHRAL_STATUS 0x0
44#define LNW_PERIPHRAL_MASK 0x8
45
46struct intel_mid_dma_probe_info {
47    u8 max_chan;
48    u8 ch_base;
49    u16 block_size;
50    u32 pimr_mask;
51};
52
53#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54    ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
55        .max_chan = (_max_chan), \
56        .ch_base = (_ch_base), \
57        .block_size = (_block_size), \
58        .pimr_mask = (_pimr_mask), \
59    })
60
61/*****************************************************************************
62Utility Functions*/
63/**
64 * get_ch_index - convert status to channel
65 * @status: status mask
66 * @base: dma ch base value
67 *
68 * Modify the status mask and return the channel index needing
69 * attention (or -1 if neither)
70 */
71static int get_ch_index(int *status, unsigned int base)
72{
73    int i;
74    for (i = 0; i < MAX_CHAN; i++) {
75        if (*status & (1 << (i + base))) {
76            *status = *status & ~(1 << (i + base));
77            pr_debug("MDMA: index %d New status %x\n", i, *status);
78            return i;
79        }
80    }
81    return -1;
82}
83
84/**
85 * get_block_ts - calculates dma transaction length
86 * @len: dma transfer length
87 * @tx_width: dma transfer src width
88 * @block_size: dma controller max block size
89 *
90 * Based on src width calculate the DMA trsaction length in data items
91 * return data items or FFFF if exceeds max length for block
92 */
93static int get_block_ts(int len, int tx_width, int block_size)
94{
95    int byte_width = 0, block_ts = 0;
96
97    switch (tx_width) {
98    case DMA_SLAVE_BUSWIDTH_1_BYTE:
99        byte_width = 1;
100        break;
101    case DMA_SLAVE_BUSWIDTH_2_BYTES:
102        byte_width = 2;
103        break;
104    case DMA_SLAVE_BUSWIDTH_4_BYTES:
105    default:
106        byte_width = 4;
107        break;
108    }
109
110    block_ts = len/byte_width;
111    if (block_ts > block_size)
112        block_ts = 0xFFFF;
113    return block_ts;
114}
115
116/*****************************************************************************
117DMAC1 interrupt Functions*/
118
119/**
120 * dmac1_mask_periphral_intr - mask the periphral interrupt
121 * @mid: dma device for which masking is required
122 *
123 * Masks the DMA periphral interrupt
124 * this is valid for DMAC1 family controllers only
125 * This controller should have periphral mask registers already mapped
126 */
127static void dmac1_mask_periphral_intr(struct middma_device *mid)
128{
129    u32 pimr;
130
131    if (mid->pimr_mask) {
132        pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133        pimr |= mid->pimr_mask;
134        writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135    }
136    return;
137}
138
139/**
140 * dmac1_unmask_periphral_intr - unmask the periphral interrupt
141 * @midc: dma channel for which masking is required
142 *
143 * UnMasks the DMA periphral interrupt,
144 * this is valid for DMAC1 family controllers only
145 * This controller should have periphral mask registers already mapped
146 */
147static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148{
149    u32 pimr;
150    struct middma_device *mid = to_middma_device(midc->chan.device);
151
152    if (mid->pimr_mask) {
153        pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154        pimr &= ~mid->pimr_mask;
155        writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156    }
157    return;
158}
159
160/**
161 * enable_dma_interrupt - enable the periphral interrupt
162 * @midc: dma channel for which enable interrupt is required
163 *
164 * Enable the DMA periphral interrupt,
165 * this is valid for DMAC1 family controllers only
166 * This controller should have periphral mask registers already mapped
167 */
168static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169{
170    dmac1_unmask_periphral_intr(midc);
171
172    /*en ch interrupts*/
173    iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174    iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175    return;
176}
177
178/**
179 * disable_dma_interrupt - disable the periphral interrupt
180 * @midc: dma channel for which disable interrupt is required
181 *
182 * Disable the DMA periphral interrupt,
183 * this is valid for DMAC1 family controllers only
184 * This controller should have periphral mask registers already mapped
185 */
186static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187{
188    /*Check LPE PISR, make sure fwd is disabled*/
189    iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190    iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191    iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192    return;
193}
194
195/*****************************************************************************
196DMA channel helper Functions*/
197/**
198 * mid_desc_get - get a descriptor
199 * @midc: dma channel for which descriptor is required
200 *
201 * Obtain a descriptor for the channel. Returns NULL if none are free.
202 * Once the descriptor is returned it is private until put on another
203 * list or freed
204 */
205static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206{
207    struct intel_mid_dma_desc *desc, *_desc;
208    struct intel_mid_dma_desc *ret = NULL;
209
210    spin_lock_bh(&midc->lock);
211    list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212        if (async_tx_test_ack(&desc->txd)) {
213            list_del(&desc->desc_node);
214            ret = desc;
215            break;
216        }
217    }
218    spin_unlock_bh(&midc->lock);
219    return ret;
220}
221
222/**
223 * mid_desc_put - put a descriptor
224 * @midc: dma channel for which descriptor is required
225 * @desc: descriptor to put
226 *
227 * Return a descriptor from lwn_desc_get back to the free pool
228 */
229static void midc_desc_put(struct intel_mid_dma_chan *midc,
230            struct intel_mid_dma_desc *desc)
231{
232    if (desc) {
233        spin_lock_bh(&midc->lock);
234        list_add_tail(&desc->desc_node, &midc->free_list);
235        spin_unlock_bh(&midc->lock);
236    }
237}
238/**
239 * midc_dostart - begin a DMA transaction
240 * @midc: channel for which txn is to be started
241 * @first: first descriptor of series
242 *
243 * Load a transaction into the engine. This must be called with midc->lock
244 * held and bh disabled.
