Root/
1 | #include "amd64_edac.h" |
2 | #include <asm/amd_nb.h> |
3 | |
4 | static struct edac_pci_ctl_info *amd64_ctl_pci; |
5 | |
6 | static int report_gart_errors; |
7 | module_param(report_gart_errors, int, 0644); |
8 | |
9 | /* |
10 | * Set by command line parameter. If BIOS has enabled the ECC, this override is |
11 | * cleared to prevent re-enabling the hardware by this driver. |
12 | */ |
13 | static int ecc_enable_override; |
14 | module_param(ecc_enable_override, int, 0644); |
15 | |
16 | static struct msr __percpu *msrs; |
17 | |
18 | /* |
19 | * count successfully initialized driver instances for setup_pci_device() |
20 | */ |
21 | static atomic_t drv_instances = ATOMIC_INIT(0); |
22 | |
23 | /* Per-node driver instances */ |
24 | static struct mem_ctl_info **mcis; |
25 | static struct ecc_settings **ecc_stngs; |
26 | |
27 | /* |
28 | * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing |
29 | * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- |
30 | * or higher value'. |
31 | * |
32 | *FIXME: Produce a better mapping/linearisation. |
33 | */ |
34 | struct scrubrate { |
35 | u32 scrubval; /* bit pattern for scrub rate */ |
36 | u32 bandwidth; /* bandwidth consumed (bytes/sec) */ |
37 | } scrubrates[] = { |
38 | { 0x01, 1600000000UL}, |
39 | { 0x02, 800000000UL}, |
40 | { 0x03, 400000000UL}, |
41 | { 0x04, 200000000UL}, |
42 | { 0x05, 100000000UL}, |
43 | { 0x06, 50000000UL}, |
44 | { 0x07, 25000000UL}, |
45 | { 0x08, 12284069UL}, |
46 | { 0x09, 6274509UL}, |
47 | { 0x0A, 3121951UL}, |
48 | { 0x0B, 1560975UL}, |
49 | { 0x0C, 781440UL}, |
50 | { 0x0D, 390720UL}, |
51 | { 0x0E, 195300UL}, |
52 | { 0x0F, 97650UL}, |
53 | { 0x10, 48854UL}, |
54 | { 0x11, 24427UL}, |
55 | { 0x12, 12213UL}, |
56 | { 0x13, 6101UL}, |
57 | { 0x14, 3051UL}, |
58 | { 0x15, 1523UL}, |
59 | { 0x16, 761UL}, |
60 | { 0x00, 0UL}, /* scrubbing off */ |
61 | }; |
62 | |
63 | static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, |
64 | u32 *val, const char *func) |
65 | { |
66 | int err = 0; |
67 | |
68 | err = pci_read_config_dword(pdev, offset, val); |
69 | if (err) |
70 | amd64_warn("%s: error reading F%dx%03x.\n", |
71 | func, PCI_FUNC(pdev->devfn), offset); |
72 | |
73 | return err; |
74 | } |
75 | |
76 | int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, |
77 | u32 val, const char *func) |
78 | { |
79 | int err = 0; |
80 | |
81 | err = pci_write_config_dword(pdev, offset, val); |
82 | if (err) |
83 | amd64_warn("%s: error writing to F%dx%03x.\n", |
84 | func, PCI_FUNC(pdev->devfn), offset); |
85 | |
86 | return err; |
87 | } |
88 | |
89 | /* |
90 | * |
91 | * Depending on the family, F2 DCT reads need special handling: |
92 | * |
93 | * K8: has a single DCT only |
94 | * |
95 | * F10h: each DCT has its own set of regs |
96 | * DCT0 -> F2x040.. |
97 | * DCT1 -> F2x140.. |
98 | * |
99 | * F15h: we select which DCT we access using F1x10C[DctCfgSel] |
100 | * |
101 | */ |
102 | static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, |
103 | const char *func) |
104 | { |
105 | if (addr >= 0x100) |
106 | return -EINVAL; |
107 | |
108 | return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); |
109 | } |
110 | |
111 | static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, |
112 | const char *func) |
113 | { |
114 | return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); |
115 | } |
116 | |
117 | /* |
118 | * Select DCT to which PCI cfg accesses are routed |
119 | */ |
120 | static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) |
121 | { |
122 | u32 reg = 0; |
123 | |
124 | amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); |
125 | reg &= 0xfffffffe; |
126 | reg |= dct; |
127 | amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); |
128 | } |
129 | |
130 | static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, |
131 | const char *func) |
132 | { |
133 | u8 dct = 0; |
134 | |
135 | if (addr >= 0x140 && addr <= 0x1a0) { |
136 | dct = 1; |
137 | addr -= 0x100; |
138 | } |
139 | |
140 | f15h_select_dct(pvt, dct); |
141 | |
142 | return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); |
143 | } |
144 | |
145 | /* |
146 | * Memory scrubber control interface. For K8, memory scrubbing is handled by |
147 | * hardware and can involve L2 cache, dcache as well as the main memory. With |
148 | * F10, this is extended to L3 cache scrubbing on CPU models sporting that |
149 | * functionality. |
150 | * |
151 | * This causes the "units" for the scrubbing speed to vary from 64 byte blocks |
152 | * (dram) over to cache lines. This is nasty, so we will use bandwidth in |
153 | * bytes/sec for the setting. |
154 | * |
155 | * Currently, we only do dram scrubbing. If the scrubbing is done in software on |
156 | * other archs, we might not have access to the caches directly. |
157 | */ |
158 | |
159 | /* |
160 | * scan the scrub rate mapping table for a close or matching bandwidth value to |
161 | * issue. If requested is too big, then use last maximum value found. |
162 | */ |
163 | static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) |
164 | { |
165 | u32 scrubval; |
166 | int i; |
167 | |
168 | /* |
169 | * map the configured rate (new_bw) to a value specific to the AMD64 |
170 | * memory controller and apply to register. Search for the first |
171 | * bandwidth entry that is greater or equal than the setting requested |
172 | * and program that. If at last entry, turn off DRAM scrubbing. |
173 | */ |
174 | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { |
175 | /* |
176 | * skip scrub rates which aren't recommended |
177 | * (see F10 BKDG, F3x58) |
178 | */ |
179 | if (scrubrates[i].scrubval < min_rate) |
180 | continue; |
181 | |
182 | if (scrubrates[i].bandwidth <= new_bw) |
183 | break; |
184 | |
185 | /* |
186 | * if no suitable bandwidth found, turn off DRAM scrubbing |
187 | * entirely by falling back to the last element in the |
188 | * scrubrates array. |
189 | */ |
190 | } |
191 | |
192 | scrubval = scrubrates[i].scrubval; |
193 | |
194 | pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); |
195 | |
196 | if (scrubval) |
197 | return scrubrates[i].bandwidth; |
198 | |
199 | return 0; |
200 | } |
201 | |
202 | static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) |
203 | { |
204 | struct amd64_pvt *pvt = mci->pvt_info; |
205 | u32 min_scrubrate = 0x5; |
206 | |
207 | if (boot_cpu_data.x86 == 0xf) |
208 | min_scrubrate = 0x0; |
209 | |
210 | /* F15h Erratum #505 */ |
211 | if (boot_cpu_data.x86 == 0x15) |
212 | f15h_select_dct(pvt, 0); |
213 | |
214 | return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); |
215 | } |
216 | |
217 | static int amd64_get_scrub_rate(struct mem_ctl_info *mci) |
218 | { |
219 | struct amd64_pvt *pvt = mci->pvt_info; |
220 | u32 scrubval = 0; |
221 | int i, retval = -EINVAL; |
222 | |
223 | /* F15h Erratum #505 */ |
224 | if (boot_cpu_data.x86 == 0x15) |
225 | f15h_select_dct(pvt, 0); |
226 | |
227 | amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); |
228 | |
229 | scrubval = scrubval & 0x001F; |
230 | |
231 | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { |
232 | if (scrubrates[i].scrubval == scrubval) { |
233 | retval = scrubrates[i].bandwidth; |
234 | break; |
235 | } |
236 | } |
237 | return retval; |
238 | } |
239 | |
240 | /* |
241 | * returns true if the SysAddr given by sys_addr matches the |
242 | * DRAM base/limit associated with node_id |
243 | */ |
244 | static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, |
245 | unsigned nid) |
246 | { |
247 | u64 addr; |
248 | |
249 | /* The K8 treats this as a 40-bit value. However, bits 63-40 will be |
250 | * all ones if the most significant implemented address bit is 1. |
251 | * Here we discard bits 63-40. See section 3.4.2 of AMD publication |
252 | * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 |
253 | * Application Programming. |
254 | */ |
255 | addr = sys_addr & 0x000000ffffffffffull; |
256 | |
257 | return ((addr >= get_dram_base(pvt, nid)) && |
258 | (addr <= get_dram_limit(pvt, nid))); |
259 | } |
260 | |
261 | /* |
262 | * Attempt to map a SysAddr to a node. On success, return a pointer to the |
263 | * mem_ctl_info structure for the node that the SysAddr maps to. |
264 | * |
265 | * On failure, return NULL. |
266 | */ |
267 | static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, |
268 | u64 sys_addr) |
269 | { |
270 | struct amd64_pvt *pvt; |
271 | unsigned node_id; |
272 | u32 intlv_en, bits; |
273 | |
274 | /* |
275 | * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section |
276 | * 3.4.4.2) registers to map the SysAddr to a node ID. |
277 | */ |
278 | pvt = mci->pvt_info; |
279 | |
280 | /* |
281 | * The value of this field should be the same for all DRAM Base |
282 | * registers. Therefore we arbitrarily choose to read it from the |
283 | * register for node 0. |
284 | */ |
285 | intlv_en = dram_intlv_en(pvt, 0); |
286 | |
287 | if (intlv_en == 0) { |
288 | for (node_id = 0; node_id < DRAM_RANGES; node_id++) { |
289 | if (amd64_base_limit_match(pvt, sys_addr, node_id)) |
290 | goto found; |
291 | } |
292 | goto err_no_match; |
293 | } |
294 | |
295 | if (unlikely((intlv_en != 0x01) && |
296 | (intlv_en != 0x03) && |
297 | (intlv_en != 0x07))) { |
298 | amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); |
299 | return NULL; |
300 | } |
301 | |
302 | bits = (((u32) sys_addr) >> 12) & intlv_en; |
303 | |
304 | for (node_id = 0; ; ) { |
305 | if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) |
306 | break; /* intlv_sel field matches */ |
307 | |
308 | if (++node_id >= DRAM_RANGES) |
309 | goto err_no_match; |
310 | } |
311 | |
312 | /* sanity test for sys_addr */ |
313 | if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { |
314 | amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" |
315 | "range for node %d with node interleaving enabled.\n", |
316 | __func__, sys_addr, node_id); |
317 | return NULL; |
318 | } |
319 | |
320 | found: |
321 | return edac_mc_find((int)node_id); |
322 | |
323 | err_no_match: |
324 | edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", |
325 | (unsigned long)sys_addr); |
326 | |
327 | return NULL; |
328 | } |
329 | |
330 | /* |
331 | * compute the CS base address of the @csrow on the DRAM controller @dct. |
332 | * For details see F2x[5C:40] in the processor's BKDG |
333 | */ |
334 | static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, |
335 | u64 *base, u64 *mask) |
336 | { |
337 | u64 csbase, csmask, base_bits, mask_bits; |
338 | u8 addr_shift; |
339 | |
340 | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { |
341 | csbase = pvt->csels[dct].csbases[csrow]; |
342 | csmask = pvt->csels[dct].csmasks[csrow]; |
343 | base_bits = GENMASK(21, 31) | GENMASK(9, 15); |
344 | mask_bits = GENMASK(21, 29) | GENMASK(9, 15); |
345 | addr_shift = 4; |
346 | } else { |
347 | csbase = pvt->csels[dct].csbases[csrow]; |
348 | csmask = pvt->csels[dct].csmasks[csrow >> 1]; |
349 | addr_shift = 8; |
350 | |
351 | if (boot_cpu_data.x86 == 0x15) |
352 | base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); |
353 | else |
354 | base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); |
355 | } |
356 | |
357 | *base = (csbase & base_bits) << addr_shift; |
358 | |
359 | *mask = ~0ULL; |
360 | /* poke holes for the csmask */ |
361 | *mask &= ~(mask_bits << addr_shift); |
362 | /* OR them in */ |
363 | *mask |= (csmask & mask_bits) << addr_shift; |
364 | } |
365 | |
366 | #define for_each_chip_select(i, dct, pvt) \ |
367 | for (i = 0; i < pvt->csels[dct].b_cnt; i++) |
368 | |
369 | #define chip_select_base(i, dct, pvt) \ |
370 | pvt->csels[dct].csbases[i] |
371 | |
