Root/
1 | /* |
2 | * Copyright (C) ST-Ericsson SA 2007-2010 |
3 | * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson |
4 | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson |
5 | * License terms: GNU General Public License (GPL) version 2 |
6 | */ |
7 | |
8 | #include <linux/kernel.h> |
9 | #include <plat/ste_dma40.h> |
10 | |
11 | #include "ste_dma40_ll.h" |
12 | |
13 | /* Sets up proper LCSP1 and LCSP3 register for a logical channel */ |
14 | void d40_log_cfg(struct stedma40_chan_cfg *cfg, |
15 | u32 *lcsp1, u32 *lcsp3) |
16 | { |
17 | u32 l3 = 0; /* dst */ |
18 | u32 l1 = 0; /* src */ |
19 | |
20 | /* src is mem? -> increase address pos */ |
21 | if (cfg->dir == STEDMA40_MEM_TO_PERIPH || |
22 | cfg->dir == STEDMA40_MEM_TO_MEM) |
23 | l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS; |
24 | |
25 | /* dst is mem? -> increase address pos */ |
26 | if (cfg->dir == STEDMA40_PERIPH_TO_MEM || |
27 | cfg->dir == STEDMA40_MEM_TO_MEM) |
28 | l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS; |
29 | |
30 | /* src is hw? -> master port 1 */ |
31 | if (cfg->dir == STEDMA40_PERIPH_TO_MEM || |
32 | cfg->dir == STEDMA40_PERIPH_TO_PERIPH) |
33 | l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS; |
34 | |
35 | /* dst is hw? -> master port 1 */ |
36 | if (cfg->dir == STEDMA40_MEM_TO_PERIPH || |
37 | cfg->dir == STEDMA40_PERIPH_TO_PERIPH) |
38 | l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS; |
39 | |
40 | l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS; |
41 | l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS; |
42 | l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS; |
43 | |
44 | l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS; |
45 | l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; |
46 | l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS; |
47 | |
48 | *lcsp1 = l1; |
49 | *lcsp3 = l3; |
50 | |
51 | } |
52 | |
53 | /* Sets up SRC and DST CFG register for both logical and physical channels */ |
54 | void d40_phy_cfg(struct stedma40_chan_cfg *cfg, |
55 | u32 *src_cfg, u32 *dst_cfg, bool is_log) |
56 | { |
57 | u32 src = 0; |
58 | u32 dst = 0; |
59 | |
60 | if (!is_log) { |
61 | /* Physical channel */ |
62 | if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) || |
63 | (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { |
64 | /* Set master port to 1 */ |
65 | src |= 1 << D40_SREG_CFG_MST_POS; |
66 | src |= D40_TYPE_TO_EVENT(cfg->src_dev_type); |
67 | |
68 | if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) |
69 | src |= 1 << D40_SREG_CFG_PHY_TM_POS; |
70 | else |
71 | src |= 3 << D40_SREG_CFG_PHY_TM_POS; |
72 | } |
73 | if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) || |
74 | (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { |
75 | /* Set master port to 1 */ |
76 | dst |= 1 << D40_SREG_CFG_MST_POS; |
77 | dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type); |
78 | |
79 | if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) |
80 | dst |= 1 << D40_SREG_CFG_PHY_TM_POS; |
81 | else |
82 | dst |= 3 << D40_SREG_CFG_PHY_TM_POS; |
83 | } |
84 | /* Interrupt on end of transfer for destination */ |
85 | dst |= 1 << D40_SREG_CFG_TIM_POS; |
86 | |
87 | /* Generate interrupt on error */ |
88 | src |= 1 << D40_SREG_CFG_EIM_POS; |
89 | dst |= 1 << D40_SREG_CFG_EIM_POS; |
90 | |
91 | /* PSIZE */ |
92 | if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) { |
93 | src |= 1 << D40_SREG_CFG_PHY_PEN_POS; |
94 | src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS; |
