Root/
1 | /* |
2 | * intel_mid_dma.c - Intel Langwell DMA Drivers |
3 | * |
4 | * Copyright (C) 2008-10 Intel Corp |
5 | * Author: Vinod Koul <vinod.koul@intel.com> |
6 | * The driver design is based on dw_dmac driver |
7 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
8 | * |
9 | * This program is free software; you can redistribute it and/or modify |
10 | * it under the terms of the GNU General Public License as published by |
11 | * the Free Software Foundation; version 2 of the License. |
12 | * |
13 | * This program is distributed in the hope that it will be useful, but |
14 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
16 | * General Public License for more details. |
17 | * |
18 | * You should have received a copy of the GNU General Public License along |
19 | * with this program; if not, write to the Free Software Foundation, Inc., |
20 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
21 | * |
22 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
23 | * |
24 | * |
25 | */ |
26 | #include <linux/pci.h> |
27 | #include <linux/interrupt.h> |
28 | #include <linux/pm_runtime.h> |
29 | #include <linux/intel_mid_dma.h> |
30 | #include <linux/module.h> |
31 | |
32 | #include "dmaengine.h" |
33 | |
34 | #define MAX_CHAN 4 /*max ch across controllers*/ |
35 | #include "intel_mid_dma_regs.h" |
36 | |
37 | #define INTEL_MID_DMAC1_ID 0x0814 |
38 | #define INTEL_MID_DMAC2_ID 0x0813 |
39 | #define INTEL_MID_GP_DMAC2_ID 0x0827 |
40 | #define INTEL_MFLD_DMAC1_ID 0x0830 |
41 | #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008 |
42 | #define LNW_PERIPHRAL_MASK_SIZE 0x10 |
43 | #define LNW_PERIPHRAL_STATUS 0x0 |
44 | #define LNW_PERIPHRAL_MASK 0x8 |
45 | |
46 | struct intel_mid_dma_probe_info { |
47 | u8 max_chan; |
48 | u8 ch_base; |
49 | u16 block_size; |
50 | u32 pimr_mask; |
51 | }; |
52 | |
53 | #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \ |
54 | ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \ |
55 | .max_chan = (_max_chan), \ |
56 | .ch_base = (_ch_base), \ |
57 | .block_size = (_block_size), \ |
58 | .pimr_mask = (_pimr_mask), \ |
59 | }) |
60 | |
61 | /***************************************************************************** |
62 | Utility Functions*/ |
63 | /** |
64 | * get_ch_index - convert status to channel |
65 | * @status: status mask |
66 | * @base: dma ch base value |
67 | * |
68 | * Modify the status mask and return the channel index needing |
69 | * attention (or -1 if neither) |
70 | */ |
71 | static int get_ch_index(int *status, unsigned int base) |
72 | { |
73 | int i; |
74 | for (i = 0; i < MAX_CHAN; i++) { |
75 | if (*status & (1 << (i + base))) { |
76 | *status = *status & ~(1 << (i + base)); |
77 | pr_debug("MDMA: index %d New status %x\n", i, *status); |
78 | return i; |
79 | } |
80 | } |
81 | return -1; |
82 | } |
83 | |
84 | /** |
85 | * get_block_ts - calculates dma transaction length |
86 | * @len: dma transfer length |
87 | * @tx_width: dma transfer src width |
88 | * @block_size: dma controller max block size |
89 | * |
90 | * Based on src width calculate the DMA trsaction length in data items |
91 | * return data items or FFFF if exceeds max length for block |
92 | */ |
93 | static int get_block_ts(int len, int tx_width, int block_size) |
94 | { |
95 | int byte_width = 0, block_ts = 0; |
96 | |
97 | switch (tx_width) { |
98 | case DMA_SLAVE_BUSWIDTH_1_BYTE: |
99 | byte_width = 1; |
100 | break; |
101 | case DMA_SLAVE_BUSWIDTH_2_BYTES: |
102 | byte_width = 2; |
103 | break; |
104 | case DMA_SLAVE_BUSWIDTH_4_BYTES: |
105 | default: |
106 | byte_width = 4; |
107 | break; |
108 | } |
109 | |
110 | block_ts = len/byte_width; |
111 | if (block_ts > block_size) |
112 | block_ts = 0xFFFF; |
113 | return block_ts; |
114 | } |
115 | |
116 | /***************************************************************************** |
117 | DMAC1 interrupt Functions*/ |
118 | |
119 | /** |
120 | * dmac1_mask_periphral_intr - mask the periphral interrupt |
121 | * @mid: dma device for which masking is required |
122 | * |
123 | * Masks the DMA periphral interrupt |
124 | * this is valid for DMAC1 family controllers only |
125 | * This controller should have periphral mask registers already mapped |
126 | */ |
127 | static void dmac1_mask_periphral_intr(struct middma_device *mid) |
128 | { |
129 | u32 pimr; |
130 | |
131 | if (mid->pimr_mask) { |
132 | pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK); |
133 | pimr |= mid->pimr_mask; |
134 | writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK); |
135 | } |
136 | return; |
137 | } |
138 | |
139 | /** |
140 | * dmac1_unmask_periphral_intr - unmask the periphral interrupt |
141 | * @midc: dma channel for which masking is required |
142 | * |
143 | * UnMasks the DMA periphral interrupt, |
144 | * this is valid for DMAC1 family controllers only |
145 | * This controller should have periphral mask registers already mapped |
146 | */ |
147 | static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc) |
148 | { |
149 | u32 pimr; |
150 | struct middma_device *mid = to_middma_device(midc->chan.device); |
151 | |
152 | if (mid->pimr_mask) { |
153 | pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK); |
154 | pimr &= ~mid->pimr_mask; |
155 | writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK); |
156 | } |
157 | return; |
158 | } |
159 | |
160 | /** |
161 | * enable_dma_interrupt - enable the periphral interrupt |
162 | * @midc: dma channel for which enable interrupt is required |
163 | * |
164 | * Enable the DMA periphral interrupt, |
165 | * this is valid for DMAC1 family controllers only |
166 | * This controller should have periphral mask registers already mapped |
167 | */ |
168 | static void enable_dma_interrupt(struct intel_mid_dma_chan *midc) |
169 | { |
170 | dmac1_unmask_periphral_intr(midc); |
171 | |
172 | /*en ch interrupts*/ |
173 | iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR); |
174 | iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR); |
175 | return; |
176 | } |
177 | |
178 | /** |
179 | * disable_dma_interrupt - disable the periphral interrupt |
180 | * @midc: dma channel for which disable interrupt is required |
181 | * |
182 | * Disable the DMA periphral interrupt, |
183 | * this is valid for DMAC1 family controllers only |