372 | #define for_each_chip_select_mask(i, dct, pvt) \ |
373 | for (i = 0; i < pvt->csels[dct].m_cnt; i++) |
374 | |
375 | /* |
376 | * @input_addr is an InputAddr associated with the node given by mci. Return the |
377 | * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). |
378 | */ |
379 | static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) |
380 | { |
381 | struct amd64_pvt *pvt; |
382 | int csrow; |
383 | u64 base, mask; |
384 | |
385 | pvt = mci->pvt_info; |
386 | |
387 | for_each_chip_select(csrow, 0, pvt) { |
388 | if (!csrow_enabled(csrow, 0, pvt)) |
389 | continue; |
390 | |
391 | get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); |
392 | |
393 | mask = ~mask; |
394 | |
395 | if ((input_addr & mask) == (base & mask)) { |
396 | edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", |
397 | (unsigned long)input_addr, csrow, |
398 | pvt->mc_node_id); |
399 | |
400 | return csrow; |
401 | } |
402 | } |
403 | edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", |
404 | (unsigned long)input_addr, pvt->mc_node_id); |
405 | |
406 | return -1; |
407 | } |
408 | |
409 | /* |
410 | * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) |
411 | * for the node represented by mci. Info is passed back in *hole_base, |
412 | * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if |
413 | * info is invalid. Info may be invalid for either of the following reasons: |
414 | * |
415 | * - The revision of the node is not E or greater. In this case, the DRAM Hole |
416 | * Address Register does not exist. |
417 | * |
418 | * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, |
419 | * indicating that its contents are not valid. |
420 | * |
421 | * The values passed back in *hole_base, *hole_offset, and *hole_size are |
422 | * complete 32-bit values despite the fact that the bitfields in the DHAR |
423 | * only represent bits 31-24 of the base and offset values. |
424 | */ |
425 | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, |
426 | u64 *hole_offset, u64 *hole_size) |
427 | { |
428 | struct amd64_pvt *pvt = mci->pvt_info; |
429 | u64 base; |
430 | |
431 | /* only revE and later have the DRAM Hole Address Register */ |
432 | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { |
433 | edac_dbg(1, " revision %d for node %d does not support DHAR\n", |
434 | pvt->ext_model, pvt->mc_node_id); |
435 | return 1; |
436 | } |
437 | |
438 | /* valid for Fam10h and above */ |
439 | if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { |
440 | edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); |
441 | return 1; |
442 | } |
443 | |
444 | if (!dhar_valid(pvt)) { |
445 | edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", |
446 | pvt->mc_node_id); |
447 | return 1; |
448 | } |
449 | |
450 | /* This node has Memory Hoisting */ |
451 | |
452 | /* +------------------+--------------------+--------------------+----- |
453 | * | memory | DRAM hole | relocated | |
454 | * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | |
455 | * | | | DRAM hole | |
456 | * | | | [0x100000000, | |
457 | * | | | (0x100000000+ | |
458 | * | | | (0xffffffff-x))] | |
459 | * +------------------+--------------------+--------------------+----- |
460 | * |
461 | * Above is a diagram of physical memory showing the DRAM hole and the |
462 | * relocated addresses from the DRAM hole. As shown, the DRAM hole |
463 | * starts at address x (the base address) and extends through address |
464 | * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the |
465 | * addresses in the hole so that they start at 0x100000000. |
466 | */ |
467 | |
468 | base = dhar_base(pvt); |
469 | |
470 | *hole_base = base; |
471 | *hole_size = (0x1ull << 32) - base; |
472 | |
473 | if (boot_cpu_data.x86 > 0xf) |
474 | *hole_offset = f10_dhar_offset(pvt); |
475 | else |
476 | *hole_offset = k8_dhar_offset(pvt); |
477 | |
478 | edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", |
479 | pvt->mc_node_id, (unsigned long)*hole_base, |
480 | (unsigned long)*hole_offset, (unsigned long)*hole_size); |
481 | |
482 | return 0; |
483 | } |
484 | EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); |
485 | |
486 | /* |
487 | * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is |
488 | * assumed that sys_addr maps to the node given by mci. |
489 | * |
490 | * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section |
491 | * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a |
492 | * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, |
493 | * then it is also involved in translating a SysAddr to a DramAddr. Sections |
494 | * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. |
495 | * These parts of the documentation are unclear. I interpret them as follows: |
496 | * |
497 | * When node n receives a SysAddr, it processes the SysAddr as follows: |
498 | * |
499 | * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM |
500 | * Limit registers for node n. If the SysAddr is not within the range |
501 | * specified by the base and limit values, then node n ignores the Sysaddr |
502 | * (since it does not map to node n). Otherwise continue to step 2 below. |
503 | * |
504 | * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is |
505 | * disabled so skip to step 3 below. Otherwise see if the SysAddr is within |
506 | * the range of relocated addresses (starting at 0x100000000) from the DRAM |
507 | * hole. If not, skip to step 3 below. Else get the value of the |
508 | * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the |
509 | * offset defined by this value from the SysAddr. |
510 | * |
511 | * 3. Obtain the base address for node n from the DRAMBase field of the DRAM |
512 | * Base register for node n. To obtain the DramAddr, subtract the base |
513 | * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). |
514 | */ |
515 | static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) |
516 | { |
517 | struct amd64_pvt *pvt = mci->pvt_info; |
518 | u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; |
519 | int ret = 0; |
520 | |
521 | dram_base = get_dram_base(pvt, pvt->mc_node_id); |
522 | |
523 | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, |
524 | &hole_size); |
525 | if (!ret) { |
526 | if ((sys_addr >= (1ull << 32)) && |
527 | (sys_addr < ((1ull << 32) + hole_size))) { |
528 | /* use DHAR to translate SysAddr to DramAddr */ |
529 | dram_addr = sys_addr - hole_offset; |
530 | |
531 | edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", |
532 | (unsigned long)sys_addr, |
533 | (unsigned long)dram_addr); |
534 | |
535 | return dram_addr; |
536 | } |
537 | } |
538 | |
539 | /* |
540 | * Translate the SysAddr to a DramAddr as shown near the start of |
541 | * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 |
542 | * only deals with 40-bit values. Therefore we discard bits 63-40 of |
543 | * sys_addr below. If bit 39 of sys_addr is 1 then the bits we |
544 | * discard are all 1s. Otherwise the bits we discard are all 0s. See |
545 | * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture |
546 | * Programmer's Manual Volume 1 Application Programming. |
547 | */ |
548 | dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; |
549 | |
550 | edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", |
551 | (unsigned long)sys_addr, (unsigned long)dram_addr); |
552 | return dram_addr; |
553 | } |
554 | |
555 | /* |
556 | * @intlv_en is the value of the IntlvEn field from a DRAM Base register |
557 | * (section 3.4.4.1). Return the number of bits from a SysAddr that are used |
558 | * for node interleaving. |
559 | */ |
560 | static int num_node_interleave_bits(unsigned intlv_en) |
561 | { |
562 | static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; |
563 | int n; |
564 | |
565 | BUG_ON(intlv_en > 7); |
566 | n = intlv_shift_table[intlv_en]; |
567 | return n; |
568 | } |
569 | |
570 | /* Translate the DramAddr given by @dram_addr to an InputAddr. */ |
571 | static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) |
572 | { |
573 | struct amd64_pvt *pvt; |
574 | int intlv_shift; |
575 | u64 input_addr; |
576 | |
577 | pvt = mci->pvt_info; |
578 | |
579 | /* |
580 | * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) |
581 | * concerning translating a DramAddr to an InputAddr. |
582 | */ |
583 | intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); |
584 | input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + |
585 | (dram_addr & 0xfff); |
586 | |
587 | edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", |
588 | intlv_shift, (unsigned long)dram_addr, |
589 | (unsigned long)input_addr); |
590 | |
591 | return input_addr; |
592 | } |
593 | |
594 | /* |
595 | * Translate the SysAddr represented by @sys_addr to an InputAddr. It is |
596 | * assumed that @sys_addr maps to the node given by mci. |
597 | */ |
598 | static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) |
599 | { |
600 | u64 input_addr; |
601 | |
602 | input_addr = |
603 | dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); |
604 | |
605 | edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", |
606 | (unsigned long)sys_addr, (unsigned long)input_addr); |
607 | |
608 | return input_addr; |
609 | } |
610 | |
611 | |
612 | /* |
613 | * @input_addr is an InputAddr associated with the node represented by mci. |
614 | * Translate @input_addr to a DramAddr and return the result. |
615 | */ |
616 | static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) |
617 | { |
618 | struct amd64_pvt *pvt; |
619 | unsigned node_id, intlv_shift; |
620 | u64 bits, dram_addr; |
621 | u32 intlv_sel; |
622 | |
623 | /* |
624 | * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) |
625 | * shows how to translate a DramAddr to an InputAddr. Here we reverse |
626 | * this procedure. When translating from a DramAddr to an InputAddr, the |
627 | * bits used for node interleaving are discarded. Here we recover these |
628 | * bits from the IntlvSel field of the DRAM Limit register (section |
629 | * 3.4.4.2) for the node that input_addr is associated with. |
630 | */ |
631 | pvt = mci->pvt_info; |
632 | node_id = pvt->mc_node_id; |
633 | |
634 | BUG_ON(node_id > 7); |
635 | |
636 | intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); |
637 | if (intlv_shift == 0) { |
638 | edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n", |
639 | (unsigned long)input_addr); |
640 | |
641 | return input_addr; |
642 | } |
643 | |
644 | bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) + |
645 | (input_addr & 0xfff); |
646 | |
647 | intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1); |
648 | dram_addr = bits + (intlv_sel << 12); |
649 | |
650 | edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n", |
651 | (unsigned long)input_addr, |
652 | (unsigned long)dram_addr, intlv_shift); |
653 | |
654 | return dram_addr; |
655 | } |
656 | |
657 | /* |
658 | * @dram_addr is a DramAddr that maps to the node represented by mci. Convert |
659 | * @dram_addr to a SysAddr. |
660 | */ |
661 | static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) |
662 | { |
663 | struct amd64_pvt *pvt = mci->pvt_info; |
664 | u64 hole_base, hole_offset, hole_size, base, sys_addr; |
665 | int ret = 0; |
666 | |
667 | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, |
668 | &hole_size); |
669 | if (!ret) { |
670 | if ((dram_addr >= hole_base) && |
671 | (dram_addr < (hole_base + hole_size))) { |
672 | sys_addr = dram_addr + hole_offset; |
673 | |
674 | edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n", |
675 | (unsigned long)dram_addr, |
676 | (unsigned long)sys_addr); |
677 | |
678 | return sys_addr; |
679 | } |
680 | } |
681 | |