95 | } |
96 | if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) { |
97 | dst |= 1 << D40_SREG_CFG_PHY_PEN_POS; |
98 | dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS; |
99 | } |
100 | |
101 | /* Element size */ |
102 | src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS; |
103 | dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS; |
104 | |
105 | } else { |
106 | /* Logical channel */ |
107 | dst |= 1 << D40_SREG_CFG_LOG_GIM_POS; |
108 | src |= 1 << D40_SREG_CFG_LOG_GIM_POS; |
109 | } |
110 | |
111 | if (cfg->high_priority) { |
112 | src |= 1 << D40_SREG_CFG_PRI_POS; |
113 | dst |= 1 << D40_SREG_CFG_PRI_POS; |
114 | } |
115 | |
116 | if (cfg->src_info.big_endian) |
117 | src |= 1 << D40_SREG_CFG_LBE_POS; |
118 | if (cfg->dst_info.big_endian) |
119 | dst |= 1 << D40_SREG_CFG_LBE_POS; |
120 | |
121 | *src_cfg = src; |
122 | *dst_cfg = dst; |
123 | } |
124 | |
125 | static int d40_phy_fill_lli(struct d40_phy_lli *lli, |
126 | dma_addr_t data, |
127 | u32 data_size, |
128 | dma_addr_t next_lli, |
129 | u32 reg_cfg, |
130 | struct stedma40_half_channel_info *info, |
131 | unsigned int flags) |
132 | { |
133 | bool addr_inc = flags & LLI_ADDR_INC; |
134 | bool term_int = flags & LLI_TERM_INT; |
135 | unsigned int data_width = info->data_width; |
136 | int psize = info->psize; |
137 | int num_elems; |
138 | |
139 | if (psize == STEDMA40_PSIZE_PHY_1) |
140 | num_elems = 1; |
141 | else |
142 | num_elems = 2 << psize; |
143 | |
144 | /* Must be aligned */ |
145 | if (!IS_ALIGNED(data, 0x1 << data_width)) |
146 | return -EINVAL; |
147 | |
148 | /* Transfer size can't be smaller than (num_elms * elem_size) */ |
149 | if (data_size < num_elems * (0x1 << data_width)) |
150 | return -EINVAL; |
151 | |
152 | /* The number of elements. IE now many chunks */ |
153 | lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS; |
154 | |
155 | /* |
156 | * Distance to next element sized entry. |
157 | * Usually the size of the element unless you want gaps. |
158 | */ |
159 | if (addr_inc) |
160 | lli->reg_elt |= (0x1 << data_width) << |
161 | D40_SREG_ELEM_PHY_EIDX_POS; |
162 | |
163 | /* Where the data is */ |
164 | lli->reg_ptr = data; |
165 | lli->reg_cfg = reg_cfg; |
166 | |
167 | /* If this scatter list entry is the last one, no next link */ |
168 | if (next_lli == 0) |
169 | lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS; |
170 | else |
171 | lli->reg_lnk = next_lli; |
172 | |
173 | /* Set/clear interrupt generation on this link item.*/ |
174 | if (term_int) |
175 | lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS; |
176 | else |
177 | lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS); |
178 | |
179 | /* Post link */ |
180 | lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS; |
181 | |
182 | return 0; |
183 | } |
184 | |
185 | static int d40_seg_size(int size, int data_width1, int data_width2) |
186 | { |
187 | u32 max_w = max(data_width1, data_width2); |
188 | u32 min_w = min(data_width1, data_width2); |
189 | u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w); |
190 | |
191 | if (seg_max > STEDMA40_MAX_SEG_SIZE) |
192 | seg_max -= (1 << max_w); |
193 | |
194 | if (size <= seg_max) |
195 | return size; |
196 | |
197 | if (size <= 2 * seg_max) |
198 | return ALIGN(size / 2, 1 << max_w); |
199 | |
200 | return seg_max; |
201 | } |
202 | |
203 | static struct d40_phy_lli * |
204 | d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size, |