184 | * This controller should have periphral mask registers already mapped |
185 | */ |
186 | static void disable_dma_interrupt(struct intel_mid_dma_chan *midc) |
187 | { |
188 | /*Check LPE PISR, make sure fwd is disabled*/ |
189 | iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK); |
190 | iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR); |
191 | iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR); |
192 | return; |
193 | } |
194 | |
195 | /***************************************************************************** |
196 | DMA channel helper Functions*/ |
197 | /** |
198 | * mid_desc_get - get a descriptor |
199 | * @midc: dma channel for which descriptor is required |
200 | * |
201 | * Obtain a descriptor for the channel. Returns NULL if none are free. |
202 | * Once the descriptor is returned it is private until put on another |
203 | * list or freed |
204 | */ |
205 | static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc) |
206 | { |
207 | struct intel_mid_dma_desc *desc, *_desc; |
208 | struct intel_mid_dma_desc *ret = NULL; |
209 | |
210 | spin_lock_bh(&midc->lock); |
211 | list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) { |
212 | if (async_tx_test_ack(&desc->txd)) { |
213 | list_del(&desc->desc_node); |
214 | ret = desc; |
215 | break; |
216 | } |
217 | } |
218 | spin_unlock_bh(&midc->lock); |
219 | return ret; |
220 | } |
221 | |
222 | /** |
223 | * mid_desc_put - put a descriptor |
224 | * @midc: dma channel for which descriptor is required |
225 | * @desc: descriptor to put |
226 | * |
227 | * Return a descriptor from lwn_desc_get back to the free pool |
228 | */ |
229 | static void midc_desc_put(struct intel_mid_dma_chan *midc, |
230 | struct intel_mid_dma_desc *desc) |
231 | { |
232 | if (desc) { |
233 | spin_lock_bh(&midc->lock); |
234 | list_add_tail(&desc->desc_node, &midc->free_list); |
235 | spin_unlock_bh(&midc->lock); |
236 | } |
237 | } |
238 | /** |
239 | * midc_dostart - begin a DMA transaction |
240 | * @midc: channel for which txn is to be started |
241 | * @first: first descriptor of series |
242 | * |
243 | * Load a transaction into the engine. This must be called with midc->lock |
244 | * held and bh disabled. |
245 | */ |
246 | static void midc_dostart(struct intel_mid_dma_chan *midc, |
247 | struct intel_mid_dma_desc *first) |
248 | { |
249 | struct middma_device *mid = to_middma_device(midc->chan.device); |
250 | |
251 | /* channel is idle */ |
252 | if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) { |
253 | /*error*/ |
254 | pr_err("ERR_MDMA: channel is busy in start\n"); |
255 | /* The tasklet will hopefully advance the queue... */ |
256 | return; |
257 | } |
258 | midc->busy = true; |
259 | /*write registers and en*/ |
260 | iowrite32(first->sar, midc->ch_regs + SAR); |
261 | iowrite32(first->dar, midc->ch_regs + DAR); |
262 | iowrite32(first->lli_phys, midc->ch_regs + LLP); |
263 | iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH); |
264 | iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW); |
265 | iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW); |
266 | iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH); |
267 | pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n", |
268 | (int)first->sar, (int)first->dar, first->cfg_hi, |
269 | first->cfg_lo, first->ctl_hi, first->ctl_lo); |
270 | first->status = DMA_IN_PROGRESS; |
271 | |
272 | iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN); |
273 | } |
274 | |
275 | /** |
276 | * midc_descriptor_complete - process completed descriptor |
277 | * @midc: channel owning the descriptor |
278 | * @desc: the descriptor itself |
279 | * |
280 | * Process a completed descriptor and perform any callbacks upon |
281 | * the completion. The completion handling drops the lock during the |
282 | * callbacks but must be called with the lock held. |
283 | */ |
284 | static void midc_descriptor_complete(struct intel_mid_dma_chan *midc, |
285 | struct intel_mid_dma_desc *desc) |
286 | __releases(&midc->lock) __acquires(&midc->lock) |
287 | { |
288 | struct dma_async_tx_descriptor *txd = &desc->txd; |
289 | dma_async_tx_callback callback_txd = NULL; |
290 | struct intel_mid_dma_lli *llitem; |
291 | void *param_txd = NULL; |
292 | |
293 | dma_cookie_complete(txd); |
294 | callback_txd = txd->callback; |
295 | param_txd = txd->callback_param; |
296 | |
297 | if (desc->lli != NULL) { |
298 | /*clear the DONE bit of completed LLI in memory*/ |
299 | llitem = desc->lli + desc->current_lli; |
300 | llitem->ctl_hi &= CLEAR_DONE; |
301 | if (desc->current_lli < desc->lli_length-1) |
302 | (desc->current_lli)++; |
303 | else |
304 | desc->current_lli = 0; |
305 | } |
306 | spin_unlock_bh(&midc->lock); |
307 | if (callback_txd) { |
308 | pr_debug("MDMA: TXD callback set ... calling\n"); |
309 | callback_txd(param_txd); |
310 | } |
311 | if (midc->raw_tfr) { |
312 | desc->status = DMA_SUCCESS; |
313 | if (desc->lli != NULL) { |
314 | pci_pool_free(desc->lli_pool, desc->lli, |
315 | desc->lli_phys); |
316 | pci_pool_destroy(desc->lli_pool); |
317 | desc->lli = NULL; |
318 | } |
319 | list_move(&desc->desc_node, &midc->free_list); |
320 | midc->busy = false; |
321 | } |
322 | spin_lock_bh(&midc->lock); |
323 | |
324 | } |
325 | /** |
326 | * midc_scan_descriptors - check the descriptors in channel |
327 | * mark completed when tx is completete |
328 | * @mid: device |
329 | * @midc: channel to scan |
330 | * |
331 | * Walk the descriptor chain for the device and process any entries |
332 | * that are complete. |
333 | */ |
334 | static void midc_scan_descriptors(struct middma_device *mid, |
335 | struct intel_mid_dma_chan *midc) |
336 | { |
337 | struct intel_mid_dma_desc *desc = NULL, *_desc = NULL; |
338 | |
339 | /*tx is complete*/ |
340 | list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { |
341 | if (desc->status == DMA_IN_PROGRESS) |
342 | midc_descriptor_complete(midc, desc); |
343 | } |
344 | return; |
345 | } |
346 | /** |
347 | * midc_lli_fill_sg - Helper function to convert |
348 | * SG list to Linked List Items. |
349 | *@midc: Channel |
350 | *@desc: DMA descriptor |
351 | *@sglist: Pointer to SG list |
352 | *@sglen: SG list length |
353 | *@flags: DMA transaction flags |
354 | * |
355 | * Walk through the SG list and convert the SG list into Linked |