245 */
246static void midc_dostart(struct intel_mid_dma_chan *midc,
247            struct intel_mid_dma_desc *first)
248{
249    struct middma_device *mid = to_middma_device(midc->chan.device);
250
251    /* channel is idle */
252    if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253        /*error*/
254        pr_err("ERR_MDMA: channel is busy in start\n");
255        /* The tasklet will hopefully advance the queue... */
256        return;
257    }
258    midc->busy = true;
259    /*write registers and en*/
260    iowrite32(first->sar, midc->ch_regs + SAR);
261    iowrite32(first->dar, midc->ch_regs + DAR);
262    iowrite32(first->lli_phys, midc->ch_regs + LLP);
263    iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264    iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265    iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266    iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267    pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268        (int)first->sar, (int)first->dar, first->cfg_hi,
269        first->cfg_lo, first->ctl_hi, first->ctl_lo);
270    first->status = DMA_IN_PROGRESS;
271
272    iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273}
274
275/**
276 * midc_descriptor_complete - process completed descriptor
277 * @midc: channel owning the descriptor
278 * @desc: the descriptor itself
279 *
280 * Process a completed descriptor and perform any callbacks upon
281 * the completion. The completion handling drops the lock during the
282 * callbacks but must be called with the lock held.
283 */
284static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285        struct intel_mid_dma_desc *desc)
286        __releases(&midc->lock) __acquires(&midc->lock)
287{
288    struct dma_async_tx_descriptor *txd = &desc->txd;
289    dma_async_tx_callback callback_txd = NULL;
290    struct intel_mid_dma_lli *llitem;
291    void *param_txd = NULL;
292
293    dma_cookie_complete(txd);
294    callback_txd = txd->callback;
295    param_txd = txd->callback_param;
296
297    if (desc->lli != NULL) {
298        /*clear the DONE bit of completed LLI in memory*/
299        llitem = desc->lli + desc->current_lli;
300        llitem->ctl_hi &= CLEAR_DONE;
301        if (desc->current_lli < desc->lli_length-1)
302            (desc->current_lli)++;
303        else
304            desc->current_lli = 0;
305    }
306    spin_unlock_bh(&midc->lock);
307    if (callback_txd) {
308        pr_debug("MDMA: TXD callback set ... calling\n");
309        callback_txd(param_txd);
310    }
311    if (midc->raw_tfr) {
312        desc->status = DMA_SUCCESS;
313        if (desc->lli != NULL) {
314            pci_pool_free(desc->lli_pool, desc->lli,
315                        desc->lli_phys);
316            pci_pool_destroy(desc->lli_pool);
317            desc->lli = NULL;
318        }
319        list_move(&desc->desc_node, &midc->free_list);
320        midc->busy = false;
321    }
322    spin_lock_bh(&midc->lock);
323
324}
325/**
326 * midc_scan_descriptors - check the descriptors in channel
327 * mark completed when tx is completete
328 * @mid: device
329 * @midc: channel to scan
330 *
331 * Walk the descriptor chain for the device and process any entries
332 * that are complete.
333 */
334static void midc_scan_descriptors(struct middma_device *mid,
335                struct intel_mid_dma_chan *midc)
336{
337    struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338
339    /*tx is complete*/
340    list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341        if (desc->status == DMA_IN_PROGRESS)
342            midc_descriptor_complete(midc, desc);
343    }
344    return;
345    }
346/**
347 * midc_lli_fill_sg - Helper function to convert
348 * SG list to Linked List Items.
349 *@midc: Channel
350 *@desc: DMA descriptor
351 *@sglist: Pointer to SG list
352 *@sglen: SG list length
353 *@flags: DMA transaction flags
354 *
355 * Walk through the SG list and convert the SG list into Linked
356 * List Items (LLI).
357 */
358static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359                struct intel_mid_dma_desc *desc,
360                struct scatterlist *sglist,
361                unsigned int sglen,
362                unsigned int flags)
363{
364    struct intel_mid_dma_slave *mids;
365    struct scatterlist *sg;
366    dma_addr_t lli_next, sg_phy_addr;
367    struct intel_mid_dma_lli *lli_bloc_desc;
368    union intel_mid_dma_ctl_lo ctl_lo;
369    union intel_mid_dma_ctl_hi ctl_hi;
370    int i;
371
372    pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373    mids = midc->mid_slave;
374
375    lli_bloc_desc = desc->lli;
376    lli_next = desc->lli_phys;
377
378    ctl_lo.ctl_lo = desc->ctl_lo;
379    ctl_hi.ctl_hi = desc->ctl_hi;
380    for_each_sg(sglist, sg, sglen, i) {
381        /*Populate CTL_LOW and LLI values*/
382        if (i != sglen - 1) {
383            lli_next = lli_next +
384                sizeof(struct intel_mid_dma_lli);
385        } else {
386        /*Check for circular list, otherwise terminate LLI to ZERO*/
387            if (flags & DMA_PREP_CIRCULAR_LIST) {
388                pr_debug("MDMA: LLI is configured in circular mode\n");
389                lli_next = desc->lli_phys;
390            } else {
391                lli_next = 0;
392                ctl_lo.ctlx.llp_dst_en = 0;
393                ctl_lo.ctlx.llp_src_en = 0;
394            }
395        }
396        /*Populate CTL_HI values*/
397        ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
398                            desc->width,
399                            midc->dma->block_size);
400        /*Populate SAR and DAR values*/