205 | dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg, |
206 | struct stedma40_half_channel_info *info, |
207 | struct stedma40_half_channel_info *otherinfo, |
208 | unsigned long flags) |
209 | { |
210 | bool lastlink = flags & LLI_LAST_LINK; |
211 | bool addr_inc = flags & LLI_ADDR_INC; |
212 | bool term_int = flags & LLI_TERM_INT; |
213 | bool cyclic = flags & LLI_CYCLIC; |
214 | int err; |
215 | dma_addr_t next = lli_phys; |
216 | int size_rest = size; |
217 | int size_seg = 0; |
218 | |
219 | /* |
220 | * This piece may be split up based on d40_seg_size(); we only want the |
221 | * term int on the last part. |
222 | */ |
223 | if (term_int) |
224 | flags &= ~LLI_TERM_INT; |
225 | |
226 | do { |
227 | size_seg = d40_seg_size(size_rest, info->data_width, |
228 | otherinfo->data_width); |
229 | size_rest -= size_seg; |
230 | |
231 | if (size_rest == 0 && term_int) |
232 | flags |= LLI_TERM_INT; |
233 | |
234 | if (size_rest == 0 && lastlink) |
235 | next = cyclic ? first_phys : 0; |
236 | else |
237 | next = ALIGN(next + sizeof(struct d40_phy_lli), |
238 | D40_LLI_ALIGN); |
239 | |
240 | err = d40_phy_fill_lli(lli, addr, size_seg, next, |
241 | reg_cfg, info, flags); |
242 | |
243 | if (err) |
244 | goto err; |
245 | |
246 | lli++; |
247 | if (addr_inc) |
248 | addr += size_seg; |
249 | } while (size_rest); |
250 | |
251 | return lli; |
252 | |
253 | err: |
254 | return NULL; |
255 | } |
256 | |
257 | int d40_phy_sg_to_lli(struct scatterlist *sg, |
258 | int sg_len, |
259 | dma_addr_t target, |
260 | struct d40_phy_lli *lli_sg, |
261 | dma_addr_t lli_phys, |
262 | u32 reg_cfg, |
263 | struct stedma40_half_channel_info *info, |
264 | struct stedma40_half_channel_info *otherinfo, |
265 | unsigned long flags) |
266 | { |
267 | int total_size = 0; |
268 | int i; |
269 | struct scatterlist *current_sg = sg; |
270 | struct d40_phy_lli *lli = lli_sg; |
271 | dma_addr_t l_phys = lli_phys; |
272 | |
273 | if (!target) |
274 | flags |= LLI_ADDR_INC; |
275 | |
276 | for_each_sg(sg, current_sg, sg_len, i) { |
277 | dma_addr_t sg_addr = sg_dma_address(current_sg); |
278 | unsigned int len = sg_dma_len(current_sg); |
279 | dma_addr_t dst = target ?: sg_addr; |
280 | |
281 | total_size += sg_dma_len(current_sg); |
282 | |
283 | if (i == sg_len - 1) |
284 | flags |= LLI_TERM_INT | LLI_LAST_LINK; |
285 | |
286 | l_phys = ALIGN(lli_phys + (lli - lli_sg) * |
287 | sizeof(struct d40_phy_lli), D40_LLI_ALIGN); |
288 | |
289 | lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys, |
290 | reg_cfg, info, otherinfo, flags); |
291 | |
292 | if (lli == NULL) |
293 | return -EINVAL; |
294 | } |
295 | |
296 | return total_size; |
297 | } |
298 | |
299 | |
300 | /* DMA logical lli operations */ |
301 | |
302 | static void d40_log_lli_link(struct d40_log_lli *lli_dst, |
303 | struct d40_log_lli *lli_src, |
304 | int next, unsigned int flags) |
305 | { |
306 | bool interrupt = flags & LLI_TERM_INT; |
307 | u32 slos = 0; |
308 | u32 dlos = 0; |
309 | |
310 | if (next != -EINVAL) { |
311 | slos = next * 2; |
312 | dlos = next * 2 + 1; |
313 | } |
314 | |
315 | if (interrupt) { |
316 | lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; |
317 | lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; |
318 | } |
319 | |
320 | lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | |
321 | (slos << D40_MEM_LCSP1_SLOS_POS); |
322 | |
323 | lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | |
324 | (dlos << D40_MEM_LCSP1_SLOS_POS); |
325 | } |
326 | |