356 | * List Items (LLI). |
357 | */ |
358 | static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc, |
359 | struct intel_mid_dma_desc *desc, |
360 | struct scatterlist *sglist, |
361 | unsigned int sglen, |
362 | unsigned int flags) |
363 | { |
364 | struct intel_mid_dma_slave *mids; |
365 | struct scatterlist *sg; |
366 | dma_addr_t lli_next, sg_phy_addr; |
367 | struct intel_mid_dma_lli *lli_bloc_desc; |
368 | union intel_mid_dma_ctl_lo ctl_lo; |
369 | union intel_mid_dma_ctl_hi ctl_hi; |
370 | int i; |
371 | |
372 | pr_debug("MDMA: Entered midc_lli_fill_sg\n"); |
373 | mids = midc->mid_slave; |
374 | |
375 | lli_bloc_desc = desc->lli; |
376 | lli_next = desc->lli_phys; |
377 | |
378 | ctl_lo.ctl_lo = desc->ctl_lo; |
379 | ctl_hi.ctl_hi = desc->ctl_hi; |
380 | for_each_sg(sglist, sg, sglen, i) { |
381 | /*Populate CTL_LOW and LLI values*/ |
382 | if (i != sglen - 1) { |
383 | lli_next = lli_next + |
384 | sizeof(struct intel_mid_dma_lli); |
385 | } else { |
386 | /*Check for circular list, otherwise terminate LLI to ZERO*/ |
387 | if (flags & DMA_PREP_CIRCULAR_LIST) { |
388 | pr_debug("MDMA: LLI is configured in circular mode\n"); |
389 | lli_next = desc->lli_phys; |
390 | } else { |
391 | lli_next = 0; |
392 | ctl_lo.ctlx.llp_dst_en = 0; |
393 | ctl_lo.ctlx.llp_src_en = 0; |
394 | } |
395 | } |
396 | /*Populate CTL_HI values*/ |
397 | ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg), |
398 | desc->width, |
399 | midc->dma->block_size); |
400 | /*Populate SAR and DAR values*/ |
401 | sg_phy_addr = sg_dma_address(sg); |
402 | if (desc->dirn == DMA_MEM_TO_DEV) { |
403 | lli_bloc_desc->sar = sg_phy_addr; |
404 | lli_bloc_desc->dar = mids->dma_slave.dst_addr; |
405 | } else if (desc->dirn == DMA_DEV_TO_MEM) { |
406 | lli_bloc_desc->sar = mids->dma_slave.src_addr; |
407 | lli_bloc_desc->dar = sg_phy_addr; |
408 | } |
409 | /*Copy values into block descriptor in system memroy*/ |
410 | lli_bloc_desc->llp = lli_next; |
411 | lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo; |
412 | lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi; |
413 | |
414 | lli_bloc_desc++; |
415 | } |
416 | /*Copy very first LLI values to descriptor*/ |
417 | desc->ctl_lo = desc->lli->ctl_lo; |
418 | desc->ctl_hi = desc->lli->ctl_hi; |
419 | desc->sar = desc->lli->sar; |
420 | desc->dar = desc->lli->dar; |
421 | |
422 | return 0; |
423 | } |
424 | /***************************************************************************** |
425 | DMA engine callback Functions*/ |
426 | /** |
427 | * intel_mid_dma_tx_submit - callback to submit DMA transaction |
428 | * @tx: dma engine descriptor |
429 | * |
430 | * Submit the DMA trasaction for this descriptor, start if ch idle |
431 | */ |
432 | static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
433 | { |
434 | struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx); |
435 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan); |
436 | dma_cookie_t cookie; |
437 | |
438 | spin_lock_bh(&midc->lock); |
439 | cookie = dma_cookie_assign(tx); |
440 | |
441 | if (list_empty(&midc->active_list)) |
442 | list_add_tail(&desc->desc_node, &midc->active_list); |
443 | else |
444 | list_add_tail(&desc->desc_node, &midc->queue); |
445 | |
446 | midc_dostart(midc, desc); |
447 | spin_unlock_bh(&midc->lock); |
448 | |
449 | return cookie; |
450 | } |
451 | |
452 | /** |
453 | * intel_mid_dma_issue_pending - callback to issue pending txn |
454 | * @chan: chan where pending trascation needs to be checked and submitted |
455 | * |
456 | * Call for scan to issue pending descriptors |
457 | */ |
458 | static void intel_mid_dma_issue_pending(struct dma_chan *chan) |
459 | { |
460 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
461 | |
462 | spin_lock_bh(&midc->lock); |
463 | if (!list_empty(&midc->queue)) |
464 | midc_scan_descriptors(to_middma_device(chan->device), midc); |
465 | spin_unlock_bh(&midc->lock); |
466 | } |
467 | |
468 | /** |
469 | * intel_mid_dma_tx_status - Return status of txn |
470 | * @chan: chan for where status needs to be checked |
471 | * @cookie: cookie for txn |
472 | * @txstate: DMA txn state |
473 | * |
474 | * Return status of DMA txn |
475 | */ |
476 | static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan, |
477 | dma_cookie_t cookie, |
478 | struct dma_tx_state *txstate) |
479 | { |
480 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
481 | enum dma_status ret; |
482 | |
483 | ret = dma_cookie_status(chan, cookie, txstate); |
484 | if (ret != DMA_SUCCESS) { |
485 | spin_lock_bh(&midc->lock); |
486 | midc_scan_descriptors(to_middma_device(chan->device), midc); |
487 | spin_unlock_bh(&midc->lock); |
488 | |
489 | ret = dma_cookie_status(chan, cookie, txstate); |
490 | } |
491 | |
492 | return ret; |
493 | } |
494 | |
495 | static int dma_slave_control(struct dma_chan *chan, unsigned long arg) |
496 | { |
497 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
498 | struct dma_slave_config *slave = (struct dma_slave_config *)arg; |
499 | struct intel_mid_dma_slave *mid_slave; |
500 | |
501 | BUG_ON(!midc); |
502 | BUG_ON(!slave); |
503 | pr_debug("MDMA: slave control called\n"); |
504 | |
505 | mid_slave = to_intel_mid_dma_slave(slave); |
506 | |
507 | BUG_ON(!mid_slave); |
508 | |
509 | midc->mid_slave = mid_slave; |
510 | return 0; |
511 | } |
512 | /** |
513 | * intel_mid_dma_device_control - DMA device control |
514 | * @chan: chan for DMA control |
515 | * @cmd: control cmd |
516 | * @arg: cmd arg value |
517 | * |
518 | * Perform DMA control command |
519 | */ |
520 | static int intel_mid_dma_device_control(struct dma_chan *chan, |
521 | enum dma_ctrl_cmd cmd, unsigned long arg) |
522 | { |
523 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
524 | struct middma_device *mid = to_middma_device(chan->device); |
525 | struct intel_mid_dma_desc *desc, *_desc; |
526 | union intel_mid_dma_cfg_lo cfg_lo; |
527 | |
528 | if (cmd == DMA_SLAVE_CONFIG) |
529 | return dma_slave_control(chan, arg); |
530 | |
531 | if (cmd != DMA_TERMINATE_ALL) |
532 | return -ENXIO; |
533 | |
534 | spin_lock_bh(&midc->lock); |
535 | if (midc->busy == false) { |
536 | spin_unlock_bh(&midc->lock); |
537 | return 0; |
538 | } |
539 | /*Suspend and disable the channel*/ |
540 | cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW); |