401        sg_phy_addr = sg_dma_address(sg);
402        if (desc->dirn == DMA_MEM_TO_DEV) {
403            lli_bloc_desc->sar = sg_phy_addr;
404            lli_bloc_desc->dar = mids->dma_slave.dst_addr;
405        } else if (desc->dirn == DMA_DEV_TO_MEM) {
406            lli_bloc_desc->sar = mids->dma_slave.src_addr;
407            lli_bloc_desc->dar = sg_phy_addr;
408        }
409        /*Copy values into block descriptor in system memroy*/
410        lli_bloc_desc->llp = lli_next;
411        lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412        lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413
414        lli_bloc_desc++;
415    }
416    /*Copy very first LLI values to descriptor*/
417    desc->ctl_lo = desc->lli->ctl_lo;
418    desc->ctl_hi = desc->lli->ctl_hi;
419    desc->sar = desc->lli->sar;
420    desc->dar = desc->lli->dar;
421
422    return 0;
423}
424/*****************************************************************************
425DMA engine callback Functions*/
426/**
427 * intel_mid_dma_tx_submit - callback to submit DMA transaction
428 * @tx: dma engine descriptor
429 *
430 * Submit the DMA trasaction for this descriptor, start if ch idle
431 */
432static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433{
434    struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
435    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
436    dma_cookie_t cookie;
437
438    spin_lock_bh(&midc->lock);
439    cookie = dma_cookie_assign(tx);
440
441    if (list_empty(&midc->active_list))
442        list_add_tail(&desc->desc_node, &midc->active_list);
443    else
444        list_add_tail(&desc->desc_node, &midc->queue);
445
446    midc_dostart(midc, desc);
447    spin_unlock_bh(&midc->lock);
448
449    return cookie;
450}
451
452/**
453 * intel_mid_dma_issue_pending - callback to issue pending txn
454 * @chan: chan where pending trascation needs to be checked and submitted
455 *
456 * Call for scan to issue pending descriptors
457 */
458static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459{
460    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
461
462    spin_lock_bh(&midc->lock);
463    if (!list_empty(&midc->queue))
464        midc_scan_descriptors(to_middma_device(chan->device), midc);
465    spin_unlock_bh(&midc->lock);
466}
467
468/**
469 * intel_mid_dma_tx_status - Return status of txn
470 * @chan: chan for where status needs to be checked
471 * @cookie: cookie for txn
472 * @txstate: DMA txn state
473 *
474 * Return status of DMA txn
475 */
476static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477                        dma_cookie_t cookie,
478                        struct dma_tx_state *txstate)
479{
480    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481    enum dma_status ret;
482
483    ret = dma_cookie_status(chan, cookie, txstate);
484    if (ret != DMA_SUCCESS) {
485        spin_lock_bh(&midc->lock);
486        midc_scan_descriptors(to_middma_device(chan->device), midc);
487        spin_unlock_bh(&midc->lock);
488
489        ret = dma_cookie_status(chan, cookie, txstate);
490    }
491
492    return ret;
493}
494
495static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
496{
497    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
498    struct dma_slave_config *slave = (struct dma_slave_config *)arg;
499    struct intel_mid_dma_slave *mid_slave;
500
501    BUG_ON(!midc);
502    BUG_ON(!slave);
503    pr_debug("MDMA: slave control called\n");
504
505    mid_slave = to_intel_mid_dma_slave(slave);
506
507    BUG_ON(!mid_slave);
508
509    midc->mid_slave = mid_slave;
510    return 0;
511}
512/**
513 * intel_mid_dma_device_control - DMA device control
514 * @chan: chan for DMA control
515 * @cmd: control cmd
516 * @arg: cmd arg value
517 *
518 * Perform DMA control command
519 */
520static int intel_mid_dma_device_control(struct dma_chan *chan,
521            enum dma_ctrl_cmd cmd, unsigned long arg)
522{
523    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
524    struct middma_device *mid = to_middma_device(chan->device);
525    struct intel_mid_dma_desc *desc, *_desc;
526    union intel_mid_dma_cfg_lo cfg_lo;
527
528    if (cmd == DMA_SLAVE_CONFIG)
529        return dma_slave_control(chan, arg);
530
531    if (cmd != DMA_TERMINATE_ALL)
532        return -ENXIO;
533
534    spin_lock_bh(&midc->lock);
535    if (midc->busy == false) {
536        spin_unlock_bh(&midc->lock);
537        return 0;
538    }
539    /*Suspend and disable the channel*/
540    cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
541    cfg_lo.cfgx.ch_susp = 1;
542    iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
543    iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
544    midc->busy = false;
545    /* Disable interrupts */
546    disable_dma_interrupt(midc);
547    midc->descs_allocated = 0;
548
549    spin_unlock_bh(&midc->lock);
550    list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
551        if (desc->lli != NULL) {
552            pci_pool_free(desc->lli_pool, desc->lli,
553                        desc->lli_phys);
554            pci_pool_destroy(desc->lli_pool);
555            desc->lli = NULL;
556        }
557        list_move(&desc->desc_node, &midc->free_list);
558    }
559    return 0;
560}
561
562
563/**
564 * intel_mid_dma_prep_memcpy - Prep memcpy txn
565 * @chan: chan for DMA transfer
566 * @dest: destn address
567 * @src: src address
568 * @len: DMA transfer len
569 * @flags: DMA flags
570 *
571 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
572 * The periphral txn details should be filled in slave structure properly