327 | void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, |
328 | struct d40_log_lli *lli_dst, |
329 | struct d40_log_lli *lli_src, |
330 | int next, unsigned int flags) |
331 | { |
332 | d40_log_lli_link(lli_dst, lli_src, next, flags); |
333 | |
334 | writel(lli_src->lcsp02, &lcpa[0].lcsp0); |
335 | writel(lli_src->lcsp13, &lcpa[0].lcsp1); |
336 | writel(lli_dst->lcsp02, &lcpa[0].lcsp2); |
337 | writel(lli_dst->lcsp13, &lcpa[0].lcsp3); |
338 | } |
339 | |
340 | void d40_log_lli_lcla_write(struct d40_log_lli *lcla, |
341 | struct d40_log_lli *lli_dst, |
342 | struct d40_log_lli *lli_src, |
343 | int next, unsigned int flags) |
344 | { |
345 | d40_log_lli_link(lli_dst, lli_src, next, flags); |
346 | |
347 | writel(lli_src->lcsp02, &lcla[0].lcsp02); |
348 | writel(lli_src->lcsp13, &lcla[0].lcsp13); |
349 | writel(lli_dst->lcsp02, &lcla[1].lcsp02); |
350 | writel(lli_dst->lcsp13, &lcla[1].lcsp13); |
351 | } |
352 | |
353 | static void d40_log_fill_lli(struct d40_log_lli *lli, |
354 | dma_addr_t data, u32 data_size, |
355 | u32 reg_cfg, |
356 | u32 data_width, |
357 | unsigned int flags) |
358 | { |
359 | bool addr_inc = flags & LLI_ADDR_INC; |
360 | |
361 | lli->lcsp13 = reg_cfg; |
362 | |
363 | /* The number of elements to transfer */ |
364 | lli->lcsp02 = ((data_size >> data_width) << |
365 | D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; |
366 | |
367 | BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE); |
368 | |
369 | /* 16 LSBs address of the current element */ |
370 | lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; |
371 | /* 16 MSBs address of the current element */ |
372 | lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK; |
373 | |
374 | if (addr_inc) |
375 | lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK; |
376 | |
377 | } |
378 | |
379 | static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg, |
380 | dma_addr_t addr, |
381 | int size, |
382 | u32 lcsp13, /* src or dst*/ |
383 | u32 data_width1, |
384 | u32 data_width2, |
385 | unsigned int flags) |
386 | { |
387 | bool addr_inc = flags & LLI_ADDR_INC; |
388 | struct d40_log_lli *lli = lli_sg; |
389 | int size_rest = size; |
390 | int size_seg = 0; |
391 | |
392 | do { |
393 | size_seg = d40_seg_size(size_rest, data_width1, data_width2); |
394 | size_rest -= size_seg; |
395 | |
396 | d40_log_fill_lli(lli, |
397 | addr, |
398 | size_seg, |
399 | lcsp13, data_width1, |
400 | flags); |
401 | if (addr_inc) |
402 | addr += size_seg; |
403 | lli++; |
404 | } while (size_rest); |
405 | |
406 | return lli; |
407 | } |
408 | |
409 | int d40_log_sg_to_lli(struct scatterlist *sg, |
410 | int sg_len, |
411 | dma_addr_t dev_addr, |
412 | struct d40_log_lli *lli_sg, |
413 | u32 lcsp13, /* src or dst*/ |
414 | u32 data_width1, u32 data_width2) |
415 | { |
416 | int total_size = 0; |
417 | struct scatterlist *current_sg = sg; |
418 | int i; |
419 | struct d40_log_lli *lli = lli_sg; |
420 | unsigned long flags = 0; |
421 | |
422 | if (!dev_addr) |
423 | flags |= LLI_ADDR_INC; |
424 | |
425 | for_each_sg(sg, current_sg, sg_len, i) { |
426 | dma_addr_t sg_addr = sg_dma_address(current_sg); |
427 | unsigned int len = sg_dma_len(current_sg); |
428 | dma_addr_t addr = dev_addr ?: sg_addr; |
429 | |
430 | total_size += sg_dma_len(current_sg); |
431 | |
432 | lli = d40_log_buf_to_lli(lli, addr, len, |
433 | lcsp13, |
434 | data_width1, |
435 | data_width2, |
436 | flags); |
437 | } |
438 | |
439 | return total_size; |
440 | } |
441 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9