541 | cfg_lo.cfgx.ch_susp = 1; |
542 | iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW); |
543 | iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN); |
544 | midc->busy = false; |
545 | /* Disable interrupts */ |
546 | disable_dma_interrupt(midc); |
547 | midc->descs_allocated = 0; |
548 | |
549 | spin_unlock_bh(&midc->lock); |
550 | list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { |
551 | if (desc->lli != NULL) { |
552 | pci_pool_free(desc->lli_pool, desc->lli, |
553 | desc->lli_phys); |
554 | pci_pool_destroy(desc->lli_pool); |
555 | desc->lli = NULL; |
556 | } |
557 | list_move(&desc->desc_node, &midc->free_list); |
558 | } |
559 | return 0; |
560 | } |
561 | |
562 | |
563 | /** |
564 | * intel_mid_dma_prep_memcpy - Prep memcpy txn |
565 | * @chan: chan for DMA transfer |
566 | * @dest: destn address |
567 | * @src: src address |
568 | * @len: DMA transfer len |
569 | * @flags: DMA flags |
570 | * |
571 | * Perform a DMA memcpy. Note we support slave periphral DMA transfers only |
572 | * The periphral txn details should be filled in slave structure properly |
573 | * Returns the descriptor for this txn |
574 | */ |
575 | static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy( |
576 | struct dma_chan *chan, dma_addr_t dest, |
577 | dma_addr_t src, size_t len, unsigned long flags) |
578 | { |
579 | struct intel_mid_dma_chan *midc; |
580 | struct intel_mid_dma_desc *desc = NULL; |
581 | struct intel_mid_dma_slave *mids; |
582 | union intel_mid_dma_ctl_lo ctl_lo; |
583 | union intel_mid_dma_ctl_hi ctl_hi; |
584 | union intel_mid_dma_cfg_lo cfg_lo; |
585 | union intel_mid_dma_cfg_hi cfg_hi; |
586 | enum dma_slave_buswidth width; |
587 | |
588 | pr_debug("MDMA: Prep for memcpy\n"); |
589 | BUG_ON(!chan); |
590 | if (!len) |
591 | return NULL; |
592 | |
593 | midc = to_intel_mid_dma_chan(chan); |
594 | BUG_ON(!midc); |
595 | |
596 | mids = midc->mid_slave; |
597 | BUG_ON(!mids); |
598 | |
599 | pr_debug("MDMA:called for DMA %x CH %d Length %zu\n", |
600 | midc->dma->pci_id, midc->ch_id, len); |
601 | pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n", |
602 | mids->cfg_mode, mids->dma_slave.direction, |
603 | mids->hs_mode, mids->dma_slave.src_addr_width); |
604 | |
605 | /*calculate CFG_LO*/ |
606 | if (mids->hs_mode == LNW_DMA_SW_HS) { |
607 | cfg_lo.cfg_lo = 0; |
608 | cfg_lo.cfgx.hs_sel_dst = 1; |
609 | cfg_lo.cfgx.hs_sel_src = 1; |
610 | } else if (mids->hs_mode == LNW_DMA_HW_HS) |
611 | cfg_lo.cfg_lo = 0x00000; |
612 | |
613 | /*calculate CFG_HI*/ |
614 | if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) { |
615 | /*SW HS only*/ |
616 | cfg_hi.cfg_hi = 0; |
617 | } else { |
618 | cfg_hi.cfg_hi = 0; |
619 | if (midc->dma->pimr_mask) { |
620 | cfg_hi.cfgx.protctl = 0x0; /*default value*/ |
621 | cfg_hi.cfgx.fifo_mode = 1; |
622 | if (mids->dma_slave.direction == DMA_MEM_TO_DEV) { |
623 | cfg_hi.cfgx.src_per = 0; |
624 | if (mids->device_instance == 0) |
625 | cfg_hi.cfgx.dst_per = 3; |
626 | if (mids->device_instance == 1) |
627 | cfg_hi.cfgx.dst_per = 1; |
628 | } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) { |
629 | if (mids->device_instance == 0) |
630 | cfg_hi.cfgx.src_per = 2; |
631 | if (mids->device_instance == 1) |
632 | cfg_hi.cfgx.src_per = 0; |
633 | cfg_hi.cfgx.dst_per = 0; |
634 | } |
635 | } else { |
636 | cfg_hi.cfgx.protctl = 0x1; /*default value*/ |
637 | cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per = |
638 | midc->ch_id - midc->dma->chan_base; |
639 | } |
640 | } |
641 | |
642 | /*calculate CTL_HI*/ |
643 | ctl_hi.ctlx.reser = 0; |
644 | ctl_hi.ctlx.done = 0; |
645 | width = mids->dma_slave.src_addr_width; |
646 | |
647 | ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size); |
648 | pr_debug("MDMA:calc len %d for block size %d\n", |
649 | ctl_hi.ctlx.block_ts, midc->dma->block_size); |
650 | /*calculate CTL_LO*/ |
651 | ctl_lo.ctl_lo = 0; |
652 | ctl_lo.ctlx.int_en = 1; |
653 | ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst; |
654 | ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst; |
655 | |
656 | /* |
657 | * Here we need some translation from "enum dma_slave_buswidth" |
658 | * to the format for our dma controller |
659 | * standard intel_mid_dmac's format |
660 | * 1 Byte 0b000 |
661 | * 2 Bytes 0b001 |
662 | * 4 Bytes 0b010 |
663 | */ |
664 | ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2; |
665 | ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2; |
666 | |
667 | if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) { |
668 | ctl_lo.ctlx.tt_fc = 0; |
669 | ctl_lo.ctlx.sinc = 0; |
670 | ctl_lo.ctlx.dinc = 0; |
671 | } else { |
672 | if (mids->dma_slave.direction == DMA_MEM_TO_DEV) { |
673 | ctl_lo.ctlx.sinc = 0; |
674 | ctl_lo.ctlx.dinc = 2; |
675 | ctl_lo.ctlx.tt_fc = 1; |
676 | } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) { |
677 | ctl_lo.ctlx.sinc = 2; |
678 | ctl_lo.ctlx.dinc = 0; |
679 | ctl_lo.ctlx.tt_fc = 2; |
680 | } |
681 | } |
682 | |
683 | pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n", |
684 | ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi); |
685 | |
686 | enable_dma_interrupt(midc); |
687 | |
688 | desc = midc_desc_get(midc); |
689 | if (desc == NULL) |
690 | goto err_desc_get; |
691 | desc->sar = src; |
692 | desc->dar = dest ; |
693 | desc->len = len; |
694 | desc->cfg_hi = cfg_hi.cfg_hi; |
695 | desc->cfg_lo = cfg_lo.cfg_lo; |
696 | desc->ctl_lo = ctl_lo.ctl_lo; |
697 | desc->ctl_hi = ctl_hi.ctl_hi; |
698 | desc->width = width; |
699 | desc->dirn = mids->dma_slave.direction; |
700 | desc->lli_phys = 0; |
701 | desc->lli = NULL; |
702 | desc->lli_pool = NULL; |
703 | return &desc->txd; |
704 | |
705 | err_desc_get: |
706 | pr_err("ERR_MDMA: Failed to get desc\n"); |
707 | midc_desc_put(midc, desc); |
708 | return NULL; |
709 | } |
710 | /** |
711 | * intel_mid_dma_prep_slave_sg - Prep slave sg txn |
712 | * @chan: chan for DMA transfer |
713 | * @sgl: scatter gather list |
714 | * @sg_len: length of sg txn |
715 | * @direction: DMA transfer dirtn |
716 | * @flags: DMA flags |
717 | * @context: transfer context (ignored) |
718 | * |
719 | * Prepares LLI based periphral transfer |
720 | */ |
721 | static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg( |
722 | struct dma_chan *chan, struct scatterlist *sgl, |