682 | base = get_dram_base(pvt, pvt->mc_node_id); |
683 | sys_addr = dram_addr + base; |
684 | |
685 | /* |
686 | * The sys_addr we have computed up to this point is a 40-bit value |
687 | * because the k8 deals with 40-bit values. However, the value we are |
688 | * supposed to return is a full 64-bit physical address. The AMD |
689 | * x86-64 architecture specifies that the most significant implemented |
690 | * address bit through bit 63 of a physical address must be either all |
691 | * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a |
692 | * 64-bit value below. See section 3.4.2 of AMD publication 24592: |
693 | * AMD x86-64 Architecture Programmer's Manual Volume 1 Application |
694 | * Programming. |
695 | */ |
696 | sys_addr |= ~((sys_addr & (1ull << 39)) - 1); |
697 | |
698 | edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", |
699 | pvt->mc_node_id, (unsigned long)dram_addr, |
700 | (unsigned long)sys_addr); |
701 | |
702 | return sys_addr; |
703 | } |
704 | |
705 | /* |
706 | * @input_addr is an InputAddr associated with the node given by mci. Translate |
707 | * @input_addr to a SysAddr. |
708 | */ |
709 | static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, |
710 | u64 input_addr) |
711 | { |
712 | return dram_addr_to_sys_addr(mci, |
713 | input_addr_to_dram_addr(mci, input_addr)); |
714 | } |
715 | |
716 | /* Map the Error address to a PAGE and PAGE OFFSET. */ |
717 | static inline void error_address_to_page_and_offset(u64 error_address, |
718 | u32 *page, u32 *offset) |
719 | { |
720 | *page = (u32) (error_address >> PAGE_SHIFT); |
721 | *offset = ((u32) error_address) & ~PAGE_MASK; |
722 | } |
723 | |
724 | /* |
725 | * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address |
726 | * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers |
727 | * of a node that detected an ECC memory error. mci represents the node that |
728 | * the error address maps to (possibly different from the node that detected |
729 | * the error). Return the number of the csrow that sys_addr maps to, or -1 on |
730 | * error. |
731 | */ |
732 | static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) |
733 | { |
734 | int csrow; |
735 | |
736 | csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); |
737 | |
738 | if (csrow == -1) |
739 | amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " |
740 | "address 0x%lx\n", (unsigned long)sys_addr); |
741 | return csrow; |
742 | } |
743 | |
744 | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); |
745 | |
746 | /* |
747 | * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs |
748 | * are ECC capable. |
749 | */ |
750 | static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) |
751 | { |
752 | u8 bit; |
753 | unsigned long edac_cap = EDAC_FLAG_NONE; |
754 | |
755 | bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) |
756 | ? 19 |
757 | : 17; |
758 | |
759 | if (pvt->dclr0 & BIT(bit)) |
760 | edac_cap = EDAC_FLAG_SECDED; |
761 | |
762 | return edac_cap; |
763 | } |
764 | |
765 | static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); |
766 | |
767 | static void amd64_dump_dramcfg_low(u32 dclr, int chan) |
768 | { |
769 | edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); |
770 | |
771 | edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n", |
772 | (dclr & BIT(16)) ? "un" : "", |
773 | (dclr & BIT(19)) ? "yes" : "no"); |
774 | |
775 | edac_dbg(1, " PAR/ERR parity: %s\n", |
776 | (dclr & BIT(8)) ? "enabled" : "disabled"); |
777 | |
778 | if (boot_cpu_data.x86 == 0x10) |
779 | edac_dbg(1, " DCT 128bit mode width: %s\n", |
780 | (dclr & BIT(11)) ? "128b" : "64b"); |
781 | |
782 | edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", |
783 | (dclr & BIT(12)) ? "yes" : "no", |
784 | (dclr & BIT(13)) ? "yes" : "no", |
785 | (dclr & BIT(14)) ? "yes" : "no", |
786 | (dclr & BIT(15)) ? "yes" : "no"); |
787 | } |
788 | |
789 | /* Display and decode various NB registers for debug purposes. */ |
790 | static void dump_misc_regs(struct amd64_pvt *pvt) |
791 | { |
792 | edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); |
793 | |
794 | edac_dbg(1, " NB two channel DRAM capable: %s\n", |
795 | (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); |
796 | |
797 | edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", |
798 | (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", |
799 | (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); |
800 | |
801 | amd64_dump_dramcfg_low(pvt->dclr0, 0); |
802 | |
803 | edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); |
804 | |
805 | edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", |
806 | pvt->dhar, dhar_base(pvt), |
807 | (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) |
808 | : f10_dhar_offset(pvt)); |
809 | |
810 | edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); |
811 | |
812 | amd64_debug_display_dimm_sizes(pvt, 0); |
813 | |
814 | /* everything below this point is Fam10h and above */ |
815 | if (boot_cpu_data.x86 == 0xf) |
816 | return; |
817 | |
818 | amd64_debug_display_dimm_sizes(pvt, 1); |
819 | |
820 | amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); |
821 | |
822 | /* Only if NOT ganged does dclr1 have valid info */ |
823 | if (!dct_ganging_enabled(pvt)) |
824 | amd64_dump_dramcfg_low(pvt->dclr1, 1); |
825 | } |
826 | |
827 | /* |
828 | * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] |
829 | */ |
830 | static void prep_chip_selects(struct amd64_pvt *pvt) |
831 | { |
832 | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { |
833 | pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; |
834 | pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; |
835 | } else { |
836 | pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; |
837 | pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; |
838 | } |
839 | } |
840 | |
841 | /* |
842 | * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers |
843 | */ |
844 | static void read_dct_base_mask(struct amd64_pvt *pvt) |
845 | { |
846 | int cs; |
847 | |
848 | prep_chip_selects(pvt); |
849 | |
850 | for_each_chip_select(cs, 0, pvt) { |
851 | int reg0 = DCSB0 + (cs * 4); |
852 | int reg1 = DCSB1 + (cs * 4); |
853 | u32 *base0 = &pvt->csels[0].csbases[cs]; |
854 | u32 *base1 = &pvt->csels[1].csbases[cs]; |
855 | |
856 | if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) |
857 | edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", |
858 | cs, *base0, reg0); |
859 | |
860 | if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) |
861 | continue; |
862 | |
863 | if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) |
864 | edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", |
865 | cs, *base1, reg1); |
866 | } |
867 | |
868 | for_each_chip_select_mask(cs, 0, pvt) { |
869 | int reg0 = DCSM0 + (cs * 4); |
870 | int reg1 = DCSM1 + (cs * 4); |
871 | u32 *mask0 = &pvt->csels[0].csmasks[cs]; |
872 | u32 *mask1 = &pvt->csels[1].csmasks[cs]; |
873 | |
874 | if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) |
875 | edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", |
876 | cs, *mask0, reg0); |
877 | |
878 | if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) |
879 | continue; |
880 | |
881 | if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) |
882 | edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", |
883 | cs, *mask1, reg1); |
884 | } |
885 | } |
886 | |
887 | static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) |
888 | { |
889 | enum mem_type type; |
890 | |
891 | /* F15h supports only DDR3 */ |
892 | if (boot_cpu_data.x86 >= 0x15) |
893 | type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; |
894 | else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { |
895 | if (pvt->dchr0 & DDR3_MODE) |
896 | type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; |
897 | else |
898 | type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; |
899 | } else { |
900 | type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; |
901 | } |
902 | |
903 | amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); |
904 | |
905 | return type; |
906 | } |
907 | |
908 | /* Get the number of DCT channels the memory controller is using. */ |
909 | static int k8_early_channel_count(struct amd64_pvt *pvt) |
910 | { |
911 | int flag; |
912 | |
913 | if (pvt->ext_model >= K8_REV_F) |
914 | /* RevF (NPT) and later */ |
915 | flag = pvt->dclr0 & WIDTH_128; |
916 | else |
917 | /* RevE and earlier */ |
918 | flag = pvt->dclr0 & REVE_WIDTH_128; |
919 | |
920 | /* not used */ |
921 | pvt->dclr1 = 0; |
922 | |
923 | return (flag) ? 2 : 1; |
924 | } |
925 | |
926 | /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ |
927 | static u64 get_error_address(struct mce *m) |
928 | { |
929 | struct cpuinfo_x86 *c = &boot_cpu_data; |
930 | u64 addr; |
931 | u8 start_bit = 1; |
932 | u8 end_bit = 47; |
933 | |
934 | if (c->x86 == 0xf) { |
935 | start_bit = 3; |
936 | end_bit = 39; |
937 | } |
938 | |
939 | addr = m->addr & GENMASK(start_bit, end_bit); |
940 | |
941 | /* |
942 | * Erratum 637 workaround |
943 | */ |
944 | if (c->x86 == 0x15) { |
945 | struct amd64_pvt *pvt; |
946 | u64 cc6_base, tmp_addr; |
947 | u32 tmp; |
948 | u8 mce_nid, intlv_en; |
949 | |
950 | if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) |
951 | return addr; |
952 | |
953 | mce_nid = amd_get_nb_id(m->extcpu); |
954 | pvt = mcis[mce_nid]->pvt_info; |
955 | |
956 | amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); |
957 | intlv_en = tmp >> 21 & 0x7; |
958 | |
959 | /* add [47:27] + 3 trailing bits */ |
960 | cc6_base = (tmp & GENMASK(0, 20)) << 3; |
961 | |
962 | /* reverse and add DramIntlvEn */ |
963 | cc6_base |= intlv_en ^ 0x7; |
964 | |
965 | /* pin at [47:24] */ |
966 | cc6_base <<= 24; |
967 | |
968 | if (!intlv_en) |
969 | return cc6_base | (addr & GENMASK(0, 23)); |
970 | |
971 | amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); |
972 | |
973 | /* faster log2 */ |
974 | tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); |
975 | |
976 | /* OR DramIntlvSel into bits [14:12] */ |
977 | tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; |
978 | |
979 | /* add remaining [11:0] bits from original MC4_ADDR */ |
980 | tmp_addr |= addr & GENMASK(0, 11); |
981 | |
982 | return cc6_base | tmp_addr; |
983 | } |
984 | |
985 | return addr; |
986 | } |
987 | |
988 | static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) |
989 | { |
990 | struct cpuinfo_x86 *c = &boot_cpu_data; |
991 | int off = range << 3; |
992 | |
993 | amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); |
994 | amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); |
995 | |
996 | if (c->x86 == 0xf) |
997 | return; |
998 | |
999 | if (!dram_rw(pvt, range)) |
1000 | return; |
1001 | |
1002 | amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); |
1003 | amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); |
1004 | |
1005 | /* Factor in CC6 save area by reading dst node's limit reg */ |
1006 | if (c->x86 == 0x15) { |
1007 | struct pci_dev *f1 = NULL; |
1008 | u8 nid = dram_dst_node(pvt, range); |
1009 | u32 llim; |
1010 | |
1011 | f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1)); |
1012 | if (WARN_ON(!f1)) |
1013 | return; |
1014 | |
1015 | amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); |
1016 | |
1017 | pvt->ranges[range].lim.lo &= GENMASK(0, 15); |
1018 | |
1019 | /* {[39:27],111b} */ |
1020 | pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; |
1021 | |
1022 | pvt->ranges[range].lim.hi &= GENMASK(0, 7); |
1023 | |
1024 | /* [47:40] */ |
1025 | pvt->ranges[range].lim.hi |= llim >> 13; |
1026 | |
1027 | pci_dev_put(f1); |
1028 | } |
1029 | } |