573 * Returns the descriptor for this txn
574 */
575static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
576            struct dma_chan *chan, dma_addr_t dest,
577            dma_addr_t src, size_t len, unsigned long flags)
578{
579    struct intel_mid_dma_chan *midc;
580    struct intel_mid_dma_desc *desc = NULL;
581    struct intel_mid_dma_slave *mids;
582    union intel_mid_dma_ctl_lo ctl_lo;
583    union intel_mid_dma_ctl_hi ctl_hi;
584    union intel_mid_dma_cfg_lo cfg_lo;
585    union intel_mid_dma_cfg_hi cfg_hi;
586    enum dma_slave_buswidth width;
587
588    pr_debug("MDMA: Prep for memcpy\n");
589    BUG_ON(!chan);
590    if (!len)
591        return NULL;
592
593    midc = to_intel_mid_dma_chan(chan);
594    BUG_ON(!midc);
595
596    mids = midc->mid_slave;
597    BUG_ON(!mids);
598
599    pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
600                midc->dma->pci_id, midc->ch_id, len);
601    pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
602            mids->cfg_mode, mids->dma_slave.direction,
603            mids->hs_mode, mids->dma_slave.src_addr_width);
604
605    /*calculate CFG_LO*/
606    if (mids->hs_mode == LNW_DMA_SW_HS) {
607        cfg_lo.cfg_lo = 0;
608        cfg_lo.cfgx.hs_sel_dst = 1;
609        cfg_lo.cfgx.hs_sel_src = 1;
610    } else if (mids->hs_mode == LNW_DMA_HW_HS)
611        cfg_lo.cfg_lo = 0x00000;
612
613    /*calculate CFG_HI*/
614    if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
615        /*SW HS only*/
616        cfg_hi.cfg_hi = 0;
617    } else {
618        cfg_hi.cfg_hi = 0;
619        if (midc->dma->pimr_mask) {
620            cfg_hi.cfgx.protctl = 0x0; /*default value*/
621            cfg_hi.cfgx.fifo_mode = 1;
622            if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
623                cfg_hi.cfgx.src_per = 0;
624                if (mids->device_instance == 0)
625                    cfg_hi.cfgx.dst_per = 3;
626                if (mids->device_instance == 1)
627                    cfg_hi.cfgx.dst_per = 1;
628            } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
629                if (mids->device_instance == 0)
630                    cfg_hi.cfgx.src_per = 2;
631                if (mids->device_instance == 1)
632                    cfg_hi.cfgx.src_per = 0;
633                cfg_hi.cfgx.dst_per = 0;
634            }
635        } else {
636            cfg_hi.cfgx.protctl = 0x1; /*default value*/
637            cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
638                    midc->ch_id - midc->dma->chan_base;
639        }
640    }
641
642    /*calculate CTL_HI*/
643    ctl_hi.ctlx.reser = 0;
644    ctl_hi.ctlx.done = 0;
645    width = mids->dma_slave.src_addr_width;
646
647    ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
648    pr_debug("MDMA:calc len %d for block size %d\n",
649                ctl_hi.ctlx.block_ts, midc->dma->block_size);
650    /*calculate CTL_LO*/
651    ctl_lo.ctl_lo = 0;
652    ctl_lo.ctlx.int_en = 1;
653    ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
654    ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
655
656    /*
657     * Here we need some translation from "enum dma_slave_buswidth"
658     * to the format for our dma controller
659     * standard intel_mid_dmac's format
660     * 1 Byte 0b000
661     * 2 Bytes 0b001
662     * 4 Bytes 0b010
663     */
664    ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
665    ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
666
667    if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
668        ctl_lo.ctlx.tt_fc = 0;
669        ctl_lo.ctlx.sinc = 0;
670        ctl_lo.ctlx.dinc = 0;
671    } else {
672        if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
673            ctl_lo.ctlx.sinc = 0;
674            ctl_lo.ctlx.dinc = 2;
675            ctl_lo.ctlx.tt_fc = 1;
676        } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
677            ctl_lo.ctlx.sinc = 2;
678            ctl_lo.ctlx.dinc = 0;
679            ctl_lo.ctlx.tt_fc = 2;
680        }
681    }
682
683    pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
684        ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
685
686    enable_dma_interrupt(midc);
687
688    desc = midc_desc_get(midc);
689    if (desc == NULL)
690        goto err_desc_get;
691    desc->sar = src;
692    desc->dar = dest ;
693    desc->len = len;
694    desc->cfg_hi = cfg_hi.cfg_hi;
695    desc->cfg_lo = cfg_lo.cfg_lo;
696    desc->ctl_lo = ctl_lo.ctl_lo;
697    desc->ctl_hi = ctl_hi.ctl_hi;
698    desc->width = width;
699    desc->dirn = mids->dma_slave.direction;
700    desc->lli_phys = 0;
701    desc->lli = NULL;
702    desc->lli_pool = NULL;
703    return &desc->txd;
704
705err_desc_get:
706    pr_err("ERR_MDMA: Failed to get desc\n");
707    midc_desc_put(midc, desc);
708    return NULL;
709}
710/**
711 * intel_mid_dma_prep_slave_sg - Prep slave sg txn
712 * @chan: chan for DMA transfer
713 * @sgl: scatter gather list
714 * @sg_len: length of sg txn
715 * @direction: DMA transfer dirtn
716 * @flags: DMA flags
717 * @context: transfer context (ignored)
718 *
719 * Prepares LLI based periphral transfer
720 */
721static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
722            struct dma_chan *chan, struct scatterlist *sgl,
723            unsigned int sg_len, enum dma_transfer_direction direction,
724            unsigned long flags, void *context)
725{
726    struct intel_mid_dma_chan *midc = NULL;
727    struct intel_mid_dma_slave *mids = NULL;
728    struct intel_mid_dma_desc *desc = NULL;
729    struct dma_async_tx_descriptor *txd = NULL;