723 | unsigned int sg_len, enum dma_transfer_direction direction, |
724 | unsigned long flags, void *context) |
725 | { |
726 | struct intel_mid_dma_chan *midc = NULL; |
727 | struct intel_mid_dma_slave *mids = NULL; |
728 | struct intel_mid_dma_desc *desc = NULL; |
729 | struct dma_async_tx_descriptor *txd = NULL; |
730 | union intel_mid_dma_ctl_lo ctl_lo; |
731 | |
732 | pr_debug("MDMA: Prep for slave SG\n"); |
733 | |
734 | if (!sg_len) { |
735 | pr_err("MDMA: Invalid SG length\n"); |
736 | return NULL; |
737 | } |
738 | midc = to_intel_mid_dma_chan(chan); |
739 | BUG_ON(!midc); |
740 | |
741 | mids = midc->mid_slave; |
742 | BUG_ON(!mids); |
743 | |
744 | if (!midc->dma->pimr_mask) { |
745 | /* We can still handle sg list with only one item */ |
746 | if (sg_len == 1) { |
747 | txd = intel_mid_dma_prep_memcpy(chan, |
748 | mids->dma_slave.dst_addr, |
749 | mids->dma_slave.src_addr, |
750 | sg_dma_len(sgl), |
751 | flags); |
752 | return txd; |
753 | } else { |
754 | pr_warn("MDMA: SG list is not supported by this controller\n"); |
755 | return NULL; |
756 | } |
757 | } |
758 | |
759 | pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n", |
760 | sg_len, direction, flags); |
761 | |
762 | txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags); |
763 | if (NULL == txd) { |
764 | pr_err("MDMA: Prep memcpy failed\n"); |
765 | return NULL; |
766 | } |
767 | |
768 | desc = to_intel_mid_dma_desc(txd); |
769 | desc->dirn = direction; |
770 | ctl_lo.ctl_lo = desc->ctl_lo; |
771 | ctl_lo.ctlx.llp_dst_en = 1; |
772 | ctl_lo.ctlx.llp_src_en = 1; |
773 | desc->ctl_lo = ctl_lo.ctl_lo; |
774 | desc->lli_length = sg_len; |
775 | desc->current_lli = 0; |
776 | /* DMA coherent memory pool for LLI descriptors*/ |
777 | desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool", |
778 | midc->dma->pdev, |
779 | (sizeof(struct intel_mid_dma_lli)*sg_len), |
780 | 32, 0); |
781 | if (NULL == desc->lli_pool) { |
782 | pr_err("MID_DMA:LLI pool create failed\n"); |
783 | return NULL; |
784 | } |
785 | |
786 | desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys); |
787 | if (!desc->lli) { |
788 | pr_err("MID_DMA: LLI alloc failed\n"); |
789 | pci_pool_destroy(desc->lli_pool); |
790 | return NULL; |
791 | } |
792 | |
793 | midc_lli_fill_sg(midc, desc, sgl, sg_len, flags); |
794 | if (flags & DMA_PREP_INTERRUPT) { |
795 | iowrite32(UNMASK_INTR_REG(midc->ch_id), |
796 | midc->dma_base + MASK_BLOCK); |
797 | pr_debug("MDMA:Enabled Block interrupt\n"); |
798 | } |
799 | return &desc->txd; |
800 | } |
801 | |
802 | /** |
803 | * intel_mid_dma_free_chan_resources - Frees dma resources |
804 | * @chan: chan requiring attention |
805 | * |
806 | * Frees the allocated resources on this DMA chan |
807 | */ |
808 | static void intel_mid_dma_free_chan_resources(struct dma_chan *chan) |
809 | { |
810 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
811 | struct middma_device *mid = to_middma_device(chan->device); |
812 | struct intel_mid_dma_desc *desc, *_desc; |
813 | |
814 | if (true == midc->busy) { |
815 | /*trying to free ch in use!!!!!*/ |
816 | pr_err("ERR_MDMA: trying to free ch in use\n"); |
817 | } |
818 | spin_lock_bh(&midc->lock); |
819 | midc->descs_allocated = 0; |
820 | list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { |
821 | list_del(&desc->desc_node); |
822 | pci_pool_free(mid->dma_pool, desc, desc->txd.phys); |
823 | } |
824 | list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) { |
825 | list_del(&desc->desc_node); |
826 | pci_pool_free(mid->dma_pool, desc, desc->txd.phys); |
827 | } |
828 | list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) { |
829 | list_del(&desc->desc_node); |
830 | pci_pool_free(mid->dma_pool, desc, desc->txd.phys); |
831 | } |
832 | spin_unlock_bh(&midc->lock); |
833 | midc->in_use = false; |
834 | midc->busy = false; |
835 | /* Disable CH interrupts */ |
836 | iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK); |
837 | iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR); |
838 | pm_runtime_put(&mid->pdev->dev); |
839 | } |
840 | |
841 | /** |
842 | * intel_mid_dma_alloc_chan_resources - Allocate dma resources |
843 | * @chan: chan requiring attention |
844 | * |
845 | * Allocates DMA resources on this chan |
846 | * Return the descriptors allocated |
847 | */ |
848 | static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan) |
849 | { |
850 | struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
851 | struct middma_device *mid = to_middma_device(chan->device); |
852 | struct intel_mid_dma_desc *desc; |
853 | dma_addr_t phys; |
854 | int i = 0; |
855 | |
856 | pm_runtime_get_sync(&mid->pdev->dev); |
857 | |
858 | if (mid->state == SUSPENDED) { |
859 | if (dma_resume(&mid->pdev->dev)) { |
860 | pr_err("ERR_MDMA: resume failed"); |
861 | return -EFAULT; |
862 | } |
863 | } |
864 | |
865 | /* ASSERT: channel is idle */ |
866 | if (test_ch_en(mid->dma_base, midc->ch_id)) { |
867 | /*ch is not idle*/ |
868 | pr_err("ERR_MDMA: ch not idle\n"); |
869 | pm_runtime_put(&mid->pdev->dev); |
870 | return -EIO; |
871 | } |
872 | dma_cookie_init(chan); |
873 | |
874 | spin_lock_bh(&midc->lock); |
875 | while (midc->descs_allocated < DESCS_PER_CHANNEL) { |
876 | spin_unlock_bh(&midc->lock); |
877 | desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys); |
878 | if (!desc) { |
879 | pr_err("ERR_MDMA: desc failed\n"); |
880 | pm_runtime_put(&mid->pdev->dev); |
881 | return -ENOMEM; |
882 | /*check*/ |
883 | } |
884 | dma_async_tx_descriptor_init(&desc->txd, chan); |
885 | desc->txd.tx_submit = intel_mid_dma_tx_submit; |
886 | desc->txd.flags = DMA_CTRL_ACK; |
887 | desc->txd.phys = phys; |
888 | spin_lock_bh(&midc->lock); |
889 | i = ++midc->descs_allocated; |
890 | list_add_tail(&desc->desc_node, &midc->free_list); |
891 | } |
892 | spin_unlock_bh(&midc->lock); |
893 | midc->in_use = true; |
894 | midc->busy = false; |
895 | pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i); |
896 | return i; |
897 | } |
898 | |
899 | /** |
900 | * midc_handle_error - Handle DMA txn error |
901 | * @mid: controller where error occurred |
902 | * @midc: chan where error occurred |
903 | * |
904 | * Scan the descriptor for error |
905 | */ |
906 | static void midc_handle_error(struct middma_device *mid, |