1030 | |
1031 | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, |
1032 | u16 syndrome) |
1033 | { |
1034 | struct mem_ctl_info *src_mci; |
1035 | struct amd64_pvt *pvt = mci->pvt_info; |
1036 | int channel, csrow; |
1037 | u32 page, offset; |
1038 | |
1039 | error_address_to_page_and_offset(sys_addr, &page, &offset); |
1040 | |
1041 | /* |
1042 | * Find out which node the error address belongs to. This may be |
1043 | * different from the node that detected the error. |
1044 | */ |
1045 | src_mci = find_mc_by_sys_addr(mci, sys_addr); |
1046 | if (!src_mci) { |
1047 | amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", |
1048 | (unsigned long)sys_addr); |
1049 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
1050 | page, offset, syndrome, |
1051 | -1, -1, -1, |
1052 | "failed to map error addr to a node", |
1053 | ""); |
1054 | return; |
1055 | } |
1056 | |
1057 | /* Now map the sys_addr to a CSROW */ |
1058 | csrow = sys_addr_to_csrow(src_mci, sys_addr); |
1059 | if (csrow < 0) { |
1060 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
1061 | page, offset, syndrome, |
1062 | -1, -1, -1, |
1063 | "failed to map error addr to a csrow", |
1064 | ""); |
1065 | return; |
1066 | } |
1067 | |
1068 | /* CHIPKILL enabled */ |
1069 | if (pvt->nbcfg & NBCFG_CHIPKILL) { |
1070 | channel = get_channel_from_ecc_syndrome(mci, syndrome); |
1071 | if (channel < 0) { |
1072 | /* |
1073 | * Syndrome didn't map, so we don't know which of the |
1074 | * 2 DIMMs is in error. So we need to ID 'both' of them |
1075 | * as suspect. |
1076 | */ |
1077 | amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - " |
1078 | "possible error reporting race\n", |
1079 | syndrome); |
1080 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
1081 | page, offset, syndrome, |
1082 | csrow, -1, -1, |
1083 | "unknown syndrome - possible error reporting race", |
1084 | ""); |
1085 | return; |
1086 | } |
1087 | } else { |
1088 | /* |
1089 | * non-chipkill ecc mode |
1090 | * |
1091 | * The k8 documentation is unclear about how to determine the |
1092 | * channel number when using non-chipkill memory. This method |
1093 | * was obtained from email communication with someone at AMD. |
1094 | * (Wish the email was placed in this comment - norsk) |
1095 | */ |
1096 | channel = ((sys_addr & BIT(3)) != 0); |
1097 | } |
1098 | |
1099 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci, 1, |
1100 | page, offset, syndrome, |
1101 | csrow, channel, -1, |
1102 | "", ""); |
1103 | } |
1104 | |
1105 | static int ddr2_cs_size(unsigned i, bool dct_width) |
1106 | { |
1107 | unsigned shift = 0; |
1108 | |
1109 | if (i <= 2) |
1110 | shift = i; |
1111 | else if (!(i & 0x1)) |
1112 | shift = i >> 1; |
1113 | else |
1114 | shift = (i + 1) >> 1; |
1115 | |
1116 | return 128 << (shift + !!dct_width); |
1117 | } |
1118 | |
1119 | static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
1120 | unsigned cs_mode) |
1121 | { |
1122 | u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; |
1123 | |
1124 | if (pvt->ext_model >= K8_REV_F) { |
1125 | WARN_ON(cs_mode > 11); |
1126 | return ddr2_cs_size(cs_mode, dclr & WIDTH_128); |
1127 | } |
1128 | else if (pvt->ext_model >= K8_REV_D) { |
1129 | unsigned diff; |
1130 | WARN_ON(cs_mode > 10); |
1131 | |
1132 | /* |
1133 | * the below calculation, besides trying to win an obfuscated C |
1134 | * contest, maps cs_mode values to DIMM chip select sizes. The |
1135 | * mappings are: |
1136 | * |
1137 | * cs_mode CS size (mb) |
1138 | * ======= ============ |
1139 | * 0 32 |
1140 | * 1 64 |
1141 | * 2 128 |
1142 | * 3 128 |
1143 | * 4 256 |
1144 | * 5 512 |
1145 | * 6 256 |
1146 | * 7 512 |
1147 | * 8 1024 |
1148 | * 9 1024 |
1149 | * 10 2048 |
1150 | * |
1151 | * Basically, it calculates a value with which to shift the |
1152 | * smallest CS size of 32MB. |
1153 | * |
1154 | * ddr[23]_cs_size have a similar purpose. |
1155 | */ |
1156 | diff = cs_mode/3 + (unsigned)(cs_mode > 5); |
1157 | |
1158 | return 32 << (cs_mode - diff); |
1159 | } |
1160 | else { |
1161 | WARN_ON(cs_mode > 6); |
1162 | return 32 << cs_mode; |
1163 | } |
1164 | } |
1165 | |
1166 | /* |
1167 | * Get the number of DCT channels in use. |
1168 | * |
1169 | * Return: |
1170 | * number of Memory Channels in operation |
1171 | * Pass back: |
1172 | * contents of the DCL0_LOW register |
1173 | */ |
1174 | static int f1x_early_channel_count(struct amd64_pvt *pvt) |
1175 | { |
1176 | int i, j, channels = 0; |
1177 | |
1178 | /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ |
1179 | if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128)) |
1180 | return 2; |
1181 | |
1182 | /* |
1183 | * Need to check if in unganged mode: In such, there are 2 channels, |
1184 | * but they are not in 128 bit mode and thus the above 'dclr0' status |
1185 | * bit will be OFF. |
1186 | * |
1187 | * Need to check DCT0[0] and DCT1[0] to see if only one of them has |
1188 | * their CSEnable bit on. If so, then SINGLE DIMM case. |
1189 | */ |
1190 | edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); |
1191 | |
1192 | /* |
1193 | * Check DRAM Bank Address Mapping values for each DIMM to see if there |
1194 | * is more than just one DIMM present in unganged mode. Need to check |
1195 | * both controllers since DIMMs can be placed in either one. |
1196 | */ |
1197 | for (i = 0; i < 2; i++) { |
1198 | u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); |
1199 | |
1200 | for (j = 0; j < 4; j++) { |
1201 | if (DBAM_DIMM(j, dbam) > 0) { |
1202 | channels++; |
1203 | break; |
1204 | } |
1205 | } |
1206 | } |
1207 | |
1208 | if (channels > 2) |
1209 | channels = 2; |
1210 | |
1211 | amd64_info("MCT channel count: %d\n", channels); |
1212 | |
1213 | return channels; |
1214 | } |
1215 | |
1216 | static int ddr3_cs_size(unsigned i, bool dct_width) |
1217 | { |
1218 | unsigned shift = 0; |
1219 | int cs_size = 0; |
1220 | |
1221 | if (i == 0 || i == 3 || i == 4) |
1222 | cs_size = -1; |
1223 | else if (i <= 2) |
1224 | shift = i; |
1225 | else if (i == 12) |
1226 | shift = 7; |
1227 | else if (!(i & 0x1)) |
1228 | shift = i >> 1; |
1229 | else |
1230 | shift = (i + 1) >> 1; |
1231 | |
1232 | if (cs_size != -1) |
1233 | cs_size = (128 * (1 << !!dct_width)) << shift; |
1234 | |
1235 | return cs_size; |
1236 | } |
1237 | |
1238 | static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
1239 | unsigned cs_mode) |
1240 | { |
1241 | u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; |
1242 | |
1243 | WARN_ON(cs_mode > 11); |
1244 | |
1245 | if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) |
1246 | return ddr3_cs_size(cs_mode, dclr & WIDTH_128); |
1247 | else |
1248 | return ddr2_cs_size(cs_mode, dclr & WIDTH_128); |
1249 | } |
1250 | |
1251 | /* |
1252 | * F15h supports only 64bit DCT interfaces |
1253 | */ |
1254 | static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
1255 | unsigned cs_mode) |
1256 | { |
1257 | WARN_ON(cs_mode > 12); |
1258 | |
1259 | return ddr3_cs_size(cs_mode, false); |
1260 | } |
1261 | |
1262 | static void read_dram_ctl_register(struct amd64_pvt *pvt) |
1263 | { |
1264 | |
1265 | if (boot_cpu_data.x86 == 0xf) |
1266 | return; |
1267 | |
1268 | if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { |
1269 | edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", |
1270 | pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); |
1271 | |
1272 | edac_dbg(0, " DCTs operate in %s mode\n", |
1273 | (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); |
1274 | |
1275 | if (!dct_ganging_enabled(pvt)) |
1276 | edac_dbg(0, " Address range split per DCT: %s\n", |
1277 | (dct_high_range_enabled(pvt) ? "yes" : "no")); |
1278 | |
1279 | edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", |
1280 | (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), |
1281 | (dct_memory_cleared(pvt) ? "yes" : "no")); |
1282 | |
1283 | edac_dbg(0, " channel interleave: %s, " |
1284 | "interleave bits selector: 0x%x\n", |
1285 | (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), |
1286 | dct_sel_interleave_addr(pvt)); |
1287 | } |
1288 | |
1289 | amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); |
1290 | } |
1291 | |
1292 | /* |
1293 | * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory |
1294 | * Interleaving Modes. |
1295 | */ |
1296 | static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, |
1297 | bool hi_range_sel, u8 intlv_en) |
1298 | { |
1299 | u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; |
1300 | |
1301 | if (dct_ganging_enabled(pvt)) |
1302 | return 0; |
1303 | |
1304 | if (hi_range_sel) |
1305 | return dct_sel_high; |
1306 | |
1307 | /* |
1308 | * see F2x110[DctSelIntLvAddr] - channel interleave mode |
1309 | */ |
1310 | if (dct_interleave_enabled(pvt)) { |
1311 | u8 intlv_addr = dct_sel_interleave_addr(pvt); |
1312 | |
1313 | /* return DCT select function: 0=DCT0, 1=DCT1 */ |
1314 | if (!intlv_addr) |
1315 | return sys_addr >> 6 & 1; |
1316 | |
1317 | if (intlv_addr & 0x2) { |
1318 | u8 shift = intlv_addr & 0x1 ? 9 : 6; |
1319 | u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; |
1320 | |
1321 | return ((sys_addr >> shift) & 1) ^ temp; |
1322 | } |
1323 | |
1324 | return (sys_addr >> (12 + hweight8(intlv_en))) & 1; |
1325 | } |
1326 | |
1327 | if (dct_high_range_enabled(pvt)) |
1328 | return ~dct_sel_high & 1; |
1329 | |
1330 | return 0; |
1331 | } |
1332 | |
1333 | /* Convert the sys_addr to the normalized DCT address */ |
1334 | static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range, |
1335 | u64 sys_addr, bool hi_rng, |
1336 | u32 dct_sel_base_addr) |
1337 | { |
1338 | u64 chan_off; |
1339 | u64 dram_base = get_dram_base(pvt, range); |
1340 | u64 hole_off = f10_dhar_offset(pvt); |
1341 | u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; |
1342 | |
1343 | if (hi_rng) { |
1344 | /* |
1345 | * if |
1346 | * base address of high range is below 4Gb |
1347 | * (bits [47:27] at [31:11]) |
1348 | * DRAM address space on this DCT is hoisted above 4Gb && |
1349 | * sys_addr > 4Gb |
1350 | * |
1351 | * remove hole offset from sys_addr |
1352 | * else |
1353 | * remove high range offset from sys_addr |
1354 | */ |
1355 | if ((!(dct_sel_base_addr >> 16) || |
1356 | dct_sel_base_addr < dhar_base(pvt)) && |
1357 | dhar_valid(pvt) && |
1358 | (sys_addr >= BIT_64(32))) |
1359 | chan_off = hole_off; |
1360 | else |
1361 | chan_off = dct_sel_base_off; |
1362 | } else { |
1363 | /* |
1364 | * if |
1365 | * we have a valid hole && |
1366 | * sys_addr > 4Gb |
1367 | * |
1368 | * remove hole |
1369 | * else |
1370 | * remove dram base to normalize to DCT address |
1371 | */ |
1372 | if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) |
1373 | chan_off = hole_off; |
1374 | else |
1375 | chan_off = dram_base; |
1376 | } |
1377 | |
1378 | return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); |
1379 | } |
1380 | |
1381 | /* |
1382 | * checks if the csrow passed in is marked as SPARED, if so returns the new |
1383 | * spare row |
1384 | */ |
1385 | static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) |
1386 | { |
1387 | int tmp_cs; |
1388 | |
1389 | if (online_spare_swap_done(pvt, dct) && |
1390 | csrow == online_spare_bad_dramcs(pvt, dct)) { |
1391 | |
1392 | for_each_chip_select(tmp_cs, dct, pvt) { |
1393 | if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { |
1394 | csrow = tmp_cs; |
1395 | break; |
1396 | } |
1397 | } |
1398 | } |
1399 | return csrow; |
1400 | } |
1401 | |
1402 | /* |
1403 | * Iterate over the DRAM DCT "base" and "mask" registers looking for a |
1404 | * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' |
1405 | * |
1406 | * Return: |
1407 | * -EINVAL: NOT FOUND |