730    union intel_mid_dma_ctl_lo ctl_lo;
731
732    pr_debug("MDMA: Prep for slave SG\n");
733
734    if (!sg_len) {
735        pr_err("MDMA: Invalid SG length\n");
736        return NULL;
737    }
738    midc = to_intel_mid_dma_chan(chan);
739    BUG_ON(!midc);
740
741    mids = midc->mid_slave;
742    BUG_ON(!mids);
743
744    if (!midc->dma->pimr_mask) {
745        /* We can still handle sg list with only one item */
746        if (sg_len == 1) {
747            txd = intel_mid_dma_prep_memcpy(chan,
748                        mids->dma_slave.dst_addr,
749                        mids->dma_slave.src_addr,
750                        sg_dma_len(sgl),
751                        flags);
752            return txd;
753        } else {
754            pr_warn("MDMA: SG list is not supported by this controller\n");
755            return NULL;
756        }
757    }
758
759    pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
760            sg_len, direction, flags);
761
762    txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
763    if (NULL == txd) {
764        pr_err("MDMA: Prep memcpy failed\n");
765        return NULL;
766    }
767
768    desc = to_intel_mid_dma_desc(txd);
769    desc->dirn = direction;
770    ctl_lo.ctl_lo = desc->ctl_lo;
771    ctl_lo.ctlx.llp_dst_en = 1;
772    ctl_lo.ctlx.llp_src_en = 1;
773    desc->ctl_lo = ctl_lo.ctl_lo;
774    desc->lli_length = sg_len;
775    desc->current_lli = 0;
776    /* DMA coherent memory pool for LLI descriptors*/
777    desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
778                midc->dma->pdev,
779                (sizeof(struct intel_mid_dma_lli)*sg_len),
780                32, 0);
781    if (NULL == desc->lli_pool) {
782        pr_err("MID_DMA:LLI pool create failed\n");
783        return NULL;
784    }
785
786    desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
787    if (!desc->lli) {
788        pr_err("MID_DMA: LLI alloc failed\n");
789        pci_pool_destroy(desc->lli_pool);
790        return NULL;
791    }
792
793    midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
794    if (flags & DMA_PREP_INTERRUPT) {
795        iowrite32(UNMASK_INTR_REG(midc->ch_id),
796                midc->dma_base + MASK_BLOCK);
797        pr_debug("MDMA:Enabled Block interrupt\n");
798    }
799    return &desc->txd;
800}
801
802/**
803 * intel_mid_dma_free_chan_resources - Frees dma resources
804 * @chan: chan requiring attention
805 *
806 * Frees the allocated resources on this DMA chan
807 */
808static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
809{
810    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
811    struct middma_device *mid = to_middma_device(chan->device);
812    struct intel_mid_dma_desc *desc, *_desc;
813
814    if (true == midc->busy) {
815        /*trying to free ch in use!!!!!*/
816        pr_err("ERR_MDMA: trying to free ch in use\n");
817    }
818    spin_lock_bh(&midc->lock);
819    midc->descs_allocated = 0;
820    list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
821        list_del(&desc->desc_node);
822        pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
823    }
824    list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
825        list_del(&desc->desc_node);
826        pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
827    }
828    list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
829        list_del(&desc->desc_node);
830        pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
831    }
832    spin_unlock_bh(&midc->lock);
833    midc->in_use = false;
834    midc->busy = false;
835    /* Disable CH interrupts */
836    iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
837    iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
838    pm_runtime_put(&mid->pdev->dev);
839}
840
841/**
842 * intel_mid_dma_alloc_chan_resources - Allocate dma resources
843 * @chan: chan requiring attention
844 *
845 * Allocates DMA resources on this chan
846 * Return the descriptors allocated
847 */
848static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
849{
850    struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
851    struct middma_device *mid = to_middma_device(chan->device);
852    struct intel_mid_dma_desc *desc;
853    dma_addr_t phys;
854    int i = 0;
855
856    pm_runtime_get_sync(&mid->pdev->dev);
857
858    if (mid->state == SUSPENDED) {
859        if (dma_resume(&mid->pdev->dev)) {
860            pr_err("ERR_MDMA: resume failed");
861            return -EFAULT;
862        }
863    }
864
865    /* ASSERT: channel is idle */
866    if (test_ch_en(mid->dma_base, midc->ch_id)) {
867        /*ch is not idle*/
868        pr_err("ERR_MDMA: ch not idle\n");
869        pm_runtime_put(&mid->pdev->dev);
870        return -EIO;
871    }
872    dma_cookie_init(chan);
873
874    spin_lock_bh(&midc->lock);
875    while (midc->descs_allocated < DESCS_PER_CHANNEL) {
876        spin_unlock_bh(&midc->lock);
877        desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
878        if (!desc) {
879            pr_err("ERR_MDMA: desc failed\n");
880            pm_runtime_put(&mid->pdev->dev);
881            return -ENOMEM;
882            /*check*/
883        }
884        dma_async_tx_descriptor_init(&desc->txd, chan);
885        desc->txd.tx_submit = intel_mid_dma_tx_submit;
886        desc->txd.flags = DMA_CTRL_ACK;
887        desc->txd.phys = phys;
888        spin_lock_bh(&midc->lock);
889        i = ++midc->descs_allocated;
890        list_add_tail(&desc->desc_node, &midc->free_list);
891    }
892    spin_unlock_bh(&midc->lock);
893    midc->in_use = true;
894    midc->busy = false;