907 | struct intel_mid_dma_chan *midc) |
908 | { |
909 | midc_scan_descriptors(mid, midc); |
910 | } |
911 | |
912 | /** |
913 | * dma_tasklet - DMA interrupt tasklet |
914 | * @data: tasklet arg (the controller structure) |
915 | * |
916 | * Scan the controller for interrupts for completion/error |
917 | * Clear the interrupt and call for handling completion/error |
918 | */ |
919 | static void dma_tasklet(unsigned long data) |
920 | { |
921 | struct middma_device *mid = NULL; |
922 | struct intel_mid_dma_chan *midc = NULL; |
923 | u32 status, raw_tfr, raw_block; |
924 | int i; |
925 | |
926 | mid = (struct middma_device *)data; |
927 | if (mid == NULL) { |
928 | pr_err("ERR_MDMA: tasklet Null param\n"); |
929 | return; |
930 | } |
931 | pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id); |
932 | raw_tfr = ioread32(mid->dma_base + RAW_TFR); |
933 | raw_block = ioread32(mid->dma_base + RAW_BLOCK); |
934 | status = raw_tfr | raw_block; |
935 | status &= mid->intr_mask; |
936 | while (status) { |
937 | /*txn interrupt*/ |
938 | i = get_ch_index(&status, mid->chan_base); |
939 | if (i < 0) { |
940 | pr_err("ERR_MDMA:Invalid ch index %x\n", i); |
941 | return; |
942 | } |
943 | midc = &mid->ch[i]; |
944 | if (midc == NULL) { |
945 | pr_err("ERR_MDMA:Null param midc\n"); |
946 | return; |
947 | } |
948 | pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n", |
949 | status, midc->ch_id, i); |
950 | midc->raw_tfr = raw_tfr; |
951 | midc->raw_block = raw_block; |
952 | spin_lock_bh(&midc->lock); |
953 | /*clearing this interrupts first*/ |
954 | iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR); |
955 | if (raw_block) { |
956 | iowrite32((1 << midc->ch_id), |
957 | mid->dma_base + CLEAR_BLOCK); |
958 | } |
959 | midc_scan_descriptors(mid, midc); |
960 | pr_debug("MDMA:Scan of desc... complete, unmasking\n"); |
961 | iowrite32(UNMASK_INTR_REG(midc->ch_id), |
962 | mid->dma_base + MASK_TFR); |
963 | if (raw_block) { |
964 | iowrite32(UNMASK_INTR_REG(midc->ch_id), |
965 | mid->dma_base + MASK_BLOCK); |
966 | } |
967 | spin_unlock_bh(&midc->lock); |
968 | } |
969 | |
970 | status = ioread32(mid->dma_base + RAW_ERR); |
971 | status &= mid->intr_mask; |
972 | while (status) { |
973 | /*err interrupt*/ |
974 | i = get_ch_index(&status, mid->chan_base); |
975 | if (i < 0) { |
976 | pr_err("ERR_MDMA:Invalid ch index %x\n", i); |
977 | return; |
978 | } |
979 | midc = &mid->ch[i]; |
980 | if (midc == NULL) { |
981 | pr_err("ERR_MDMA:Null param midc\n"); |
982 | return; |
983 | } |
984 | pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n", |
985 | status, midc->ch_id, i); |
986 | |
987 | iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR); |
988 | spin_lock_bh(&midc->lock); |
989 | midc_handle_error(mid, midc); |
990 | iowrite32(UNMASK_INTR_REG(midc->ch_id), |
991 | mid->dma_base + MASK_ERR); |
992 | spin_unlock_bh(&midc->lock); |
993 | } |
994 | pr_debug("MDMA:Exiting takslet...\n"); |
995 | return; |
996 | } |
997 | |
998 | static void dma_tasklet1(unsigned long data) |
999 | { |
1000 | pr_debug("MDMA:in takslet1...\n"); |
1001 | return dma_tasklet(data); |
1002 | } |
1003 | |
1004 | static void dma_tasklet2(unsigned long data) |
1005 | { |
1006 | pr_debug("MDMA:in takslet2...\n"); |
1007 | return dma_tasklet(data); |
1008 | } |
1009 | |
1010 | /** |
1011 | * intel_mid_dma_interrupt - DMA ISR |
1012 | * @irq: IRQ where interrupt occurred |
1013 | * @data: ISR cllback data (the controller structure) |
1014 | * |
1015 | * See if this is our interrupt if so then schedule the tasklet |
1016 | * otherwise ignore |
1017 | */ |
1018 | static irqreturn_t intel_mid_dma_interrupt(int irq, void *data) |
1019 | { |
1020 | struct middma_device *mid = data; |
1021 | u32 tfr_status, err_status; |
1022 | int call_tasklet = 0; |
1023 | |
1024 | tfr_status = ioread32(mid->dma_base + RAW_TFR); |
1025 | err_status = ioread32(mid->dma_base + RAW_ERR); |
1026 | if (!tfr_status && !err_status) |
1027 | return IRQ_NONE; |
1028 | |
1029 | /*DMA Interrupt*/ |
1030 | pr_debug("MDMA:Got an interrupt on irq %d\n", irq); |
1031 | pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask); |
1032 | tfr_status &= mid->intr_mask; |
1033 | if (tfr_status) { |
1034 | /*need to disable intr*/ |
1035 | iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR); |
1036 | iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK); |
1037 | pr_debug("MDMA: Calling tasklet %x\n", tfr_status); |
1038 | call_tasklet = 1; |
1039 | } |
1040 | err_status &= mid->intr_mask; |
1041 | if (err_status) { |
1042 | iowrite32((err_status << INT_MASK_WE), |
1043 | mid->dma_base + MASK_ERR); |
1044 | call_tasklet = 1; |
1045 | } |
1046 | if (call_tasklet) |
1047 | tasklet_schedule(&mid->tasklet); |
1048 | |
1049 | return IRQ_HANDLED; |
1050 | } |
1051 | |
1052 | static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data) |
1053 | { |
1054 | return intel_mid_dma_interrupt(irq, data); |
1055 | } |
1056 | |
1057 | static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data) |
1058 | { |
1059 | return intel_mid_dma_interrupt(irq, data); |
1060 | } |
1061 | |
1062 | /** |
1063 | * mid_setup_dma - Setup the DMA controller |
1064 | * @pdev: Controller PCI device structure |
1065 | * |
1066 | * Initialize the DMA controller, channels, registers with DMA engine, |
1067 | * ISR. Initialize DMA controller channels. |
1068 | */ |
1069 | static int mid_setup_dma(struct pci_dev *pdev) |
1070 | { |
1071 | struct middma_device *dma = pci_get_drvdata(pdev); |
1072 | int err, i; |
1073 | |
1074 | /* DMA coherent memory pool for DMA descriptor allocations */ |
1075 | dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev, |
1076 | sizeof(struct intel_mid_dma_desc), |
1077 | 32, 0); |
1078 | if (NULL == dma->dma_pool) { |
1079 | pr_err("ERR_MDMA:pci_pool_create failed\n"); |
1080 | err = -ENOMEM; |
1081 | goto err_dma_pool; |
1082 | } |
1083 | |
1084 | INIT_LIST_HEAD(&dma->common.channels); |
1085 | dma->pci_id = pdev->device; |
1086 | if (dma->pimr_mask) { |
1087 | dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE, |
1088 | LNW_PERIPHRAL_MASK_SIZE); |
1089 | if (dma->mask_reg == NULL) { |
1090 | pr_err("ERR_MDMA:Can't map periphral intr space !!\n"); |
1091 | err = -ENOMEM; |
1092 | goto err_ioremap; |
1093 | } |
1094 | } else |
1095 | dma->mask_reg = NULL; |