1408 | * 0..csrow = Chip-Select Row |
1409 | */ |
1410 | static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct) |
1411 | { |
1412 | struct mem_ctl_info *mci; |
1413 | struct amd64_pvt *pvt; |
1414 | u64 cs_base, cs_mask; |
1415 | int cs_found = -EINVAL; |
1416 | int csrow; |
1417 | |
1418 | mci = mcis[nid]; |
1419 | if (!mci) |
1420 | return cs_found; |
1421 | |
1422 | pvt = mci->pvt_info; |
1423 | |
1424 | edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); |
1425 | |
1426 | for_each_chip_select(csrow, dct, pvt) { |
1427 | if (!csrow_enabled(csrow, dct, pvt)) |
1428 | continue; |
1429 | |
1430 | get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); |
1431 | |
1432 | edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", |
1433 | csrow, cs_base, cs_mask); |
1434 | |
1435 | cs_mask = ~cs_mask; |
1436 | |
1437 | edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", |
1438 | (in_addr & cs_mask), (cs_base & cs_mask)); |
1439 | |
1440 | if ((in_addr & cs_mask) == (cs_base & cs_mask)) { |
1441 | cs_found = f10_process_possible_spare(pvt, dct, csrow); |
1442 | |
1443 | edac_dbg(1, " MATCH csrow=%d\n", cs_found); |
1444 | break; |
1445 | } |
1446 | } |
1447 | return cs_found; |
1448 | } |
1449 | |
1450 | /* |
1451 | * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is |
1452 | * swapped with a region located at the bottom of memory so that the GPU can use |
1453 | * the interleaved region and thus two channels. |
1454 | */ |
1455 | static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) |
1456 | { |
1457 | u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; |
1458 | |
1459 | if (boot_cpu_data.x86 == 0x10) { |
1460 | /* only revC3 and revE have that feature */ |
1461 | if (boot_cpu_data.x86_model < 4 || |
1462 | (boot_cpu_data.x86_model < 0xa && |
1463 | boot_cpu_data.x86_mask < 3)) |
1464 | return sys_addr; |
1465 | } |
1466 | |
1467 | amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); |
1468 | |
1469 | if (!(swap_reg & 0x1)) |
1470 | return sys_addr; |
1471 | |
1472 | swap_base = (swap_reg >> 3) & 0x7f; |
1473 | swap_limit = (swap_reg >> 11) & 0x7f; |
1474 | rgn_size = (swap_reg >> 20) & 0x7f; |
1475 | tmp_addr = sys_addr >> 27; |
1476 | |
1477 | if (!(sys_addr >> 34) && |
1478 | (((tmp_addr >= swap_base) && |
1479 | (tmp_addr <= swap_limit)) || |
1480 | (tmp_addr < rgn_size))) |
1481 | return sys_addr ^ (u64)swap_base << 27; |
1482 | |
1483 | return sys_addr; |
1484 | } |
1485 | |
1486 | /* For a given @dram_range, check if @sys_addr falls within it. */ |
1487 | static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, |
1488 | u64 sys_addr, int *nid, int *chan_sel) |
1489 | { |
1490 | int cs_found = -EINVAL; |
1491 | u64 chan_addr; |
1492 | u32 dct_sel_base; |
1493 | u8 channel; |
1494 | bool high_range = false; |
1495 | |
1496 | u8 node_id = dram_dst_node(pvt, range); |
1497 | u8 intlv_en = dram_intlv_en(pvt, range); |
1498 | u32 intlv_sel = dram_intlv_sel(pvt, range); |
1499 | |
1500 | edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", |
1501 | range, sys_addr, get_dram_limit(pvt, range)); |
1502 | |
1503 | if (dhar_valid(pvt) && |
1504 | dhar_base(pvt) <= sys_addr && |
1505 | sys_addr < BIT_64(32)) { |
1506 | amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", |
1507 | sys_addr); |
1508 | return -EINVAL; |
1509 | } |
1510 | |
1511 | if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) |
1512 | return -EINVAL; |
1513 | |
1514 | sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); |
1515 | |
1516 | dct_sel_base = dct_sel_baseaddr(pvt); |
1517 | |
1518 | /* |
1519 | * check whether addresses >= DctSelBaseAddr[47:27] are to be used to |
1520 | * select between DCT0 and DCT1. |
1521 | */ |
1522 | if (dct_high_range_enabled(pvt) && |
1523 | !dct_ganging_enabled(pvt) && |
1524 | ((sys_addr >> 27) >= (dct_sel_base >> 11))) |
1525 | high_range = true; |
1526 | |
1527 | channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); |
1528 | |
1529 | chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, |
1530 | high_range, dct_sel_base); |
1531 | |
1532 | /* Remove node interleaving, see F1x120 */ |
1533 | if (intlv_en) |
1534 | chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | |
1535 | (chan_addr & 0xfff); |
1536 | |
1537 | /* remove channel interleave */ |
1538 | if (dct_interleave_enabled(pvt) && |
1539 | !dct_high_range_enabled(pvt) && |
1540 | !dct_ganging_enabled(pvt)) { |
1541 | |
1542 | if (dct_sel_interleave_addr(pvt) != 1) { |
1543 | if (dct_sel_interleave_addr(pvt) == 0x3) |
1544 | /* hash 9 */ |
1545 | chan_addr = ((chan_addr >> 10) << 9) | |
1546 | (chan_addr & 0x1ff); |
1547 | else |
1548 | /* A[6] or hash 6 */ |
1549 | chan_addr = ((chan_addr >> 7) << 6) | |
1550 | (chan_addr & 0x3f); |
1551 | } else |
1552 | /* A[12] */ |
1553 | chan_addr = ((chan_addr >> 13) << 12) | |
1554 | (chan_addr & 0xfff); |
1555 | } |
1556 | |
1557 | edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); |
1558 | |
1559 | cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); |
1560 | |
1561 | if (cs_found >= 0) { |
1562 | *nid = node_id; |
1563 | *chan_sel = channel; |
1564 | } |
1565 | return cs_found; |
1566 | } |
1567 | |
1568 | static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, |
1569 | int *node, int *chan_sel) |
1570 | { |
1571 | int cs_found = -EINVAL; |
1572 | unsigned range; |
1573 | |
1574 | for (range = 0; range < DRAM_RANGES; range++) { |
1575 | |
1576 | if (!dram_rw(pvt, range)) |
1577 | continue; |
1578 | |
1579 | if ((get_dram_base(pvt, range) <= sys_addr) && |
1580 | (get_dram_limit(pvt, range) >= sys_addr)) { |
1581 | |
1582 | cs_found = f1x_match_to_this_node(pvt, range, |
1583 | sys_addr, node, |
1584 | chan_sel); |
1585 | if (cs_found >= 0) |
1586 | break; |
1587 | } |
1588 | } |
1589 | return cs_found; |
1590 | } |
1591 | |
1592 | /* |
1593 | * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps |
1594 | * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). |
1595 | * |
1596 | * The @sys_addr is usually an error address received from the hardware |
1597 | * (MCX_ADDR). |
1598 | */ |
1599 | static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, |
1600 | u16 syndrome) |
1601 | { |
1602 | struct amd64_pvt *pvt = mci->pvt_info; |
1603 | u32 page, offset; |
1604 | int nid, csrow, chan = 0; |
1605 | |
1606 | error_address_to_page_and_offset(sys_addr, &page, &offset); |
1607 | |
1608 | csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); |
1609 | |
1610 | if (csrow < 0) { |
1611 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
1612 | page, offset, syndrome, |
1613 | -1, -1, -1, |
1614 | "failed to map error addr to a csrow", |
1615 | ""); |
1616 | return; |
1617 | } |
1618 | |
1619 | /* |
1620 | * We need the syndromes for channel detection only when we're |
1621 | * ganged. Otherwise @chan should already contain the channel at |
1622 | * this point. |
1623 | */ |
1624 | if (dct_ganging_enabled(pvt)) |
1625 | chan = get_channel_from_ecc_syndrome(mci, syndrome); |
1626 | |
1627 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
1628 | page, offset, syndrome, |
1629 | csrow, chan, -1, |
1630 | "", ""); |
1631 | } |
1632 | |
1633 | /* |
1634 | * debug routine to display the memory sizes of all logical DIMMs and its |
1635 | * CSROWs |
1636 | */ |
1637 | static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) |
1638 | { |
1639 | int dimm, size0, size1, factor = 0; |
1640 | u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; |
1641 | u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; |
1642 | |
1643 | if (boot_cpu_data.x86 == 0xf) { |
1644 | if (pvt->dclr0 & WIDTH_128) |
1645 | factor = 1; |
1646 | |
1647 | /* K8 families < revF not supported yet */ |
1648 | if (pvt->ext_model < K8_REV_F) |
1649 | return; |
1650 | else |
1651 | WARN_ON(ctrl != 0); |
1652 | } |
1653 | |
1654 | dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; |
1655 | dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases |
1656 | : pvt->csels[0].csbases; |
1657 | |
1658 | edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", |
1659 | ctrl, dbam); |
1660 | |
1661 | edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); |
1662 | |
1663 | /* Dump memory sizes for DIMM and its CSROWs */ |
1664 | for (dimm = 0; dimm < 4; dimm++) { |
1665 | |
1666 | size0 = 0; |
1667 | if (dcsb[dimm*2] & DCSB_CS_ENABLE) |
1668 | size0 = pvt->ops->dbam_to_cs(pvt, ctrl, |
1669 | DBAM_DIMM(dimm, dbam)); |
1670 | |
1671 | size1 = 0; |
1672 | if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) |
1673 | size1 = pvt->ops->dbam_to_cs(pvt, ctrl, |
1674 | DBAM_DIMM(dimm, dbam)); |
1675 | |
1676 | amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", |
1677 | dimm * 2, size0 << factor, |
1678 | dimm * 2 + 1, size1 << factor); |
1679 | } |
1680 | } |
1681 | |
1682 | static struct amd64_family_type amd64_family_types[] = { |
1683 | [K8_CPUS] = { |
1684 | .ctl_name = "K8", |
1685 | .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, |
1686 | .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, |
1687 | .ops = { |
1688 | .early_channel_count = k8_early_channel_count, |
1689 | .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, |
1690 | .dbam_to_cs = k8_dbam_to_chip_select, |
1691 | .read_dct_pci_cfg = k8_read_dct_pci_cfg, |
1692 | } |
1693 | }, |
1694 | [F10_CPUS] = { |
1695 | .ctl_name = "F10h", |
1696 | .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, |
1697 | .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, |
1698 | .ops = { |
1699 | .early_channel_count = f1x_early_channel_count, |
1700 | .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, |
1701 | .dbam_to_cs = f10_dbam_to_chip_select, |
1702 | .read_dct_pci_cfg = f10_read_dct_pci_cfg, |
1703 | } |
1704 | }, |
1705 | [F15_CPUS] = { |
1706 | .ctl_name = "F15h", |
1707 | .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, |
1708 | .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, |
1709 | .ops = { |
1710 | .early_channel_count = f1x_early_channel_count, |
1711 | .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, |
1712 | .dbam_to_cs = f15_dbam_to_chip_select, |
1713 | .read_dct_pci_cfg = f15_read_dct_pci_cfg, |
1714 | } |
1715 | }, |
1716 | }; |
1717 | |
1718 | static struct pci_dev *pci_get_related_function(unsigned int vendor, |
1719 | unsigned int device, |
1720 | struct pci_dev *related) |
1721 | { |
1722 | struct pci_dev *dev = NULL; |
1723 | |
1724 | dev = pci_get_device(vendor, device, dev); |
1725 | while (dev) { |
1726 | if ((dev->bus->number == related->bus->number) && |
1727 | (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) |
1728 | break; |
1729 | dev = pci_get_device(vendor, device, dev); |
1730 | } |
1731 | |
1732 | return dev; |
1733 | } |
1734 | |
1735 | /* |
1736 | * These are tables of eigenvectors (one per line) which can be used for the |
1737 | * construction of the syndrome tables. The modified syndrome search algorithm |
1738 | * uses those to find the symbol in error and thus the DIMM. |
1739 | * |
1740 | * Algorithm courtesy of Ross LaFetra from AMD. |
1741 | */ |
1742 | static u16 x4_vectors[] = { |
1743 | 0x2f57, 0x1afe, 0x66cc, 0xdd88, |
1744 | 0x11eb, 0x3396, 0x7f4c, 0xeac8, |
1745 | 0x0001, 0x0002, 0x0004, 0x0008, |
1746 | 0x1013, 0x3032, 0x4044, 0x8088, |
1747 | 0x106b, 0x30d6, 0x70fc, 0xe0a8, |
1748 | 0x4857, 0xc4fe, 0x13cc, 0x3288, |
1749 | 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, |
1750 | 0x1f39, 0x251e, 0xbd6c, 0x6bd8, |
1751 | 0x15c1, 0x2a42, 0x89ac, 0x4758, |
1752 | 0x2b03, 0x1602, 0x4f0c, 0xca08, |
1753 | 0x1f07, 0x3a0e, 0x6b04, 0xbd08, |
1754 | 0x8ba7, 0x465e, 0x244c, 0x1cc8, |
1755 | 0x2b87, 0x164e, 0x642c, 0xdc18, |