895    pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
896    return i;
897}
898
899/**
900 * midc_handle_error - Handle DMA txn error
901 * @mid: controller where error occurred
902 * @midc: chan where error occurred
903 *
904 * Scan the descriptor for error
905 */
906static void midc_handle_error(struct middma_device *mid,
907        struct intel_mid_dma_chan *midc)
908{
909    midc_scan_descriptors(mid, midc);
910}
911
912/**
913 * dma_tasklet - DMA interrupt tasklet
914 * @data: tasklet arg (the controller structure)
915 *
916 * Scan the controller for interrupts for completion/error
917 * Clear the interrupt and call for handling completion/error
918 */
919static void dma_tasklet(unsigned long data)
920{
921    struct middma_device *mid = NULL;
922    struct intel_mid_dma_chan *midc = NULL;
923    u32 status, raw_tfr, raw_block;
924    int i;
925
926    mid = (struct middma_device *)data;
927    if (mid == NULL) {
928        pr_err("ERR_MDMA: tasklet Null param\n");
929        return;
930    }
931    pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
932    raw_tfr = ioread32(mid->dma_base + RAW_TFR);
933    raw_block = ioread32(mid->dma_base + RAW_BLOCK);
934    status = raw_tfr | raw_block;
935    status &= mid->intr_mask;
936    while (status) {
937        /*txn interrupt*/
938        i = get_ch_index(&status, mid->chan_base);
939        if (i < 0) {
940            pr_err("ERR_MDMA:Invalid ch index %x\n", i);
941            return;
942        }
943        midc = &mid->ch[i];
944        if (midc == NULL) {
945            pr_err("ERR_MDMA:Null param midc\n");
946            return;
947        }
948        pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
949                status, midc->ch_id, i);
950        midc->raw_tfr = raw_tfr;
951        midc->raw_block = raw_block;
952        spin_lock_bh(&midc->lock);
953        /*clearing this interrupts first*/
954        iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
955        if (raw_block) {
956            iowrite32((1 << midc->ch_id),
957                mid->dma_base + CLEAR_BLOCK);
958        }
959        midc_scan_descriptors(mid, midc);
960        pr_debug("MDMA:Scan of desc... complete, unmasking\n");
961        iowrite32(UNMASK_INTR_REG(midc->ch_id),
962                mid->dma_base + MASK_TFR);
963        if (raw_block) {
964            iowrite32(UNMASK_INTR_REG(midc->ch_id),
965                mid->dma_base + MASK_BLOCK);
966        }
967        spin_unlock_bh(&midc->lock);
968    }
969
970    status = ioread32(mid->dma_base + RAW_ERR);
971    status &= mid->intr_mask;
972    while (status) {
973        /*err interrupt*/
974        i = get_ch_index(&status, mid->chan_base);
975        if (i < 0) {
976            pr_err("ERR_MDMA:Invalid ch index %x\n", i);
977            return;
978        }
979        midc = &mid->ch[i];
980        if (midc == NULL) {
981            pr_err("ERR_MDMA:Null param midc\n");
982            return;
983        }
984        pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
985                status, midc->ch_id, i);
986
987        iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
988        spin_lock_bh(&midc->lock);
989        midc_handle_error(mid, midc);
990        iowrite32(UNMASK_INTR_REG(midc->ch_id),
991                mid->dma_base + MASK_ERR);
992        spin_unlock_bh(&midc->lock);
993    }
994    pr_debug("MDMA:Exiting takslet...\n");
995    return;
996}
997
998static void dma_tasklet1(unsigned long data)
999{
1000    pr_debug("MDMA:in takslet1...\n");
1001    return dma_tasklet(data);
1002}
1003
1004static void dma_tasklet2(unsigned long data)
1005{
1006    pr_debug("MDMA:in takslet2...\n");
1007    return dma_tasklet(data);
1008}
1009
1010/**
1011 * intel_mid_dma_interrupt - DMA ISR
1012 * @irq: IRQ where interrupt occurred
1013 * @data: ISR cllback data (the controller structure)
1014 *
1015 * See if this is our interrupt if so then schedule the tasklet
1016 * otherwise ignore
1017 */
1018static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1019{
1020    struct middma_device *mid = data;
1021    u32 tfr_status, err_status;
1022    int call_tasklet = 0;
1023
1024    tfr_status = ioread32(mid->dma_base + RAW_TFR);
1025    err_status = ioread32(mid->dma_base + RAW_ERR);
1026    if (!tfr_status && !err_status)
1027        return IRQ_NONE;
1028
1029    /*DMA Interrupt*/
1030    pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1031    pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1032    tfr_status &= mid->intr_mask;
1033    if (tfr_status) {
1034        /*need to disable intr*/
1035        iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1036        iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1037        pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1038        call_tasklet = 1;
1039    }
1040    err_status &= mid->intr_mask;
1041    if (err_status) {
1042        iowrite32((err_status << INT_MASK_WE),
1043              mid->dma_base + MASK_ERR);
1044        call_tasklet = 1;
1045    }
1046    if (call_tasklet)
1047        tasklet_schedule(&mid->tasklet);
1048
1049    return IRQ_HANDLED;
1050}
1051
1052static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1053{
1054    return intel_mid_dma_interrupt(irq, data);
1055}
1056
1057static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1058{
1059    return intel_mid_dma_interrupt(irq, data);
1060}
1061
1062/**
1063 * mid_setup_dma - Setup the DMA controller
1064 * @pdev: Controller PCI device structure
1065 *
1066 * Initialize the DMA controller, channels, registers with DMA engine,
1067 * ISR. Initialize DMA controller channels.