1096 | |
1097 | pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan); |
1098 | /*init CH structures*/ |
1099 | dma->intr_mask = 0; |
1100 | dma->state = RUNNING; |
1101 | for (i = 0; i < dma->max_chan; i++) { |
1102 | struct intel_mid_dma_chan *midch = &dma->ch[i]; |
1103 | |
1104 | midch->chan.device = &dma->common; |
1105 | dma_cookie_init(&midch->chan); |
1106 | midch->ch_id = dma->chan_base + i; |
1107 | pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id); |
1108 | |
1109 | midch->dma_base = dma->dma_base; |
1110 | midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id; |
1111 | midch->dma = dma; |
1112 | dma->intr_mask |= 1 << (dma->chan_base + i); |
1113 | spin_lock_init(&midch->lock); |
1114 | |
1115 | INIT_LIST_HEAD(&midch->active_list); |
1116 | INIT_LIST_HEAD(&midch->queue); |
1117 | INIT_LIST_HEAD(&midch->free_list); |
1118 | /*mask interrupts*/ |
1119 | iowrite32(MASK_INTR_REG(midch->ch_id), |
1120 | dma->dma_base + MASK_BLOCK); |
1121 | iowrite32(MASK_INTR_REG(midch->ch_id), |
1122 | dma->dma_base + MASK_SRC_TRAN); |
1123 | iowrite32(MASK_INTR_REG(midch->ch_id), |
1124 | dma->dma_base + MASK_DST_TRAN); |
1125 | iowrite32(MASK_INTR_REG(midch->ch_id), |
1126 | dma->dma_base + MASK_ERR); |
1127 | iowrite32(MASK_INTR_REG(midch->ch_id), |
1128 | dma->dma_base + MASK_TFR); |
1129 | |
1130 | disable_dma_interrupt(midch); |
1131 | list_add_tail(&midch->chan.device_node, &dma->common.channels); |
1132 | } |
1133 | pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask); |
1134 | |
1135 | /*init dma structure*/ |
1136 | dma_cap_zero(dma->common.cap_mask); |
1137 | dma_cap_set(DMA_MEMCPY, dma->common.cap_mask); |
1138 | dma_cap_set(DMA_SLAVE, dma->common.cap_mask); |
1139 | dma_cap_set(DMA_PRIVATE, dma->common.cap_mask); |
1140 | dma->common.dev = &pdev->dev; |
1141 | |
1142 | dma->common.device_alloc_chan_resources = |
1143 | intel_mid_dma_alloc_chan_resources; |
1144 | dma->common.device_free_chan_resources = |
1145 | intel_mid_dma_free_chan_resources; |
1146 | |
1147 | dma->common.device_tx_status = intel_mid_dma_tx_status; |
1148 | dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy; |
1149 | dma->common.device_issue_pending = intel_mid_dma_issue_pending; |
1150 | dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg; |
1151 | dma->common.device_control = intel_mid_dma_device_control; |
1152 | |
1153 | /*enable dma cntrl*/ |
1154 | iowrite32(REG_BIT0, dma->dma_base + DMA_CFG); |
1155 | |
1156 | /*register irq */ |
1157 | if (dma->pimr_mask) { |
1158 | pr_debug("MDMA:Requesting irq shared for DMAC1\n"); |
1159 | err = request_irq(pdev->irq, intel_mid_dma_interrupt1, |
1160 | IRQF_SHARED, "INTEL_MID_DMAC1", dma); |
1161 | if (0 != err) |
1162 | goto err_irq; |
1163 | } else { |
1164 | dma->intr_mask = 0x03; |
1165 | pr_debug("MDMA:Requesting irq for DMAC2\n"); |
1166 | err = request_irq(pdev->irq, intel_mid_dma_interrupt2, |
1167 | IRQF_SHARED, "INTEL_MID_DMAC2", dma); |
1168 | if (0 != err) |
1169 | goto err_irq; |
1170 | } |
1171 | /*register device w/ engine*/ |
1172 | err = dma_async_device_register(&dma->common); |
1173 | if (0 != err) { |
1174 | pr_err("ERR_MDMA:device_register failed: %d\n", err); |
1175 | goto err_engine; |
1176 | } |
1177 | if (dma->pimr_mask) { |
1178 | pr_debug("setting up tasklet1 for DMAC1\n"); |
1179 | tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma); |
1180 | } else { |
1181 | pr_debug("setting up tasklet2 for DMAC2\n"); |
1182 | tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma); |
1183 | } |
1184 | return 0; |
1185 | |
1186 | err_engine: |
1187 | free_irq(pdev->irq, dma); |
1188 | err_irq: |
1189 | if (dma->mask_reg) |
1190 | iounmap(dma->mask_reg); |
1191 | err_ioremap: |
1192 | pci_pool_destroy(dma->dma_pool); |
1193 | err_dma_pool: |
1194 | pr_err("ERR_MDMA:setup_dma failed: %d\n", err); |
1195 | return err; |
1196 | |
1197 | } |
1198 | |
1199 | /** |
1200 | * middma_shutdown - Shutdown the DMA controller |
1201 | * @pdev: Controller PCI device structure |
1202 | * |
1203 | * Called by remove |
1204 | * Unregister DMa controller, clear all structures and free interrupt |
1205 | */ |
1206 | static void middma_shutdown(struct pci_dev *pdev) |
1207 | { |
1208 | struct middma_device *device = pci_get_drvdata(pdev); |
1209 | |
1210 | dma_async_device_unregister(&device->common); |
1211 | pci_pool_destroy(device->dma_pool); |
1212 | if (device->mask_reg) |
1213 | iounmap(device->mask_reg); |
1214 | if (device->dma_base) |
1215 | iounmap(device->dma_base); |
1216 | free_irq(pdev->irq, device); |
1217 | return; |
1218 | } |
1219 | |
1220 | /** |
1221 | * intel_mid_dma_probe - PCI Probe |
1222 | * @pdev: Controller PCI device structure |
1223 | * @id: pci device id structure |
1224 | * |
1225 | * Initialize the PCI device, map BARs, query driver data. |
1226 | * Call setup_dma to complete contoller and chan initilzation |
1227 | */ |
1228 | static int __devinit intel_mid_dma_probe(struct pci_dev *pdev, |
1229 | const struct pci_device_id *id) |
1230 | { |
1231 | struct middma_device *device; |
1232 | u32 base_addr, bar_size; |
1233 | struct intel_mid_dma_probe_info *info; |
1234 | int err; |
1235 | |
1236 | pr_debug("MDMA: probe for %x\n", pdev->device); |
1237 | info = (void *)id->driver_data; |
1238 | pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n", |
1239 | info->max_chan, info->ch_base, |
1240 | info->block_size, info->pimr_mask); |
1241 | |
1242 | err = pci_enable_device(pdev); |
1243 | if (err) |
1244 | goto err_enable_device; |
1245 | |
1246 | err = pci_request_regions(pdev, "intel_mid_dmac"); |
1247 | if (err) |
1248 | goto err_request_regions; |
1249 | |
1250 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
1251 | if (err) |
1252 | goto err_set_dma_mask; |
1253 | |
1254 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
1255 | if (err) |
1256 | goto err_set_dma_mask; |
1257 | |
1258 | device = kzalloc(sizeof(*device), GFP_KERNEL); |
1259 | if (!device) { |
1260 | pr_err("ERR_MDMA:kzalloc failed probe\n"); |
1261 | err = -ENOMEM; |
1262 | goto err_kzalloc; |
1263 | } |
1264 | device->pdev = pci_dev_get(pdev); |
1265 | |
1266 | base_addr = pci_resource_start(pdev, 0); |
1267 | bar_size = pci_resource_len(pdev, 0); |
1268 | device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE); |