1756 | 0x40b9, 0x80de, 0x1094, 0x20e8, |
1757 | 0x27db, 0x1eb6, 0x9dac, 0x7b58, |
1758 | 0x11c1, 0x2242, 0x84ac, 0x4c58, |
1759 | 0x1be5, 0x2d7a, 0x5e34, 0xa718, |
1760 | 0x4b39, 0x8d1e, 0x14b4, 0x28d8, |
1761 | 0x4c97, 0xc87e, 0x11fc, 0x33a8, |
1762 | 0x8e97, 0x497e, 0x2ffc, 0x1aa8, |
1763 | 0x16b3, 0x3d62, 0x4f34, 0x8518, |
1764 | 0x1e2f, 0x391a, 0x5cac, 0xf858, |
1765 | 0x1d9f, 0x3b7a, 0x572c, 0xfe18, |
1766 | 0x15f5, 0x2a5a, 0x5264, 0xa3b8, |
1767 | 0x1dbb, 0x3b66, 0x715c, 0xe3f8, |
1768 | 0x4397, 0xc27e, 0x17fc, 0x3ea8, |
1769 | 0x1617, 0x3d3e, 0x6464, 0xb8b8, |
1770 | 0x23ff, 0x12aa, 0xab6c, 0x56d8, |
1771 | 0x2dfb, 0x1ba6, 0x913c, 0x7328, |
1772 | 0x185d, 0x2ca6, 0x7914, 0x9e28, |
1773 | 0x171b, 0x3e36, 0x7d7c, 0xebe8, |
1774 | 0x4199, 0x82ee, 0x19f4, 0x2e58, |
1775 | 0x4807, 0xc40e, 0x130c, 0x3208, |
1776 | 0x1905, 0x2e0a, 0x5804, 0xac08, |
1777 | 0x213f, 0x132a, 0xadfc, 0x5ba8, |
1778 | 0x19a9, 0x2efe, 0xb5cc, 0x6f88, |
1779 | }; |
1780 | |
1781 | static u16 x8_vectors[] = { |
1782 | 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, |
1783 | 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, |
1784 | 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, |
1785 | 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, |
1786 | 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, |
1787 | 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, |
1788 | 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, |
1789 | 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, |
1790 | 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, |
1791 | 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, |
1792 | 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, |
1793 | 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, |
1794 | 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, |
1795 | 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, |
1796 | 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, |
1797 | 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, |
1798 | 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, |
1799 | 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
1800 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, |
1801 | }; |
1802 | |
1803 | static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs, |
1804 | unsigned v_dim) |
1805 | { |
1806 | unsigned int i, err_sym; |
1807 | |
1808 | for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { |
1809 | u16 s = syndrome; |
1810 | unsigned v_idx = err_sym * v_dim; |
1811 | unsigned v_end = (err_sym + 1) * v_dim; |
1812 | |
1813 | /* walk over all 16 bits of the syndrome */ |
1814 | for (i = 1; i < (1U << 16); i <<= 1) { |
1815 | |
1816 | /* if bit is set in that eigenvector... */ |
1817 | if (v_idx < v_end && vectors[v_idx] & i) { |
1818 | u16 ev_comp = vectors[v_idx++]; |
1819 | |
1820 | /* ... and bit set in the modified syndrome, */ |
1821 | if (s & i) { |
1822 | /* remove it. */ |
1823 | s ^= ev_comp; |
1824 | |
1825 | if (!s) |
1826 | return err_sym; |
1827 | } |
1828 | |
1829 | } else if (s & i) |
1830 | /* can't get to zero, move to next symbol */ |
1831 | break; |
1832 | } |
1833 | } |
1834 | |
1835 | edac_dbg(0, "syndrome(%x) not found\n", syndrome); |
1836 | return -1; |
1837 | } |
1838 | |
1839 | static int map_err_sym_to_channel(int err_sym, int sym_size) |
1840 | { |
1841 | if (sym_size == 4) |
1842 | switch (err_sym) { |
1843 | case 0x20: |
1844 | case 0x21: |
1845 | return 0; |
1846 | break; |
1847 | case 0x22: |
1848 | case 0x23: |
1849 | return 1; |
1850 | break; |
1851 | default: |
1852 | return err_sym >> 4; |
1853 | break; |
1854 | } |
1855 | /* x8 symbols */ |
1856 | else |
1857 | switch (err_sym) { |
1858 | /* imaginary bits not in a DIMM */ |
1859 | case 0x10: |
1860 | WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", |
1861 | err_sym); |
1862 | return -1; |
1863 | break; |
1864 | |
1865 | case 0x11: |
1866 | return 0; |
1867 | break; |
1868 | case 0x12: |
1869 | return 1; |
1870 | break; |
1871 | default: |
1872 | return err_sym >> 3; |
1873 | break; |
1874 | } |
1875 | return -1; |
1876 | } |
1877 | |
1878 | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) |
1879 | { |
1880 | struct amd64_pvt *pvt = mci->pvt_info; |
1881 | int err_sym = -1; |
1882 | |
1883 | if (pvt->ecc_sym_sz == 8) |
1884 | err_sym = decode_syndrome(syndrome, x8_vectors, |
1885 | ARRAY_SIZE(x8_vectors), |
1886 | pvt->ecc_sym_sz); |
1887 | else if (pvt->ecc_sym_sz == 4) |
1888 | err_sym = decode_syndrome(syndrome, x4_vectors, |
1889 | ARRAY_SIZE(x4_vectors), |
1890 | pvt->ecc_sym_sz); |
1891 | else { |
1892 | amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); |
1893 | return err_sym; |
1894 | } |
1895 | |
1896 | return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); |
1897 | } |
1898 | |
1899 | /* |
1900 | * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR |
1901 | * ADDRESS and process. |
1902 | */ |
1903 | static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m) |
1904 | { |
1905 | struct amd64_pvt *pvt = mci->pvt_info; |
1906 | u64 sys_addr; |
1907 | u16 syndrome; |
1908 | |
1909 | /* Ensure that the Error Address is VALID */ |
1910 | if (!(m->status & MCI_STATUS_ADDRV)) { |
1911 | amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); |
1912 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
1913 | 0, 0, 0, |
1914 | -1, -1, -1, |
1915 | "HW has no ERROR_ADDRESS available", |
1916 | ""); |
1917 | return; |
1918 | } |
1919 | |
1920 | sys_addr = get_error_address(m); |
1921 | syndrome = extract_syndrome(m->status); |
1922 | |
1923 | amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); |
1924 | |
1925 | pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome); |
1926 | } |
1927 | |
1928 | /* Handle any Un-correctable Errors (UEs) */ |
1929 | static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m) |
1930 | { |
1931 | struct mem_ctl_info *log_mci, *src_mci = NULL; |
1932 | int csrow; |
1933 | u64 sys_addr; |
1934 | u32 page, offset; |
1935 | |
1936 | log_mci = mci; |
1937 | |
1938 | if (!(m->status & MCI_STATUS_ADDRV)) { |
1939 | amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); |
1940 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
1941 | 0, 0, 0, |
1942 | -1, -1, -1, |
1943 | "HW has no ERROR_ADDRESS available", |
1944 | ""); |
1945 | return; |
1946 | } |
1947 | |
1948 | sys_addr = get_error_address(m); |
1949 | error_address_to_page_and_offset(sys_addr, &page, &offset); |
1950 | |
1951 | /* |
1952 | * Find out which node the error address belongs to. This may be |
1953 | * different from the node that detected the error. |
1954 | */ |
1955 | src_mci = find_mc_by_sys_addr(mci, sys_addr); |
1956 | if (!src_mci) { |
1957 | amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", |
1958 | (unsigned long)sys_addr); |
1959 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
1960 | page, offset, 0, |
1961 | -1, -1, -1, |
1962 | "ERROR ADDRESS NOT mapped to a MC", |
1963 | ""); |
1964 | return; |
1965 | } |
1966 | |
1967 | log_mci = src_mci; |
1968 | |
1969 | csrow = sys_addr_to_csrow(log_mci, sys_addr); |
1970 | if (csrow < 0) { |
1971 | amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", |
1972 | (unsigned long)sys_addr); |
1973 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
1974 | page, offset, 0, |
1975 | -1, -1, -1, |
1976 | "ERROR ADDRESS NOT mapped to CS", |
1977 | ""); |
1978 | } else { |
1979 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
1980 | page, offset, 0, |
1981 | csrow, -1, -1, |
1982 | "", ""); |
1983 | } |
1984 | } |
1985 | |
1986 | static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, |
1987 | struct mce *m) |
1988 | { |
1989 | u16 ec = EC(m->status); |
1990 | u8 xec = XEC(m->status, 0x1f); |
1991 | u8 ecc_type = (m->status >> 45) & 0x3; |
1992 | |
1993 | /* Bail early out if this was an 'observed' error */ |
1994 | if (PP(ec) == NBSL_PP_OBS) |
1995 | return; |
1996 | |
1997 | /* Do only ECC errors */ |
1998 | if (xec && xec != F10_NBSL_EXT_ERR_ECC) |
1999 | return; |
2000 | |
2001 | if (ecc_type == 2) |
2002 | amd64_handle_ce(mci, m); |
2003 | else if (ecc_type == 1) |
2004 | amd64_handle_ue(mci, m); |
2005 | } |
2006 | |
2007 | void amd64_decode_bus_error(int node_id, struct mce *m) |
2008 | { |
2009 | __amd64_decode_bus_error(mcis[node_id], m); |
2010 | } |
2011 | |
2012 | /* |
2013 | * Use pvt->F2 which contains the F2 CPU PCI device to get the related |
2014 | * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. |
2015 | */ |
2016 | static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) |
2017 | { |
2018 | /* Reserve the ADDRESS MAP Device */ |
2019 | pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); |
2020 | if (!pvt->F1) { |
2021 | amd64_err("error address map device not found: " |
2022 | "vendor %x device 0x%x (broken BIOS?)\n", |
2023 | PCI_VENDOR_ID_AMD, f1_id); |
2024 | return -ENODEV; |
2025 | } |
2026 | |
2027 | /* Reserve the MISC Device */ |
2028 | pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); |
2029 | if (!pvt->F3) { |
2030 | pci_dev_put(pvt->F1); |
2031 | pvt->F1 = NULL; |
2032 | |
2033 | amd64_err("error F3 device not found: " |
2034 | "vendor %x device 0x%x (broken BIOS?)\n", |
2035 | PCI_VENDOR_ID_AMD, f3_id); |
2036 | |
2037 | return -ENODEV; |
2038 | } |
2039 | edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); |
2040 | edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); |
2041 | edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); |
2042 | |
2043 | return 0; |
2044 | } |
2045 | |
2046 | static void free_mc_sibling_devs(struct amd64_pvt *pvt) |
2047 | { |
2048 | pci_dev_put(pvt->F1); |
2049 | pci_dev_put(pvt->F3); |
2050 | } |
2051 | |
2052 | /* |
2053 | * Retrieve the hardware registers of the memory controller (this includes the |
2054 | * 'Address Map' and 'Misc' device regs) |
2055 | */ |
2056 | static void read_mc_regs(struct amd64_pvt *pvt) |
2057 | { |
2058 | struct cpuinfo_x86 *c = &boot_cpu_data; |
2059 | u64 msr_val; |
2060 | u32 tmp; |
2061 | unsigned range; |
2062 | |
2063 | /* |
2064 | * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since |
2065 | * those are Read-As-Zero |
2066 | */ |
2067 | rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); |
2068 | edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); |
2069 | |
2070 | /* check first whether TOP_MEM2 is enabled */ |
2071 | rdmsrl(MSR_K8_SYSCFG, msr_val); |
2072 | if (msr_val & (1U << 21)) { |
2073 | rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); |
2074 | edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); |
2075 | } else |
2076 | edac_dbg(0, " TOP_MEM2 disabled\n"); |
2077 | |
2078 | amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); |
2079 | |
2080 | read_dram_ctl_register(pvt); |
2081 | |
2082 | for (range = 0; range < DRAM_RANGES; range++) { |
2083 | u8 rw; |
2084 | |
2085 | /* read settings for this DRAM range */ |
2086 | read_dram_base_limit_regs(pvt, range); |
2087 | |
2088 | rw = dram_rw(pvt, range); |
2089 | if (!rw) |
2090 | continue; |
2091 | |
2092 | edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", |
2093 | range, |
2094 | get_dram_base(pvt, range), |
2095 | get_dram_limit(pvt, range)); |
2096 | |
2097 | edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", |
2098 | dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", |
2099 | (rw & 0x1) ? "R" : "-", |
2100 | (rw & 0x2) ? "W" : "-", |
2101 | dram_intlv_sel(pvt, range), |
2102 | dram_dst_node(pvt, range)); |
2103 | } |
2104 | |
2105 | read_dct_base_mask(pvt); |
2106 | |
2107 | amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); |