1068 */
1069static int mid_setup_dma(struct pci_dev *pdev)
1070{
1071    struct middma_device *dma = pci_get_drvdata(pdev);
1072    int err, i;
1073
1074    /* DMA coherent memory pool for DMA descriptor allocations */
1075    dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1076                    sizeof(struct intel_mid_dma_desc),
1077                    32, 0);
1078    if (NULL == dma->dma_pool) {
1079        pr_err("ERR_MDMA:pci_pool_create failed\n");
1080        err = -ENOMEM;
1081        goto err_dma_pool;
1082    }
1083
1084    INIT_LIST_HEAD(&dma->common.channels);
1085    dma->pci_id = pdev->device;
1086    if (dma->pimr_mask) {
1087        dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1088                    LNW_PERIPHRAL_MASK_SIZE);
1089        if (dma->mask_reg == NULL) {
1090            pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1091            err = -ENOMEM;
1092            goto err_ioremap;
1093        }
1094    } else
1095        dma->mask_reg = NULL;
1096
1097    pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1098    /*init CH structures*/
1099    dma->intr_mask = 0;
1100    dma->state = RUNNING;
1101    for (i = 0; i < dma->max_chan; i++) {
1102        struct intel_mid_dma_chan *midch = &dma->ch[i];
1103
1104        midch->chan.device = &dma->common;
1105        dma_cookie_init(&midch->chan);
1106        midch->ch_id = dma->chan_base + i;
1107        pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1108
1109        midch->dma_base = dma->dma_base;
1110        midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1111        midch->dma = dma;
1112        dma->intr_mask |= 1 << (dma->chan_base + i);
1113        spin_lock_init(&midch->lock);
1114
1115        INIT_LIST_HEAD(&midch->active_list);
1116        INIT_LIST_HEAD(&midch->queue);
1117        INIT_LIST_HEAD(&midch->free_list);
1118        /*mask interrupts*/
1119        iowrite32(MASK_INTR_REG(midch->ch_id),
1120            dma->dma_base + MASK_BLOCK);
1121        iowrite32(MASK_INTR_REG(midch->ch_id),
1122            dma->dma_base + MASK_SRC_TRAN);
1123        iowrite32(MASK_INTR_REG(midch->ch_id),
1124            dma->dma_base + MASK_DST_TRAN);
1125        iowrite32(MASK_INTR_REG(midch->ch_id),
1126            dma->dma_base + MASK_ERR);
1127        iowrite32(MASK_INTR_REG(midch->ch_id),
1128            dma->dma_base + MASK_TFR);
1129
1130        disable_dma_interrupt(midch);
1131        list_add_tail(&midch->chan.device_node, &dma->common.channels);
1132    }
1133    pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1134
1135    /*init dma structure*/
1136    dma_cap_zero(dma->common.cap_mask);
1137    dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1138    dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1139    dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1140    dma->common.dev = &pdev->dev;
1141
1142    dma->common.device_alloc_chan_resources =
1143                    intel_mid_dma_alloc_chan_resources;
1144    dma->common.device_free_chan_resources =
1145                    intel_mid_dma_free_chan_resources;
1146
1147    dma->common.device_tx_status = intel_mid_dma_tx_status;
1148    dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1149    dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1150    dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1151    dma->common.device_control = intel_mid_dma_device_control;
1152
1153    /*enable dma cntrl*/
1154    iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1155
1156    /*register irq */
1157    if (dma->pimr_mask) {
1158        pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1159        err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1160            IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1161        if (0 != err)
1162            goto err_irq;
1163    } else {
1164        dma->intr_mask = 0x03;
1165        pr_debug("MDMA:Requesting irq for DMAC2\n");
1166        err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1167            IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1168        if (0 != err)
1169            goto err_irq;
1170    }
1171    /*register device w/ engine*/
1172    err = dma_async_device_register(&dma->common);
1173    if (0 != err) {
1174        pr_err("ERR_MDMA:device_register failed: %d\n", err);
1175        goto err_engine;
1176    }
1177    if (dma->pimr_mask) {
1178        pr_debug("setting up tasklet1 for DMAC1\n");
1179        tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1180    } else {
1181        pr_debug("setting up tasklet2 for DMAC2\n");
1182        tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1183    }
1184    return 0;
1185
1186err_engine:
1187    free_irq(pdev->irq, dma);
1188err_irq:
1189    if (dma->mask_reg)
1190        iounmap(dma->mask_reg);
1191err_ioremap:
1192    pci_pool_destroy(dma->dma_pool);
1193err_dma_pool:
1194    pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1195    return err;
1196
1197}
1198
1199/**
1200 * middma_shutdown - Shutdown the DMA controller
1201 * @pdev: Controller PCI device structure
1202 *
1203 * Called by remove
1204 * Unregister DMa controller, clear all structures and free interrupt
1205 */
1206static void middma_shutdown(struct pci_dev *pdev)
1207{
1208    struct middma_device *device = pci_get_drvdata(pdev);
1209
1210    dma_async_device_unregister(&device->common);
1211    pci_pool_destroy(device->dma_pool);
1212    if (device->mask_reg)
1213        iounmap(device->mask_reg);
1214    if (device->dma_base)
1215        iounmap(device->dma_base);
1216    free_irq(pdev->irq, device);
1217    return;
1218}
1219
1220/**
1221 * intel_mid_dma_probe - PCI Probe
1222 * @pdev: Controller PCI device structure
1223 * @id: pci device id structure
1224 *
1225 * Initialize the PCI device, map BARs, query driver data.