1269 | if (!device->dma_base) { |
1270 | pr_err("ERR_MDMA:ioremap failed\n"); |
1271 | err = -ENOMEM; |
1272 | goto err_ioremap; |
1273 | } |
1274 | pci_set_drvdata(pdev, device); |
1275 | pci_set_master(pdev); |
1276 | device->max_chan = info->max_chan; |
1277 | device->chan_base = info->ch_base; |
1278 | device->block_size = info->block_size; |
1279 | device->pimr_mask = info->pimr_mask; |
1280 | |
1281 | err = mid_setup_dma(pdev); |
1282 | if (err) |
1283 | goto err_dma; |
1284 | |
1285 | pm_runtime_put_noidle(&pdev->dev); |
1286 | pm_runtime_allow(&pdev->dev); |
1287 | return 0; |
1288 | |
1289 | err_dma: |
1290 | iounmap(device->dma_base); |
1291 | err_ioremap: |
1292 | pci_dev_put(pdev); |
1293 | kfree(device); |
1294 | err_kzalloc: |
1295 | err_set_dma_mask: |
1296 | pci_release_regions(pdev); |
1297 | pci_disable_device(pdev); |
1298 | err_request_regions: |
1299 | err_enable_device: |
1300 | pr_err("ERR_MDMA:Probe failed %d\n", err); |
1301 | return err; |
1302 | } |
1303 | |
1304 | /** |
1305 | * intel_mid_dma_remove - PCI remove |
1306 | * @pdev: Controller PCI device structure |
1307 | * |
1308 | * Free up all resources and data |
1309 | * Call shutdown_dma to complete contoller and chan cleanup |
1310 | */ |
1311 | static void __devexit intel_mid_dma_remove(struct pci_dev *pdev) |
1312 | { |
1313 | struct middma_device *device = pci_get_drvdata(pdev); |
1314 | |
1315 | pm_runtime_get_noresume(&pdev->dev); |
1316 | pm_runtime_forbid(&pdev->dev); |
1317 | middma_shutdown(pdev); |
1318 | pci_dev_put(pdev); |
1319 | kfree(device); |
1320 | pci_release_regions(pdev); |
1321 | pci_disable_device(pdev); |
1322 | } |
1323 | |
1324 | /* Power Management */ |
1325 | /* |
1326 | * dma_suspend - PCI suspend function |
1327 | * |
1328 | * @pci: PCI device structure |
1329 | * @state: PM message |
1330 | * |
1331 | * This function is called by OS when a power event occurs |
1332 | */ |
1333 | static int dma_suspend(struct device *dev) |
1334 | { |
1335 | struct pci_dev *pci = to_pci_dev(dev); |
1336 | int i; |
1337 | struct middma_device *device = pci_get_drvdata(pci); |
1338 | pr_debug("MDMA: dma_suspend called\n"); |
1339 | |
1340 | for (i = 0; i < device->max_chan; i++) { |
1341 | if (device->ch[i].in_use) |
1342 | return -EAGAIN; |
1343 | } |
1344 | dmac1_mask_periphral_intr(device); |
1345 | device->state = SUSPENDED; |
1346 | pci_save_state(pci); |
1347 | pci_disable_device(pci); |
1348 | pci_set_power_state(pci, PCI_D3hot); |
1349 | return 0; |
1350 | } |
1351 | |
1352 | /** |
1353 | * dma_resume - PCI resume function |
1354 | * |
1355 | * @pci: PCI device structure |
1356 | * |
1357 | * This function is called by OS when a power event occurs |
1358 | */ |
1359 | int dma_resume(struct device *dev) |
1360 | { |
1361 | struct pci_dev *pci = to_pci_dev(dev); |
1362 | int ret; |
1363 | struct middma_device *device = pci_get_drvdata(pci); |
1364 | |
1365 | pr_debug("MDMA: dma_resume called\n"); |
1366 | pci_set_power_state(pci, PCI_D0); |
1367 | pci_restore_state(pci); |
1368 | ret = pci_enable_device(pci); |
1369 | if (ret) { |
1370 | pr_err("MDMA: device can't be enabled for %x\n", pci->device); |
1371 | return ret; |
1372 | } |
1373 | device->state = RUNNING; |
1374 | iowrite32(REG_BIT0, device->dma_base + DMA_CFG); |
1375 | return 0; |
1376 | } |
1377 | |
1378 | static int dma_runtime_suspend(struct device *dev) |
1379 | { |
1380 | struct pci_dev *pci_dev = to_pci_dev(dev); |
1381 | struct middma_device *device = pci_get_drvdata(pci_dev); |
1382 | |
1383 | device->state = SUSPENDED; |
1384 | return 0; |
1385 | } |
1386 | |
1387 | static int dma_runtime_resume(struct device *dev) |
1388 | { |
1389 | struct pci_dev *pci_dev = to_pci_dev(dev); |
1390 | struct middma_device *device = pci_get_drvdata(pci_dev); |
1391 | |
1392 | device->state = RUNNING; |
1393 | iowrite32(REG_BIT0, device->dma_base + DMA_CFG); |
1394 | return 0; |
1395 | } |
1396 | |
1397 | static int dma_runtime_idle(struct device *dev) |
1398 | { |
1399 | struct pci_dev *pdev = to_pci_dev(dev); |
1400 | struct middma_device *device = pci_get_drvdata(pdev); |
1401 | int i; |
1402 | |
1403 | for (i = 0; i < device->max_chan; i++) { |
1404 | if (device->ch[i].in_use) |
1405 | return -EAGAIN; |
1406 | } |
1407 | |
1408 | return pm_schedule_suspend(dev, 0); |
1409 | } |
1410 | |
1411 | /****************************************************************************** |
1412 | * PCI stuff |
1413 | */ |
1414 | static struct pci_device_id intel_mid_dma_ids[] = { |
1415 | { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)}, |
1416 | { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)}, |
1417 | { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)}, |
1418 | { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)}, |
1419 | { 0, } |
1420 | }; |
1421 | MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids); |
1422 | |
1423 | static const struct dev_pm_ops intel_mid_dma_pm = { |
1424 | .runtime_suspend = dma_runtime_suspend, |
1425 | .runtime_resume = dma_runtime_resume, |
1426 | .runtime_idle = dma_runtime_idle, |
1427 | .suspend = dma_suspend, |
1428 | .resume = dma_resume, |
1429 | }; |
1430 | |
1431 | static struct pci_driver intel_mid_dma_pci_driver = { |
1432 | .name = "Intel MID DMA", |
1433 | .id_table = intel_mid_dma_ids, |
1434 | .probe = intel_mid_dma_probe, |
1435 | .remove = __devexit_p(intel_mid_dma_remove), |
1436 | #ifdef CONFIG_PM |
1437 | .driver = { |
1438 | .pm = &intel_mid_dma_pm, |
1439 | }, |
1440 | #endif |
1441 | }; |
1442 | |
1443 | static int __init intel_mid_dma_init(void) |
1444 | { |
1445 | pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n", |
1446 | INTEL_MID_DMA_DRIVER_VERSION); |
1447 | return pci_register_driver(&intel_mid_dma_pci_driver); |
1448 | } |
1449 | fs_initcall(intel_mid_dma_init); |
1450 | |
1451 | static void __exit intel_mid_dma_exit(void) |
1452 | { |
1453 | pci_unregister_driver(&intel_mid_dma_pci_driver); |
1454 | } |
1455 | module_exit(intel_mid_dma_exit); |
1456 | |
1457 | MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>"); |
1458 | MODULE_DESCRIPTION("Intel (R) MID DMAC Driver"); |
1459 | MODULE_LICENSE("GPL v2"); |
1460 | MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION); |
1461 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9