2108 | amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); |
2109 | |
2110 | amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); |
2111 | |
2112 | amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); |
2113 | amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); |
2114 | |
2115 | if (!dct_ganging_enabled(pvt)) { |
2116 | amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); |
2117 | amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); |
2118 | } |
2119 | |
2120 | pvt->ecc_sym_sz = 4; |
2121 | |
2122 | if (c->x86 >= 0x10) { |
2123 | amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); |
2124 | amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); |
2125 | |
2126 | /* F10h, revD and later can do x8 ECC too */ |
2127 | if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25)) |
2128 | pvt->ecc_sym_sz = 8; |
2129 | } |
2130 | dump_misc_regs(pvt); |
2131 | } |
2132 | |
2133 | /* |
2134 | * NOTE: CPU Revision Dependent code |
2135 | * |
2136 | * Input: |
2137 | * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) |
2138 | * k8 private pointer to --> |
2139 | * DRAM Bank Address mapping register |
2140 | * node_id |
2141 | * DCL register where dual_channel_active is |
2142 | * |
2143 | * The DBAM register consists of 4 sets of 4 bits each definitions: |
2144 | * |
2145 | * Bits: CSROWs |
2146 | * 0-3 CSROWs 0 and 1 |
2147 | * 4-7 CSROWs 2 and 3 |
2148 | * 8-11 CSROWs 4 and 5 |
2149 | * 12-15 CSROWs 6 and 7 |
2150 | * |
2151 | * Values range from: 0 to 15 |
2152 | * The meaning of the values depends on CPU revision and dual-channel state, |
2153 | * see relevant BKDG more info. |
2154 | * |
2155 | * The memory controller provides for total of only 8 CSROWs in its current |
2156 | * architecture. Each "pair" of CSROWs normally represents just one DIMM in |
2157 | * single channel or two (2) DIMMs in dual channel mode. |
2158 | * |
2159 | * The following code logic collapses the various tables for CSROW based on CPU |
2160 | * revision. |
2161 | * |
2162 | * Returns: |
2163 | * The number of PAGE_SIZE pages on the specified CSROW number it |
2164 | * encompasses |
2165 | * |
2166 | */ |
2167 | static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) |
2168 | { |
2169 | u32 cs_mode, nr_pages; |
2170 | u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; |
2171 | |
2172 | /* |
2173 | * The math on this doesn't look right on the surface because x/2*4 can |
2174 | * be simplified to x*2 but this expression makes use of the fact that |
2175 | * it is integral math where 1/2=0. This intermediate value becomes the |
2176 | * number of bits to shift the DBAM register to extract the proper CSROW |
2177 | * field. |
2178 | */ |
2179 | cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF; |
2180 | |
2181 | nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); |
2182 | |
2183 | edac_dbg(0, " (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); |
2184 | edac_dbg(0, " nr_pages/channel= %u channel-count = %d\n", |
2185 | nr_pages, pvt->channel_count); |
2186 | |
2187 | return nr_pages; |
2188 | } |
2189 | |
2190 | /* |
2191 | * Initialize the array of csrow attribute instances, based on the values |
2192 | * from pci config hardware registers. |
2193 | */ |
2194 | static int init_csrows(struct mem_ctl_info *mci) |
2195 | { |
2196 | struct csrow_info *csrow; |
2197 | struct dimm_info *dimm; |
2198 | struct amd64_pvt *pvt = mci->pvt_info; |
2199 | u64 base, mask; |
2200 | u32 val; |
2201 | int i, j, empty = 1; |
2202 | enum mem_type mtype; |
2203 | enum edac_type edac_mode; |
2204 | int nr_pages = 0; |
2205 | |
2206 | amd64_read_pci_cfg(pvt->F3, NBCFG, &val); |
2207 | |
2208 | pvt->nbcfg = val; |
2209 | |
2210 | edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", |
2211 | pvt->mc_node_id, val, |
2212 | !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); |
2213 | |
2214 | for_each_chip_select(i, 0, pvt) { |
2215 | csrow = mci->csrows[i]; |
2216 | |
2217 | if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) { |
2218 | edac_dbg(1, "----CSROW %d VALID for MC node %d\n", |
2219 | i, pvt->mc_node_id); |
2220 | continue; |
2221 | } |
2222 | |
2223 | empty = 0; |
2224 | if (csrow_enabled(i, 0, pvt)) |
2225 | nr_pages = amd64_csrow_nr_pages(pvt, 0, i); |
2226 | if (csrow_enabled(i, 1, pvt)) |
2227 | nr_pages += amd64_csrow_nr_pages(pvt, 1, i); |
2228 | |
2229 | get_cs_base_and_mask(pvt, i, 0, &base, &mask); |
2230 | /* 8 bytes of resolution */ |
2231 | |
2232 | mtype = amd64_determine_memory_type(pvt, i); |
2233 | |
2234 | edac_dbg(1, " for MC node %d csrow %d:\n", pvt->mc_node_id, i); |
2235 | edac_dbg(1, " nr_pages: %u\n", |
2236 | nr_pages * pvt->channel_count); |
2237 | |
2238 | /* |
2239 | * determine whether CHIPKILL or JUST ECC or NO ECC is operating |
2240 | */ |
2241 | if (pvt->nbcfg & NBCFG_ECC_ENABLE) |
2242 | edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? |
2243 | EDAC_S4ECD4ED : EDAC_SECDED; |
2244 | else |
2245 | edac_mode = EDAC_NONE; |
2246 | |
2247 | for (j = 0; j < pvt->channel_count; j++) { |
2248 | dimm = csrow->channels[j]->dimm; |
2249 | dimm->mtype = mtype; |
2250 | dimm->edac_mode = edac_mode; |
2251 | dimm->nr_pages = nr_pages; |
2252 | } |
2253 | } |
2254 | |
2255 | return empty; |
2256 | } |
2257 | |
2258 | /* get all cores on this DCT */ |
2259 | static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid) |
2260 | { |
2261 | int cpu; |
2262 | |
2263 | for_each_online_cpu(cpu) |
2264 | if (amd_get_nb_id(cpu) == nid) |
2265 | cpumask_set_cpu(cpu, mask); |
2266 | } |
2267 | |
2268 | /* check MCG_CTL on all the cpus on this node */ |
2269 | static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid) |
2270 | { |
2271 | cpumask_var_t mask; |
2272 | int cpu, nbe; |
2273 | bool ret = false; |
2274 | |
2275 | if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { |
2276 | amd64_warn("%s: Error allocating mask\n", __func__); |
2277 | return false; |
2278 | } |
2279 | |
2280 | get_cpus_on_this_dct_cpumask(mask, nid); |
2281 | |
2282 | rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); |
2283 | |
2284 | for_each_cpu(cpu, mask) { |
2285 | struct msr *reg = per_cpu_ptr(msrs, cpu); |
2286 | nbe = reg->l & MSR_MCGCTL_NBE; |
2287 | |
2288 | edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", |
2289 | cpu, reg->q, |
2290 | (nbe ? "enabled" : "disabled")); |
2291 | |
2292 | if (!nbe) |
2293 | goto out; |
2294 | } |
2295 | ret = true; |
2296 | |
2297 | out: |
2298 | free_cpumask_var(mask); |
2299 | return ret; |
2300 | } |
2301 | |
2302 | static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) |
2303 | { |
2304 | cpumask_var_t cmask; |
2305 | int cpu; |
2306 | |
2307 | if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { |
2308 | amd64_warn("%s: error allocating mask\n", __func__); |
2309 | return false; |
2310 | } |
2311 | |
2312 | get_cpus_on_this_dct_cpumask(cmask, nid); |
2313 | |
2314 | rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); |
2315 | |
2316 | for_each_cpu(cpu, cmask) { |
2317 | |
2318 | struct msr *reg = per_cpu_ptr(msrs, cpu); |
2319 | |
2320 | if (on) { |
2321 | if (reg->l & MSR_MCGCTL_NBE) |
2322 | s->flags.nb_mce_enable = 1; |
2323 | |
2324 | reg->l |= MSR_MCGCTL_NBE; |
2325 | } else { |
2326 | /* |
2327 | * Turn off NB MCE reporting only when it was off before |
2328 | */ |
2329 | if (!s->flags.nb_mce_enable) |
2330 | reg->l &= ~MSR_MCGCTL_NBE; |
2331 | } |
2332 | } |
2333 | wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); |
2334 | |
2335 | free_cpumask_var(cmask); |
2336 | |
2337 | return 0; |
2338 | } |
2339 | |
2340 | static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, |
2341 | struct pci_dev *F3) |
2342 | { |
2343 | bool ret = true; |
2344 | u32 value, mask = 0x3; /* UECC/CECC enable */ |
2345 | |
2346 | if (toggle_ecc_err_reporting(s, nid, ON)) { |
2347 | amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); |
2348 | return false; |
2349 | } |
2350 | |
2351 | amd64_read_pci_cfg(F3, NBCTL, &value); |
2352 | |
2353 | s->old_nbctl = value & mask; |
2354 | s->nbctl_valid = true; |
2355 | |
2356 | value |= mask; |
2357 | amd64_write_pci_cfg(F3, NBCTL, value); |
2358 | |
2359 | amd64_read_pci_cfg(F3, NBCFG, &value); |
2360 | |
2361 | edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", |
2362 | nid, value, !!(value & NBCFG_ECC_ENABLE)); |
2363 | |
2364 | if (!(value & NBCFG_ECC_ENABLE)) { |
2365 | amd64_warn("DRAM ECC disabled on this node, enabling...\n"); |
2366 | |
2367 | s->flags.nb_ecc_prev = 0; |
2368 | |
2369 | /* Attempt to turn on DRAM ECC Enable */ |
2370 | value |= NBCFG_ECC_ENABLE; |
2371 | amd64_write_pci_cfg(F3, NBCFG, value); |
2372 | |
2373 | amd64_read_pci_cfg(F3, NBCFG, &value); |
2374 | |
2375 | if (!(value & NBCFG_ECC_ENABLE)) { |
2376 | amd64_warn("Hardware rejected DRAM ECC enable," |
2377 | "check memory DIMM configuration.\n"); |
2378 | ret = false; |
2379 | } else { |
2380 | amd64_info("Hardware accepted DRAM ECC Enable\n"); |
2381 | } |
2382 | } else { |
2383 | s->flags.nb_ecc_prev = 1; |
2384 | } |
2385 | |
2386 | edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", |
2387 | nid, value, !!(value & NBCFG_ECC_ENABLE)); |
2388 | |
2389 | return ret; |
2390 | } |
2391 | |
2392 | static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, |
2393 | struct pci_dev *F3) |
2394 | { |
2395 | u32 value, mask = 0x3; /* UECC/CECC enable */ |
2396 | |
2397 | |
2398 | if (!s->nbctl_valid) |
2399 | return; |
2400 | |
2401 | amd64_read_pci_cfg(F3, NBCTL, &value); |
2402 | value &= ~mask; |
2403 | value |= s->old_nbctl; |
2404 | |
2405 | amd64_write_pci_cfg(F3, NBCTL, value); |
2406 | |
2407 | /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ |
2408 | if (!s->flags.nb_ecc_prev) { |
2409 | amd64_read_pci_cfg(F3, NBCFG, &value); |
2410 | value &= ~NBCFG_ECC_ENABLE; |
2411 | amd64_write_pci_cfg(F3, NBCFG, value); |
2412 | } |
2413 | |
2414 | /* restore the NB Enable MCGCTL bit */ |
2415 | if (toggle_ecc_err_reporting(s, nid, OFF)) |
2416 | amd64_warn("Error restoring NB MCGCTL settings!\n"); |
2417 | } |
2418 | |
2419 | /* |
2420 | * EDAC requires that the BIOS have ECC enabled before |
2421 | * taking over the processing of ECC errors. A command line |
2422 | * option allows to force-enable hardware ECC later in |
2423 | * enable_ecc_error_reporting(). |
2424 | */ |
2425 | static const char *ecc_msg = |
2426 | "ECC disabled in the BIOS or no ECC capability, module will not load.\n" |
2427 | " Either enable ECC checking or force module loading by setting " |
2428 | "'ecc_enable_override'.\n" |
2429 | " (Note that use of the override may cause unknown side effects.)\n"; |
2430 | |
2431 | static bool ecc_enabled(struct pci_dev *F3, u8 nid) |
2432 | { |
2433 | u32 value; |
2434 | u8 ecc_en = 0; |
2435 | bool nb_mce_en = false; |
2436 | |
2437 | amd64_read_pci_cfg(F3, NBCFG, &value); |
2438 | |
2439 | ecc_en = !!(value & NBCFG_ECC_ENABLE); |
2440 | amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); |
2441 | |
2442 | nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); |
2443 | if (!nb_mce_en) |
2444 | amd64_notice("NB MCE bank disabled, set MSR " |
2445 | "0x%08x[4] on node %d to enable.\n", |
2446 | MSR_IA32_MCG_CTL, nid); |
2447 | |
2448 | if (!ecc_en || !nb_mce_en) { |
2449 | amd64_notice("%s", ecc_msg); |
2450 | return false; |
2451 | } |
2452 | return true; |
2453 | } |
2454 | |
2455 | static int set_mc_sysfs_attrs(struct mem_ctl_info *mci) |
2456 | { |
2457 | int rc; |
2458 | |
2459 | rc = amd64_create_sysfs_dbg_files(mci); |
2460 | if (rc < 0) |
2461 | return rc; |
2462 | |
2463 | if (boot_cpu_data.x86 >= 0x10) { |
2464 | rc = amd64_create_sysfs_inject_files(mci); |
2465 | if (rc < 0) |