1226 * Call setup_dma to complete contoller and chan initilzation
1227 */
1228static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1229                    const struct pci_device_id *id)
1230{
1231    struct middma_device *device;
1232    u32 base_addr, bar_size;
1233    struct intel_mid_dma_probe_info *info;
1234    int err;
1235
1236    pr_debug("MDMA: probe for %x\n", pdev->device);
1237    info = (void *)id->driver_data;
1238    pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1239                info->max_chan, info->ch_base,
1240                info->block_size, info->pimr_mask);
1241
1242    err = pci_enable_device(pdev);
1243    if (err)
1244        goto err_enable_device;
1245
1246    err = pci_request_regions(pdev, "intel_mid_dmac");
1247    if (err)
1248        goto err_request_regions;
1249
1250    err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1251    if (err)
1252        goto err_set_dma_mask;
1253
1254    err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1255    if (err)
1256        goto err_set_dma_mask;
1257
1258    device = kzalloc(sizeof(*device), GFP_KERNEL);
1259    if (!device) {
1260        pr_err("ERR_MDMA:kzalloc failed probe\n");
1261        err = -ENOMEM;
1262        goto err_kzalloc;
1263    }
1264    device->pdev = pci_dev_get(pdev);
1265
1266    base_addr = pci_resource_start(pdev, 0);
1267    bar_size = pci_resource_len(pdev, 0);
1268    device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1269    if (!device->dma_base) {
1270        pr_err("ERR_MDMA:ioremap failed\n");
1271        err = -ENOMEM;
1272        goto err_ioremap;
1273    }
1274    pci_set_drvdata(pdev, device);
1275    pci_set_master(pdev);
1276    device->max_chan = info->max_chan;
1277    device->chan_base = info->ch_base;
1278    device->block_size = info->block_size;
1279    device->pimr_mask = info->pimr_mask;
1280
1281    err = mid_setup_dma(pdev);
1282    if (err)
1283        goto err_dma;
1284
1285    pm_runtime_put_noidle(&pdev->dev);
1286    pm_runtime_allow(&pdev->dev);
1287    return 0;
1288
1289err_dma:
1290    iounmap(device->dma_base);
1291err_ioremap:
1292    pci_dev_put(pdev);
1293    kfree(device);
1294err_kzalloc:
1295err_set_dma_mask:
1296    pci_release_regions(pdev);
1297    pci_disable_device(pdev);
1298err_request_regions:
1299err_enable_device:
1300    pr_err("ERR_MDMA:Probe failed %d\n", err);
1301    return err;
1302}
1303
1304/**
1305 * intel_mid_dma_remove - PCI remove
1306 * @pdev: Controller PCI device structure
1307 *
1308 * Free up all resources and data
1309 * Call shutdown_dma to complete contoller and chan cleanup
1310 */
1311static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1312{
1313    struct middma_device *device = pci_get_drvdata(pdev);
1314
1315    pm_runtime_get_noresume(&pdev->dev);
1316    pm_runtime_forbid(&pdev->dev);
1317    middma_shutdown(pdev);
1318    pci_dev_put(pdev);
1319    kfree(device);
1320    pci_release_regions(pdev);
1321    pci_disable_device(pdev);
1322}
1323
1324/* Power Management */
1325/*
1326* dma_suspend - PCI suspend function
1327*
1328* @pci: PCI device structure
1329* @state: PM message
1330*
1331* This function is called by OS when a power event occurs
1332*/
1333static int dma_suspend(struct device *dev)
1334{
1335    struct pci_dev *pci = to_pci_dev(dev);
1336    int i;
1337    struct middma_device *device = pci_get_drvdata(pci);
1338    pr_debug("MDMA: dma_suspend called\n");
1339
1340    for (i = 0; i < device->max_chan; i++) {
1341        if (device->ch[i].in_use)
1342            return -EAGAIN;
1343    }
1344    dmac1_mask_periphral_intr(device);
1345    device->state = SUSPENDED;
1346    pci_save_state(pci);
1347    pci_disable_device(pci);
1348    pci_set_power_state(pci, PCI_D3hot);
1349    return 0;
1350}
1351
1352/**
1353* dma_resume - PCI resume function
1354*
1355* @pci: PCI device structure
1356*
1357* This function is called by OS when a power event occurs
1358*/
1359int dma_resume(struct device *dev)
1360{
1361    struct pci_dev *pci = to_pci_dev(dev);
1362    int ret;
1363    struct middma_device *device = pci_get_drvdata(pci);
1364
1365    pr_debug("MDMA: dma_resume called\n");
1366    pci_set_power_state(pci, PCI_D0);
1367    pci_restore_state(pci);
1368    ret = pci_enable_device(pci);
1369    if (ret) {
1370        pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1371        return ret;
1372    }
1373    device->state = RUNNING;
1374    iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1375    return 0;
1376}
1377
1378static int dma_runtime_suspend(struct device *dev)
1379{
1380    struct pci_dev *pci_dev = to_pci_dev(dev);
1381    struct middma_device *device = pci_get_drvdata(pci_dev);
1382
1383    device->state = SUSPENDED;
1384    return 0;
1385}
1386
1387static int dma_runtime_resume(struct device *dev)
1388{
1389    struct pci_dev *pci_dev = to_pci_dev(dev);
1390    struct middma_device *device = pci_get_drvdata(pci_dev);
1391
1392    device->state = RUNNING;
1393    iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1394    return 0;
1395}
1396
1397static int dma_runtime_idle(struct device *dev)
1398{
1399    struct pci_dev *pdev = to_pci_dev(dev);
1400    struct middma_device *device = pci_get_drvdata(pdev);
1401    int i;
1402
1403    for (i = 0; i < device->max_chan; i++) {
1404        if (device->ch[i].in_use)
1405            return -EAGAIN;
1406    }
1407
1408    return pm_schedule_suspend(dev, 0);
1409}
1410
1411/******************************************************************************
1412* PCI stuff
1413*/
1414static struct pci_device_id intel_mid_dma_ids[] = {
1415    { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
1416    { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
1417    { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
1418    { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
1419    { 0, }
1420};
1421MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422
1423static const struct dev_pm_ops intel_mid_dma_pm = {
1424    .runtime_suspend = dma_runtime_suspend,
1425    .runtime_resume = dma_runtime_resume,
1426    .runtime_idle = dma_runtime_idle,
1427    .suspend = dma_suspend,
1428    .resume = dma_resume,
1429};
1430
1431static struct pci_driver intel_mid_dma_pci_driver = {
1432    .name = "Intel MID DMA",
1433    .id_table = intel_mid_dma_ids,
1434    .probe = intel_mid_dma_probe,
1435    .remove = __devexit_p(intel_mid_dma_remove),
1436#ifdef CONFIG_PM
1437    .driver = {
1438        .pm = &intel_mid_dma_pm,
1439    },
1440#endif
1441};
1442
1443static int __init intel_mid_dma_init(void)
1444{
1445    pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1446            INTEL_MID_DMA_DRIVER_VERSION);
1447    return pci_register_driver(&intel_mid_dma_pci_driver);
1448}
1449fs_initcall(intel_mid_dma_init);
1450
1451static void __exit intel_mid_dma_exit(void)
1452{
1453    pci_unregister_driver(&intel_mid_dma_pci_driver);
1454}
1455module_exit(intel_mid_dma_exit);
1456
1457MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1458MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459MODULE_LICENSE("GPL v2");
1460MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1461

Archive Download this file



interactive