2466 | return rc; |
2467 | } |
2468 | |
2469 | return 0; |
2470 | } |
2471 | |
2472 | static void del_mc_sysfs_attrs(struct mem_ctl_info *mci) |
2473 | { |
2474 | amd64_remove_sysfs_dbg_files(mci); |
2475 | |
2476 | if (boot_cpu_data.x86 >= 0x10) |
2477 | amd64_remove_sysfs_inject_files(mci); |
2478 | } |
2479 | |
2480 | static void setup_mci_misc_attrs(struct mem_ctl_info *mci, |
2481 | struct amd64_family_type *fam) |
2482 | { |
2483 | struct amd64_pvt *pvt = mci->pvt_info; |
2484 | |
2485 | mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; |
2486 | mci->edac_ctl_cap = EDAC_FLAG_NONE; |
2487 | |
2488 | if (pvt->nbcap & NBCAP_SECDED) |
2489 | mci->edac_ctl_cap |= EDAC_FLAG_SECDED; |
2490 | |
2491 | if (pvt->nbcap & NBCAP_CHIPKILL) |
2492 | mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; |
2493 | |
2494 | mci->edac_cap = amd64_determine_edac_cap(pvt); |
2495 | mci->mod_name = EDAC_MOD_STR; |
2496 | mci->mod_ver = EDAC_AMD64_VERSION; |
2497 | mci->ctl_name = fam->ctl_name; |
2498 | mci->dev_name = pci_name(pvt->F2); |
2499 | mci->ctl_page_to_phys = NULL; |
2500 | |
2501 | /* memory scrubber interface */ |
2502 | mci->set_sdram_scrub_rate = amd64_set_scrub_rate; |
2503 | mci->get_sdram_scrub_rate = amd64_get_scrub_rate; |
2504 | } |
2505 | |
2506 | /* |
2507 | * returns a pointer to the family descriptor on success, NULL otherwise. |
2508 | */ |
2509 | static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) |
2510 | { |
2511 | u8 fam = boot_cpu_data.x86; |
2512 | struct amd64_family_type *fam_type = NULL; |
2513 | |
2514 | switch (fam) { |
2515 | case 0xf: |
2516 | fam_type = &amd64_family_types[K8_CPUS]; |
2517 | pvt->ops = &amd64_family_types[K8_CPUS].ops; |
2518 | break; |
2519 | |
2520 | case 0x10: |
2521 | fam_type = &amd64_family_types[F10_CPUS]; |
2522 | pvt->ops = &amd64_family_types[F10_CPUS].ops; |
2523 | break; |
2524 | |
2525 | case 0x15: |
2526 | fam_type = &amd64_family_types[F15_CPUS]; |
2527 | pvt->ops = &amd64_family_types[F15_CPUS].ops; |
2528 | break; |
2529 | |
2530 | default: |
2531 | amd64_err("Unsupported family!\n"); |
2532 | return NULL; |
2533 | } |
2534 | |
2535 | pvt->ext_model = boot_cpu_data.x86_model >> 4; |
2536 | |
2537 | amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, |
2538 | (fam == 0xf ? |
2539 | (pvt->ext_model >= K8_REV_F ? "revF or later " |
2540 | : "revE or earlier ") |
2541 | : ""), pvt->mc_node_id); |
2542 | return fam_type; |
2543 | } |
2544 | |
2545 | static int amd64_init_one_instance(struct pci_dev *F2) |
2546 | { |
2547 | struct amd64_pvt *pvt = NULL; |
2548 | struct amd64_family_type *fam_type = NULL; |
2549 | struct mem_ctl_info *mci = NULL; |
2550 | struct edac_mc_layer layers[2]; |
2551 | int err = 0, ret; |
2552 | u8 nid = get_node_id(F2); |
2553 | |
2554 | ret = -ENOMEM; |
2555 | pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); |
2556 | if (!pvt) |
2557 | goto err_ret; |
2558 | |
2559 | pvt->mc_node_id = nid; |
2560 | pvt->F2 = F2; |
2561 | |
2562 | ret = -EINVAL; |
2563 | fam_type = amd64_per_family_init(pvt); |
2564 | if (!fam_type) |
2565 | goto err_free; |
2566 | |
2567 | ret = -ENODEV; |
2568 | err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); |
2569 | if (err) |
2570 | goto err_free; |
2571 | |
2572 | read_mc_regs(pvt); |
2573 | |
2574 | /* |
2575 | * We need to determine how many memory channels there are. Then use |
2576 | * that information for calculating the size of the dynamic instance |
2577 | * tables in the 'mci' structure. |
2578 | */ |
2579 | ret = -EINVAL; |
2580 | pvt->channel_count = pvt->ops->early_channel_count(pvt); |
2581 | if (pvt->channel_count < 0) |
2582 | goto err_siblings; |
2583 | |
2584 | ret = -ENOMEM; |
2585 | layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
2586 | layers[0].size = pvt->csels[0].b_cnt; |
2587 | layers[0].is_virt_csrow = true; |
2588 | layers[1].type = EDAC_MC_LAYER_CHANNEL; |
2589 | layers[1].size = pvt->channel_count; |
2590 | layers[1].is_virt_csrow = false; |
2591 | mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); |
2592 | if (!mci) |
2593 | goto err_siblings; |
2594 | |
2595 | mci->pvt_info = pvt; |
2596 | mci->pdev = &pvt->F2->dev; |
2597 | |
2598 | setup_mci_misc_attrs(mci, fam_type); |
2599 | |
2600 | if (init_csrows(mci)) |
2601 | mci->edac_cap = EDAC_FLAG_NONE; |
2602 | |
2603 | ret = -ENODEV; |
2604 | if (edac_mc_add_mc(mci)) { |
2605 | edac_dbg(1, "failed edac_mc_add_mc()\n"); |
2606 | goto err_add_mc; |
2607 | } |
2608 | if (set_mc_sysfs_attrs(mci)) { |
2609 | edac_dbg(1, "failed edac_mc_add_mc()\n"); |
2610 | goto err_add_sysfs; |
2611 | } |
2612 | |
2613 | /* register stuff with EDAC MCE */ |
2614 | if (report_gart_errors) |
2615 | amd_report_gart_errors(true); |
2616 | |
2617 | amd_register_ecc_decoder(amd64_decode_bus_error); |
2618 | |
2619 | mcis[nid] = mci; |
2620 | |
2621 | atomic_inc(&drv_instances); |
2622 | |
2623 | return 0; |
2624 | |
2625 | err_add_sysfs: |
2626 | edac_mc_del_mc(mci->pdev); |
2627 | err_add_mc: |
2628 | edac_mc_free(mci); |
2629 | |
2630 | err_siblings: |
2631 | free_mc_sibling_devs(pvt); |
2632 | |
2633 | err_free: |
2634 | kfree(pvt); |
2635 | |
2636 | err_ret: |
2637 | return ret; |
2638 | } |
2639 | |
2640 | static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, |
2641 | const struct pci_device_id *mc_type) |
2642 | { |
2643 | u8 nid = get_node_id(pdev); |
2644 | struct pci_dev *F3 = node_to_amd_nb(nid)->misc; |
2645 | struct ecc_settings *s; |
2646 | int ret = 0; |
2647 | |
2648 | ret = pci_enable_device(pdev); |
2649 | if (ret < 0) { |
2650 | edac_dbg(0, "ret=%d\n", ret); |
2651 | return -EIO; |
2652 | } |
2653 | |
2654 | ret = -ENOMEM; |
2655 | s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); |
2656 | if (!s) |
2657 | goto err_out; |
2658 | |
2659 | ecc_stngs[nid] = s; |
2660 | |
2661 | if (!ecc_enabled(F3, nid)) { |
2662 | ret = -ENODEV; |
2663 | |
2664 | if (!ecc_enable_override) |
2665 | goto err_enable; |
2666 | |
2667 | amd64_warn("Forcing ECC on!\n"); |
2668 | |
2669 | if (!enable_ecc_error_reporting(s, nid, F3)) |
2670 | goto err_enable; |
2671 | } |
2672 | |
2673 | ret = amd64_init_one_instance(pdev); |
2674 | if (ret < 0) { |
2675 | amd64_err("Error probing instance: %d\n", nid); |
2676 | restore_ecc_error_reporting(s, nid, F3); |
2677 | } |
2678 | |
2679 | return ret; |
2680 | |
2681 | err_enable: |
2682 | kfree(s); |
2683 | ecc_stngs[nid] = NULL; |
2684 | |
2685 | err_out: |
2686 | return ret; |
2687 | } |
2688 | |
2689 | static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) |
2690 | { |
2691 | struct mem_ctl_info *mci; |
2692 | struct amd64_pvt *pvt; |
2693 | u8 nid = get_node_id(pdev); |
2694 | struct pci_dev *F3 = node_to_amd_nb(nid)->misc; |
2695 | struct ecc_settings *s = ecc_stngs[nid]; |
2696 | |
2697 | mci = find_mci_by_dev(&pdev->dev); |
2698 | del_mc_sysfs_attrs(mci); |
2699 | /* Remove from EDAC CORE tracking list */ |
2700 | mci = edac_mc_del_mc(&pdev->dev); |
2701 | if (!mci) |
2702 | return; |
2703 | |
2704 | pvt = mci->pvt_info; |
2705 | |
2706 | restore_ecc_error_reporting(s, nid, F3); |
2707 | |
2708 | free_mc_sibling_devs(pvt); |
2709 | |
2710 | /* unregister from EDAC MCE */ |
2711 | amd_report_gart_errors(false); |
2712 | amd_unregister_ecc_decoder(amd64_decode_bus_error); |
2713 | |
2714 | kfree(ecc_stngs[nid]); |
2715 | ecc_stngs[nid] = NULL; |
2716 | |
2717 | /* Free the EDAC CORE resources */ |
2718 | mci->pvt_info = NULL; |
2719 | mcis[nid] = NULL; |
2720 | |
2721 | kfree(pvt); |
2722 | edac_mc_free(mci); |
2723 | } |
2724 | |
2725 | /* |
2726 | * This table is part of the interface for loading drivers for PCI devices. The |
2727 | * PCI core identifies what devices are on a system during boot, and then |
2728 | * inquiry this table to see if this driver is for a given device found. |
2729 | */ |
2730 | static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = { |
2731 | { |
2732 | .vendor = PCI_VENDOR_ID_AMD, |
2733 | .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, |
2734 | .subvendor = PCI_ANY_ID, |
2735 | .subdevice = PCI_ANY_ID, |
2736 | .class = 0, |
2737 | .class_mask = 0, |
2738 | }, |
2739 | { |
2740 | .vendor = PCI_VENDOR_ID_AMD, |
2741 | .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, |
2742 | .subvendor = PCI_ANY_ID, |
2743 | .subdevice = PCI_ANY_ID, |
2744 | .class = 0, |
2745 | .class_mask = 0, |
2746 | }, |
2747 | { |
2748 | .vendor = PCI_VENDOR_ID_AMD, |
2749 | .device = PCI_DEVICE_ID_AMD_15H_NB_F2, |
2750 | .subvendor = PCI_ANY_ID, |
2751 | .subdevice = PCI_ANY_ID, |
2752 | .class = 0, |
2753 | .class_mask = 0, |
2754 | }, |
2755 | |
2756 | {0, } |
2757 | }; |
2758 | MODULE_DEVICE_TABLE(pci, amd64_pci_table); |
2759 | |
2760 | static struct pci_driver amd64_pci_driver = { |
2761 | .name = EDAC_MOD_STR, |
2762 | .probe = amd64_probe_one_instance, |
2763 | .remove = __devexit_p(amd64_remove_one_instance), |
2764 | .id_table = amd64_pci_table, |
2765 | }; |
2766 | |
2767 | static void setup_pci_device(void) |
2768 | { |
2769 | struct mem_ctl_info *mci; |
2770 | struct amd64_pvt *pvt; |
2771 | |
2772 | if (amd64_ctl_pci) |
2773 | return; |
2774 | |
2775 | mci = mcis[0]; |
2776 | if (mci) { |
2777 | |
2778 | pvt = mci->pvt_info; |
2779 | amd64_ctl_pci = |
2780 | edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); |
2781 | |
2782 | if (!amd64_ctl_pci) { |
2783 | pr_warning("%s(): Unable to create PCI control\n", |
2784 | __func__); |
2785 | |
2786 | pr_warning("%s(): PCI error report via EDAC not set\n", |
2787 | __func__); |
2788 | } |
2789 | } |
2790 | } |
2791 | |
2792 | static int __init amd64_edac_init(void) |
2793 | { |
2794 | int err = -ENODEV; |
2795 | |
2796 | printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); |
2797 | |
2798 | opstate_init(); |
2799 | |
2800 | if (amd_cache_northbridges() < 0) |
2801 | goto err_ret; |
2802 | |
2803 | err = -ENOMEM; |
2804 | mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); |
2805 | ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); |
2806 | if (!(mcis && ecc_stngs)) |
2807 | goto err_free; |
2808 | |
2809 | msrs = msrs_alloc(); |
2810 | if (!msrs) |
2811 | goto err_free; |
2812 | |
2813 | err = pci_register_driver(&amd64_pci_driver); |
2814 | if (err) |
2815 | goto err_pci; |
2816 | |
2817 | err = -ENODEV; |
2818 | if (!atomic_read(&drv_instances)) |
2819 | goto err_no_instances; |
2820 | |
2821 | setup_pci_device(); |
2822 | return 0; |
2823 | |
2824 | err_no_instances: |
2825 | pci_unregister_driver(&amd64_pci_driver); |
2826 | |
2827 | err_pci: |
2828 | msrs_free(msrs); |
2829 | msrs = NULL; |
2830 | |
2831 | err_free: |
2832 | kfree(mcis); |
2833 | mcis = NULL; |
2834 | |
2835 | kfree(ecc_stngs); |
2836 | ecc_stngs = NULL; |
2837 | |
2838 | err_ret: |
2839 | return err; |
2840 | } |
2841 | |
2842 | static void __exit amd64_edac_exit(void) |
2843 | { |
2844 | if (amd64_ctl_pci) |
2845 | edac_pci_release_generic_ctl(amd64_ctl_pci); |
2846 | |
2847 | pci_unregister_driver(&amd64_pci_driver); |
2848 | |
2849 | kfree(ecc_stngs); |
2850 | ecc_stngs = NULL; |
2851 | |
2852 | kfree(mcis); |
2853 | mcis = NULL; |
2854 | |
2855 | msrs_free(msrs); |
2856 | msrs = NULL; |
2857 | } |
2858 | |
2859 | module_init(amd64_edac_init); |
2860 | module_exit(amd64_edac_exit); |
2861 | |
2862 | MODULE_LICENSE("GPL"); |
2863 | MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " |
2864 | "Dave Peterson, Thayne Harbaugh"); |
2865 | MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " |
2866 | EDAC_AMD64_VERSION); |
2867 | |
2868 | module_param(edac_op_state, int, 0444); |
2869 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
2870 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9